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1 Boolean Matrix Multiplication (Introduction)

Given two n×n matrices A,B over {0, 1}, we define Boolean Matrix Multiplication (BMM) as the following:

(AB)[i, j] =
∨
k

(A(i, k) ∧B(k, j))

Note that BMM can be computed using an algorithm for integer matrix multiplication, and so we have BMM
for n× n matrices is in O(nω) time, where ω < 2.373 (the current bound for integer matrix multiplication).

Most theoretical fast matrix multiplication algorithms are impractical. Therefore, so called “combina-
torial algorithms” are desirable. The term “combinatorial algorithm” is loosely defined, but one has the
following properties:

� Doesn’t use subtraction

� All operations are relatively practical (like a lookup tables)

Remark 1. No O(n3−ε) time combinatorial algorithms for matrix multiplication are known for ε > 0, even
for BMM! Such an algorithm would be known as “truly subcubic.”

2 BMM is subcubically equivalent to graph triangle detection.

We will prove the following theorem.

Theorem 2.1. Suppose that a triangle in an n node graph can be detected in D(n) time. Then BMM of
two n× n matrices can be computed in O(n2D(n1/3)) time.

In particular, if D(n) = O(n3−ε) time, then BMM is in O(n3−ε/3) time, and if D(n) = O(n3/ logc n)
time for some constant c, then BMM is in O(n3/ logc n) time, asymptotically the same as D(n).

Suppose that we are given an algorithm that can detect a triangle in D(n) time. We will actually assume
that if the triangle detection algorithm says that the graph has a triangle, we can also find such a triangle
in the same time. We encourage you to think why this is true - i.e. why one can reduce triangle finding to
detection so that if one can detect in t(n) time, then one can also find in O(t(n)) time.

Now consider the following graph representation of the BMM problem: given two n× n matrices A and
B, build a graph H on node partitions I, J,K where we put an edge from i ∈ I to j ∈ J iff A[i, j] = 1 and
similarly from j ∈ J to k ∈ K iff B[j, k] = 1. Finally, we put an edge (i, k) for every pair i ∈ I, k ∈ K,
and the BMM problem becomes, for every edge (i, k) with i ∈ I, k ∈ K, is (i, k) contained in some triangle
i, j, k?

Now, let t be a parameter we will set later. Split I, J and K into t pieces each on n/t nodes. Let Ii, Ji,
and Ki be the ith piece of I, J , and K respectively. Now run the following algorithm:

(0) C - all zeroes n× n matrix (will be the output)
(1) Go through all t3 triples of pieces (Ii, Jj ,Kk):
(1.1) While the subgraph of H induced by Ii ∪ Jj ∪Kk contains a triangle:
(1.1.1) find this triangle (a, b, c) ∈ Ii × Jj ×Kk

(1.1.2) set C[a, c] = 1
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(1.1.3) remove (a, c) from the global graph H.

The algorithm is clearly correct - for any (a, c), if it is in a triangle with some b, then when the triple
(Ii, Jj ,Kj) such that a ∈ Ii, b ∈ Jj , c ∈ Kk is considered, either a triangle for (a, c) has already been found,
or (a, b, c) is in the graph induced by Ii ∪ Jj ∪ Kk so that a triangle including (a, c) will be found in this
iteration.

What is the runtime?
Every time a triangle detection call finds a triangle, it sets an entry of C to 1, and since the corresponding

edge is removed globally, each entry of C is set to 1 at most once. Thus, if finding a triangle in an N node
graph takes D(N) time, then the runtime due to YES instances of triangle detection is O(n2D(n/t)). Some
triangle detection calls might return NO. However this happens at most once per triple (Ii, Jj ,Kk). Thus
the runtime due to NO instances of triangle detection is O(t3D(n/t)).

We set t3 = n2 to minimize the runtime, and we get that BMM can be computed in O(n2D(n1/3)) time.

