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A Deterministic Linear Program Solver

in Current Matrix Multiplication Time

Jan van den Brand1

1KTH Royal Institute of Technology, Sweden

Interior point algorithms for solving linear programs have been studied extensively for a long
time [e.g. Karmarkar 1984; Lee, Sidford FOCS’14; Cohen, Lee, Song STOC’19]. For linear programs
of the form minAx=b,x≥0 c

⊤x with n variables and d constraints, the generic case d = Ω(n) has
recently been settled by Cohen, Lee and Song [STOC’19]. Their algorithm can solve linear programs
in Õ(nω log(n/δ)) expected time1, where δ is the relative accuracy. This is essentially optimal
as all known linear system solvers require up to O(nω) time for solving Ax = b. However, for
the case of deterministic solvers, the best upper bound is Vaidya’s 30 years old O(n2.5 log(n/δ))
bound [FOCS’89]. In this paper we show that one can also settle the deterministic setting by
derandomizing Cohen et al.’s Õ(nω log(n/δ)) time algorithm. This allows for a strict Õ(nω log(n/δ))
time bound, instead of an expected one, and a simplified analysis, reducing the length of their
proof of their central path method by roughly half. Derandomizing this algorithm was also an open
question asked in Song’s PhD Thesis.

The main tool to achieve our result is a new data-structure that can maintain the solution to a
linear system in subquadratic time. More accurately we are able to maintain

√
UA⊤(AUA⊤)−1A

√
Uv

in subquadratic time under ℓ2 multiplicative changes to the diagonal matrix U and the vector v.
This type of change is common for interior point algorithms. Previous algorithms [e.g. Vaidya
STOC’89; Lee, Sidford FOCS’15; Cohen, Lee, Song STOC’19] required Ω(n2) time for this task.
In [Cohen, Lee, Song STOC’19] they managed to maintain the matrix

√
UA⊤(AUA⊤)−1A

√
U in

subquadratic time, but multiplying it with a dense vector to solve the linear system still required
Ω(n2) time. To improve the complexity of their linear program solver, they restricted the solver to
only multiply sparse vectors via a random sampling argument. In comparison, our data-structure
maintains the entire product

√
UA⊤(AUA⊤)−1A

√
Uv additionally to just the matrix. Interestingly,

this can be viewed as a simple modification of Cohen et al.’s data-structure, but it significantly
simplifies their analysis of their central path method and makes their whole algorithm deterministic.

1 Here Õ hides polylog(n) factors and O(nω) is the time required to multiply two n × n matrices. The stated

Õ(nω log(n/δ)) bound holds for the current bound on ω with ω ≈ 2.38 [V.Williams, STOC’12; Le Gall, ISSAC’14].

The upper bound for the solver will become larger than Õ(nω log(n/δ)), if ω < 2 + 1/6.
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1 Introduction

Fast algorithms for solving linear programs have a long history in computer science. Solving
linear programs was first proven to be in P in 1979 by Khachiyan [Kha79]; and later Karmarkar
[Kar84] found the first polynomial time algorithm that was feasible in practice. This initiated
the long line of work of solving linear programs using interior point algorithms, motivated by
the fact that many problems can be stated as linear programs and solved using efficient solvers.
[Ren88, Vai87, Vai89b, Vai89a, Meg89, NN89, NN91, VA93, Ans96, NT97, Ans99, LS14, LS15]

For linear programs of the form minAx=b,x≥0 c
⊤x with n variables, d constraints and nnz(A)

non-zero entries, the current fastest algorithms are Õ(
√
d(nnz(A)+ d2)) [LS14, LS15]2 and Õ(nω)-

time [CLS18]3, where the bound O(nω) is the number of arithmetic operations required to multiply
two n× n matrices.4 For the generic case d = Ω(n), the latter complexity is essentially optimal as
all known linear system solvers require up to O(nω) time for solving Ax = b. As the complexity is
essentially optimal, but the algorithm is randomized, a typical next step (e.g. [KT19, Cha00, PR02,
MRSV17]) is to attempt to derandomize this algorithm. Derandomizing algorithms has the benefit
that the required analysis can lead to further understanding of the studied problem. There have
been precedences where derandomizing algorithms required developing new techniques, which then
allowed for improvements in other settings. For example, in order to derandomize Karger’s edge
connectivity algorithm [Kar00], Kawarabayashi and Thorup [KT19] had to develop new techniques,
which then lead to new results in the distributed setting [DHNS19].

In the related area of linear program solvers in the real RAM model (i.e. when analyzing the
complexity only in terms of the dimension, but not the bit-complexity of the input), a lot of effort
has been put in derandomization and finding fast deterministic algorithms (see e.g. [CM96, BCM99,
Cha16]). Yet, there is still a wide gap between the best randomized and deterministic complexity
bounds.5 The same observation can be made in our setting, when analyzing the complexity with
respect to the bit-complexity of the input, where the best deterministic bounds are Õ(

√
n·nnz(A)+

nd1.38) [Kar84]6, Õ(
√
n · nnz(A) + n1.34d1.15) [Vai89b] and Õ(d · nnz(A) + dω+1) [Vai89a].7 For

d = Ω(n), all deterministic algorithms are stuck at Ω(n2.5) time. Further, these bounds are at least
30 years old and all new algorithms, that have been able to improve upon these bounds, crucially
use randomized techniques. This raises the question: Is there a deterministic algorithm that can
close the gap between deterministic and randomized complexity bounds, or at least break the 30
years old Ω(n2.5) barrier?

We are able to answer this question affirmatively by derandomizing the algorithm of Cohen et
al. [CLS18]. Our deterministic algorithm is not just able to break the 30 years old barrier, it even
matches one of the fastest randomized bounds of Õ(nω). This closes the complexity gap between
randomized and deterministic algorithms for large d. More formally, we prove the following result:

2Here Õ(·) hides polylog(n) and polylog(1/δ) terms.
3The algorithm of [CLS18] runs in O((nω + n2.5−α/2+o(1) + n2+1/6) log(n) log(n/δ)) time, where δ is the relative

accuracy and α is the dual matrix exponent. The dual exponent α is the largest a such that an n × n matrix can
be multiplied with an n × na matrix in n2+o(1) arithmetic operations. For current ω ≈ 2.38 and α ≈ 0.31 this time
complexity is just O(nω log(n) log(n/δ)).

4The parameter ω is also called matrix exponent.
5For an overview see [Cha16]. The fastest deterministic algorithm requires O(ndd(1/2+o(1))) time [Cha16], while

with randomized techniques an O(nd2 + exp(O(
√
d log d))) time bound is possible (a combination of [Cla95, Kal92,

MSW96]).
6When using the Õ(

√
n)-iterations short step method.

7For curious readers we recommend [LS15]. They give a brief overview of these algorithms and offer a helpful
graph that shows which algorithm is fastest for which range of n, d, nnz(A).
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Theorem 1.1. Let minAx=b,x≥0 c
⊤x be a linear program without redundant constraints. Let R be

a bound on ‖x‖1 for all x ≥ 0 with Ax = b. Then for any 0 < δ ≤ 1 we can compute x ≥ 0 such
that

c⊤x ≤ min
Ax=b,x≥0

c⊤x+ δ‖c‖∞R and ‖Ax− b‖1 ≤ δ


R

∑

i,j

|Ai,j |+ ‖b‖1




in time O(nω log2(n) log(n/δ)), for the current matrix multiplication time with ω ≈ 2.38 [Wil12,
Gal14].

Remark 1.2. The real complexity of Theorem 1.1 is

O((nω + n2.5−α/2+o(1) + n2+1/6+o(1)) log2(n) log(n/δ)),

which can be simplified to O(nω log2(n) log(n/δ)) for current values of ω ≈ 2.38 [Wil12, Gal14],
α ≈ 0.31 [GU18]. For integral A, b, c the parameter δ = 2−O(L) is enough to round the approximate
solution of Theorem 1.1 to an exact solution. Here L = log(1 + detmax +‖c‖∞ + ‖b‖∞) is the bit-
complexity, where detmax is the largest determinant of any square submatrix of A. [Ren88, LS13]

Derandomizing the Õ(nω) algorithm of [CLS18] was stated by Song as an open question in
[Son19]. In addition to answering this open question, our techniques also allow us to simplify the
analysis of the central path method used in [CLS18], reducing the length by roughly half.

Technical Ideas Interior point algorithms must typically repeatedly compute the projection of
a certain vector v, i.e. they must compute Pv where P is a projection matrix. It suffices to use an
approximation P̃ of P , and in each iteration the matrix P changes only a bit, which allowed previous
results to maintain the approximation P̃ quickly (See for example [Kar84, NN89, Vai89b, LS15]).
A natural barrier for improving linear program solvers is the fact that computing P̃ v requires
Ω(n2) for dense v. This leads to the Ω(n2.5) barrier for linear program solvers, because a total of
Ω(
√
n) projections must be computed. Cohen et al. were able to break this barrier in [CLS18] by

sparsifying v to some approximate ṽ via random sampling and computing P̃ ṽ instead of P̃ v. Our
new approach for breaking this barrier deterministically is to maintain the product P̃ ṽ directly for
some approximation ṽ of v. This is the key difference of our linear program solver compared to
previous results, which only maintained P̃ .

We will now outline the difference between our deterministic Õ(nω) solver for linear programs
and the randomized result of Cohen et al. [CLS18]. They managed to obtain a fast solver for linear
programs by computing the projection P̃ ṽ in subquadratic time using two clever tools:

(1) They created a data-structure to maintain P̃ in sub-quadratic time, amortized over
√
n iter-

ations.

(2) They created a novel stochastic central path method which can sparsify the vector v to
some approximate ṽ via random sampling. Thus the projection P̃ ṽ could be computed in
sub-quadratic worst-case time.

Derandomizing this algorithm seems like a difficult task as it is not clear how to obtain a deter-
ministic sparsification of v. Recently [LSZ19] derandomized the central path method (2), so they
could extend their linear program solver to the problem of Empirical Risk Minimization. However,
in order to achieve Õ(nω) total time, they had to reduce some dimension in the representation of
P̃ via random sketching, which resulted in randomizing the data-structure (1).

In this paper we show how to completely derandomize the algorithm of [CLS18] via a data-
structure that can maintain the projection P̃ ṽ directly for some dense approximate ṽ ≈ v, instead

2



of just maintaining the matrix P̃ as in [CLS18]. This result can be obtained in two different ways.
One option is to use a dynamic linear system algorithm (e.g. [San04, vdBNS19]) via a black-box
reduction, or alternatively one can interpret the resulting data-structure as a surprisingly simple
extension of the data-structure used in [CLS18]. Indeed the algorithmic description of the data-
structure (1) of [CLS18] grows only by a few lines (see Algorithm 1 in Section 4).

The high level idea of our new data-structure is that the vector v can be written as some
function vi = f(wi), where the argument vector w does not change much between two iterations of
the central path method. By approximating w by some w̃ we can re-use information of the previous
iteration when computing the projection of ṽ = f(w̃). One difficulty, that we must overcome, is
that ṽ := f(w̃) is not an approximation of v = f(w) in the classical sense (i.e. we can not satisfy
‖v − ṽ‖ ≤ ε‖v‖ or even ṽi ≈ vi), even if w̃ is an approximation of w, because for non-monotonous
f , the vectors v and ṽ could point in opposite directions. This is a problem for the short step
central path method, because these algorithm can be interpreted as some gradient descent and
here v depends on the gradient of some potential function. So if ṽ points in the opposite direction,
then the algorithm will actually increase the potential function instead of decreasing it.

To solve this issue, we must also perform some small modifications to the short step central
path method, so it is able to handle our approach of “approximating” v. The main modification
to the short step central path method is that we measure our progress with respect to the ℓ∞-
norm, similar to [AB95, CLS18]. The proof for this will be based on [CLS18], where their random
sampling (2) ṽ of v can be interpreted as some approximation of v. This allows us to adapt their
proof to our non-standard way of approximating v = f(w) via ṽ = f(w̃). The removal of all
randomized components from their proof also allows us to reduce the length of their central path
analysis by roughly half. This reduction of the analysis, together with the simple extension of their
data-structure (1) to maintain P̃ ṽ, is an interesting difference to other derandomization results,
where complicated tools need to be created for replacing the randomized components.

