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The goal of this lecture is to show algorithms for APSP in directed graphs, where the edge weights are
integers in {—M, ..., M} for an integer M > 1. In the previous lecture we gave an O(n* logn) time algorithm
for APSP in undirected unweighted graphs (by Seidel). Shoshan and Zwick showed how to extend Seidel’s
algorithm to obtain an O(Mn®) time algorithm for undirected graphs with integer weights in {—M, ..., M}.

Let G = (V, E) be a given directed graph with weights w(-) € {—M,..., M} on its edges. We assume
that the graph does not have negative cycles.

In the first part of the lecture, we give an algorithm that runs in ON(\/M nBt+w)/ %) time. For the second
part, we will show Zwick’s algorithm that improves the previous algorithm. The running time of Zwick’s
algorithm is O(M ™% n>"75), which is faster than O(vMn®+)/2) when M = O(1) and w > 2. Zwick’s
algorithm can be improved to O(M 0.752(2.5286) "yising rectangular matrix multiplication, but we won’t cover
the rectangular matrix multiplication part.

1  An O(vVMnB+)/2) Algorithm

Given a parameter k, we call a path short if it uses at most k vertices, and long otherwise. At a high level,
the algorithm we present considers considers long shortest paths and short shortest paths separately. For
short paths, it uses matrix multiplication; for long paths, it uses sampling and single source shortest paths
(SSSP).

Throughout this lecture, we use d(i,j) to denote the distance from i to j, and use £(i,7) to denote the
number of vertices on a fixed shortest path from i to j. If there are multiple shortest paths from 7 to j, then
we pick one of the shortest paths P, ; and we let £(4, j) be the number of nodes on P, ;.

1.1 Handling Long Paths

Recall that for every pair of vertices 4, j we have picked a representative shortest path P; ;, and £(i, j) is the
number of nodes on P; ;. Here we consider all P; ; with £(i,5) > k.
We use the following “Hitting Set Lemma”:

Lemma 1.1. Let S = {S1,...,Sn} be a collection of N sets where for every i € [N], we have S; C [L] for
an integer L and |S;| > k. Then a uniformly random subset T of [L] of size at least C - (L/k)In N, with
probability at least 1 — 1/NC~1 will have S; N'T # () for every i € [N].

Let’s apply the Hitting Set Lemma where N = n? and S is the set of < n? paths P, ; with (i, j) > k.
We think of the paths as subsets of the vertex set V' which we associate with [n]. From the lemma, we know
that if T C V' is a uniformly random subset of ©(% logn) nodes, then T'N P; ; # () for every pair of i, j, with
high probability.

Thus, after picking a random 7', we know that it contains a node on every long shortest path (with high
probability). We can run SSSP to and from every vertex s € T to compute d(7, s) and d(s, ) for every i € V.
Then for every pair 4,j € V with a long shortest path P; ;, we have d(i, j) = minser d(i, s) + d(s, j). Thus,
for long paths, it suffices to perform O(|T|) SSSP calls, and use O(n?|T|) time to use the SSSP results to
compute d(i,j) where £(i,j) > k. It remains to discuss how to perform SSSP.

If all edge weights are nonnegative, we can run Dijkstra’s algorithm to and from every vertex in 7', which
will take O(n?|T|) time. In order to handle any negative weight edges in the graph, we can use Johnson’s
trick.

Claim 1. For everyi,j € V, w'(i,j) > 0.
Proof. By the triangle inequality, d(q, j) < d(q,%) + w(, ), so w'(i,5) = w(i, j) + d(q,i) — d(q,5) > 0. O



Algorithm 1: Johnson’s trick, G = (V, E), with edge weights w: E — {-M,..., M}
Add a new node q.
Add an edge with weight 0 from ¢ to every vertex v € V.
Compute SSSP from ¢ (Look for an O(Mn®) time algorithm in the next lecture).
foreach (i,j) € E do

Let d'(i,j) be the distance from i to j using weights w’'.
Claim 2. For everyi,j €V, d'(i,5) = d(i,7) + d(q,i) — d(q, j).
Proof. For any path v; — -+ — v;, we have
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This means that for any path, its weight under w’ only depends on the start, end, and its weight under w,
so the shortest path between ¢ and j remains the same. Thus, d’'(i,5) = d(i,5) + d(q,7) — d(q, j). O

Claim 2 suggests that we can compute SSSP under w’ and then recover d from d’, and Claim 1 suggests
that we can use Dijkstra’s algorithm to compute SSSP under w’. It takes O(Mn‘*’) time to perform Johnson’s
trick using the algorithm you will see in the next lecture, and O(n2|T|) time to run Dijkstra’s algorithm to
and from every vertex in T.

