
6.890 Lecture 18 Baur-Strassen Thm and Applications
Scribes: Ron Estrin, Brad Nelson, Nolan Skochdopole, Nicole Wein Date: 11/09/2021

1 Baur-Strassen

We first introduce the notion of straight-line programs (SLP), also known as arithmetic circuits. Let K
be a field with binary operations � ∈ {+, ·, /}. Let F (x1, ..., xn) be a rational function with variables
x1, ..., xn ∈ K.

Definition 1.1. A straight-line program computing F is a sequence of operations {g1, ..., gs} such that each
gi is of one of the following forms: (1) gi ← gj � gk for j, k < i, (2) gi ← gj � c for j < i and c ∈ K, (3)
gi ← xk�xl, (4) gi ← xk�c for c ∈ K or (5) gi ← gj�xk for j < i. The output from gs gives F (x1, ..., xn).

The definition easily extends to the case when F outputs a set of rational functions by having multiple
output gates.

Consider the following example of an SLP. We wish to compute F (x1, x2, x3) = 5− x1x22/x3. Define the
following sequence of operations:

g1 ← x2 · x2
g2 ← x1 · g1
g3 ← g2/x3

g4 ← −1 · g3
g5 ← 5 + g4

Then the above sequence is a straight-line program computing F .
A nice property of SLPs is that they’re easily representable by circuits where the gi’s are the gates in the

circuit. For example, the above SLP is represented by the following circuit.

· · ·/ +

x1 x2 x3 -1 5

g1 g2 g3 g4 g5

Now we will state the Baur-Strassen theorem, which essentially says that if you have an SLP of size s
that computes F , then you can convert it into an SLP of size 5s that computes all of the partial derivatives
of F .

Theorem 1.1. [Baur-Strassen] Let F (x1, ..., xn) be a rational function over a field K. Consider the set
F ′ = { ∂F∂x1

, ..., ∂F∂xn
}. Then T (F ′) ≤ 6T (F ), where T (F ) is the minumum number of operations needed in a

straight-line program computing F as defined above.

Proof. Suppose {g1, ..., gs} is a minimum-length SLP that computes F (x1, ..., xn). Let F (i) be the function
computed by gi, . . . , gs. The variable set for F (i) is {x1, . . . , xn, g1, . . . gi−1} and the number of operations
is s − i + 1. For ease of notation, we rename the variables to {z1, . . . zn+s} where zj = xj for j ≤ n and
zj = gj−n for j > n.

Now we will use induction. We will assume that we have computed all the derivatives of F (i+1) with
at most 5(s − i) operations. Then, we will show how to compute all the derivatives of F (i) with at most
5(s− i+ 1) operations.

1



First, the base case: i = s. Note that F (s+1)(x1, . . . , xn, g1, . . . gs) = gs. Thus, ∂F (s+1)

∂gs
= 1 and for all

zj 6= gs,
∂F (s+1)

∂zj
= 0. This requires zero operations.

Suppose inductively that we can compute for all j, ∂F (i+1)

∂zj
with 5(s − i) operations. We will show that

only 5 additional operations are needed to compute for all j, ∂F (i)

∂zj
.

Note that F (i) is equal to F (i+1) with gi substituted for one of the operations in the definition of SLP,

i.e. gi is substituted for sb � s` where sb, s` ∈ K ∪ {gr : r < i} ∪ {xt}t∈[n]. Note that ∂F (i)

∂zj
= 0 for zj = gp

with p > i. For the rest of the zj , the chain rule implies that

∂F (i)

∂zj
=
∂F (i+1)

∂zj
+

(
∂F (i+1)

∂gi

)(
∂gi
∂zj

)
.

Thus, if zj 6∈ {sb, s`} then ∂F (i)

∂zj
= ∂F (i+1)

∂zj
, and if zj = sb then ∂F (i)

∂zj
= ∂F (i+1)

∂sb
+
(
∂F (i+1)

∂gi

)(
∂gi
∂sb

)
, and

analogously for s`.
Consider the following cases for gi = sb � s`.

Case 1: gi = zt + zt′ . In this case we only need to compute the following derivatives:

∂F (i)

∂zt
=
∂F (i+1)

∂zt
+
∂F (i+1)

∂gi

∂F (i)

∂zt′
=
∂F (i+1)

∂zt′
+
∂F (i+1)

∂gi

Each of these two computations only requires 1 operation, for a total of 2 operations.

