
Compact Routing Schemes with Improved Stretch

Shiri Chechik
Microsoft Research Silicon Valley

Mountain View CA, USA
shiri.chechik@gmail.com

ABSTRACT
We consider the problem of compact routing in weighted
general undirected graphs, in which the goal is to construct
local routing tables that allow information to be sent on
short paths in the network. In this paper the first im-
provement to the work of Thorup and Zwick [SPAA’01] is
presented. Specifically, we construct an improved routing
scheme obtaining for every k routing tables of size

Õ
(
n1/k logD

)
, and stretch (4− α)k − β for some absolute

constants α, β > 0, where D is the normalized diameter.
This provides a positive answer to a main open question in
this area as to the existence of a routing scheme with stretch
c · k for some constant c < 4.

Categories and Subject Descriptors: F.2.2 Analysis of
Algorithms and Problem Complexity: Nonnumerical Algo-
rithms and Problems

Keywords: compact routing, stretch factor, name indepen-
dent routing

1. INTRODUCTION
Routing is perhaps one of the most fundamental problems

in the area of distributed networking. The goal in this prob-
lem is to construct a distributed mechanism that allows any
node in the network to send packages of data to any other
node efficiently. As in all distributed algorithms, a routing
scheme runs locally on every node of the network allowing
it to forward arriving data while utilizing local information
that is stored at the node itself. This local information is
commonly referred to as the routing table of the node.

Formally, a routing scheme is comprised of two phases,
the preprocessing phase and the routing phase. In the first
phase, the preprocessing phase, each node is assigned a rout-
ing table and a small size label (poly-logarithmic in the size
of the network) that are stored locally at the node. In the
second phase, the routing phase, the routing scheme allows
any node to send information to any other node in a dis-
tributed manner. Specifically, the scheme allows every node,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

upon receiving a message, to decide whether this message
reached its final destination or to which of the node’s neigh-
bors this message should be sent next. In order to make
such decisions, the node may use its own routing table and
the header of the message that contains the label of the final
destination and perhaps some additional information.

The stretch of a routing scheme is defined as the worst
case ratio between the length of the path obtained by the
routing scheme and the length of the shortest path between
the source node and the destination node.

There are usually two key concerns in designing routing
schemes. The first concern is to minimize the stretch of the
routing scheme, and the second concern is to minimize the
size of the routing tables. Much of the work on designing
routing schemes focuses on the tradeoff between these two
concerns.

An extreme case is when the designer is allowed to store
linear size memory at the nodes. In this case it is possi-
ble to store a complete routing table at all nodes, i.e., for
every node s and every destination t store the port of the
neighbour of s on the shortest path from s to t. Using these
routing tables it is possible to route messages on shortest
path, namely, having a stretch of 1. The clear drawback of
this solution is that we need routing tables of size Ω(n). In
a large network, having routing tables of size Ω(n) can be
too costly.

In many cases it would be desirable to store much smaller
routing tables at the price of larger stretch. We say that a
routing scheme is compact if the size of the routing tables is
sub-linear in the number of nodes.

Many papers deal with the tradeoff between the size of
the routing tables and the stretch (e.g. [16, 5, 6, 15, 7,
8, 13]). The first tradeoff was presented by Peleg and Upfal
[16]. Their paper considered unweighted graph and achieved
a bound on the total size of the routing tables. A tradeoff
for weighted graphs with a guarentee on the maximum table
size was later presented by Awerbuch et al. [5]. This paper

presented a routing scheme that uses table size of Õ(n1/k)
with stretch O(k29k). A better tradeoff was later obtained
by Awerbuch and Peleg [6]. Efficient schemes for specific
values of k were presented in [7, 8].

The best known tradeoff was achieved by Thorup and
Zwick [17]. They showed a routing scheme that uses rout-

ing tables of size Õ(n1/k), a stretch of 4k − 5 and labels
size of O(k logn). This routing scheme assumes that the
port numbers can be assigned by the routing process. In
the case of fixed port model, namely, the port numbers are
part of the input of the preprocessing phase, their labels size

33

increases to O(k log2 n). In addition, they showed that if a
handshaking is allowed, namely the source node and the tar-
get node can communicate before the routing phase starts
and agree on an o(log2 n) bit header that is attached to the
header of all messages, then the stretch can be reduced to
2k − 1. However, in many cases, it would be desirable to
avoid the use of handshaking, especially if the source wishes
to send only a single message to the destination. In that
case the overhead of establishing a handshake could be as
high as sending the original message. Thorup and Zwick’s
scheme [17] of stretch of 2k − 1 established using a hand-
shake is essentially optimal assuming the girth conjecture of
Erdős [9]. Erdős [9] conjectured that for every k > 1 there

are graphs with Ω(n1+1/k) number of edges whose girth is
at least 2k + 1. If the conjecture is true, namely, there ex-
ists such a graph G, then any routing scheme of stretch less
than 2k−1 requires a total memory of at least Ω(n1+1/k) on
some subgraphs of G. Namely, relying on this conjecture it
is impossible to achieve a routing scheme that uses O(n1/k)
routing tables with less than 2k− 1 stretch with or without
handshaking. For further lower bounds see [16, 10, 12, 18,
14]. A main open problem in the area of compact routing
schemes is on the gap between the stretch 4k− 5 and 2k− 1
in the case of no handshaking. In this paper, we give the
first evidence that the asymptotically optimal stretch is less
than 4k (for the case of routing tables of size Õ(n1/k) and no
handshaking). This is the first improvement to the stretch-
space tradeoff of routing scheme since the result of Thorup
and Zwick [SPAA’01].

A closely related variant is that of name independent rout-
ing scheme. In this variant the addresses of the nodes are
fixed, namely, they are part of the input network and cannot
be changed by the routing scheme. The problem of name in-
dependent routing was extensively studied. The first trade-
off was presented by Awerbuch et al. [4]. They presented
a compact name independent routing scheme with stretch
that is exponential in k. This was followed by a series of im-
provements [6, 5, 3, 2, 1]. In [1], Abraham et al. presented

a name independent routing scheme that uses Õ(n1/k logD)
with O(k) stretch, where D is the normalized diameter.

All of our sizes, unless mentioned otherwise, are measured
in the number of words, where a word is a storage unit large
enough to contain any distance or an ID of a node.
Our contributions: We present the first improvement on
the work of Thorup and Zwick [SPAA’01] by constructing
a compact routing scheme in weighted general undirected
graphs that uses tables of size Õ(n1/k) and has stretch c · k
for some absolute constant c < 4, thus, obtaining improved
results for every k ≥ 4. Specifically, for k = 4 we improve
the 11 stretch of Thorup and Zwick to ≈ 10.52. In order to
obtain this improved result we prove several structural prop-
erties on the Thorup and Zwick construction which might
be of independent interest.
Paper Organization: Section 2 contains preliminaries and
notations. In Section 3 we present the general framework
used in the paper. In order to simplify presentation, we start
by focusing on the case where k = 4 in Section 4. Section
5 contains the case of general k. For simplicity, we start
by describing the scheme for unweighted graphs and later
(in Section B) describe the modifications needed in order to
handle weighted graphs.