2 Outline

In this section we outline how our algorithm works and how we adapt existing ideas such as the short
step central path method and the projection maintenance. Readers only interested in verifying our
algorithm can skip this overview, but reading it can help provide some intuition for how the different
parts of our algorithm interact and what difficulties must be solved in order for our algorithm to
work.

We start the outline with a brief summary of the short step central path method, which mo-
tivates why we must maintain a certain projection. Readers already familiar with the short step
central path method can skip ahead to the next subsection 2.2.

In Section 2.2 we describe the task of the projection maintenance, and how we are able to
perform this task quickly by using a certain notion of approximation (details in Section 4). The
next Section 2.3 of the outline explains the difficulties that we encounter by using this type of
approximation, and how we are able to solve these problems (details in Section 5).

Before outlining our linear program solver, we want to quickly define some important notation:
For two n dimensional vectors v,w we write vw for the entry-wise product and v/w for the entry-
wise division, so (vw)i := viwi and (v/w)i := vi/wi. For a scalar s the product sv is the typical
entry-wise product and analogously we define v−s as the entry-wise difference, so (v−s)i := vi−s.
For two vectors v,w, we write v ≤ w if vi ≤ wi for all i = 1, ..., n. We write ‖v‖p for the ℓp-norm,
so ‖v‖p = (

∑n
i=1 |vi|p)1/p for 0 < p <∞ and ‖v‖∞ = maxi |vi|.

3



2.1 Short Step Central Path Method

We first give a brief summary of the short step central path method. Readers familiar with these
types of algorithms can skip ahead to the next subsection 2.2.

Consider the linear program min
Ax=b,x≥0

c⊤x and its dual program max
A⊤y≤c

b⊤y.

Given a feasible dual solution y (a vector y s.t. A⊤y ≤ c), we can define the slack vector s := c−A⊤y.
Based on the complementary slackness condition (see e.g. [PS82]) we know a triple (x, y, s) is
optimal, if and only if

xisi = 0 for all i,

Ax = b,

A⊤y + s = c,

xi, si ≥ 0 for all i.

If only the last three conditions are satisfied, then we call the triple (x, y, s) feasible. Given such a
feasible triple, we define the vector µ such that µi := xisi and the complementary slackness theorem
motivates why we should try to minimize the entries of µ.

It is known how to transform the LP in such a way, that we can easily construct a feasible
solution triple (x, y, s) with xisi ≈ 1 for all i = 1, ..., n (e.g. Lemma A.3 [YTM94]). Thus for t := 1
we have µi ≈ t. The idea is to repeatedly decrease t and to modify the solution x ← x + δx, y ←
y + δy, s ← s + δs in such a way, that the entries of µ stay close to t. The change of µ is given by
µnew
i = (x + δx)i(s + δs)i = µi + xiδs,i + siδx,i + δx,iδs,i and if δx, δs are small enough, this can be

approximated via µnew
i ≈ µi+xiδs,i+ siδx,i. Thus to change µ by (approximately) δµ, we can solve

the following linear system

Xδs + Sδx = δµ, (1)

Aδx = 0,

A⊤δy + δs = 0,

where X = diag(x) and S = diag(s) are diagonal matrices with the entries of x and s on the
diagonal respectively. The solution to this system is given by the following lemma:

Lemma 2.1 ([CLS18]). The solution for δx, δs in (1) is given by

δx =
X√
XS

(I − P )
1√
XS

δµ and δs =
S√
XS

P
1√
XS

δµ.

where

P :=

√
X

S
A⊤
(
A
X

S
A⊤
)−1

A

√
X

S
.

A typical choice for the decrement of t is to multiply it by 1 − O( 1√
n
), which means it takes

about O(
√
n/δ) iterations until t reaches some desired accuracy parameter δ > 0 [Ren88, Vai87].

For the short step central path method the distance between µ and t is typically measured by∑n
i=1(µi − t)2 = ‖µ− t‖22 and one tries to maintain x, s in such a way that ‖µ− t‖22 ≤ O(t2). This

can be modelled via the potential function Φ(x) = ‖x‖22, and then one tries to maintain µ such that
Φ(µ/t− 1) = O(1), which is equivalent to ‖µ− t‖22 ≤ O(t2). Thus a good choice for δµ would be a
vector with the same direction as −∇Φ(µ/t− 1), as this allows us to decrease the potential, which
then means the distance between µ and t is reduced.

4



2.2 Projection Maintenance (Details in Section 4)

In this subsection we outline one of the main results of this paper and sketch its proof. As described

in the previous section, we must repeatedly compute Pv for P :=
√

X
S A

⊤ (AX
S A

⊤)−1
A
√

X
S and

v :=
δµ√
XS

, where the matrix A describes the constraints of the linear program, X and S are diagonal

matrices that depend on some current feasible solution and δµ is some vector.

Our main result is to maintain an approximation of Pv deterministically in Õ(nω−0.5 + n2.5−α)
amortized time, where ω is the current matrix multiplication exponent and α is the dual exponent.
This new data-structure is a simple extension of the data-structure presented in [CLS18], which
was able to maintain an approximation of P within the same time bound, but their data-structure
required up to O(n2) time for computing Pv for dense v.

The exact statement of our result involves various details, for example how P and v change
over time. So we first want to describe the task of maintaining Pv in more detail.

The task The matrix P =
√

X
S A⊤ (AX

S A
⊤)−1

A
√

X
S shares a lot of structure between two

iterations. Indeed only the diagonal matrices X and S change, while the matrix A stays fixed.

Thus for simplicity we define U := X/S, in which case P :=
√
UA⊤ (AUA⊤)−1

A
√
U and only the

diagonal matrix U changes from one iteration to the next one.
For this task we would wish for a data-structure that can compute Pv for any vector v in

O(nω−0.5) time, which with O(
√
n) iterations would then result in an O(nω)-time solver for linear

programs. More accurately, we hope for an algorithm that solves the following task:

Task 2.2. Let A ∈ R
d×n be a rank d matrix with n ≥ d. We wish for a deterministic data-structure

with the following operations

• Initialize(A, u, v): Given matrix A and two n dimensional vectors u, v we preprocess the
matrix and return

Pv :=
√
UA⊤(AUA⊤)−1A

√
Uv,

where U = diag(u) is the diagonal matrix with u on the diagonal.

• Update(u, v): Given two n dimensional vectors u, v, we must compute

Pv :=
√
UA⊤(AUA⊤)−1A

√
Uv.

It is not clear whether a data-structure exists for this task with O(nω−0.5) update time, but due
to the very first short step linear program solver by Karmarkar [Kar84] it is known that one can
relax the requirements. Indeed it is enough to use an approximation of P .

Relaxation and result Due to [Kar84] it is known, that it is enough to use an approximation

P̃ :=
√

ŨA⊤(AŨA⊤)−1A
√

Ũ for (1 − ε)U ≤ Ũ ≤ (1 + ε)U , instead of the exact matrix P . We
show later in Section 5, that it is also enough to approximate the vector v via some ṽ. The type
of approximation for v is a bit different: We show in Section 5 that we can write v = δµ/

√
XS

as a function of µ/t, so v = f(µ/t). We then “approximate” v via some ṽ := f(µ̃/t), where
(1 − ε)µ ≤ µ̃ ≤ (1 + ε)µ. Note that thus ṽ itself is not necessarily an approximation of v in the
classical sense (i.e. ‖v− ṽ‖2 ≫ ε‖v‖2) and the two vectors might even point in opposite directions.

Motivated by these observations we want to maintain P̃ ṽ instead of Pv. This idea allows for
a speed-up, because in each iteration we only need to change the entries of ũ and µ̃ for which the

5



(1 + ε)-approximation condition is broken. Thus if the vectors u and µ do not change much per
iteration, then we only need to change few entries of ũ and µ̃. We prove in Section 5.2 that u and
µ satisfy the following condition:

Lemma 2.3 (Proven in Section 5.2, Lemma 5.7). Let (uk)k≥1 be the sequence of vectors u, generated
by the central path method. Then ‖(uk+1−uk)/uk‖2 ≤ C for all k and some constant C. (A similar
statement can be made for µ)

Thus, while we are not able to solve Task 2.2 exactly, we do obtain a data-structure that (i)
maintains the solution approximately, and (ii) is fast if ‖(uk+1 − uk)/uk‖2 and ‖(µk+1 − µk)/µk‖2
are small.

Theorem 2.4 (Proven in Section 4, Lemma 4.1). Let A ∈ R
d×n be a full rank matrix with n ≥ d,

v be an n-dimensional vector and 0 < εmp < 1/4 be an accuracy parameter. Let f : R → R be
some function that can be computed in O(1) time, and define f(v) to be the vector with f(v)i :=
f(vi). Given any positive number a ≤ α there is a deterministic data-structure with the following
operations

• Initialize(A, u, f, v, εmp): The data-structure preprocesses the given two n dimensional vec-
tors u, v, the d×n matrix A the function f in O(n2dω−2) time. The given parameter εmp > 0
specifies the accuracy of the approximation.

• Update(u, v): Given two n dimensional vectors u, v. Then the data-structure returns four
vectors

ũ, ṽ, f(ṽ),
√

ŨA⊤(AŨA⊤)−1A
√

Ũf(ṽ).

Here Ũ is the diagonal matrix diag(ũ) and ṽ a vector such that

(1− εmp)ṽi ≤ vi ≤ (1 + εmp)ṽi

(1− εmp)ũi ≤ ui ≤ (1 + εmp)ũi.

If the update sequence u(1), ..., u(T ) (and likewise v(1), ..., v(T )) satisfies

n∑

i=1

(
u
(k+1)
i − u

(k)
i

u
(k)
i

)2

≤ C2, |u
(k+1)
i − u

(k)
i

u
(u)
i

| ≤ 1/4, (2)

for all k = 1, ..., T then the total time for the first T updates is

O
(
T ·
(
C/εmp(n

ω−1/2 + n2−a/2+o(1)) log n+ n1+a
))

There are two equivalent ways to prove Theorem 2.4: One could use the data-structures of
[San04, vdBNS19] which maintain M−1b for some non-singular matrix M and some vector b. Via
a black-box reduction these data-structures would then be able to maintain P̃ ṽ and applying the
tools of [CLS18] for optimizing the amortized complexity would then result in Theorem 2.4.

If one tries to write down a pseudo-code description of the resulting data-structure, then the
code is very similar to the data-structure from [CLS18]. This is because all these data-structures
are based on the Sherman-Morrison-Woodburry identity. Hence an alternative way to prove The-
orem 2.4 is to take the data-structure from [CLS18], which already maintains P̃ , and extend such
that it also maintains P̃ ṽ.

In this paper we present the second option, where we modify the existing data-structure of
[CLS18]. This is because we want to highlight that our derandomization result can be obtained
from a simple modification of the existing randomized algorithm. Though for the curious reader
we also give a sketch of the first variant in Appendix B.
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Proof sketch (Details in Section 4) We now outline how to obtain Theorem 2.4 by extending
the data-structure of [CLS18] to also maintain P̃ ṽ, instead of just P̃ . Their data-structure internally
has three matrices M,L,R with the property

P̃ = M + LR⊤ (3)

where M is some n×n matrix and L,R are rectangular matrices with some m≪ n columns. With
each update, the matrices L,R change and the number of their columns may increase. This way
the n2 entries of the matrix P̃ are not explicitly computed and a sub-quadratic update time can
be achieved.

As the number of columns m of L,R grows, the data-structure will become slower and slower.
Once these matrices have too many columns, the data-structure performs a “reset”. This means
we set

M ←M + LR⊤, (4)

and the matrices L,R are set to be empty (so zero columns). Thus after the reset we have P̃ =
M + LR⊤ = M , so (3) is still satisfied. Such a reset requires Ω(n2) time, but it does not happen
too often so the cost is small on average.8

One can now easily maintain P̃ f(ṽ) as follows: Assume we already know Mf(ṽ), then a new
solution P̃ f(ṽ) is given by

P̃ f(ṽ) = Mf(ṽ) + LR⊤f(ṽ), (5)

because of (3). Here the term LR⊤f(ṽ) can be computed in O(nm) ≪ O(n2) time, because L,R
have m ≪ n columns. The assumption, that Mf(ṽ) is known, can be satisfied easily: During the
initialization of the algorithm we compute this value, and whenever M changes (i.e. during the
reset (4)) we can compute the new Mf(ṽ) in O(n2) time. This does not affect the complexity of
the data-structure, because a reset does already require Ω(n2) time to compute the new M .