3 The Four-Russians Algorithm

In 1970, Arlazarov, Dinic, Kronrod, and Faradzev (who seem not to have all been Russian) developed a

combinatorial algorithm for BMM running in O( n3

logn ) time, now called the Four-Russians algorithm. With a

small change to the algorithm, its runtime can be made O( n3

log2 n
). In 2009, Bansal and Williams obtained an

improved algorithm running in O( n3

log2.25 n
) time. In 2014, Chan obtained an algorithm running in O( n3

log3 n
)

and then, most recently, in 2015 Huacheng Yu achieved an algorithm that runs in O( n3

log4 n
). Today we’ll

present the Four-Russians algorithm and briefly discuss Yu’s algorithm.

3.1 Four-Russians Algorithm

We start with an assumption:

� We can store a polynomial number of lookup tables (arrays) T of size nc where c ≤ 2 + ε, such that
given an index of a table T , and any O(log n) bit vector x, we can look up T (x) in constant (O(1))
time.

This assumption is true in the word-RAM model with O(log n) bit words.

Theorem 3.1. Under the assumption, BMM for n× n matrices is in O( n3

log2 n
) time.

Proof. We give the Four Russians’ algorithm.
Let A and B be n× n boolean matrices. Choosing an arbitrary ε > 0, we can split A into blocks of size

ε log n× ε log n. That is, A is partitioned into blocks Ai,j for i, j ∈ [ n
ε logn ]. Below we give a simple example

of A:

Ai,j

ε log n
{i

j

For each choice of i, j we create a lookup table Ti,j corresponding to Ai,j with the following specification.
For every bit vector v of length ε log n, Ti,j [v] = Ai,j · v.
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That is, Ti,j takes keys that are ε log n-bit sequences and stores ε log n-bit sequences. Also since there
are nε bit vectors of ε log n bits, and Ai,j · v is ε log n bits, we have |Ti,j | = nεε log n.

The entire computation time of these tables is asymptotically( n

log n

)2
nε log2 n = n2+ε,

since there are ( n
logn )2 choices for i, j, nε vectors v, and for each Ai,j and each v, computing Ai,j · v takes

O(log2 n) time for constant ε.

Given the tables that we created in subcubic time, we can now look up any Aij · v in constant time.

We now consider the matrix B. Split each column of B into n
ε logn parts of ε log n consecutive entries.

Let Bkj be the jth piece of the kth column of B. Each AijB
k
j can be computed in constant time, because it

can be accessed from Tij [B
k
j ] in the tables created from preprocessing.

To calculate the product Q = AB, we can do the following.

From j = 1 to n
ε logn : Qik = Qik ∨ (Aij ·Bkj ), by the definition (here · is Boolean matrix-vector multipli-

cation). With our tables T , we can calculate each Aij ·Bkj in constant time, but the bitwise “or” of Qik and

Aij ·Bkj still takes O(log n) time. This gives us an algorithm running in time O(n · n
logn

2 · log n) = O( n3

logn )
time, the original result of the four Russians.

How can we get rid of the extra log n term created by the sum?

We can precompute all possible pairwise bitwise ORs. Create a table S such that S(u, v) = u ∨ v where
u, v ∈ {0, 1}ε logn. This takes us time O(n2εε log n), since there are n2ε pairs u, v and each component takes
only O(log n) time.
This precomputation allows us constant time lookup of any possible pairwise sum of ε log n bit vectors.

Hence, each Qik = Qik∨(Aij∧Bkj ) operation takes O(1) time, and the final algorithm asymptotic runtime
is

n · (n/ε log n)2 = n3/ log2 n,

where the first n counts the number of columns k of B and the remaining term is the number of pairs i, j.

Thus, we have a combinatorial algorithm for BMM running in O( n3

log2 n
) time.

�

Note: can we save more than a polylog factor? This is a major open problem.

3.2 Yu’s algorithm

The best known combinatorial algorithm for BMM is by Yu in 2015. In the following theorem statement, Ô
notation hides factors polynomial in log log n.

Theorem 3.2. BMM for n× n matrices is in Ô(n3/(log n)4) time.

Yu actually obtains an Ô(n3/(log n)4) time algorithm that can detect triangles in an n-node graphs. By
the equivalence we proved earlier, this immediately implies a BMM algorithm of the same complexity.
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Suppose we are given a tripartite graph G with vertex partitions A,B,C and we want to know if there
is a triangle in G; since the graph is tripartite the triangle will have nodes a ∈ A, b ∈ B, c ∈ C.