2. PRELIMINARIES AND NOTATION
Let us introduce some notations that will be used through-

out the text. For a graph G, denote by V (G) and E(G)
respectively the sets of vertices and edges of G. Consider a
rooted tree T and a node v ∈ V (T). Denote by r(T) the
root of the tree T . Let parent(v, T) be the parent of v in
the tree T or null in the case where v is the root of T . Let
childs(v, T) be the set of children of v in the tree T . Let
deg(v, T) = |childs(v, T)|, namely, the number of children
of v in the tree T . Let radius(T) be the longest path from
r(T) to some node in T .

3. GENERAL FRAMEWORK
An essential ingredient in our routing scheme is a pro-

cedure for routing on rooted subtrees of the graph. Given
a tree T , the procedure assigns every node v in T a label
L(v, T) and a routing table A(v, T). Using the label L(t, T)
of some node t and the routing tables A(v, T), it is possible
to route to t from any node in T on their shortest (only)
path in T . Thorup and Zwick presented a routing scheme
on trees that uses (1 + o(1)) log n label size and these labels
are the only information stored at the nodes. In the case
of fixed port model, namely, the port numbers are not al-
lowed to be changed, their labels size increases to O(log2 n).
A similar scheme was presented by Fraigniaud and Gavoille
[11].

Our scheme is strongly based on Thorup-Zwick construc-
tion (with some new ideas). For completeness we now out-
line the compact routing scheme of Thorup and Zwick. For
a given positive integer k, construct the sets V = A0 ⊇ A1 ⊇
· · · ⊇ Ak−1 ⊇ Ak = ∅ as follows. Each Ai for 1 ≤ i ≤ k − 1
is obtained by sampling the nodes in Ai−1 independently at
random with probability (n/ lnn)−1/k. The pivot pi(v) is
defined to be the closest node to v in Ai (break ties arbi-
trarily).

The bunch B(v) of v is defined as follows. A node w ∈
Ai \ Ai+1 is added to B(v) if dist(v, w) ≤ dist(v,Ai+1).
Namely,

B(v) =

k−1⋃
i=0

{w ∈ Ai \Ai+1 | dist(v, w) < dist(v,Ai+1)}.

Note that dist(v,Ak) =∞ and thus Ak−1 ⊆ B(v).
For a node w ∈ Ai \ Ai+1, the cluster C(w) is defined as

follows C(w) = {v ∈ V | dist(w, v) ≤ dist(v,Ai+1)}. Or in
other words, the cluster of a node w is the set of nodes v
such that w ∈ B(v).

For every node w ∈ V , let T (w) be the shortest path
tree rooted at w spanning C(w). For every node w ∈ V ,
invoke the routing scheme on trees on T (w) and store the
label L(v, T (w)) at the routing table ATZ(v) of v. The label
LTZ(v) of v is the concatenation of L(v, T (pi(v))) for 1 ≤
i ≤ k − 1. This completes the construction of the routing
tables and the labels.

It was shown in [17] that for every node v, |B(v)| =

O(n1/k logn), namely there are st most O(n1/k logn) nodes

w such that v ∈ C(w). We get that |ATZ(v)| = O(n1/k log3 n).
The size of the label LTZ(v) is O(k log2 n) (we have to use
the fixed port model since the trees may overlap).

The routing process is done as follows. Assume some node
s wants to send a message to some node t given the label
LTZ(t). The node s finds the first index i such that pi(t) ∈
B(s), or in other words that s ∈ T (pi(t)) and then it routes

34

the message to t on the tree T (pi(t)) using L(t, T (pi(t)))
(⊆ LTZ(t)).

Thorup and Zwick showed that the above scheme gives a
stretch of 4k− 3. The proof of the stretch was based on the
following claim. Let i be the first index such that pi(t) ∈
B(s) and let d = dist(s, t). For every j ≤ i, dist(t, pj(t)) ≤
2jd and dist(s, pj(s)) ≤ (2j − 1)d.

Note that the algorithm routes the message from s to t on
T (pi(t)) and that dist(s, pi(t))+dist(t, pi(t)) ≤ dist(s, t)+
dist(t, pi(t))+dist(t, pi(t)) ≤ d+4(k−1)d = (4k−3)d. We
thus get a stretch of 4k − 3.

Thorup and Zwick also showed that by using a slightly
different sampling procedure it is possible to reduce the
stretch to 4k − 5. The new sampling procedure guaran-
tees that |C(w)| ≤ O(n1/k) for every w ∈ A0 \ A1. The
algorithm stores the set C(w) and the labels L(v, T (w)) for
every v ∈ C(w) in the table ATZ(w). In the routing process,
the algorithm checks if s ∈ A0 \ A1 and t ∈ C(s), if so it
routes the message to t in T (s). If t /∈ C(s) then by defini-
tion dist(t, p1(t)) ≤ dist(s, t), (rather than dist(t, p1(t)) ≤
2dist(s, t)). This saves up 2 to the total stretch, resulting
with a stretch of 4k − 5.

In our scheme we need the following stronger property.
For every w ∈ A`−1 \ A`: |C(w)| ≤ O(n`/k) for ` ≤ r for
some integer r. We thus employ this sampling procedure for
every index i and slightly change the sampling probability
used in [17].

We construct the sets Ai as follows, A0 = V,Ak = ∅ and
for each 1 ≤ i ≤ k − 1, Ai = center(G,Ai−1, n

1−i/k/logn).
Procedure center operates on a given graph G, set of

nodes A′ and a size s. It operates as follows. Initially set
A ← ∅ and W ← A′. While W 6= ∅ do the following.
Let B′ = sample(W, s), namely, B′ is obtained by sampling
every node in W independently at random with probability
s/|W |, or B′ = W if |W | ≤ s. Set A ← A ∪ B′. Let
CA(w) ← {v ∈ V | dist(w, v) < dist(A, v)}, for every w ∈
A′. Set W ← {w ∈ A′ | |C(w)| > 4n/s} . See Procedure 1
for the formal code.

The following lemma is crucial in our analysis. (The proof
is deferred to the appendix.)

Lemma 3.1. For every node w ∈ Ai \ Ai+1: |C(w)| =

O(n(i+1)/k). In addition, for every node v ∈ V : |B(v)| =

O(n1/k logn).

4. WARM-UP: THE CASE K = 4

In this section we present our routing scheme for the case
k = 4.

An important ingredient in our routing algorithm is a pro-
cedure for name-independent routing on trees inspired from
[2]. We present a name-independent routing scheme for a
given tree T that is schematically done a follows. For a
given tree T , distribute the labels L(v, T) for every node
v ∈ V (T) among a subset of the nodes and design a search
mechanism such that given key(v) can find in a distributed
manner L(v, T), where key(v) is a unique identifier of the
node v in [1..n].