At last, we must handle the case where entries of ṽ are changed. Let’s say ṽnew ← ṽ + δv, then

P̃ f(ṽnew) = P̃ f(ṽ) + P̃ (f(ṽnew)− f(ṽ)) = P̃ f(ṽ) +M(f(ṽnew)− f(ṽ)) + LR⊤(f(ṽnew)− f(ṽ)),

where the last equality comes from (3). The complexity can be bounded as follows: The term
P̃ f(ṽ) is computed as described in (5). The second term M(f(ṽnew) − f(ṽ)) can be computed
quickly because on average ṽnew and ṽ differ in only few entries, because of the small change to
v per iteration (as given by (2) of Theorem 2.4). The last term LR⊤(f(ṽnew) − f(ṽ)) is again
computed quickly because the matrices L,R have very few columns.

2.3 Adapting the Central Path Method for Approximate Projection Mainte-
nance (Details in Section 5)

We now outline difficulties that occur, if one tries to use the projection maintenance algorithm
(Theorem 2.4, outlined in Section 2.2) in the classical central path method (outlined in Section 2.1),
and how we are able to solve these issues in Section 5.

The central path method can be interpreted as some gradient descent, where we try to minimize
some potential. When we use the data-structure of Theorem 2.4, then we are essentially performing
this gradient descent while using some approximate gradient. This approximation is of such low

8 Section 5 of [CLS18] is about bounding this amortized cost.
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quality, that the approximate gradient occasionally points in a completely wrong direction, effec-
tively increasing the potential instead of decreasing it. By adapting the potential function, we are
able to prove that the approximate gradient only points in the wrong direction when the potential
is small. Whenever the potential is large, the approximate gradient points in the correct direction.
(A formal proof of this will be in Section 5.3, Lemma 5.14.) This adaption to the short step central
path method allows us to handle these faulty approximate gradients. Before we can outline why
this is true, we must first explain why we obtain these faulty approximate gradients in the first
place.

Faulty gradients The central path method tries to maintain some vector µ close to a scalar t,
where the relative distance is measured via some potential function Φ(µ/t− 1). The central path
method tries to minimize this potential function by solving some linear system that depends on the
gradient ∇Φ(µ/t− 1).

In Section 5.1 we show that when solving this linear system via Theorem 2.4, then we are
essentially solving the system for the approximation ∇Φ(µ̃/t− 1), where µ̃ is an approximation of
µ with (1 − εmp)µ̃ ≤ µ ≤ (1 + εmp)µ̃ for some accuracy parameter εmp > 0. This is problematic
because ∇Φ(µ/t − 1) and ∇Φ(µ̃/t − 1) could point in opposite directions. For example for any i
with µi > t we might have µ̃i < t, so since Φ tries to keep µ close to t, the approximate gradient
can not reliably tell if µi should be increased or decreased. However, if µi > (1+εmp)t, then µ̃i > t,
so the approximate gradient will correctly try to decrease µi. On one hand this shows, that we
can not use the classical short step central path method, where one tries to maintain µ such that
‖µ/t−1‖22 = O(1). This is because ‖µ/t−1‖22 could be as large as Ω(nεmp). On the other hand, we
are able to prove in Section 5.3 that ‖µ/t−1‖∞ = O(1), because once some entry µi is further from
t than some (1± εmp)-factor, then the approximate gradient will correctly try to move µi closer to
t. Hence, we adapt the short step central path method by guaranteeing µ close to t in ℓ∞-norm,
instead of ℓ2-norm.

Adapting the central path method Luckily, maintaining µ close to t in ℓ∞-norm was previ-
ously done in [CLS18], so we can simply adapt their proof for our algorithm. The high-level idea is
to use Φ(x) =

∑n
i=1(e

λxi+e−λxi)/2 for some parameter λ = Θ(log n) as the potential function. This
potential is useful because ‖x‖∞ ≤ λ−1 log 2Φ(x) (proven in Lemma 5.10). This means bounding
Φ(µ/t− 1) by some polynomial in n is enough to prove ‖µ/t− 1‖∞ = O(1), which will be done in
Section 5.3.

The majority of the proof that this choice for Φ works, is adapted from [CLS18]. For their
stochastic central path method, Cohen et al. sparsify the gradient ∇Φ(µ/t−1) via randomly sampling
its entries. This sparsification could be interpreted as some type of approximation of the gradient,
which allows us to adapt their proof to our new notion of “approximating” the gradient via∇Φ(µ̃/t−
1) for µ̃ ≈ µ. The main difference is that in [CLS18], the exact and approximate gradient always
point in the same direction (i.e. their inner product is positive), so in [CLS18] it was a bit easier
to show that the potential Φ(µ/t− 1) decreases in each iteration. For comparison, when using our
approximation, the inner product of exact gradient ∇Φ(µ/t− 1) and the approximation ∇Φ(µ̃/t−
1) may become negative. So we must spend some extra effort in Section 5.3 to show that the
approximate gradient points in the correct direction, whenever Φ(µ/t − 1) is large (this will be
proven in Lemma 5.14). Intuitively, this is true because when Φ(µ/t − 1) is large, then there are
many indices i such that µi is further from t than some (1 ± εmp)-factor. As outlined before, this
means the approximate gradient tries to change the ith coordinate of µ in the correct direction, i.e.
ith entry of the exact and approximate gradient have the same sign.
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We also want to point out, that our approach of using a gradient w.r.t the approximate µ̃ ≈ µ
means it is enough to maintain an approximate x̃ ≈ x, s̃ ≈ s, so x̃s̃ =: µ̃ ≈ µ. The same observation
was made independently in [LSZ19], where that property was exploited to compute the steps δx,
δs approximately via random sketching. The analysis of their central path method is based on
modifying the standard newton steps to be a variant of gradient descent in some hessian norm
space. In comparison our proof is arguably simpler, as we perform a typical gradient descent w.r.t
Φ(µ̃/t).

3 Preliminaries

For the linear program minAx=b,x≥0 c
⊤x we assume there are no redundant constraints, i.e. the

matrix A is of rank d and n ≥ d.

Arithmetic Notation For two n dimensional vectors v,w their inner products is written as v⊤w
or alternatively 〈v,w〉. We write vw for the entry-wise product, so (vw)i := viwi. The same is true
for all other arithmetic operations, for example (v/w)i := vi/wi and (

√
v)i :=

√
vi. For a scalar s

the product sv is the typical entry-wise product and analogously we define v − s as the entry-wise
difference, so (v − s)i := vi − s.

Inequalities We write v ≤ w if vi ≤ wi for all i = 1, ..., n and we use the notation v ≈ε w to
express a (1 ± ε) approximation, defined as (1 − ε)w ≤ v ≤ (1 + ε)w. Note that v ≈ε w is not
symmetric, but it implies w ≈2ε v for ε ≤ 1/2.

Relative error and multiplicative change We will often bound the relative difference of two
vectors in ℓ2-norm: ‖(v − w)/w‖2 = (

∑n
i=1((vi − wi)/wi)

2)0.5. Sometimes we will also write this
as ‖v/w − 1‖2. If we have vnew = v + δv , then the relative difference ‖vnew/v − 1‖2 can also be
written as ‖v−1δv‖2. In this context the relative difference will also be called multiplicative change,
because vnew = v · (1 + v−1δv).

The multiplicative change of a product of two vectors, whose multiplicative change is bounded
in ℓ2-norm, can also be bounded:

Lemma 3.1. Let v,w, δv , δw be vectors, such that vnew = v + δv, w
new = w + δw then

‖v
newwnew

vw
− 1‖2 ≤ ‖v−1δv‖2 + ‖w−1δw‖2 + ‖v−1δv‖2‖w−1δw‖2

Proof.

‖v
newwnew

vw
− 1‖2 = ‖

vnewwnew − vw

vw
‖2 = ‖

(v + δv)(w + δw)− vw

vw
‖2 = ‖

vδw + wδv + δvδw
vw

‖2

= ‖δw
w

+
δv
v

+
δv
v

δw
w
‖2 ≤ ‖

δw
w
‖2 + ‖

δv
v
‖+ ‖δv

v

δw
w
‖2

Here the last term can be bounded via ‖ δvv δw
w ‖2 ≤ ‖ δvv ‖∞‖ δww ‖2 ≤ ‖ δvv ‖2‖ δww ‖2

Further, if vnew has small multiplicative change compared to v, then the same is true for 1/vnew

and 1/v.

Lemma 3.2.

‖(v + δv)
−1 − v−1

v−1
‖2 ≤

‖v−1δv‖2
1− ‖v−1δv‖2

9



Proof.

‖v
−1 − (v + δv)

−1

v−1
‖2 = ‖1− v

v + δv
‖2 = ‖

δv
v + δv

‖2 = ‖v−1δv
v

v + δv
‖2

≤ ‖v−1δv
1

1− ‖v−1δv‖∞
‖2 ≤

‖v−1δv‖2
1− ‖v−1δv‖2

Fast Matrix Multiplication We write O(nω) for the arithmetic complexity of multiplying two
n × n matrices. Computing the inverse has the same complexity. The exponent ω is also called
the matrix exponent. We call α the dual matrix exponent, which is the largest value such that
multiplying a n× n matrix with an n× nα requires O(n2+o(1)) time. The current best bounds are
ω ≈ 2.38 [Wil12, Gal14] and α ≈ 0.31 [GU18].

4 Projection Maintenance

In this section we prove Lemma 4.1, which specifies the result obtained by Algorithm 1. Given a
matrix A, diagonal matrix U , vector v and function f : R → R (with f(v)i := f(vi)), the data-
structure given by Algorithm 1/Lemma 4.1 maintains the solution

√
UA⊤(AUA⊤)−1A

√
Uf(v) in

an approximate way, by (1 ± εmp)-approximating U and v. This is an extension of the algorithm
from [CLS18], which maintained only the matrix

√
UA⊤(AUA⊤)−1A

√
U approximately. We restate

the formal description of the result for convenience:

Lemma 4.1 (Previously stated as Theorem 2.4 in Section 2.2). Let A ∈ R
d×n be a full rank matrix

with n ≥ d, v be an n-dimensional vector and 0 < εmp < 1/4 be an accuracy parameter. Let
f : R → R be some function that can be computed in O(1) time, and define f(v) to be the vector
with f(v)i := f(vi). Given any positive number a ≤ α there is a deterministic data-structure with
the following operations

• Initialize(A, u, f, v, εmp): The data-structure preprocesses the given two n dimensional vec-
tors u, v, the d×n matrix A the function f in O(n2dω−2) time. The given parameter εmp > 0
specifies the accuracy of the approximation.

• Update(u, v): Given two n dimensional vectors u, v. Then the data-structure returns four
vectors

ũ, ṽ, f(ṽ),
√

ŨA⊤(AŨA⊤)−1A
√

Ũf(ṽ).

Here Ũ is the diagonal matrix diag(ũ) and ṽ a vector such that

(1− εmp)ṽi ≤ vi ≤ (1 + εmp)ṽi

(1− εmp)ũi ≤ ui ≤ (1 + εmp)ũi.

If the update sequence u(1), ..., u(T ) (and likewise v(1), ..., v(T )) satisfies

n∑

i=1

(
u
(k+1)
i − u

(k)
i

u
(k)
i

)2

≤ C2, |u
(k+1)
i − u

(k)
i

u
(u)
i

| ≤ 1/4, (6)

for all k = 1, ..., T then the total time for the first T updates is

O
(
T ·
(
C/εmp(n

ω−1/2 + n2−a/2+o(1)) log n+ n1+a
))
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This section is split into three parts: We first present the algorithm and give a high-level
description in Section 4.1. The next subsection (Section 4.2) proves that the algorithm returns the
correct result, and at last in Section 4.3 we bound the complexity of the algorithm.