Case 2: gi = zt · zt′ . In this case we only need to compute the following derivatives:

∂F (i)

∂zt
=
∂F (i+1)

∂zt
+
∂F (i+1)

∂gi
· zt′

∂F (i)

∂zt′
=
∂F (i+1)

∂zt′
+
∂F (i+1)

∂gi
· zt

Each of these two computations require 2 operation, for a total of 4 operations.

Case 3: gi ← zt/zt′ . In this case we only need to compute the following derivatives:

∂F (i)

∂zt
=
∂F (i+1)

∂zt
+
∂F (i+1)

∂gi

/
zt′

∂F (i)

∂zt′
=
∂F (i+1)

∂zt′
+
∂F (i+1)

∂gi
·
(
−zt
z2t′

)
These can be computed as follows: (1) compute a← ∂F (i+1)

∂gi

/
zt′ , (2) compute b← a · (−1), (3) compute

c← b · gi, here c = −∂F
(i+1)

∂gi
(zt)/z

2
t′ , (4) compute ∂F (i+1)

∂zt
+ a, (5) compute ∂F (i+1)

∂zt
+ c.

This gives a total number of 5 operations.
These three cases also cover the case when sb or s` is a scalar, since this is strictly easier. �

Here’s an example for our earlier function. Below’s the SLP for the partial derivatives of F (x1, x2, x3) =
5 − x1x22/x3. The partial derivatives should be ∂F/∂x1 = −x22/x3, ∂F/∂x2 = −2x1x2/x3, and ∂F/∂x3 =
x1x

2
2/x

2
3.

2



g1 ← x2 · x2
g2 ← x1 · g1

g3 ← g2/x3

g4 ← −1 · g3

g5 ← 5 + g4

Dg5Dg4 ← 1

Dg5Dg3 ← −1

Dg5Dg2 ← Dg5Dg3/x3 = −1/x3

Dg5Dx3 ← Dg5Dg3 · g3 ·Dg5Dg2 = g2/x
2
3 = x1x

2
2/x

2
3 (two ops)

Dg5Dx1 ← Dg5Dg2 · g1 = −g1/x3 = −x22/x3

Dg5Dg1 ← Dg5Dg2 · x1 = −x1/x3

Dg5Dx2 ← Dg5Dg1 · 2x2 = −2x1x2/x3

Interestingly, as far as we know the Baur-Strassen theorem only works for first derivatives, not second
derivatives. In fact, if it worked for second derivatives then ω would be 2.

2 Shortest Cycle

Let G be a directed graph on n nodes with edge weights in {1, . . . ,M}. Our goal is to find the cycle in G
with the minimum total weight.

Remark 1. We can do this in O(n3) time. Perform Dijkstra’s from every node and stop when we find the
shortest path back to the original node.

Remark 2. If there exists a Õ(n(3−ε) logcM) algorithm for some ε > 0, then APSP can be done in
O(n(3−ε) logMn) time. Furthermore, this result holds in both directions.

We will present a O(Mnω) algorithm. This algorithm will use the framework from [1]. First we will show
how to get the weight of the cycle and then we will use the Baur-Strassen theorem to find the cycle.

3



2.1 Finding the weight of the shortest cycle

Theorem 2.1. In Õ(Mnω) time we can compute the weight of the shortest cycle.

Proof. We will define a symbolic matrix, similar to last lecture. The matrix will have a variable xij for each
edge (i, j) as well as a variable y. Like last lecture we will plug in random values for the xij , however y will
remain a variable.

Let G = (V,E), with weights w : E → {1, . . .M}. Define xij as a formal variable defined for each
(i, j) ∈ E. Define A[y] as

A[y](i, j) =

{
xijy

w(i,j) if (i, j) ∈ E,
0 otherwise.

We will consider the polynomial that is the determinant of the sum of A[y] and the identity matrix. First,
we introduce some notation concerning polynomials P .

1. Let d∗(P ) be the minimum degree d∗ such that yd has a nonzero coefficient in P . For example, if
P (y, x) = y10 + 7x3y2 + x. Then d∗(P ) = 0 since the y0 term has a nonzero coefficient.

2. Let f∗(P ) be the coefficient in front of yd
∗

in P .

Claim. The minimum weight of a cycle in G is d∗(det(A+ I)− 1).

Later, we will use this claim together with the Schwartz-Zippel lemma to find d∗.

Proof. Recall that

det(A+ I) =
∑
σ∈Sn

(−1)sgn(σ)
n∏
k=1

(A+ I)[k, σ(k)].

Let g(σ) denote the term of the summation corresponding to σ.
Note that when σ = id (the identity permutation), g(σ) = 1.
Thus,

det(A+ I)− 1 =
∑

σ∈Sn,σ 6=id

g(σ).