Let us start with describing our search mechanism. We
will later see how to use this mechanism in our routing
scheme. The search mechanism presented here is designed
specifically for the case of k = 4, in the case where k > 4
we need to use a more complicated search tree as will be
described later on. We show the following lemma.

Lemma 4.1. Consider a tree T of depth d′, a set of nodes
core(T) ⊆ V (T) such that r(T) ∈ core(T), |core(T)| ≥
d|V (T)|/n1/ke and |V (T)| ≤ n2/k. One can construct a
search scheme with the following properties.
(1) The scheme stores O(n1/k log2 n) information ST(v, T)
at every node v ∈ core(T).
(2) Given a key key the algorithm can find L(key, T) (or de-
cides that key /∈ V (T)) in a distributed manner by traveling
on a path from the root r(T) of length at most radius(T).

Proof: The proof is by construction. Let
K = {key(v) | v ∈ V (T)}. First, the algorithm distributes

the keys K such that every node in core(T) stores O(n1/k)
keys and their matching labels. The algorithm assigns each
node v ∈ core(T) an interval I(v) = [n1, n2], the node v
stores the labels of the keys in K in the range [n1, n2]. This
is done as follows. Order the nodes at core(T) by some
order. The algorithm stores at the first node in core(T) the

first n1/k keys and their matching labels (the keys with the
smallest IDs). The algorithm then assigns to the next node

in core(T) the next n1/k keys and so on.

Recall that |V (T)| ≤ n2/k, we get that the algorithm as-

signs keys to at most n1/k nodes in core(T), let ˆcore(T) be
this set of nodes. Notice also that the algorithm cannot run
out of nodes in core(T) as |core(T)| ≥ d|V (T)|/n1/ke.

Consider a node v ∈ core(T), Let n1 be the smallest key
assigned to v and n2 be the largest key assigned to v, the
interval I(v, T) of v is [n1,n2]. Note that all keys in the
interval I(v, T) are assigned to v. The node v stores the
keys assigned to it and their matching labels. In addition,
the root r(T) stores the labels of the set ˆcore(T) and their
matching intervals.

This completes the construction of our search mechanism.
We now turn to describe the search algorithm for a given

key key. We assume that the search algorithms starts at the
root r(T). Namely, the algorithm first routes the message to
the root and only then it invokes the search algorithm. The
root r(T) checks which of the nodes in core(T) stores the
label L(key, T), namely, the node z whose interval contains
key. The root r(T) attaches to the header of the message
the label L(z, T) and routes the message to the node z using
L(z, T). The node z either stores the label L(key, T) or
determines that key does not exist in T . One can see that
the path obtained by this search mechanism is of length at
most radius(T) (until reaching the node in T containing
L(key, T) or deciding that key /∈ V (T)). We thus get that
property (2) is satisfied. In addition, it is not hard to verify
that property (1) is satisfied by construction.

Constructing the labels and routing tables:
We now turn to describe the construction of the labels

and routing tables in our routing scheme.
The first step of our algorithm is to assign every node

v ∈ V a unique identifier key(v) in the range [1..n]. Next,
construct Thorup-Zwick routing tables and labels. The label
L(v) is defined as follows. Add the key key(v) to the label
L(v). Next, add to L(v) the label LTZ(v) assigned to v by
the Thorup-Zwick construction. In addition, add to L(v)
the distances dist(v, Pi(v)) for every 1 ≤ i ≤ k − 1.

It is not hard to verify that the asymptotic sizes of the
labels L(v) and LTZ(v) are the same.

The routing table A(v) of the node v is constructed as
follows. First, add to the routing table A(v) the routing ta-

35

Algorithm center(G(V,E), A′, s)

A← ∅; W ← A′

while W 6= ∅; do:
{

A← A ∪ sample(W, s)
CA(w)← {v ∈ V | dist(w, v) < dist(A, v)}, for every w ∈ A′;
W ← {w ∈ A′ | |C(w)| > 4n/s}

}
return A;

Figure 1: Choosing a set of centers with small size clusters.

ble ATZ(v) assigned to v by the Thorup-Zwick construction.
In addition, we enhance the routing tables with additional
information. We now describe the additional information
stored at the nodes.

For every node w ∈ V , let T (w) be the shortest path tree
rooted at w spanning C(w). For every node w ∈ A1 \ A2

and every distance d′ = (1+ ε)j for 1 ≤ j ≤ logD(w), where
D(w) = radius(T (w)), do the following.

The core core(w, d′) is obtained by sampling every node
v ∈ T (w) independently at random with probability

4 logn/n1/k. Let T (w, d′) be the tree T (w) trimmed at dis-
tance d′, i.e., the tree that is obtained by deleting all nodes
from T (w) that are at distance greater than d′ from w. Let
C(w, d′) be set of nodes in T (w, d′), i.e., all nodes v in C(w)
such that dist(v, w) ≤ d′.

For every node w ∈ V , and every distance d′ = (1 + ε)j

construct the search mechanism of Lemma 4.1 on T (w, d′)
and core(w, d′) ∪ {w}. Add to the routing tables A(v) the
information ST(v, T (w, d′)) of the search mechanism for ev-
ery v ∈ core(w, d′) ∪ {w}.

This completes the construction of our labels and routing
tables.

Let us now analyze the size of the routing tables.
By Chernoff bounds we show the following.

Lemma 4.2. With high probability the following two events
occur. 1. For every node w ∈ A1 \ A2: |core(w, d′)| ≥
d|C(w)|/n1/ke. 2. For every node v ∈ V , there are at
most O(log2 n) nodes w and distances d′ = (1 + ε)j for
1 ≤ j ≤ logD(w) such that v ∈ core(w, d′).

Proof: The expected size µ1 of core(w, d′) is

µ1 = (4 logn|V (T)|)/n1/k.
Recall that by Chernoff’s bound, we have for a bino-

mial random variable X such that E[X] = µ, Pr[X <
(1+δ)µ] ≤ exp(µδ2/2). We thus get that Pr[|core(w, d′)| ≤
(logn|V (T)|)/n1/k] ≤ exp(µ) < 1/n2. The first part follows.

To see the second part, recall that a node v belongs to
O(n1/k logn) clusters. For each cluster, the algorithm con-
siders O(logn) distances d′. The probability that a node v

belongs to core(w, d′) is 4 log n/n1/k. Thus the expected
number µ2 of nodes w and distances d′ such that
v ∈ core(w, d′) is O(log2 n). By applying Chernoff bound
we get that with high probability there are at most O(log2 n)
nodes w and distances d′ such that v ∈ core(w, d′).

We thus conclude the following.

Lemma 4.3. For every node v the expected size of the
routing table A(v) is O(n1/k log4 n).

Proof: Recall that there are two main parts in the routing
table A(v). The first part is the routing table ATZ(v) of
Thorup-Zwick scheme and the second part is the information
ST(v, T (w, d′)) of the search mechanism for every w and d′

such that v ∈ core(w, d′)∪{w}. It was shown in [17] that the

size of ATZ(v) is O(n1/k log3 n). We left with bounding the
size of the second part. By Lemma 4.2 there are O(log2 n)
sets core(w, d′) such that v ∈ core(w, d′). By Lemma 4.1

for each such set the size of ST(v, T (w, d′)) is O(n1/k log2 n).
The lemma follows.