Overall, it takes O(Mn® 4+ n?|T|) time to handle long paths. Recall that |T| = O(% logn), so the running

time becomes O(Mn® + %3)

1.2 Handling Short Paths

For short paths, we want to compute d(i, j) for ¢,j5 € V where £(i,j) < k. For this purpose, we define the
(min, 4)-product (a.k.a distance-product or funny product).

Definition 1.1. For two n by n matrices A, B, the (min, +)-product C = Ax B is defined by

C(i,j) = mkin{A(i, k) + B(k,j5)}, Vi, j € [n].

Although we will not prove it, a theorem of Fischer and Meyer’1971 states that (min,+)-product is
asymptotically equivalent to APSP: if Ax B can be computed in T'(n) time, then APSP in weighted graphs
can be done in O(T'(n)) time, and vice-versa. It is not hard to show that APSP can be used to solve
(min, +)-product, and that APSP can be solved using (min, +)-product with successive squaring, at a cost
of a logarithmic factor. Fisher and Meyer’s result removes the logarithmic overhead.

It turns out that (min, +)-product can be computed relatively quickly when the matrix entries are integers
with small absolute values.

Theorem 1.1. If A, B are n X n matrices with entries in {—M,..., M} U{oo}, then Ax B can be computed
in O(Mn®) time.

Proof. First note that we can assume that there are no infinite entries - replace each co with 3M + 1. These
entries can never be used in a (min, 4 )-product entry (unless that entry is co itself) since any finite (min, +)-
product entry is at most 2M and even if one uses a —M entry together with the 3M + 1, one would get
2M +1>2M.

Now assume that the matrix entries of A and B are in {—M, ..., M}. We will work in the word-RAM
model of computation with O(logn) bit words.



Define matrices A’ and B’ with entries

Computing the integer product of A’ and B’ we obtain C’ with entries

Cl(i,j) — Z(n + 1)2M—(A(1’,k’)+B(k,j)).
k

Observe that (n 4 1)2M=C0) < (4, 5) because (n + 1)2M~C09) is a summand in C’(i,5). At the
same time, C’(i,7) < (n + 1)2M=CG3) . n because (n + 1)2M~=C0J) ig the largest summand in C’(i, §)
and C’(i,7) has only n summands. Therefore, we can set C(i,7) to be the unique integer L such that
(n+1)2M-L <C'(i,j) <n-(n+1)2M-L

Note that we are dealing with integers having O(M logn) bits in C”, for which arithmetic operations take
6(M ) time (both additions and multiplications). Bearing this in mind, it is straightforward to see that the
above algorithm computes A« B in O(Mn®) time. O

To handle the short paths, we define the weighted adjacency matrix A of the graph as follows

0 ifi=j
A(i,g) = ¢ w(i,j) if (i,j) € B
00 otherwise.

We want to compute A* where the powering is under (min, +)-product. Assume k is a power of 2, we can
successively square the matrix A to get A? = A2« A", The running time depends on how large the
entries of A2 could be. Since A2 represents the distance matrix for paths up to length 2¢=!, the absolute
values of the entries are bounded by 2°~1M. Thus, by Theorem 1.1, the running time is

log k
Z 271 Mn® = O(2"°8* Mn®) = O(kMn®).
=1

1.3 Combining the Long/Short Path Algorithms

The overall running time is O(Mn* + % + MEn*). The Mn* term is dominated by the Mkn®“ term, so

we can ignore it. To balance the remaining two terms, we set k = "(3;;%/2, which gives an O(\/ Mn(3+)/2)

time algorithm.