If σ 6= id, note that its cycle decomposition has at least one cycle C = (i1, i2, . . . , ik) that is not a
singleton. C contributes xi1i2 · xi2i3 · · · · · xiki1 · yw(i1,i2)+···+w(ik,i1) to the product of (A+ I)[k, σ(k)]. More
generally, every non-singleton cycle contributes an analogous term.

A cycle packing of a graph G is a set of vertex-disjoint (possibly singleton) cycles that cover all of the
vertices of G.

Thus, we have

g(σ) = ±
∏

cycle packing {C1,...,C`}

∏̀
i=1

 ∏
(a,b)∈Ci

xab

 y
∑`

i=1 w(Ci).

Since the degree of each term in the polynomial is a sum of cycle weights, the term with the minimum
nonzero degree must correspond to the cycle packing consisting the union of the minimum weight cycle with
singleton cycles to cover the rest of the graph. That is, (d∗(det(A + I) − 1) is exactly the weight of the
minimum weight cycle in the graph.

Also, f∗(det(A+ I)− 1) =
∑

cycles C of min weight(±1) ·
∏

(i,j)∈C xij �

Now, we will plug into f∗(det(A+ I)−1) random values for xij in the range {1, . . . , n2} and use the field
Fp for some prime p > n2. Using the Schwartz-Zippel lemma, we have that with high probability (≥ 1−1/n),
f∗(det(A + I) − 1) does not evaluate to 0. Furthermore, d∗ of the evaluation of f∗(det(A + I) − 1) is the
weight of the shortest cycle with high probability.

Now, we need to argue that we can compute det(A + I) after having only substituted values in for the
xijs (not y). To do this, we will apply Storjohann’s theorem:

4



Theorem 2.2 (Storjohann’s theorem). Let A[y] be an n × n matrix where ∀i, j, A[y](i, j) is a polynomial
over y with coefficients in a field K and has degree at most M . Then we can compute det(A[y]) using an
SLP in Õ(Mnω) operations.

Let A[y] = A+ I. Then, Storjohann’s theorem allows us to compute det(A+ I) in Õ(Mnω) time. This
completes the proof. �

2.2 Finding the shortest cycle

To find the shortest cycle, we will find an edge (u, v) on a shortest cycle, and then run Dijkstra’s algorithm
from v to find d(v, u).

To find such an edge, we will use Storjohann’s theorem and the Baur-Strassen theorem.

Claim. (u, v) is on the shortest cycle if and only if ∂f∗(det(A+I)−1)
∂xuv

6= 0.

Proof. Recall f∗(det(A+I)−1) is a sum of terms corresponding to cycles of minimum weight d∗. Consider a
cycle C = {u, v, i1, . . . , ik} of weight d∗. Then in f∗(det(A+I)−1) we have the term xuv ·xvi1 ·xi1i2 · · · · ·xiku
with nonzero coefficient. This means that ∂f∗(det(A+I)−1)

∂xuv
6= 0.

This works in the opposite direction as well. That is, if ∂f∗(det(A+I)−1)
∂xuv

6= 0 then there is some term in
f∗(det(A+ I)− 1) containing xuv with a nonzero coefficient, which implies that (u, v) is in a shortest cycle.

�

Storjohann’s theorem gives us an SLP of length Õ(Mnω) which can evaluate det(A+ I)−1 for a random
choice of each xij . In particular, this SLP computes f∗(det(A+ I)− 1) for our choice of xij ’s.

The input to this SLP is for every i, j ∈ [n] and every ` ≤M , the coefficient in front of y` in (A+ I)(i, j).
We will prepend to the SLP instructions which sets the coefficient in front of y` in (A+ I)(i, j) to be xij

if (i, j) is an edge of weight `, 1 if i = j, and 0 otherwise. The number of instructions here is at most Mn2,
so the size of this new SLP is still Õ(Mnω).

Now we apply the Baur-Strassen theorem on this new SLP to compute each ∂f∗(det(A+I)−1)
∂xuv

. In particular,

we can pick random values for the xij ’s and evaluate each ∂f∗(det(A+I)−1)
∂xuv

efficiently, and therefore check

which terms are non-zero. This allows us to obtain an edge (u, v) such that such that ∂f∗(det(A+I)−1)
∂xuv

6= 0,
and thus (u, v) is on a shortest cycle.

References

[1] Cygan, M., Gabow, H., Sankowski, P. Algorithmic Applications of Baur-Strassen’s Theorem: Shortest
Cycles, Diameter, and Matchings (2015) J. ACM, 62(4), 28:1-28:30.

5