The routing phase: We now describe the routing phase
for the case k = 4.

For a node v let ∆j(v) = dist(v, pj+1(v))−dist(v, pj(v)).
Let k′ be the minimal index such that pk′−1(t) ∈ B(s), or 1
in case either t ∈ B(s) or s ∈ B(t).
Let M = max{∆j(s)/2,∆j(t)/2 | 1 ≤ j ≤ k′ − 2} ∪
{∆0(s),∆0(t)} ∪
{dist(s, pj+1(s)) − dist(t, pj(t)) | 1 ≤ j ≤ k′ − 2}. Note
that the information needed to calculate k′ and M can be
extracted during the routing process from the label L(t) and
the routing table A(S).

The routing phase is done as follows.
First check if s ∈ A0 \ A1 and s ∈ B(t), if so route the

message to t on T (s) using L(t, T (s)). Note that, this infor-
mation can be extracted from s’s routing table. If s ∈ B(t)
then by definition t ∈ C(s) and recall that s ∈ A0 \A1 stores
the set C(s) and the labels L(x, T (s)) for every x ∈ C(s) (as
part of the Thorup-Zwick routing ATZ(s)).

Otherwise, check if either p1(t) ∈ B(s) or p2(t) ∈ B(s). If
so route the message to t on T (pi(t)) where i ∈ {1, 2} is the
minimal index such that pi(t) ∈ B(s)

In all other cases, check if ∆1(t) ≤ c ·M (for some pa-
rameter 1 < c < 2 to be fixed later on). If so, invoke the
standard Thorup-Zwick routing algorithm. Otherwise do
the following. Let d′ = (1 + ε)i for some index i be the
minimal distance such that d′ ≥ (1 + c) ·M .

Check using the search mechanism if p1(s) ∈ B(t). This
is done by routing the message from s to p1(s) in T (p1(s)).
Then search for the key key(t) in the tree T (p1(s), d′), if
the key exists in T (p1(s), d′) then route the message to t
and quit. Otherwise if the key(t) was not found, return the
message to s and invoke the standard Thorup-Zwick routing
algorithm. This completes the description of the routing
process.

We now turn to analyze the stretch of our routing scheme.
Let d = dist(s, t). By Thorup-Zwick analysis, either both

∆0(s) ≤ d and ∆0(t) ≤ d, or we can route the message on

36

the exact shortest path from s to t. To see this, note that
if ∆0(s) > d, then t ∈ B(s) and the message can be routed
from s to t on T (t) using the label L(t, T (t)), where the
label L(t, T (t)) can be extracted from t’s label. Similarly, if
∆0(t) > d, then s ∈ B(t) or in other words, t ∈ C(s) and the
message can be routed from s to t in T (s) using L(t, T (s)).
The label L(t, T (s)) can be extracted from s’s routing table.
So assume this is not the case, namely, k′ > 1. We now show
that M is a lower bound on the distance from s to t.

Lemma 4.4. If k′ > 1 then dist(s, t) ≥M .

Proof: By the definition of k′ and the assumption that k′ >
0, we have t /∈ B(s) and s /∈ B(t). By the definition of B(s)
and B(t), we have
dist(s, t) ≥ dist(s, p1(s)) = ∆0(s) and
dist(s, t) ≥ dist(t, p1(t)) = ∆0(t).

We now turn to show that
dist(s, t) ≥ max{∆j(s)/2,∆j(t)/2 | 1 ≤ j ≤ k′ − 2}. Note
that for every j such that pj(t) /∈ B(s), we have
dist(s, pj+1(s)) ≤ d+ dist(t, pj(t)). Hence
dist(t, pj+1(t)) ≤ d + dist(s, pj+1(s)) ≤ 2d + dist(t, pj(t)).
Hence, d = dist(s, t) ≥ (dist(t, pj+1(t))− dist(t, pj(t)))/2
= ∆j(t)/2. In addition, we have
dist(t, pj(t)) ≤ d+dist(s, pj(s)). Hence, dist(s, pj+1(s)) ≤
d+ dist(t, pj(t)) ≤
d+ d+ dist(s, pj(s)). We get that d = dist(s, t) ≥
(dist(s, pj+1(s))− dist(s, pj(s)))/2 = ∆j(s)/2.

We are left to show that dist(s, t) ≥ max{pj+1(s)−pj(t) |
1 ≤ j ≤ k′}. Consider 1 ≤ j ≤ k′, notice that by the
definition of k′, pj(t) /∈ B(s). We get that dist(s, pj+1(s)) ≤
dist(s, t)+dist(t, pj(t)). Hence, dist(s, t) ≥ pj+1(s)−pj(t),
as required.

Lemma 4.4 gives us a good starting point. We already
have a lower bound on dist(s, t). Notice that in the worst
case, where Thorup-Zwick analysis gives a stretch of 4k − 5
is when ∆j(s) and ∆j(t) are roughly 2M for any j > 0, and
M is slightly smaller than dist(s, t).

We now turn to bound the stretch of our routing process.

Lemma 4.5. The stretch of our routing process is at most
max{7 + 2c, 9, 15/c+ 2 + 2ε(1/c+ 1)}.

Proof: First, notice that in one of the following three cases
the stretch of the routing process is at most 7 (instead of
11) and we are done. 1. s ∈ A0 \ A1 and s ∈ B(t). 2.
p1(t) ∈ B(s). 3. p2(t) ∈ B(s). In the above mentioned
cases, by following Thorup-Zwick analysis, one can show
that the stretch of the routing process is at most 7.

So assume this is not the case. Recall that by Lemma 4.4,
we have
d = dist(s, t) ≥ max{∆j(s)/2,∆j(t)/2 | 1 ≤ j ≤ k′ − 2} ∪
{∆0(s),∆0(t)} ∪ {dist(s, pj+1(s)) − dist(t, pj(t)) | 1 ≤ j ≤
k′ − 2}.

Consider first the case where ∆1(t) ≤ c ·M . Recall that in
this case the algorithm routes the message to t on T (p3(t)).
Thus the length of path obtained by the routing scheme in
this case is dist(s, p3(t)) +dist(t, p3(t)). Notice that in this
case we have dist(t, p2(t)) ≤ ∆0(t) + ∆1(t) ≤ M + c ·M =
(1 + c)M ≤ (1 + c)dist(s, t). We thus get, dist(t, p3(t)) ≤
∆0(t)+∆1(t)+∆2(t) ≤ (1+c)M+2M ≤ (3+c)dist(s, t). In
addition, dist(s, p3(t)) ≤ dist(s, t) + dist(s, p3(t)) ≤ (4 +
c)dist(s, t). We get that dist(s, p3(t)) + dist(t, p3(t)) ≤
(7 + 2c)dist(s, t). Hence, the stretch in this case is 7 + 2c.