4.1 Outline of Algorithm 1

Algorithm 1 describes a data-structure, so we have variables that persist between calls to its function
Update. What these variables represent might be a bit hard to deduce from just reading the
pseudo-code, so we want to give a brief outline of Algorithm 1 here. This outline is not required
for verifying the proofs, but it might help for understanding how the algorithm works.

The internal variables are n-dimensional vectors ũ, ṽ, w and an n×nmatrix M . The relationship
between them is

M = A⊤(AŨA⊤)−1A and w = M
√

Ũf(ṽ), (7)

where Ũ = diag(ũ).
These internal variables are useful because of the following reason: In each call to Update,

the data-structure receives two new vectors unew, vnew and for Unew = diag(unew) the task is to
return an approximation of

√
UnewA⊤(AUnewA⊤)−1A

√
Unewf(vnew) by (1 ± εmp)-approximating

Unew and vnew. Thus if

unew ≈εmp ũ, vnew ≈εmp ṽ, (8)

then
√

Ũw would be the desired approximate result. If this (1 + εmp)-approximation condition (8)
is not satisfied, then we can define two new valid approximations

ũnewi :=

{
ũi if unewi ≈εmp ũi

unewi othewise
ṽnewi :=

{
ṽi if vnewi ≈εmp ṽi

vnewi otherwise

for all i = 1, ..., n. If ũnew and ũ (and respectively ṽnew, ṽnew) differ in at most k many entries, then
it is known (via Sherman-Morrison-Woodbury identity Lemma 4.3) that one can quickly construct
two n× k matrices R,L such that

A⊤(AŨnewA⊤)−1A = M −RL⊤.

This in turn means that we can get the desired approximate result as follows:

√
ŨnewA⊤(AŨnewA⊤)−1A

√
Ũnewf(ṽnew) =

√
Ũnew(M −RL⊤)

√
Ũnewf(ṽnew)

=
√

Ũnew


M

√
Ũf(ṽ)︸ ︷︷ ︸
=w

+M
(√

Ũnewf(ṽnew)−
√

Ũf(ṽ)
)

︸ ︷︷ ︸
at most 2k non-zero entries

−RL⊤
√

Ũnewf(ṽnew)




Here each term can be computed in at most O(nk) time, because the first term is the already
known vector w, the vector of the second term is sparse, and R,L are n× k matrices.

Thus, if k is small, then we can maintain the solution quickly. In [CLS18], Cohen et al. have
developed a strategy with low amortized cost, that specifies when to recompute M for some new
ũ, such that k stays small. In their algorithm they do not maintain the matrix-vector product, so
their data-structure does not have the internal variables w and ṽ. We extend their strategy to also
recompute w for some new ṽ, such that the above outlined procedure has low amortized cost.

11



Algorithm 1 Projection Maintenance Data-Structure (difference to [CLS18] highlighted in blue)
1: datastructure MaintainProjection ⊲ Lemma 4.1
2: members

3: ũ, ṽ, w ∈ R
n

4: f : R→ R

5: A ∈ R
d×n, M ∈ R

n×n

6: ǫmp ∈ (0, 1/4) ⊲ Accuracy parameter
7: a← min{α, 2/3} ⊲ Minimum batch size is na.
8: end members

9: procedure Initialize(A,u, f, v, ǫmp)
10: u← u, v ← v, f ← f , ǫmp ← ǫmp

11: ũ← u, ṽ ← v
12: M ← A⊤(AUA⊤)−1A
13: w←M

√
Uf(v)

14: end procedure

15: procedure Update(unew, vnew)

16: ⊲
The variables in this method represent the following: unew, vnew are the new exact values.
ũnew, ṽnew are approximations unew ≈εmp

ũnew, vnew ≈εmp
ṽnew.

17: ⊲ Vector r will be the result: r =
√

ŨnewA⊤(AŨnewA⊤)−1A
√

Ũnewf(ṽnew)

18: ⊲ For the member variables ũ, ṽ,M we have w = M
√

Ũf(ṽ) and M = A⊤(AŨA⊤)−1A.
Note that ũ, ṽ are generally not approximate versions of unew, vnew.

19: yi ← unew
i /ũi − 1, ∀i ∈ [n]

20: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
21: k ← the number of indices i such that |yi| ≥ ǫmp.
22: if k ≥ na then

23: while 1.5 · k < n and |yπ(1.5k)| ≥ (1− 1/ log n)|yπ(k)| do
24: k ← min(⌈1.5 · k⌉, n)
25: end while

26: end if

27: ũnew
π(i) ←

{
unew
π(i) i ∈ {1, 2, · · · , k}

ũπ(i) i ∈ {k + 1, · · · , n}
⊲ ũnew ≈εmp

unew

28: ∆← diag(ũnew − ũ) ⊲ ∆ ∈ R
n×n and ∆ has k non-zero entries.

29: Let S ← π([k]) be the first k indices in the permutation.
30: Let MS ∈ R

n×k be the k columns from S of M .
31: Let MS,S ,∆S,S ∈ R

k×k be the k rows and columns from S of M and ∆.
32: if k ≥ na then ⊲ Perform a rank k = 2ℓ update to M .

33: M ←M −MS · (∆−1
S,S +MS,S)

−1 · (MS)
⊤ ⊲

Compute M = A⊤(AŨnewA⊤)−1A via
Sherman-Morrison-Woodbury identity

34: w←M
√

Ũnewf(vnew)

35: ũ← ũnew, ṽ ← vnew, ṽnew ← vnew, r ←
√

Ũneww
36: else ⊲ This else-branch is the main difference compared to [CLS18].
37: Let T be the set of indices i without (1− εmp)ṽi ≤ vnewi ≤ (1 + εmp)ṽi.
38: if |T | ≥ na then ⊲ We reset ṽ = vnew

39: r ←
√

ŨnewM
√

Ũnewf(vnew)−
√

ŨnewMS · (∆−1
S,S +MS,S)

−1 · (MS)
⊤

√
Ũnewf(vnew)

40: w← M
√

Ũf(vnew)
41: ṽ ← vnew, ṽnew ← vnew

42: else

43: ṽnewi ←
{
vnewi i ∈ T

ṽi i /∈ T
⊲ ṽnew ≈εmp

vnew

44: r ←
√

Ũnew
(
w +M(

√
Ũnewf(ṽnew)−

√
Ũf(ṽ))−MS · (∆−1

S,S +MS,S)
−1 · (MS)

⊤

√
Ũnewf(ṽnew)

)

45: end if

46: end if

47: ⊲ At the end of the procedure, we still have w = M
√

Ũf(ṽ) and M = A⊤(AŨA⊤)−1A

48: ⊲ Return triple with unew ≈εmp
ũnew, vnew ≈εmp

ṽnew and r =
√

ŨnewA⊤(AŨnewA)−1A
√

Ũnewf(ṽnew)
49: return ũnew, ṽnew, f(ṽnew), r
50: end procedure

51: end datastructure
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4.2 Correctness

The task of this subsection is to prove the following lemma, which says that the vectors returned
by Algorithm 1 are as specified in Lemma 4.1.

Lemma 4.2 (Returned vectors of Lemma 4.1). After every update to Algorithm 1 with input
(unew, vnew) the returned vectors ũnew, ṽnew, f(ṽnew), r satisfy unew ≈εmp ũnew, vnew ≈εmp ṽnew and

r =
√

ŨnewA⊤(AŨnewA)−1A
√

Ũnewf(ṽnew).

Before we can prove this lemma, we must first prove that the internal variables of the data-
structure save the correct values, i.e. we want to prove that equation (7) is correct. For this we
must first state the following lemma from [CLS18], based on Sherman-Morison-Woodbury identity.

Lemma 4.3 ([CLS18], based on Sherman-Morison-Woodbury identity). If M = A⊤(AŨA⊤)−1A at
the start of the update of Algorithm 1 and MS ,MS,S ,∆S,S are chosen as described in Algorithm 1,
then we have

M −MS · (∆−1
S,S +MS,S)

−1 · (MS)
⊤ = A⊤(AŨnewA⊤)−1A

We can now prove that the internal variables store the correct values.

Lemma 4.4. At the start of every update to Algorithm 1 we have

w = M
√

Ũf(ṽ) and M = A⊤(AŨA)−1A. (9)

Proof. If it is the first update after the initialization, then the claim is true by definition of the
procedure Initialize. Next, we prove that at the end of every call to Update we satisfy (9), if (9)
was satisfied at the start of Update. This then implies Lemma 4.4. If k ≥ na, then line 33 makes

sure that M = A⊤(AŨnewA⊤)−1A (see Lemma 4.3). The next lines set w ← M
√

Ũnewf(vnew),
ṽ ← vnew and ũ ← ũnew. Thus (9) is satisfied for the case k ≥ na. If |T | ≥ na, then we compute

w ←M
√

Ũf(vnew) and set ṽ ← vnew. The matrices M and Ũ are not modified, so (9) is satisfied.
If |T | < na, then we do not change M, ũ, ṽ or r, so (9) is satisfied.

We now prove the correctness of Algorithm 1 by proving Lemma 4.2.

Proof of Lemma 4.2. Note that we always have unew ≈εmp ũnew by line 27.

Case k ≥ na: In line 33 we have set M = A⊤(AŨnewA⊤)−1A (see Lemmas 4.3 and 4.4). Hence

by setting r ←
√

Ũneww =
√

ŨnewM
√

Ũnewf(vnew), and ṽnew ← vnew, all claims of Lemma 4.2
are satisfied.

Case |T | ≥ na: In this case we set r to the following value:

r ←
√

ŨnewM
√

Ũnewf(vnew)−
√

ŨnewMS · (∆−1
S,S +MS,S)

−1 · (MS)
⊤
√

Ũnewf(vnew)

=
√

Ũnew(A⊤(AŨnewA⊤)−1A)
√

Ũnewf(vnew)

Here the equality comes from Lemmas 4.3 and 4.4. Further, we set ṽnew ← vnew, so Lemma 4.2 is
correct for the case |T | ≥ na.
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Case |T | < na: Here vnew ≈εmp ṽnew by line 43, so we are left with verifying r. First note that

w = M
√

Ũf(ṽ) by Lemma 4.4, so w+M(
√

Ũnewf(ṽnew)−
√
Ũf(ṽ)) = M

√
Ũnewf(ṽnew). Thus r

is set to the following term:

r ←
√

Ũnew
(
w +M(

√
Ũnewf(ṽnew)−

√
Ũf(ṽ))−MS · (∆−1

S,S +MS,S)
−1 · (MS)

⊤
√

Ũnewf(ṽnew)
)

=
√

Ũnew
(
M
√

Ũnewf(ṽnew)−MS · (∆−1
S,S +MS,S)

−1 · (MS)
⊤
√

Ũnewf(ṽnew)
)

=
√

Ũnew
(
M −MS · (∆−1

S,S +MS,S)
−1 · (MS)

⊤
)√

Ũnewf(ṽnew)

=
√

ŨnewA⊤(AŨnewA⊤)−1
√

Ũnewf(ṽnew)

Where the last equality comes from Lemmas 4.3 and 4.4.

4.3 Complexity

In this section we will bound the complexity of Algorithm 1, proving the stated complexity bound
in Lemma 4.1:

Lemma 4.5 (Complexity bound of Lemma 4.1). If the updates to Algorithm 1 satisfy the condition
(6) as stated in Lemma 4.1, then after T updates the total update time of Algorithm 1 is

O
(
T ·
(
C/εmp(n

ω−1/2 + n2−a/2+o(1)) log n+ n1+a
))

.

The preprocessing requires O(n2dω−2) time.

As our data-structure is a modification of the data-structure presented in [CLS18], we must only
analyze the complexity of the modified part. To bound the complexity of the unmodified sections
of our algorithm, we will here refer to [CLS18]. The complexity analysis in [CLS18] requires an
entire section (about 7 pages) via analysis of some complicated potential function. In the Appendix
(Lemma A.2) we present an alternative simpler proof.

Lemma 4.6 ([CLS18], alternatively Lemma A.2). The preprocessing requires O(n2dω−2) time.
After T updates the total time of all updates of Algorithm 1, when ignoring the branch for k < na

(so we assume that branch of line 36 has cost 0), is

O(T · C/εmp(n
ω−1/2 + n2−a/2+o(1)) log n).