Note that if w = 2, the above algorithm runs in time O(v/Mn?%). When M = O(n'~¢) for some constant
€ > 0, the running time is O(n3~¢/2). It is an open problem whether we can achieve a truly sub-cubic time
(O(n379%) for positive ) algorithm for directed APSP when M = O(n).

2 Zwick’s Algorithm

In this section, we describe Zwick’s Algorithm.

Theorem 2.1. All-Pairs Shortest Paths (APSP) on directed graphs, where edge weights are integers in
{=M,...,M} can be solved in O(M/A=«)p2+1/(4=<)) time,

Similar to the previous algorithm, Zwick’s Algorithm handles paths that use at least k nodes, and paths
that use fewer than k nodes separately. For long paths, the running time is the same as the previous
algorithm, which is O(M n* + "73) time. Zwick’s Algorithm improves on the short paths.

In order to handle shortest paths of length less than k, we combine fast computations of (min, 4+) products
with the idea of a hitting set argument.



Proposition 1. Let G be a directed graph, where edge weights are integers in {—M,... , M}, and k be a
fixed parameter. We can compute d(u,v) for every pair (u,v) where £(u,v) < k in time

0 (kg_“’Mn“’) .

Proof. We will have [logs, P| stages. Let V; be the set of pairs of vertices (u,v) such that ((u,v) €
((3/2)771,(3/2)7], and let V<; denote U_ Vi. In stage j, we will compute d(u,v) for every (u,v) € V<;.
More specifically, we will compute a matrix D; such that with high probability,

' =d(z,y) if (z,y) € Vg
Dj(w y){ > d(z,y) otherwise.

Note that D; can easily be obtained from the edge weights of G.

One could easily obtain a valid D; from D;_; by simply computing D;_; x D;_;. However, it won’t give
the running time we desire. Instead, we will take advantage of the hitting set lemma.

For every (u,v) € Vj, consider a shortest path P, , from u to v. The middle third of P, , is a set of
|(3/2)7~1| nodes appearing consecutively in P, , such that at most (3/2)7~! nodes precede them, and at
most (3/2)7~! nodes follow them.

At stage j, we take a random S; C V with |S;| = ((3/2)7 + logn) so that with high probability, V hits
a node s, , in the middle third of P, , for every (u,v) € V. Observe that because s, , is in the middle third
of Py, we get that (u, Sy.u), (Suw,v) € D<j_1.

It follows that with high probability, for all (u,v) € V},

d(u,v) = néisn{Dj,l(u, s)+ Dj_1(s,v)}.
SES;
Thus we can compute D;(u,v) via
Dj(u,v) = min {Dj_l(u, v), Helgn{Dj—l(u’ s) + Dj_l(s,v)}} .

This is easy to do in O(n?) time once we have already computed minges{D;_1(u,s) + Dj_1(s,v)} for
every (u,v). It can be obtained by computing the product X xY where X contains the columns in D;_q
corresponding to the elements of S;, and Y contains the rows in D;_; corresponding to the elements of
S;. In other words, by selecting a hitting set .S;, we are able to use the (min, +)-product of matrices much
smaller than D;_; in order to compute D;.

Breaking X and Y into square blocks of side-length approximately n/(3/2)7, so that there are approxi-
mately (3/2)7 blocks in X and Y. We can use the (min, +)-products of all (3/2)%/ pairs of blocks to easily
recover X x Y. By theorem 1.1, since D; has entries in {—(3/2)/M,...,(3/2) M} U {oo}, this takes time

0] ((3/2)23' (3/2)7 - M - ((3/”2)]>w> =0 (((3/2)*“) Mn*) .

Summing over the [logs /2 k] stages, we get a running time of

OnM > ((3/27)| =0 (k*“Mn).
3(3/2)7 <k

O

We are now in a position to complete the proof of Zwick’s Theorem. Indeed, combining the long distance
(3—w)/(4-w)
~ Vv
O(Ml/(‘l*w)n%l/(‘l*“’)). Observe that both the algorithm for long paths and for short paths compute either
the correct distances or overestimate for distances between pairs of nodes; thus minimizing the outputted

distances of the two, one can obtain the exact d(u,v) for all u,v € V.

algorithm and Proposition 1 and optimizing for k at & = , we get a total running time of