Finally, consider the case where ∆1(t) > c ·M . Let d′ =
(1 + ε)i be the minimal distance such that d′ ≥ (1 + c) ·M
for some index i.

The algorithm searches for key(t) in the tree T (p1(s), d′).
Recall that dist(s, p1(s)) ≤ M . Hence the algorithm tra-
verses a path of at most M until reaching p1(s), it then finds
L(t, T (p1(s), d′)) or decides that t /∈ T (p1(s), d′) by traveling
on a path of length at most d′. We now need to consider two
subcases. The first subcase is when t ∈ T (p1(s), d′). In that
case the algorithm routes the message to t in T (p1(s), d′).
Note that the overall path in this case is at most M+d′+d′+
dist(p1(s), t) ≤ 3dist(s, t)+2(1+ε)(1+c) ·M ≤ 9dist(s, t).

The last case is when t /∈ T (p1(s), d′). Note that this
could happen only if dist(s, t) ≥ cM .

In this case the algorithm reaches the root p1(t), tries
to find key(t) in T (p1(s), d′) fails, returns the message to
s and then invoke the standard Thorup-Zwick algorithm.
The total path traveled by the algorithm in this case is M +
2d′ + M + 11M . Since dist(s, t) ≥ cM , we get that the
stretch is (2d′ + 13M)/dist(s, t) ≤ (2d′ + 13M)/(cM) ≤
(2(1 + ε)(1 + c)M + 13M)/(cM) == 15/c+ 2 + 2ε(1/c+ 1).

By setting c = (
√

145 − 5)/4 and taking ε to be small
enough, we get a stretch of roughly 10.52 instead of the
stretch 11 obtained by Thorup-Zwick’s routing scheme.

5. THE GENERAL CASE K > 4

For simplicity, we present the construction for unweighted
graphs, we later (in Section B) explain the modifications
needed to handle weighted graphs.

Let us start with a general overview of our routing scheme
for general k. As in the case of k = 4, we start by con-
structing Thorup-Zwick routing tables and labels. Each
node stores the routing table and the label assigned to it
by the the Thorup-Zwick scheme. As in the case of k = 4,
we construct a name-independent routing mechanism on the
trees T (w), by storing additional information at the nodes

of T (w) , while keeping the tables size Õ(n1/k).
Roughly speaking, the routing phase is done as follows.

The source node s checks if the target node t satisfies
dist(pr(t), t) ≤ c·r ·M (for some parameters r and 1 < c < 2
to be fixed later on). If so, the node s invokes the standard
Thorup-Zwick routing algorithm. Otherwise an attempt is
made to route the message to t on the tree T (pj(s)) for
some j ≤ r. This is done by first searching for the label
L(t, T (pj(s))) using the search mechanism constructed for
T (pj(s)). If t ∈ T (pj(s)) then the label L(t, T (pj(s))) is
found using the search algorithm and the message is then
routed to t using L(t, T (pj(s))), otherwise the message is
bounced back to s and s invokes the standard Thorup-Zwick
routing algorithm.

Recall that in the Thorup-Zwick analysis we have
dist(pr(t), t) ≤ (2 · r−1) ·M , thus if dist(pr(t), t) ≤ c · r ·M
for small enough c then following Thorup-Zwick analysis
we get a better stretch. Otherwise, there must be an in-
dex j such that ∆j(t) > c ·M and the algorithm tries to
route the message to t on T (pj(s)) using the search mecha-
nism. If t ∈ T (pj(s)) then the algorithm finds L(t, T (pj(s)))
and the message is routed to t on T (pj(s)). Otherwise, the
algorithm invokes the standard Thorup-Zwick routing al-
gorithm. The detour for searching the label L(t, T (pj(s)))
and returning back to s appears to be a waste in the case

37

where t /∈ T (pj(s)), however, we show that the only case that
t /∈ T (pj(s)) is when dist(s, t) ≥ c ·M . In this particular
case we can actually show that the Thrup-Zwick algorithm
gives a much better stretch. Hence, even combined with the
path traveled by the search algorithm, overall we still get a
smaller stretch than in the general case of the Thrup-Zwick
analysis.

The search mechanism we use in this section is slightly
different than the one we presented for the case of k = 4.
In the general case, we are given a tree T (w) such that

|T (w)| ≤ nr/k and radius(T (w)) ≤ rρ for some distance
ρ and the goal is to design a search mechanism that finds
the label L(t, T (w)) by traveling on a short path, where by
a short path we mean O(radius(T)) length. The main dif-
ficulty with the previous search mechanism is that in the
general case, the node s cannot store a complete map that
indicates which node in T (w) contains the label of t (as
otherwise we will have to violate the constraint that ev-
ery node stores Õ(n1/k) information). In fact, it is possible

to show that if |T (w)| > nr/k, then in the worst case the
algorithm must visit at least r different nodes in order to
find L(t, T (w)). Naively, we could partition the set of nodes

V (T (w)) into n1/k sets and pick n1/k nodes helpers(w) in
T (w) and assign each such node with one of these sets. We
could partition V (T (w)) into sets in such a way that each
such set S corresponds to a continuous interval I. The node
w would store a map between these intervals and the cor-
responding nodes helpers(w). The size of each such set is

|V (T (w))|/n1/k. We could continue this process partitioning

these sets into smaller sets until we have sets of size O(n1/k)
that a single node can store. Using this search mechanism,
it is possible to find the label L(t, T (w)) by vising r nodes in
T (w). However, note that naively these r nodes could be far
away from one other (distance 2radius(T (w))), so naively
this process could yield a path of length O(r·radius(T (w))).
We thus pick the nodes of core(T (w)) in a more careful
way, in order to reduce the maximum length of the path
traveled by the search process to O(radius(T (w))) rather
than O(r · radius(T (w))). We pick the nodes core(T (w))
in such a way that for every node v ∈ T (v), |core(T) ∩
childs(v, T)| ≥ lognd|childs(v, T)|/n1/ke. At every node
v ∈ core(T (w)) our search mechanism stores

O(min{deg(parent(v, T)), n1/k}) information. We later
show that we can pick core(T (w)) in a way that maintain

the requirement that every node stores at most Õ(n1/k) in-
formation in total.

More precisely, we show the following search scheme (the
proof is deferred to the appendix).

Lemma 5.1. Consider a tree T of depth d′, a set of nodes
core(T) ⊆ V (T) such that r(T) ∈ core(T), and that for
every v ∈ T (v),

|core(T) ∩ childs(v, T)| ≥ d|childs(v, T)|/n1/ke. One can
construct a search mechanism with the following properties.
1. The search mechanism stores O(s(v, T) log2 n) data size
at every node v ∈ core(T) and at most O(log2 n) data at
the rest of the nodes of T , where
s(v, T) = min{deg(parent(v, T)), n1/k}. Let ST(v, T) be
the data stored at a node v ∈ V (T).
2. Given a key key, the algorithm can find L(key, T) (or
decides that key /∈ V (T)) from r(T) in a distributed man-
ner, by traveling on a path of length at most 3radius(T) +

2(ind(T)− 1), where ind(T) is the minimal index such that

|V (T)| ≤ nind(T)/k.