Proof. When ignoring the branch of line 36, then our algorithm performs the same operations as
[CLS18][Algorithm 3] and we both maintain M in the exact same way. The only difference is that
we also compute the vector r in line 34, but this requires only O(n2) time and is subsumed by
the complexity of line 33. Thus our time complexity (when ignoring the branch of line 36) can
be bounded by the update complexity of [CLS18][Algorithm 3], which is the complexity stated
in Lemma 4.6. In the same fashion we can bound the complexity of the preprocessing. The
preprocessing of [CLS18][Algorithm 3] takes O(n2dω−2) time, where their algorithm computes only
the matrix M . The only difference in our algorithm is that we also compute the vector w in line 13.
The required O(n2) time to compute w is subsumed by computing M .
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Proof of Lemma 4.5. In order to prove Lemma 4.5 we only need to bound the complexity of the
branch for the case k < na. The time required by all other steps of Algorithm 1 is already bounded
by Lemma 4.6.

In every update we must compute (∆−1
S,S+MS,S)

−1, which takes O(na·ω) time via the assumption

k < na. Additionally, if |T | < na, then one update requires additional O(n1+a) operations to

compute r and w, because (f(ṽnew) − f(ṽ)) and (
√

Ũ −
√

Ũnew) both have at most na non-zero
entries and MS is a n× na matrix.

If T ≥ na, then computing r and w can take up to O(n2) operations. This can happen at
most every O(na/2εmp/C) updates by Lemma A.1, because

∑n
i=1((v

new
i − vi)/vi)

2 ≤ C2, Hence the
amortized time per update is O(n2−a/2C/εmp).

Note that by assuming a ≤ α ≤ 1 the term O(na·ω) is subsumed by O(n1+a), because ω ≤ 3−α,
so a · ω ≤ a(3− α) ≤ a(3− a) ≤ 1 + a.

This concludes the proof of Lemma 4.1.

5 Central Path Method

In this section we prove the main result Theorem 1.1, by showing how to use the projection
maintenance algorithm of Section 4 to obtain a fast deterministic algorithm for solving linear
programs.

The algorithm for Theorem 1.1 is based on the short step central path method, outlined in
Section 2.1: We construct some feasible solution triple (x, y, s) with xs =: µ ≈ 1 and then repeatedly
decrease t while maintaining x, s such that µ stays close to t. Once t is small enough, we have a
good approximate solution. This is a high-level summary of Algorithm 2, which first constructs a
solution, and then runs a while-loop until t is small enough. The actual hard part, maintaining
the solution pair x, s with µ ≈ t, is done in Algorithm 3. For this task, Algorithm 3 solves a linear
system (similar to (1) in Section 2.1) via the data-structure of Lemma 4.1. The majority of this
section is dedicated to proving that Algorithm 3 does not require too much time and does indeed
maintain the solution pairs (x, s) with µ ≈ t. For this we must verify the following three properties:

• Algorithm 3 does solve an approximate variant of the linear system (1).

• We do not change the linear system too much between two calls to Algorithm 3. Otherwise
the data-structure of Lemma 4.1 would become too slow.

• The approximate result obtained in Algorithm 3 is good enough to maintain x, s such that µ
is close to t.

The proof for this is based on the stochastic central path method by Cohen et al. [CLS18].
In [CLS18], they randomly sampled a certain vector, while in our algorithm this vector will be
approximated deterministically via the data-structure of Algorithm 1. This derandomization has
the nice side-effect, that we can skip many steps of Cohen et al.’s proof. For example they had to
bound the variance of random vectors, which is no longer necessary for our algorithm.

The outline of this section is as follows. We first explain in more detail how Algorithm 3 works
in Section 5.1, where we also verify the first requirement, that Algorithm 3 does indeed solve the
system (1) approximately. In the next Section 5.2, we check that the input parameters for the
data-structure of Lemma 4.1, used by Algorithm 3, do not change too much per iterations. The
last Section 5.3 verifies, that we indeed always have µ ≈ t. We also consolidate all results in the
last subsection by proving the main result Theorem 1.1.
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Algorithm 2 Iterative loop of the central path method

1: procedure Main(A, b, c, δ) ⊲ Theorem 1.1
2: ε← 1/(1500 ln n) ⊲ Step size. Controls how much we decrease t in each iteration.
3: εmp ← 1/(1500 ln n) ⊲ Accuracy parameter for Algorithms 1 and 3
4: λ← 40 ln n ⊲ Parameter for the potential function in Algorithm 3.
5: t← 1 ⊲ Measures the progress so far.
6: Modify the linear program according to Lemma A.3 for γ = min{δ, 1/λ} and obtain an

initial x and s.
7: InitializeApproximateStep(A, x, s, t, λ, εmp) ⊲ Initialize Algorithm 3
8: while t > δ2/(2n) do ⊲ We stop once the precision is good
9: ⊲ Decrease t to tnew and find new xnew, snew such that xnewsnew =: µnew ≈0.1 t

new

10: (xnew, snew, tnew)← ApproximateStep(x, s, t, ε)
11: (x, s)← (xnew, snew), t← tnew

12: end while
13: Use Lemma A.3 to transform x to an approximate solution of the original linear program.
14: end procedure

5.1 Using the Projection Maintenance Data-Structure in the Central Path
Method

In this section we outline how Algorithm 3 works and we prove that it does indeed solve the linear
system (1) (outlined in Section 2.1) in some approximate way. The high-level idea of Algorithm 3
is as follows: In order to maintain µ close to t, we want to measure the distance via some potential
function Φ(µ/t− 1). As we want to minimize the distance, it makes sense to change µ by some δµ,
which points in the same direction as −∇Φ(µ/t− 1). We can find out how to change x and s, in
order to change µ by approximately δµ, by solving the linear system (1) via the data-structure of
Lemma 4.1.

In reality, we choose δµ to be slightly different:

δµ := (
tnew

t
− 1)µ− ε

2
· tnew · ∇Φ(µ/t− 1)

‖∇Φ(µ/t− 1)‖2
,

where tnew := (1− ε
3
√
n
) is the new smaller value that we want to set t to, and ε is a parameter for

how large our step size should be for decreasing t.
This choice of δµ is motivated by the fact, that the first term ( t

new

t − 1)µ leads to some helpful
cancellations in later proofs. The second term is the one pointing in the direction of −∇Φ(µ/t−1),
which is motivated by decreasing Φ(µ/t− 1).

Maintaining approximate solutions One can split δµ into the two terms δt = ( t
new

t − 1)µ and

δΦ = ε
2 · tnew ·

∇Φ(µ/t−1)
‖∇Φ(µ/t−1)‖2 .

Algorithm 3 approximates both vectors in a different way. Specifically, given x, s, µ, δt, δΦ, δµ,

Algorithm 3 internally maintains approximations x̃, s̃, µ̃, δ̃t, δ̃Φ, δ̃µ with the following properties (here
εmp > 0 is the accuracy parameter for Lemma 4.1)

x ≈εmp x̃, s ≈2εmp s̃

xs = µ ≈εmp µ̃ = x̃s̃, δ̃Φ =
ε

2
· tnew · ∇Φ(µ̃/t− 1)

‖∇Φ(µ̃/t− 1)‖2
, (10)

δt ≈εmp δ̃t, δ̃µ = δ̃t + δ̃Φ
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Algorithm 3 ApproximateStep For the given solution pair x, s move xs ≈ t closer to tnew

1: global variables
2: mp√µ, mp∇Φ

3: end global variables
4:

5: procedure InitializeApproximateStep(A, x, s, t, λ, εmp)
6: u← x

s , µ← xs

7: ⊲ Maintains approximation of
√
UA⊤(AUA⊤)−1A

√
U
√
µ via Algorithm 1.

8: mp√µ.Initialize(A, u, x 7→
√
x, µ, εmp, )

9: ⊲ Maintains approximation of
√
UA⊤(AUA⊤)−1A

√
U ∇Φλ(µ/t−1)√

µ/t
via Algorithm 1.

10: mp∇Φ.Initialize(A, u, x 7→ λ sinh(λ(x− 1))/
√
x, µ/t, εmp)

11: end procedure
12:

13: procedure ApproximateStep(x, s, t, ε)
14: ⊲ One step of the modified short step central path method
15: tnew ← (1− ε

3
√
n
)t, µ← xs

16: (ũ, ·, v, pv)← mp√µ.Update(u, µ), (ũ,m,w, pw)← mp∇Φ.Update(u, µ/t)
17: ⊲ Note that both instances always receive the same u, so they also return the same ũ.
18: µ̃← mt

19: x̃← x
√

µ̃
µ
ũ
u , s̃← s

√
µ̃
µ
u
ũ ⊲ Thus x̃s̃ = µ̃ and x̃/s̃ = ũ

20: δ̃t ← ( t
new

t − 1)v
√

µ̃, δ̃Φ ← − ε
2 · tnew ·

√
µ̃/t w

‖∇Φλ(µ̃/t−1)‖2 , δ̃µ ← δ̃t + δ̃Φ

21: p← ( t
new

t − 1)pv − ε
2 · tnew ·

pw√
t‖∇Φλ(µ̃/t−1)‖2

22: δ̃s ← s̃√
µ̃
p, δ̃x ← 1

s̃ δ̃µ − x̃√
µ̃
p

23: return (x+ δ̃x, s+ δ̃s, t
new)

24: end procedure

and for these approximate values, we solve the following system (which is the same as (1), but
using the approximate values):

X̃δ̃s + S̃δ̃x = δ̃µ, (11)

Aδ̃x = 0,

A⊤δ̃y + δ̃s = 0.

We prove in two steps that Algorithm 3 does indeed solve (11) for approximate values as in
(10): First we prove in Lemma 5.2 that the approximations are as stated in (10), then we show in
Lemma 5.3 that we indeed solve the linear system (11).

Note that δ̃Φ is not an approximation of δΦ in the classical sense (likewise δ̃µ and δµ) and the
vectors could point in completely different directions. They are only “approximate” in the sense
that their definition is the same, but for δ̃Φ we replace µ by the approximate µ̃.

As outlined in the overview Section 2.3, this results in our algorithm not always decreasing
the difference between µ and t. We prove in Section 5.3 that this is not a problem, if we use the
following potential function Φ, accuracy parameter εmp (for Lemma 4.1) and step size ε.
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Definition 5.1.

Φλ(x) :=

n∑

i=1

cosh(λxi),

where cosh(x) := (ex + e−x)/2, λ = 40 ln n.
For the step size ε and the accuracy parameter εmp for Lemma 4.1, assume 0 < εmp ≤ ε ≤
1/(1500 ln n).

Lemma 5.2. The computed vectors x̃, s̃, µ̃, δ̃t, δ̃Φ, δ̃µ in Algorithm 3 satisfy the following properties:

Let µ̃/t be the approximation of µ/t maintained internally by mpΦ, then µ ≈εmp µ̃ and δ̃Φ =

− ε
2 · tnew ·

∇Φλ(µ̃/t−1)
‖∇Φλ(µ̃/t−1)‖ . Further δt ≈εmp δ̃t, x ≈εmp x̃, s ≈2εmp s̃.

Proof. The returned vector m in line 16 is an approximation in the sense that µ/t ≈εmp m, which

means µ ≈εmp mt =: µ̃. We have x
s =: u ≈εmp ũ, hence u

ũ ≈εmp 1 and 1 ≈εmp
ũ
u . Thus x ≈εmp

x
√

µ̃
µ
ũ
u = x̃ and s ≈2εmp s

√
µ̃
µ
u
ũ = s̃.

As potential function we have chosen Φλ(x) =
∑n

i=1 cosh(xi), so (∇Φλ(x−1)/
√
x)i = λ sinh(λ(xi−

1))/
√
xi. This means λ sinh(λ(x−1))/

√
x for x = µ/t is ∇Φλ(µ/t−1)/

√
µ/t and w = λ sinh(λ(m−

1))/
√
m = ∇Φλ(µ̃/t − 1)/

√
µ̃/t. Hence we have that δ̃Φ = − ε

2 · tnew ·
√

µ̃/tw

‖∇Φλ(µ̃/t−1)‖2 = − ε
2 · tnew ·

∇Φλ(µ̃/t−1)
‖∇Φλ(µ̃/t−1)‖2 . We also have δt = ( t

new

t − 1)µ, µ ≈εmp v2 and µ ≈εmp µ̃, so µ ≈εmp v
√

µ̃ which

implies δt ≈εmp ( t
new

t − 1)v
√

µ̃ =: δ̃t.