Yu’s algorithm considers the vertices of A. It has two cases. Either every single vertex in A has somewhat
low degree, or there is some vertex in A that has somewhat high degree. The first case uses a Four-Russians’
style algorithm. The second case uses recursion.

Let’s look at the low degree part first. For a subset of vertices X and a node v, let degX(v) denote the
number of neighbors of v in X.

Lemma 3.1. Let G = (V,E) be a tripartite graph with partitions A,B,C with sizes k,m, n respectively.
Suppose that for some D, for all a ∈ A, dB(a) · dC(a) ≤ mn/D2. Then there is an O(mnD6D + kmn/D4 +
k(m + n)) time combinatorial algorithm that can detect a triangle on a word-RAM with words of size
Ω(D logD + log(kmn)).

If N = max{k,m, n} and D is small enough, say O(logN/(log logN)), then the word size of the word-
RAM only needs to be Θ(logN). We will apply the lemma exactly for such parameters.

Let’s prove the lemma. Partition B into groups Bi of size D3. Do the same with C, obtaining n/D3 such
groups Cj .

Define SB to be the set of sets S of size at most D s.t. S is entirely contained in some Bi. There are

O((m/D3)
(
D3

D

)
) such sets S, and so this is the size of SB .

Similarly, define SC to be the set of sets S of size at most D s.t. S is entirely contained in some Cj .

Then |SC | ≤ O((n/D3)
(
D3

D

)
).

For every S ∈ SB and S′ ∈ SC , we check if there is an edge in S × S′ and store the results in a look-up

table. The computation takes O

(
D2 · (mn/D6) ·

(
D3

D

)2)
≤ O(mnD6D) time, and this is also the size of the

look-up table.
We can index any subset S ∈ SB ∪SC using O(D log(D) + log(m+n)) bits, which is the size of the word

in the word-RAM.
To check if there is a triangle using this look-up table, we do the following. For every a ∈ A, partition

the neighbors NB(a) of a in B into at most m/D3 + degB(a)/D sets of size at most D, each in SB . We do
this by partitioning, for each Bi, the neighbors NB(a) ∩ Bi greedily into sets of size D and at most one set
of size < D.

Similarly, we split the neighbors NC(a) of a in C into at most n/D3 + degC(a)/D sets in SB (of size at
most D). Then for each pair of such sets, we look up in the look-up table whether there is an edge between
them. The total time over all a is asymptotically∑

a∈A
((m/D3 + degB(a)/D)(n/D3 + degC(a)/D) + k(m+ n)) ≤

kmn/D6 + 2kmn/D4 + k(m+ n) +
∑
a∈A

degB(a)degC(a)/D2 ≤

O(kmn/D4 + k(m+ n)).

The total running time together with the preprocessing becomes O(mnD6D + kmn/D4 + k(m+ n)).
This finishes the low-degree phase. We set D = log(N)/(10 log logN)2. Then the running time becomes

mnNo(1) + Ô(kmn/ log4(N) + k(m+ n)).
What does Yu’s algorithm do if there is a node a inA that has high degree, i.e. degB(a)degC(a) > mn/D2?

Then it picks this node, lets B1 be the neighbors of a in B, and C1 be the neighbors of a in C.
If B1 is a larger fraction of B than C1 is of C, i.e. if |B1|/|B| > |C1|/|C|, then we recurse on (A \

{a}, B,C \C1) and (A \ {a}, B \B1, C1). (Otherwise, reverse the roles of B and C and recurse accordingly.)
If either recursive step returns YES, return YES. Otherwise, if both return NO, check all pairs of vertices

in B1 × C1 to see if there is an edge completing a triangle with a. If so, return YES, otherwise return NO.
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The idea is that we will do the work for B1 × C1 at the end if needed. Otherwise, we can avoid it. If
we have checked A \ {a} for triangles with B × (C \ C1), then we only need to check it for triangles with
(B \B1)× C1 since B1 × C1 can be avoided.

(The base case is when |B| or |C| becomes smaller than D6 when one can use the brute force algorithm.)
The running time analysis is the most complicated part. We don’t have time to cover it, but by careful

analysis of the recursion tree, Yu is able to show that the running time is Ô(n3/ log4 n).
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