Constructing the labels and routing tables:
We now describe the construction of the labels and routing

tables of our routing scheme. First, construct Thorup-Zwick
routing tables and labels.

The label L(v) is defined as follows (similarly as in the
case where k = 4). Add the key key(v) to the label L(v).
Next, add to L(v) the label LTZ(v) assigned to v by the
Thorup-Zwick construction. In addition, add to L(v) the
distances dist(v, Pi(v)) for every 1 ≤ i ≤ k − 1.

The routing table A(v) of the node v is constructed as fol-
lows. First, add to the routing table A(v), the routing table
ATZ(v) assigned to v by the Thorup-Zwick construction. In
addition, we enhance the routing tables with the following
additional information.

For every node w ∈ V and distance d′ = (1 + ε)j for
1 ≤ j ≤ logn do the following. The core core(w, d′) is
obtained by sampling every node v ∈ T (w) independently
at random with probability
min(1, 4 logn/deg(parent(v, w))) when

deg(parent(v, w)) < n1/k and with probability 4 logn/n1/k

otherwise.
For every node w ∈ V , and every distance d′ = (1 + ε)j

construct the search mechanism of Lemma 5.1 on T (w, d′)
and core(w, d′) ∪ {w}. Add to the routing tables A(v) the
information ST(v, T (w, d′)) of the search mechanism for ev-
ery v ∈ T (w, d′).

This completes the construction of our labels and routing
tables.

We now turn to analyze the size of the routing tables.
By Chernoff bounds we show the following two lemmas.

Lemma 5.2. With high probability for every node w ∈ V ,
distance d′ and node v ∈ T (w, d′),

|childs(v, w) ∩ core(w, d′)| ≥ d|childs(v, w)|/n1/ke.

Lemma 5.3. With high probability for every node v,
|A(v)| = Õ(n1/k).

Proof: Recall that |B(v)| ≤ O(n1/k logn), namely, there are

at most O(n1/k logn) nodes w such that v ∈ C(w). Consider
such a node w and distance d′ = (1 + ε)j for some 1 ≤ j ≤
logn. Let p(v, w, d′) be the probability that v ∈ core(w, d′),
where p(v, w, d′) is min(1, 4 logn/deg(parent(v, w))) if

deg(parent(v, w)) < 1/n1/k and 4 log n/n1/k otherwise.
Recall that by Lemma 5.1 the size of ST(v, T (w, d′)) is
O(s(v, T) log2 n) if v ∈ core(T) and O(log2 n) otherwise,

where s(v, T) = min{deg(parent(v, T)), n1/k}.
We get that the expected size of ST(v, T (w, d′)) is

O(log2 ns(v, T) · p(v, w, d′) + log2 n) = O(log2 n).

There are O(n1/k log2 n) nodes w such that v ∈ C(w),
for each such w the algorithm considers logn different dis-
tances d′. Hence, the expected size of A(v) is O(n1/k log4 n).
By applying Chernoff bound we can show that with high
probability, the size of A(v) is roughly its expectation, i.e.,

O(n1/k log4 n).

The routing phase: The routing phase is done as follows.
Let k′ be the minimal index such that pk′−1(t) ∈ B(s), or

1 in case either t ∈ B(s) or s ∈ B(t).
Let M = max{∆j(s)/2,∆j(t)/2 | 1 ≤ j ≤ k′ − 2} ∪
{∆0(s),∆0(t)} ∪ {dist(s, pj+1(s)) − dist(t, pj(t)) | 1 ≤ j ≤
k′ − 2}. Recall that by Lemma 4.4, we have dist(s, t) ≥M .

38

We now present the routing process. The source node s
checks if there exists an index j ≤ r such that
dist(pj+1(t), t) − dist(pj−1(t), t) ≥ 2cM (for some integer
r < k and number 1 < c < 2 to be fixed later on). If no such
index exists, s invokes the standard Thorup-Zwick routing
algorithm, otherwise do the following.

Let d′ = (1 + ε)i be the minimal distance such that d′ ≥
2M + (j − 2)cM + (2c− 1)M for some index i .

The node s tries to find L(t, T (pj(s))) using the search
mechanism constructed on T (pj(s), d

′). If the algorithm
finds L(t, T (pj(s))) then the message is routed to t using
L(t, T (pj(s))). Otherwise, the message is bounced back to
s and the standard Thorup-Zwick routing algorithm is in-
voked.

This conclude the routing process.
The following lemma bound the stretch of our routing

scheme.

Lemma 5.4. The maximum stretch obtained by our rout-
ing process is at most max{4k−1−4r−2c+2rc, (1+ ε)(6+
6rc)/(2c − 1) + (4k − 4r + 2rc − 2c + 2)/(2c − 1) + 2(r −
1)/M((2c− 1)), (1 + ε)6(1 + rc) + 2(r − 1)/M}.

We need to consider few cases.
The simplest case is when there is no index j ≤ r such that

dist(pr(t), t)−dist(pr−2(t), t) ≥ 2cM . In this case the algo-
rithm invokes the standard Thorup-Zwick algorithm. Note
that in this case we have dist(t, pr(t)) ≤ M + (r − 1)cM ,
whereas in Thorup-Zwick analysis they have dist(t, pr(t)) ≤
M + 2(r − 1)M . This saves 2(r − 1)(2 − c) in the final
stretch. So the total stretch is 4k − 5 − 2(r − 1)(2 − c) =
4k − 1− 4r − 2c+ 2rc.

Consider now the case where there exists an index j ≤ r
such that dist(pr(t), t) − dist(pr−2(t), t) ≥ 2cM . Let d′ =
(1 + ε)i for some index i be the minimal distance such that
d′ ≥ 2M + (j − 2)cM + (2c− 1)M .

There are two subcases. The first subcase is when t ∈
T (pj(s), d

′) and the second when t /∈ T (pj(s), d
′). Con-

sider the first subcase. In that case the algorithm routes
the message to t in T (pj(s), d

′). The node s tries to find
L(t, T (pj(s))) using the search mechanism constructed on
T (pj(s), d

′). The algorithm traveled to pj(s) and from pj(s)
it tried to find L(t, T (pj(s))) using the search mechanism.
By Lemma C.1 the path traveled by the search mechanism
from pj(s) until finding L(t, T (pj(s))) or deciding that t /∈
T (pj(s)) is 3d′+ 2(j− 1). Note that the overall path in this
case is at most 6d′ + 2(j − 1) ≤ (1 + ε)6(2M + (j − 2)cM +
(2c − 1)M) + 2(j − 1). The stretch in this case is at most
(1 + ε)6(1 + jc) + 2(j − 1)/M .