Lemma 5.3. The computed vectors in Algorithm 3 satisfy the following linear system:

X̃δ̃s + S̃δ̃x = δ̃µ,

Aδ̃x = 0

Proof. We define the following projection matrix:

P :=
√

ŨA⊤(AŨA⊤)−1A
√

Ũ =

√
X̃/S̃A⊤(A(X̃/S̃)A⊤)−1A

√
X̃/S̃

Then we have

pv(
tnew

t
− 1) = Pv(

tnew

t
− 1) = P

1√
x̃s̃

√
µ̃ v(

tnew

t
− 1) = P

1√
x̃s̃

δ̃t

and

−ε

2
· tnewpw√

t‖∇Φλ(µ̃/t− 1)‖2
= −ε

2
· tnewPw√

t‖∇Φλ(µ̃/t− 1)‖2
= −ε

2
·

tnewP 1√
x̃s̃

√
µ̃ w

√
t‖∇Φλ(µ̃/t− 1)‖2

= P
1√
x̃s̃

δ̃Φ.

Hence the change to x and s is given by

δ̃s =
s̃√
x̃s̃

p =
s̃√
x̃s̃

P
1√
x̃s̃

(δ̃t + δ̃Φ) =
s̃√
x̃s̃

P
1√
x̃s̃

δ̃µ

δ̃x =
1

s̃
δ̃µ −

x̃√
x̃s̃

P
1√
x̃s̃

p =
x̃√
x̃s̃

(I− P )
1√
x̃s̃

δ̃µ

Lemma 5.3 is thus given by Lemma 2.1.
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5.2 Bounding the change per iteration

Algorithm 3 uses the data-structure of Lemma 4.1. The complexity of this data-structure depends
on how much the input parameters (in our case u := x/s, µ and µ/t) change per iteration. In this
section we prove:

Lemma 5.4. Assume µ ≈0.1 t. Let µnew := (x + δ̃x)(s + δ̃s), the value of µ in the upcoming

iteration, and let u := x
s , u

new := x+δ̃x
s+δ̃s

, then

‖µ−1(µnew − µ)‖ ≤ 2.5ε, ‖(µ/t)−1(µnew/tnew − µ/t)‖ ≤ 3ε, ‖(unew − u)/u‖2 ≤ 3ε.

In order to prove this lemma, we must assume that µ is currently a good approximation of t.
We assume the following proposition, which is proven in the next subsection.

Proposition 5.5. For the input to Algorithm 3 we have µ ≈0.1 t

How much we change x, s depends on how long the vector δµ is, so we start by bounding that
length.

Lemma 5.6. ‖δt‖2 ≤ 1.1 ε
3 t, ‖δΦ‖2 ≤ ε

2t, ‖δµ‖2 ≤ εt

‖δ̃t‖2 ≤ 1.2 ε
3 t, ‖δ̃Φ‖2 ≤ ε

2t, ‖δ̃µ‖2 ≤ εt

Proof.

‖δt‖2 = ‖(tnew/t− 1)µ‖2 ≤ 1.1
√
n(1− tnew/t)t = 1.1

√
n

ε

3
√
n
t = 1.1

ε

3
t

Here the first inequality comes from µ ≈0.1 t. This then also implies ‖δ̃t‖2 ≤ 1.2 ε
3 t, because

δt ≈εmp δ̃t from Lemma 5.2. Next we handle the length of δΦ:

‖δΦ‖2 =
∥∥∥∥
ε

2
tnew

∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

∥∥∥∥
2

=
εtnew

2
=

ε(1− ε
3
√
n
)t

2
≤ ε

2
t

The same proof also yields the bound for δ̃Φ as we just replace µ/t by µ̃/t, but because of the
normalization this does not change the length. By combining the past results via triangle inequality
we obtain

‖δµ‖ ≤ ‖δt‖2 + ‖δΦ‖2 ≤ 1.1
ε

3
t+

ε

2
t ≤ εt

and likewise ‖δ̃µ‖ ≤ εt.

Next we show that the multiplicative change to x and s is small.

Lemma 5.7. ‖s̃−1δ̃s‖2 ≤ 1.2ε, ‖s−1δ̃s‖2 ≤ 1.2ε,
‖x̃−1δ̃x‖2 ≤ 1.2ε, ‖x−1δ̃x‖2 ≤ 1.2ε

Proof. Since P̃ is an orthogonal projection matrix we have ‖P̃ δ̃µ√
X̃S̃
‖2 ≤ ‖ δ̃µ√

X̃S̃
‖2 and as µ ≈εmp

µ̃ = x̃s̃ and µ ≈0.1 t, this can be further bounded by
√

(1 + εmp)/(0.9t)‖δ̃µ‖. This allows us to

bound ‖s̃−1δ̃s‖2 as follows:

‖s̃−1δ̃s‖2 = ‖ 1√
X̃S̃

P̃
δ̃µ√
X̃S̃
‖2 ≤

√
(1 + εmp)/(0.9t)‖P̃

δ̃µ√
X̃S̃
‖2

≤ (1 + εmp)/(0.9t)‖δ̃µ‖2 ≤ (1 + εmp)/0.9ε ≤ 1.2ε,
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where we used ‖δ̃µ‖ ≤ εt from Lemma 5.6. The proof for ‖x̃−1δ̃x‖2 ≤ 1.2ε is identical as I − P̃ is
also a projection matrix.

As x ≈εmp x̃, s ≈2εmp s̃ we have ‖s−1δ̃s‖2 ≤ (1 − εmp)
−1‖s̃−1δ̃s‖2 ≤ 1.2ε, ‖x−1δ̃x‖2 ≤ (1 −

εmp)
−1‖x̃−1δ̃x‖2 ≤ 1.2ε via the same proof.

With this we can now prove Lemma 5.4. We split the proof into two separate corollaries: one
for µ and one for u.

Corollary 5.8. ‖µ−1(µnew − µ)‖ ≤ 2.5ε, ‖(µ/t)−1(µnew/tnew − µ/t)‖ ≤ 3ε

Proof. The first claim follows from µ = xs, µnew = (x + δ̃x)(s + δ̃s) and ‖x−1δ̃x‖, ‖s−1δ̃s‖ ≤ 1.2ε,
and applying Lemma 3.1:

‖µ−1(µnew − µ)‖ ≤ ‖x−1δ̃x‖2 + ‖s−1δ̃s‖2 + ‖x−1δ̃x‖2‖s−1δ̃s‖2 ≤ 1.2ε + 1.2ε + (1.2ε)2 ≤ 2.5ε

The second claim is implied by Lemma 3.1 and Lemma 3.2: Lemma 3.2 allows us to describe
how much (tnew)−1 · 1n changed compared to t−1 · 1n:

‖t·1n((
1

tnew
−1

t
)·1n)‖2 ≤

‖t−1 · 1n((tnew − t) · 1n)‖2
1− ‖t−1 · 1n((tnew − t) · 1n)‖2

≤
√
n|(tnew − t)/t|

1−√n|(tnew − t)/t| =
√
n ε
3
√
n

1− ε
3
√
n

≤ 0.35ε

Then Lemma 3.2 tells us ‖(µ/t)−1(µnew/tnew − µ/t)‖ ≤ 0.35ε + 2.5ε + (0.35 · 2.5)ε2 ≤ 3ε.

Likewise, the multiplicative change of u := x
s can be bounded as follows:

Corollary 5.9. Let u := x
s , then ‖(unew − u)/u‖2 ≤ 3ε

Proof. We have ‖x−1δx‖2, ‖s−1δs‖ ≤ 1.2ε, see Lemma 5.7. Thus ‖s((s+ δs)
−1 − s−1)‖ ≤ 1.2ε/(1−

1.2ε) ≤ 1.4ε by Lemma 3.2. This leads to ‖u−1(unew − u)‖ ≤ 1.4ε+1.2ε+ (1.2ε)2 < 3ε, because of
u = x/s and Lemma 3.1.

5.3 Maintaining µ ≈ t

In this section we prove Proposition 5.5, so µ ≈0.1 t. An alternative way to write this statement is
‖µ/t − 1‖∞ ≤ 0.1. We prove that this norm is small, by showing that the potential Φλ(µ/t − 1)
stays below a certain threshold. The choice of Φλ(x) =

∑n
i=1 cosh(xi) is motivated by the following

lemma:

Lemma 5.10. ‖µ/t− 1‖∞ ≤ ln 2Φλ(µ/t−1)
λ

Proof. Φλ(x) =
1
2

∑n
i=1 e

λxi + e−λxi ≥ 1
2e

λ‖x‖∞ , so ‖x‖∞ ≤ ln 2Φλ(x)
λ .

This means we must prove Φλ(µ/t− 1) ≤ 0.5 · e0.1λ = 0.5n4. We prove this in an inductive way.
More accurately, in this section we prove the following lemma. (Note that 2n ≤ 0.5n4 for n > 1.)

Lemma 5.11. If Φλ(µ/t− 1) ≤ 2n, then Φλ(µ
new/tnew − 1) ≤ 2n.

In order to show that Lemma 5.11 is true, we must first bound the impact of all the approxi-
mations. We start by bounding the error that we incur based on the approximation µnew ≈ µ+ δ̃µ,

when in reality we have µnew = (x+ δ̃x)(s + δ̃s) = µ+ δ̃µ + δ̃xδ̃s.

Lemma 5.12. For µnew = (x+ δ̃x)(s + δ̃s) we have ‖µnew − µ− δ̃µ‖2 ≤ 6tε2.
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Proof. We can expand the term for µnew as follows:

µnew = (x+ δ̃x)(s + δ̃s) = xs+ xδ̃s + sδ̃x + δ̃xδ̃s = µ+ x̃δ̃s + s̃δ̃x︸ ︷︷ ︸
δ̃µ

+(x− x̃)δ̃s + (s− s̃)δ̃x + δ̃xδ̃s.

Hence the error (relative to µ) can be bounded as follows:

‖µ−1(µnew − µ− δ̃µ)‖2 = ‖µ−1((x− x̃)δ̃s + (s− s̃)δ̃x + δ̃xδ̃s)‖2
≤ ‖µ−1(x− x̃)s · s−1δ̃s‖2 + ‖µ−1(s− s̃)x · x−1δ̃x‖2 + ‖µ−1δ̃xδ̃s‖2
≤ ‖µ−1(x− x̃)s‖∞‖s−1δ̃s‖2 + ‖µ−1(s− s̃)x‖∞‖x−1δ̃x‖2 + ‖x−1δ̃xs

−1δ̃s‖2

≤ εmp

1− εmp
‖s−1δ̃s‖2 +

2εmp

1− 2εmp
‖x−1δ̃x‖2 + ‖x−1δ̃x‖2‖s−1δ̃s‖2

≤ 3.7εmpε+ (1.2ε)2

For the fourth line we used µ = xs, x ≈εmp x̃, s ≈2εmp s̃, which implies (for example) µ−1(x− x̃)s =
x−1(x− x̃) ≤ x−1εmpx̃ ≤ εmp

1−εmp
. The last line uses Lemma 5.7.

By exploiting µ ≈0.1 t and εmp ≤ ε, we get ‖µnew − µ− δ̃µ‖2 ≤ 6tε2.

Another source of error is that δ̃Φ and δΦ (which depend on ∇Φλ(µ̃/t− 1) and ∇Φλ(µ/t− 1))
might point in two completely different directions. This issue was outlined in the overview Sec-
tion 2.3, where we claimed that for Φλ(µ/t−1) large enough, the approximate gradient∇Φλ(µ̃/t−1)
does point in the same direction as ∇Φλ(µ/t − 1). In order to prove this claim, we require some
properties of Φλ(·).

Lemma 5.13 ([CLS18]). Let Φλ(x) =
∑n

i=1 cosh(λxi), then

1. For any ‖v‖∞ ≤ 1/λ we have

Φλ(r + v) ≤ φλ(r) + 〈∇Φλ(r), v〉 + 2‖v‖∇2φλ(r).