Consider now the subcase where t /∈ T (pj(s), d
′). Note

that this could happen only if dist(s, t) ≥ (2c − 1)M . The
total path traveled by the algorithm in this case is 6d′+2(j−
1)+(M+(j−1)cM+(k−j)2M) ≤ (1+ε)6(2M+(j−2)cM+
(2c − 1)M) + 2(j − 1) + 2(M + (j − 1)cM + (k − j)2M) ≤
(1 + ε)M(6 + 6jc) +M(4k − 4j + 2jc− 2c+ 2) + 2(j − 1).

We know however that in this case dist(s, t) ≥ (2c−1)M .
Hence the stretch in this case is at most (1+ε)(6+6jc)/(2c−
1) + (4k− 4j+ 2jc− 2c+ 2)/(2c− 1) + 2(j− 1)/M((2c− 1)).

By minimizing over r and c, one can show that the stretch
obtained by Lemma 5.4 is less than 3.68 · k.
Graphs of bounded degree: We note that it is possible
to further decrease the stretch in the case of bounded degree

graphs. In the case of bounded degree graphs, one can con-
struct a more efficient search mechanism while maintaining
the required constraints on the tables size. By using these
better search mechanism we can further decrease the stretch
to roughly 3.58k (details deferred to the full version).

6. CONCLUSIONS
In this paper we provide the first improvement to the work

of Thorup and Zwick[SPAA’01], presenting a compact rout-
ing scheme for weighted general undirected graphs which

uses tables of size Õ
(
n1/k

)
and has stretch c · k for some

absolute constant c < 4, for every k ≥ 4. We note that it
is possible to obtain an improved guarantee for the stretch
by a more careful analysis of our routing scheme. However,
it seems unlikely that our scheme might allow the stretch to
go as low as 2k since the algorithm must ”detour“ in order to
find the tŠs label in the tree T (pi(s)) for some i. The main
question that still remains unresolved is to prove or disprove
the existence of a compact routing scheme that utilizes ta-

bles of size Õ
(
n1/k

)
and has stretch of 2k without the use

of a handshake.

Acknowledgement: I’m extremely grateful to Ittai Abra-
ham for very helpful discussions.

7. REFERENCES
[1] I. Abraham, C. Gavoille, and D. Malkhi. Routing with

improved communication-space trade-off. In Proc. 18th
Annual Conference on Distributed Computing (DISC),
305–319, 2004.

[2] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and
M. Thorup. Compact name-independent routing with
minimum stretch. In Proc. 16th Annual ACM Symposium

on Parallel Algorithms and Architecture (SPAA), 20Ű-24,
2004.

[3] M. Arias, L. Cowen, K. Laing, R. Rajaraman, and O. Taka,
Compact routing with name independence. In Proc. 15th
Annual ACM Symposium on Parallel Algorithms and

Architectures (SPAA), 184Ű-192, 2003.

[4] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg.
Compact distributed data structures for adaptive routing.
In Proc. 21st ACM Symp. on Theory of Computing

(STOC), 479Ű-489, 1989.
[5] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg.

Improved routing strategies with succinct tables. In J.
Algorithms, 11(3):307–341, 1990.

[6] B. Awerbuch and D. Peleg. Sparse partitions. In Proc. 31st
IEEE Symp. on Foundations of Computer Science
(FOCS), 503–513, 1990.

[7] L.J. Cowen. Compact routing with minimum stretch. J.
Alg., 38:170–183, 2001.

[8] T. Eilam, C. Gavoille, and D. Peleg. Compact routing
schemes with low stretch factor. In J. Algorithms,
46:97–114, 2003.

[9] P. Erdős. Extremal problems in graph theory. In Theory of

graphs and its applications, pages 29Ű-36, 1964.
[10] P. Fraigniaud and C. Gavoille. Memory requirement for

universal routing schemes. In Proc. 14th ACM Symp. on
Principles of Distributed Computing (PODC), 223–230,
1995.

[11] P. Fraigniaud and C. Gavoille. Routing in Trees. In 28th
Int’l Coll. on Automata, Languages and Programming
(ICALP), 757–772, 2001.

[12] C. Gavoille and M. Gengler. Space-efficiency for routing
schemes of stretch factor three. In J. Parallel Distrib.
Comput., 61:679–687, 2001.

39

[13] C. Gavoille and D. Peleg. Compact and localized
distributed data structures. In Distributed Computing,
16:111–120, 2003.

[14] C. Gavoille and C. Sommer. Sparse spanners vs. compact
routing. In Proc. 23th ACM Symp. on Parallel Algorithms
and Architectures (SPAA), 225–234, 2011.

[15] D. Peleg. Distributed computing: a locality-sensitive
approach. In SIAM, 2000.

[16] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. In J. ACM, 36(3):510–530,
1989.

[17] M. Thorup and U. Zwick. Compact routing schemes. In
Proc. 13th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), 1–10, 2001.

[18] M. Thorup and U. Zwick. Approximate distance oracles. In
J. ACM, 52, 1–24, 2005.

APPENDIX
A. SOME PROOFS

Proof of Lemma 3.1:
The proof of Lemma 3.1 is strongly based on Lemma 3.2

and Theorem 3.1 from [17]. We state the lemmas here for
completeness.

Let BA(v) = {w ∈ V | dist(w, v) < dist(A, v)} and
CA(w) = {v ∈ V | dist(w, v) < dist(A, v)}.

Lemma A.1. Let W ⊆ V , 1 ≤ s ≤ n and let A′ ←
sample(W, s), namely A′ is obtained by sampling every node
in W independently at random with probability s/|W |, or
A′ = W if |W | ≤ s. Then, for every v ∈ V , we have
E[BA′(v) ∩W] ≤ |W |/s.

Theorem A.2. The expected size of the set A returned by
algorithm center is at most 2s logn. In addition, for every
w ∈ A′, CA(w) ≤ 4n/s.

By Theorem A.2, we get that |Ai| = O(n1−i/k) for 1 ≤
i ≤ k − 1.

Consider a node w ∈ Ai \Ai+1. By Theorem A.2, C(w) =

CAi+1(w) ≤ 4n/(n1−i+1/k/logn) = 4n/(n1−(i+1)/k/logn) =

O(logn · n(i+1)/k).

We are left to show that |B(v)| = O(n1/k logn) for every
v ∈ V .

Let Â be the set A after the first iteration of procedure
center when invoked on the input (G,Ai−1, n

1−i/k/logn).

Note that Â ⊆ Ai. In addition, notice that for every two
sets S1 and S2 such that S1 ⊆ S2: BS2(v) ⊆ BS1(v). In
particular, BAi(v) ⊆ BÂ(v). We thus have by Lemma A.1,
E[B(v) ∩ Ai−1] = E[BAi(v) ∩ Ai−1] ≤ E[BÂ(v) ∩ Ai−1] ≤
|Ai−1|/(n1−i/k/logn) = O(n1/k logn).

B. WEIGHTED GRAPHS
Let us explain the modifications needed to handle weighted

graphs. The only place in the proof where we use the fact
that the graph is unweighted is in the construction of the
search mechanism. Recall that in our search mechanism,
the set of intervals of the children of some node v ∈ V (T)
is stored in one of the children helper(v) of v (in the case

where the degree is smaller than n1/k). Notice that the
weight of the edge (v,helper(v)) may be large and thus
may increase our stretch by a lot. The high level idea is to

partition the children of every node v into logD sets such
that the edges leading from v to the nodes in the same set
is roughly of the same weight (up to 1 + ε factor), where
D is the diameter of the graph. Each such set is handled
separately, where the keys assign to each set are consecu-
tive, namely belong to one continuous interval. The node v
stores the intervals of these logD sets and thus in the search
process, the node v knows in each interval out of the logD
intervals to search for the key. This increases the length of
the path obtained by the search algorithm by at most a fac-
tor of 1 + ε and the size of the routing tables by at most a
factor of logD.

C. THE SEARCH MECHANISM
In this section we prove Lemma 5.1.
Our search mechanism is operated on given tree T , and

set of core nodes core(T) ⊆ V (T). Every node v in V (T)
has a unique key key(v) in [1..n]. The set core(T) satis-
fies the following property. For every v ∈ T (v), |core(T) ∩
childs(v, T)| ≥ lognd|childs(v, T)|/n1/ke. In addition, the
root r(T) of the tree belongs to core(T).

The goal is to design a search mechanism such that later
in the routing phase it would be possible to find the label
L(v, T) given key(v) from any node in T by traveling on
a “short” path. Our search scheme stores at every node
v ∈ core(T) at most O(s(v, T) logn) data where s(v, T) =

min{deg(parent(v, T)), n1/k} and at most O(logn) data at
the rest of the nodes.

Let ST(v, T) for some node v ∈ V (T) be the data stored
at the node v by our search mechanism. We then show that
using the data stored at the nodes of the tree, it is possible
to find the label of a given key (or decide that this key is not
in T (v)) from the root r(T) of T in a distributed manner on
path of length at most 3radius(T) + 2(ind(T) − 1), where

ind(T) is the minimal index such that |V (T)| ≤ nind(T)/k.
Let us now describe our search algorithm. LetK = {key(v) |

v ∈ V (T)}. First the algorithm distributes the keys K such
that every node stores the matching labels of O(1) keys as
follows. For a node v ∈ T , let T [v] be the subtree of v in T .

The algorithm assigns each node v an interval I(v) =
[n1, n2], the subtree T [v] contains the labels of the keys in K
in the range [n1, n2]. The root of the tree r(T) corresponds
to the interval [1..n].

Order the children z of r(T) by |T [z]| in non-increasing
order. Let z1, ..., z` be the children of r(T) by that order.
The algorithm stores at r(T) the first key and its matching
label (the key with the smallest ID). The algorithm then
assigns to z1 the next |T [z1]| keys and to z2 the next |T [z2]|
keys and so on. Let n1

i be the smallest key assigned to
zi and n2

i be the largest key assigned to zi, the interval
of zi is [n1

i ,n2
i]. The algorithm continues with this process

recursively until all keys are assigned.
For a node v ∈ V (T), let I(v) be its corresponding inter-

val. Consider a consecutive set of children S = {zj1 ...zj2}.
Let I(zj1) = [nl

1, n
h
1] and I(zj2) = [nl

2, n
h
2]. Let I[S] =

[nl
1, n

h
2]. Note that all keys in [nl

1, n
h
2] are stored at one of

nodes in S.
We now enhance the nodes with additional information

that will enable them to find the right label of a given key
later in the routing process with the desired stretch.

Ideally we would like to store in each node the intervals of
its children. If we could that, later in the routing process ev-

40

ery node in the tree knows exactly to which child to forward
the message in order to find the desired key. This way the
key could be found from the root r(T) by traveling over a
path of at most radius(T) length. However this could result
in storing too much information for some nodes. Therefore,
in order to store at the nodes the desired amount of infor-
mation, we use the children of the nodes to store some of
this information.

Consider a node v ∈ V (T). Let w1, ..., w` be the set of
children of v. Let core(v) = core(T) ∩ childs(v, T). Let

Î(v) be the set of intervals of v’s children together with the
port leading from v to the child containing the relevant inter-
val. If |childs(v, T)| ≤ n1/k then pick one node helper(v)

in core(v) and store Î(v) at helper(v). The node v stores
the port leading to helper(v).

If |childs(v, T)| > n1/k then we cannot store Î(v) at a
single node without violating the requirement that every
node stores Õ(n1/k) data.

Hence in this case we use techniques from [1]. It was

shown in [1] that it is possible to store O(n1/k) data at

d|childs(v, T)|/n1/ke children of v (in our case in core(T))
such that it is possible to find the right child z of v such
that key ∈ I(v) while traveling to at most j children of v

and in addition, |T [z]| ≤ |T [v]|/n(j−1)/k. The general idea

is to partition the children wj of v into n1/k sets and pick
n1/k children of v in core(T) and assign each such child with
one of the sets. Each child continue partitioning its sets and
pick other helper children of v that would be responsible for
these sets, this process continue until the sets are of size at
most n1/k and then the node just store the relevant intervals
and matching children of v. This process give preference to
nodes with larger subtrees. This increases the total length
traveled by the search mechanism by at most (ind(T)− 1),
since each time the algorithm traveled to j children (instead

of 1 in the case where deg(v, T) ≤ n1/k) of v in order to find
the child z such that key ∈ I(z), the size of subtree of z

decreases by at least n(j−1)/k. Thus, our searching process
might traveled to at most ind(T) − 1 extra children and
thus the total path traveled by the algorithm increases by
2(ind(T)− 1) (the factor of 2 comes from the fact that the
algorithm needs to travel to the child and back). For more
details about this process we deferred the reader to [1] or to
the full version of this paper.

This completes the construction of the search tree. Let us
now turn to the searching phase. In the searching phase, the
root r(T) wants to find the label of some key or to discover
that this key does not exist in K. The algorithm checks if
the label of the key is stored in r(T). If not, the algorithm
seek the child w of r(T) such that key ∈ I(w). The node
r(T) checks if it contains a reference to interval that contain
key, if so travel to the relevant child.

Otherwise (in the case where deg(r(T), T) > n1/k), the
algorithm finds the child z of r(T) such that key ∈ I(z)
using the method presented in [1]. This process continues
recursively until finding the node u that contain L(key, T)
or decides that key /∈ V (T).

Lemma C.1. The path traversed by the algorithm until
finding L(t, T) or deciding that t /∈ V (T) is 3radius(T) +
2(ind(T)− 1).

Proof: Consider first the case where the degree of all nodes
in T is O(n1/k). In that case notice that in each step the
algorithm travel to the to one child before traveling to the
child z such that key ∈ I(z). Therefore the path traversed
by the algorithm is at most 3radius(T1) (for every edge
e = (u, v) the algorithm traveled to a child z of u, then
traveled back to u and continues to v, hence for each edge
the algorithm traveled a path of 3). In the case where we
have larger degrees recall that we use the method of [1] and
as mentioned above the total increase of the length traveled
by the search algorithm is 2(ind(T)− 1).

41