2. ‖∇φλ(r)‖2 ≥ λ√
n
(Φλ(r)− n)

3. (
∑n

i=1 λ
2Φλ(ri)

2
i )

0.5 ≤ λ
√
n+ ‖∇Φλ(r)‖2

With these tools we can now analyze the impact of approximating ∇Φλ(µ/t−1) via ∇Φλ(µ̃/t−
1). The following lemma says that, if the potential ‖∇Φλ(µ/t−1)‖2 is larger than (2.5/0.9)λ2εmp

√
n,

then the approximate gradient does point in the correct direction (i.e. the inner product with the
real gradient is positive).

Lemma 5.14 (Good direction for large Φλ(µ/t− 1)).

〈∇Φλ(µ/t− 1),− ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
〉 ≤ −0.9‖∇Φλ(µ/t− 1)‖2 + 2.5λ2εmp

√
n

Proof.

〈∇Φλ(µ/t− 1),−∇Φλ(µ̃/t− 1)〉
= − 〈∇Φλ(µ̃/t− 1),∇Φλ(µ̃/t− 1)〉 + 〈∇Φλ(µ/t− 1)−∇Φλ(µ̃/t− 1),∇Φλ(µ̃/t− 1)〉
≤ − ‖∇Φλ(µ̃/t− 1)‖22 + ‖∇Φλ(µ/t− 1)−∇Φλ(µ̃/t− 1)‖2 · ‖∇Φλ(µ̃/t− 1)‖2
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By normalizing the second vector we then obtain:

〈∇Φλ(µ/t− 1),− ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
〉 ≤ −‖∇Φλ(µ̃/t− 1)‖2 + ‖∇Φλ(µ/t− 1)−∇Φλ(µ̃/t− 1)‖2

So in order to prove Lemma 5.14, we must bound the norm ‖∇Φλ(µ/t− 1)−∇Φλ(µ̃/t− 1)‖2.
Note that ∇Φλ(x)i = λ sinh(λxi) and sinh(x) = (ex − e−x)/2. So for now let us bound | sinh(x +
y)− sinh(x)|:

| sinh(x+ y)− sinh(x)| = |ex · ey − e−x · e−y − (ex − e−x)|/2 = |ex · (ey − 1) + e−x · (1− e−y)|/2
≤ (ex · |ey − 1|+ e−x · |1− e−y|)/2 ≤ (ex + e−x)/2 ·max(|ey − 1|, |1 − e−y|)
≤ (ex + e−x)/2(e|y| − 1) = cosh(x)(e|y| − 1)

Thus we can bound the difference as follows

‖∇Φλ(µ/t− 1)−∇Φλ(µ̃/t− 1)‖2 = λ‖ sinh(λ(µ/t− 1))− sinh(λ(µ̃/t− 1))‖2
= λ‖ sinh(λ(µ̃/t− 1 + (µ − µ̃)/t)) − sinh(λ(µ̃/t− 1))‖2
≤ λ‖ cosh(λ(µ̃/t− 1))(eλ|µ̃−µ|/t − 1)‖2
≤ λ‖ cosh(λ(µ̃/t− 1))‖2(eλ‖µ̃−µ‖∞/t − 1)

≤ (λ
√
n+ ‖∇Φλ(µ̃/t− 1)‖2)(eλ‖µ̃−µ‖∞/t − 1)

For the last inequality we used the third statement of Lemma 5.13. Note that ‖(µ̃ − µ)/t‖∞ ≤
‖εmpµ̃/t‖∞ ≤ ‖ εmp

1−εmp
µ/t‖∞ ≤ 1.1εmp

1−εmp
. As εmp ≤ 1/λ we can use e|x| ≤ 1 + 2|x| for |x| < 1.25 to

bound the extra factor (eλ‖µ̃−µ‖∞/t − 1) < 2.5λεmp.
Finally, this allows us to obtain

〈∇Φλ(µ/t− 1),− ∇Φλ(µ̃/t− 1)

‖∇Φλ(µ̃/t− 1)‖2
〉 ≤ −‖∇Φλ(µ̃/t− 1)‖2 + ‖∇Φλ(µ/t− 1)−∇Φλ(µ̃/t− 1)‖2

< −‖∇Φλ(µ̃/t− 1)‖2 + 2.5λεmp(λ
√
n+ ‖∇Φλ(µ̃/t− 1)‖2)

≤ −0.9‖∇Φλ(µ/t− 1)‖2 + 2.5λ2εmp

√
n

For the last inequality we used 2.5λεmp < 0.1.

We now have all tools available to bound Φλ(
µnew

tnew − 1):

Lemma 5.15.

Φλ(
µnew

tnew
− 1) ≤ Φλ(µ/t− 1)− ε

3

λ√
n
(Φλ(µ/t− 1)− 0.5n)

Proof. First let us write µnew

tnew − 1 as µ
t − 1 + v for some vector v. Then

v =
µnew

tnew
− µ

t
=

µnew − µ− δt − δ̃Φ
tnew

+
µ+ δt + δ̃Φ

tnew
− µ

t

=
µnew − µ− δt − δ̃Φ

tnew
+

µ+ (tnew/t− 1)µ − ε
2t

new ∇Φλ(µ̃/t−1)
‖Φλ(µ̃/t−1)‖2

tnew
− µ

t

=
µnew − µ− δt − δ̃Φ

tnew
+

µ

tnew
+

µ

t
− µ

tnew
− ε

2

∇Φλ(µ̃/t− 1)

‖Φλ(µ̃/t− 1)‖2
− µ

t

=
µnew − µ− δt − δ̃Φ

tnew
− ε

2

∇Φλ(µ̃/t− 1)

‖Φλ(µ̃/t− 1)‖2
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In order to use Lemma 5.13, we must show that ‖v‖2 < 1/λ. For that we bound the length of

‖µnew−µ−δt−δ̃Φ
tnew ‖ as follows:

‖µ
new − µ− δt − δ̃Φ

tnew
‖2 = ‖

µnew − µ− δ̃µ + (δ̃t − δt)

tnew
‖2

≤ 1

tnew
(‖µnew − µ− δ̃µ‖2 + ‖δ̃t − δt‖)

≤ 1

tnew
(6tε2 + εmp‖δ̃t‖2) ≤

t

tnew
(6 +

1.2

3
)ε2 < 6.5ε2

In the first line we used δ̃µ = δ̃t + δ̃Φ and in the last line we used Lemmas 5.6 and 5.12. Thus
‖v‖2 ≤ 6.5ε2 + ε/2 < ε ≤ 1/λ and we can apply Lemma 5.13:

Φλ(µ/t+ v − 1) ≤ Φλ(µ/t− 1) + 〈∇Φλ(µ/t− 1), v〉 + 2‖v‖2∇2Φλ(µ/t−1)

= Φλ(µ/t− 1)− ε

2
〈Φλ(µ/t− 1),

∇Φλ(µ̃/t− 1)

‖Φλ(µ̃/t− 1)‖2
〉

+ 〈∇Φλ(µ/t− 1),
µnew − µ− δt − δ̃Φ

tnew
〉+ 2‖v‖2∇2Φλ(µ/t−1)

≤ Φλ(µ/t− 1)− 0.9ε

2
‖∇Φλ(µ/t− 1)‖2 + 1.25ε2λ2√n

+ ‖∇Φλ(µ/t− 1)‖2 · ‖
µnew − µ− δt − δ̃Φ

tnew
‖2 + 2‖v‖2∇2Φλ(µ/t−1)

≤ Φλ(µ/t− 1)− 0.9ε

2
‖∇Φλ(µ/t− 1)‖2 + 1.25ε2λ2√n

+ 6.5ε2‖∇Φλ(µ/t− 1)‖2 + 2‖v‖2∇2Φλ(µ/t−1)

In the third line we used Lemma 5.14 and Cauchy-Schwarz and the last line comes from the bound
we proved above. Next we bound the second order term:

‖v‖2∇2Φλ(µ/t−1) = λ
n∑

i=1

λΦλ(µ/t− 1)iv
2
i

≤ λ(

n∑

i=1

(λΦλ(µ/t− 1)i)
2)0.5(

n∑

i=1

v4i )
0.5

≤ λ(λ
√
n+ ‖∇Φλ(µ/t− 1)‖2)‖v‖24

≤ λ(λ
√
n+ ‖∇Φλ(µ/t− 1)‖2)(ε)2

The first inequality comes form Cauchy-Schwarz, the second inequality from Lemma 5.13 and the
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last inequality uses ‖v‖4 ≤ ‖v‖2 < ε. Plugging all these bound together we obtain:

Φλ(µ/t+ v − 1)

≤ Φλ(µ/t− 1)− 0.9ε

2
‖∇Φλ(µ/t− 1)‖2 + 1.25ε2λ2√n

+ 6.5ε2‖∇Φλ(µ/t− 1)‖2 + 2λ(λ
√
n+ ‖∇Φλ(µ/t− 1)‖2)ε2

< Φλ(µ/t− 1) + ‖∇Φλ(µ/t− 1)‖2(6.5ε2 + 2λε2 − 0.9ε

2
) + 3.25ε2λ2√n

< Φλ(µ/t− 1)− ε

3
‖∇Φλ(µ/t− 1)‖2 + 3.25ε2λ2√n

≤ Φλ(µ/t− 1)− ε

3

λ√
n
(Φλ(µ/t− 1)− n) + 3.25ε2λ2√n

≤ Φλ(µ/t− 1)− ε

3

λ√
n
(Φλ(µ/t− 1)− 10nελ)

≤ Φλ(µ/t− 1)− ε

3

λ√
n
(Φλ(µ/t− 1)− 0.5n)

Here the first inequality uses ‖v‖2∇2Φλ(µ/t−1) ≤ λε2(λ
√
n + ‖∇Φλ(µ/t − 1)‖2). The third uses

ε ≤ 1/(1500 ln n) and λ = 40 ln n, so (6.5ε2+2λε2− 0.9ε
2 ) < (6.5/1500+2·40/1500−0.9/2)ε < −ε/3.

The fourth inequality uses part 2 of Lemma 5.13.

Proof of Lemma 5.11. On one hand, Lemma 5.15 implies that Φλ(µ
new/tnew − 1) < Φλ(µ/t− 1), if

Φλ(µ/t−1) > 0.5n. On the other hand, if Φλ(µ/t−1) ≤ 0.5n, then Φλ(µ
new/tnew−1)Φλ(µ/t−1)+

ε
3

λ√
n
0.5n ≤ Φλ(µ/t− 1) + 0.005

√
n < 2n. Thus if Φλ(µ/t− 1) ≤ 2n, then Φλ(µ

new/tnew − 1) ≤ 2n.

We now have all intermediate results required to prove our main result of Theorem 1.1.

Proof of Theorem 1.1. We start by proving the correctness:

Correctness of the algorithm At the start of algorithm we transform the linear program as
specified in Lemma A.3 to obtain a feasible solution (x, y, s). For that transformation we choose
γ = min{δ, 1/λ}, so µ − 1 = γc/L and ‖µ/t − 1‖∞ ≤ 1/λ for t = 1 at the start of the algorithm.
This then implies Φλ(µ/t− 1) ≤ n cosh(λ/λ) ≤ n(1 + e)/2 ≤ 2n which for n > 1 is less than 0.5n4,
and thus ‖µ/t− 1‖∞ ≤ 0.1 throughout the entire algorithm by Lemmas 5.10 and 5.11. (This then
also proves Proposition 5.5.)

The algorithm runs until t < δ2/(2n), then we have ‖µ‖1 ≤ n‖µ‖∞ ≤ 1.1nt ≤ δ2 ≤ γ2, so we
obtain a solution via Lemma A.3.

Complexity of the algorithm In each iteration, t decreases by a factor of (1 − ε
3
√
n
), so it

takes O(
√
nε−1 log(δ/n)) iterations to reach t < δ2/(2n). We now bound the cost per iteration.

The vectors u := x/s, µ := xs, and µ/t of Algorithm 3 have small multiplicative change, bounded
by 3ε, 2.5ε, and 3ε respectively (Corollaries 5.8 and 5.9). Thus the amortized cost per iteration
is O(ε/εmp(n

ω−1/2 + n2−a/2+o(1)) log n + n1+a) via Lemma 4.1. For εmp = ε = 1/(1500 ln n) and
a = min{α, 2/3} this is O(nω−1/2 log n) for current ω ≈ 2.37, α ≈ 0.31 [Wil12, Gal14, GU18].

The total cost is O((nω +n2.5−α/2+o(1)+n2+1/6+o(1)) log2(n) log(n/δ)) and for current ω, α this
is just O(nω log2(n) log(n/δ)).
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6 Open Problems

The Õ(nω) upper bound presented in this paper (but also the one from [CLS18]) seems optimal
in the sense, that all known linear system solvers require up to O(nω) time for solving Ax = b.
However, this claimed optimality has two caveats: (i) The algorithm is only optimal when assuming
d = Ω(n). What improvements are possible for d ≪ n? (ii) The Õ(nω) upper bound only holds
for the current bounds of ω and the dual exponent α. No matter how much ω improves, the
presented linear program solver can never beat Õ(n2+1/6) time. So if in the future some upper
bound ω < 2 + 1/6 is discovered, then these linear program solvers are no longer optimal. One
open question is thus, if the algorithm can be improved to run in truly Õ(nω) for every bound on
ω, or alternatively to prove that ω > 2 + 1/6.9

Another interesting question is, if the techniques of this paper can also be applied to other
interior point algorithms. For example, can they be used to speed-up solvers for semidefinite
programming?
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A Appendix

Lemma A.1. Let (xk)k≥1 be a sequence of vectors, such that for every k we have ‖(xk+1 −
xk)/Xk‖2 ≤ C < 1

2 , where Xk = diag(xk). Then there exist at most O((Ck/ε)2) many i s.t.
xki > (1 + ε)x1 or xki < (1− ε)x1.

Proof. For c ≤ 0.5 we have | log xk
i

x1
i
| ≤ 2|x

k
i

x1
i
− 1| which allows us to bound the following norm:

‖ log xk

x1
‖2 = ‖ log

k−1∏

i=1

xi+1

xi
‖2 ≤

k−1∑

i=1

‖ log xi+1

xi
‖2 ≤ 2

k−1∑

i=1

‖x
i+1

xi
− 1‖2 ≤ 2kC

Let T be the number of indices i with xki ≥ (1 + ε)x1i or xki ≤ (1− ε)x1i . We want to find an upper
bound of T .

Without loss of generality we can also assume that xk and x1 differ in at most T + 1 entries.
The reason is as follows: Let’s say we are allowed to choose the sequence of x1, ..., xk and we want
to maximize T . Assume there is more than one index i with xki ≥ (1 + ε)x1i or xki ≤ (1− ε)x1i . Let
i 6= j be two such indices, then we could have tried to increase T by not changing the jth entry
and changing ith entry a bit more.

This leads to T · log(1 + ε) ≤ ‖ log xk

x1 ‖1 ≤
√
T + 1‖ log xk

x1 ‖2 ≤ 2
√
TkC which can be reordered

to T = O((kC/ε)2).

9Recent developments indicate that at least the current techniques for fast matrix multiplication do not allow for
ω < 2 + 1/6 < 2.168 [Alm19, AW18a, AW18b].

10https://creativecommons.org/licenses/by/4.0/
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Lemma A.2. The preprocessing requires O(n2dω−2) time. After T updates the total time of all
updates of Algorithm 1, when ignoring the branch for k < na (so we assume that branch of line 36
has cost 0), is

O(T · C/εmp(n
ω−1/2 + n2−a/2+o(1)) log n).

Proof. The preprocessing cost is dominated by computing M = A⊤(AUA⊤)−1A, which takes
O(n2dω−2) time. For the update complexity, we first modify the algorithm a bit. We replace the
loop of line 23 by: k ← 2ℓ for the smallest integer ℓ with yπ(2ℓ) < (1− 0.5ℓ/ log n)εmp. (ℓ = log n if
no such ℓ exists.)

As we ignore the branch for k < na in the complexity analysis, we are left with analyzing the
cost of performing a rank k = 2ℓ update via the Sherman-Morrison-Woodbury identity. The cost
for this is O(nω(1,1,ℓ/ logn)), where ω(a, b, c) refers to the number of arithmetic operations required
to compute the matrix product of an na × nb with an nb × nc matrix. So the total cost for T calls
to Update is bounded by

logn∑

ℓ=0

(number of rank 2ℓ updates) · O(nω(1,ℓ/ logn,1)).

We now prove that the number of rank 2ℓ updates is at most O(T (C/εmp)2
−ℓ/2 log n) by showing

that there must be at least Ω((εmp/C)2ℓ/2 log−1 n) calls to Update between any two rank 2ℓ

updates.
After a rank 2ℓ update, we have by choice of ℓ that |unewi /ũi − 1| < (1 − 0.5ℓ/ log n)εmp for all

i. Let u(0) be the input vector unew to Update, when we performed the rank 2ℓ update and let
u(1), u(2), ..., be the input sequence to all further calls to Update from that point on. Likewise let
ũ(0), ũ(1), ... be the internal vectors of the data-structure after these calls to Update. Then we have

|u(0)i /ũ
(0)
i − 1| < (1− 0.5ℓ/ log n)εmp

for all i, but when we perform another rank 2ℓ update some t calls to Update later, we have at
least 2ℓ−1 indices i with

|u(t)i /ũ
(t−1)
i − 1| ≥ (1− 0.5(ℓ − 1)/ log n)εmp.

That means either u
(t)
i differs to u

(0)
i by some (1±Ω(εmp/ log n))-factor, or ũ

(t−1)
i differs to u

(0)
i by

some (1±Ω(εmp/ log n))-factor (which means there exists some t′ < t where u
(t′)
i differs to u

(0)
i by

some (1± Ω(εmp/ log n))-factor, which caused ũi to receive an update).
So in summary, we know there must be at least 2ℓ−1 indices i for which the input vectors u

changed by some (1±Ω(εmp/ log n))-factor compared to u(0). By Lemma A.1 this can happen only
after at least Ω(εmpC

−12ℓ/2 log−1 n) calls to Update, as the multiplicative change between any
u(k) and u(k+1) is bounded by C.

Note that by definition we only perform rank 2ℓ ≥ na updates. The total time can thus be
bounded by

logn∑

ℓ=0

(number of rank 2ℓ updates) ·O(nω(1,ℓ/ logn,1))

≤
logn∑

ℓ=⌈a logn⌉
O(T (C/εmp)2

−ℓ/2nω(1,ℓ/ logn,1) log n)

= O(T (C/εmp)(n
ω−0.5 + nω(1,a,1)−a/2) log n)
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The last equality uses that ω(1, 1, x) is a convex function, so the largest term of the sum must be
the first or the last one. If we assume a ≤ α, then nω(1,a,1)−a/2 = n2+o(1)−a/2, which leads to the
complexity as stated in Lemma A.2.

Lemma A.3 ([YTM94, CLS18]). Consider a linear program minAx=b,x≥0 c
⊤x with n variables and

d constraints. Assume that

1. Diameter of the polytope: For any x ≥ 0 with Ax = b, we have that ‖x‖1 ≤ R.

2. Lipschitz constant of the LP: ‖c‖∞ ≤ L.

For any 0 < γ ≤ 1, the modified linear program minAx=b,x≥0 c
⊤x with

A =




A 0 1
Rb−A1n

1⊤n 1 0
−1⊤n −1 0


 , b =




1
Rb

n+ 1
−(n+ 1)


 , and c =




γ/L · c
0
1




satisfies the following:

1. x =




1n
1
1


, y =




0d
0
1


 and s =




1n + γ
L · c

1
1


 are feasible primal dual vectors.

2. For any feasible primal dual vectors (x, y, s) with
∑n

i=1 xisi ≤ γ2, consider the vector x̂ =
R · x1:n (x1:n is the first n coordinates of x) is an approximate solution to the original linear
program in the following sense

c⊤x̂ ≤ min
Ax=b,x≥0

c⊤x+ LR · γ,

‖Ax̂− b‖1 ≤ 2γ ·


R

∑

i,j

|Ai,j |+ ‖b‖1


 ,

x̂ ≥ 0.

B Projection Maintenance via Dynamic Linear System Solvers

The data-structure from [San04, vdBNS19] can maintain the solution to the following linear system:
LetM be a non-singular n×nmatrix and let b be an n-dimensional vector. Then the data-structures
can maintain M−1b while supporting changing any entry of M or b in O(n1.529) time.

This differs from the problem we must solve for the linear system (1), where we must maintain
Pv for P =

√
X/SA⊤(AX

S A)
−1A

√
X/S and the updates change entries of X and S. However,

even though the structure seems very different, one can maintain Pv via the following reduction:

Lemma B.1. Let A be a d×n matrix of rank d and let U be an n×n diagonal matrix with non-zero
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diagonal entries. Then




U−1 A⊤ √
U

−1
0

A 0 0 0
0 0 −I 0

(
√
U

−1
)⊤ 0 0 −I




−1


0n
0n
v
1n




=




∗
∗
∗√

UA⊤(AUA⊤)−1
√
Uv


 ,

where ∗ represents some entries that do not care about.

We can thus maintain Pv by using a data-structure that maintains M−1b by changing the

diagonal entries of the U−1 and
√
U

−1
blocks.

Proof of Lemma B.1. The inverse of a two-blocks × two-blocks matrix is given by

(
Q R
S T

)−1

=

(
Q−1 +Q−1R(T − SQ−1R)−1SQ−1 −Q−1R(T − SQ−1R)−1

−(T − SQ−1R)−1SQ−1 (T − SQ−1R)−1

)

If Q = U−1, T = 0, R = A⊤, T = A, then the matrix has full-rank (i.e. it is invertible) and the
top-left block of the inverse is U+UA⊤(AUA)−1A⊤U . Further, consider the following block-matrix
and its inverse:




M N 0
0 −I 0

N⊤ 0 −I




−1

=




M−1 M−1N 0
0 −I 0

N⊤M−1 N⊤M−1N −I




When M is the previous block-matrix and N is the (n+ d)× n block-matrix (
√
U

−1
, 0n×d)

⊤, then
the matrix is exactly the one given in Lemma B.1 and the bottom-center block of the inverse is

N⊤M−1N =
√
U

−1
(U + UA⊤(AUA)−1A⊤U)

√
U

−1
= I +

√
UA⊤(AUA)−1A⊤√U.

Let C be this (3n+d)×(3n+d) block-matrix specified in Lemma B.1 and let b = (0n, 0d, v, 1n) be an
(3n + d)-dimensional vector, then the bottom n coordinates of C−1b are exactly√
UA⊤(AUA)−1A⊤√Uv.

One can use the data-structure of [San04] to maintain
√

ŨA⊤(AŨA)−1A
√

Ũf(ṽ) similar to
Lemma 4.1, where Ũ = diag(ũ) and ṽ are approximate variants of the input parameters u and
v. Whenever some entry of Ũ or ṽ must be changed, because the approximation no longer holds,
the algorithm of [San04] spends O(n1.529) time per changed entry of Ũ and ṽ. This is not yet fast
enough for our purposes, because when using this data-structure inside our linear program solver,
up to Ω(n) entries might be changed throughout the entire runtime of the solver. Thus one would
require Ω(n2.529) time for the solver.

By applying the complexity analyzsis of [CLS18] to this data-structure, one can achieve the
same amortized complexity as in Lemma 4.1. We now briefly outline how this is done.

Per iteration of the linear system solver, more than one entry of ũ and ṽ may have to be
changed. This can be interpreted as a so called batch-update, and the complexity for batch-updates
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was already analyzed in [vdBNS19], but again the focus was on worst-case complexity. Both data-
structure from [San04] and [vdBNS19] had the property, that the data-structure would become
slower the more updates they received. This issue was fixed by re-initializing the data-structure in
fixed intervals. The core new idea of [CLS18] is a new strategy for this re-initialization: They wait
until na many entries of ũ must be changed (see line 32 of Algorithm 1), and then they change
preemptively a few more entries (see line 23).

Applying the same reset strategy to [San04, vdBNS19] then results in the same complexity as
Lemma 4.1. Indeed the resulting data-structure is essentially identical to Lemma 4.1/Algorithm 1,
because all these algorithms are just exploiting the Sherman-Morrison-Woodbury identity.
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