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RAPID MULTIPLICATION OF RECTANGULAR MATRICES*

D. COPPERSMITHS"

Abstract. The number of essential multiplications required to multiply matrices of size N N and
N N’172 is bounded by CN2 log N.

Key words, matrix multiplication, tensor rank, algebraic complexity

Introduction. Let Rank(K, M, N) denote the number of essential multiplications
required to multiply a KM matrix by an M N matrix, i.e., the rank of the
3-dimensional tensor defining this matrix multiplication. We show here, by two
different routes, the existence of a positive number ce such that Rank (N, N, N) -<
CN2 log2 N.

THEOREM. There is a positive constant a 2 log 2/5 log 5 0.17227 such that

Rank ((N, N, N)) O(N2(log N)2).
Remark. This agrees well with the trivial lower bound

Rank ((N, N, N))->N2.

Proof. The proof may be done in two ways. Each relies on existing basic construc-
tions (each due to Sch/Snhage), and minor modifications to existing techniques for
combining basic constructions (i.e., the exponential direct sum theorem, partial matrix
multiplication and approximate algorithms). The modifications involve (1) selecting a
binomial coefficient to maximize an "area" rather than a "volume" (which allows the
agreement between upper and lower bounds) and (2) doing two arguments at once
(e.g., the exponential direct sum theorem and approximate algorithms) which serves
only to improve the "error bound" from N to C(log N)2.

Proof version 1 (partial matrix multiplication). Begin with the following construc-
tion, due to Sch6nhage [3]:

(all + x2a12)(b21 / x2b11)(c11) + (all + x2a13)(b31)(Cll xc21)

/(all / x2aE2)(bEl xb12)(c2)

+ (al + x2a23)(b31 + xb2)(Cl2 + xc21)-(al)(b21 + b31)(Cll + c2)

xE(allbc / allb12CEl / alEbElC11 / a13b31Cll / aEEb21c12 / a23b31c12)

+x3p(a,b,c,x).

This construction performs an approximate evaluation of the partial matrix
product

(all a12 a13 b21 0 Cll c12
trace

0 a22 a23/
b31 0,

C21 C22/

with five multiplications. Notice that five is also the trivial lower bound for this matrix
product, obtained by counting independent elements of the matrix A. It is this equality

* Received by the editors July 17, 1980, and in final form October 16, 1981.
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468 D. COPPERSMITH

of lower and upper bounds which will allow the tight agreement between lower and
upper bounds in the theorem, namely N2 -< Rank (N, N, N) <- CN2 log2 N.

The matrix product D AB can be thought of as the sum, as j goes through 1
to 3, of the outer products a,,jbj.,; then the indicated trace is the sum, over and k,
of di,kCk, i. Among these three indicated outer products, we have two of dimension (2,
1) and one of dimension (1, 2).

Now iterate (tensorize) this construction M times. The formation of the product
of the new, large matrices A and B, now involves 3M outer products, of which (for
each m between 0 and M) we have (M)2" outer products of dimension (2",

Fix values of M and m. Then, mimicking Sch6nhage’s proof of partial matrix
multiplication [3], we may create a constant matrix A’ of dimension (2", 2M) and a
matrix B’ of dimension (2 2M-"), such that each maximal minor of A’ or B’ has
nonvanishing determinant. (Here we require that our underlying field is large enough;
the rationals will do.) Suppose we want to multiply matrices A" of dimension (2",
(u)2") and B" of dimension (()2", 2M-m). We start with a 1-1 mapping of the
columns of A" onto those columns of A" with exactly 2 nonzero entries. For each
such column of A, compute the inverse of the (2", 2") minor of A’ whose rows
correspond to the nonzero entries in this column of A. Multiply this inverse by the
appropriate column of A". Fill in the rest of A with zeros. Then we have A"= A’A.
Similarly create B such that BB’= B". These matrices are created without essential
multiplications, since A’ and B’ are constant matrices of scalars, and scalar multiplica-
tions don’t count in the rank of a matrix multiplication problem. Then finally, A"B"
(A’A)(BB’)-A’(AB)B’. The multiplication AB can be done in 5M multiplications
in the ring of polynomials in x, and the left multiplication by A’ and the right
multiplication by B’ are again scalar multiplications which don’t enter into the calcula-
tion of rank.

Thus we have, so far, that

Border Rank ((2", (raM)2 ", 2M-m))-- 5M,

where Border Rank is the number of essential x-polynomial multiplications required
to perform a given matrix multiplication.

The new wrinkle in our proof lies in our choice of m. Rather than choose m to
maximize the "volume" of the left-hand side (the product of all three dimensions),
which would enable us to minimize the exponent/3 for symmetric matrix multiplication
(rank (N, N, N) O(Nt3)), we instead select m to maximize the "area" of the projection
onto the first two dimensions. Namely, we choose m (4M/5) as that value of m
which maximizes the product of (2") and ((raM)2"). This product is just ()4", which
is a term in the binomial expansion of (4 + 1)M; thus it is maximized when m/M
4/(4 + 1), and for that value of m we have (raM)4 5MM-1/2K for some constant K,
by Stirling’s formula. (Naively, the largest term in the binomial expansion of (4 + 1)M

must be at least (4 + 1)t/(M + 1), and Stirling’s formula just gives a tighter bound.)
This gives us that

Border Rank ((24M/5, (4M/5)24t/M5

or

Border Rank ((24M/5, K5M2-4M/SM-1/2, 2t/5)) -< 5M.
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RAPID MATRIX MULTIPLICATION 469

Now do the same arguments, with first and second dimensions reversed, to get

Border Rank ((K5M2-4M/5M-1/2, 24M/5, 2M/5))_--< 5M.
Multiply (tensorize) to get

Border Rank ((K5MM-1/2, K5MM-/2, 22M/5)) _--< 5 TM.
Letting N K5MM-/2 we get

Border Rank ((N, N, N)) _-< K’NE(log N),

where a 2 log 2/5 log 5 0.17227, and K’ is some constant.
As usual, each multiplication in the ring of polynomials in x can be done as a

convolution, via Fourier transforms, and since the degree of the product polynomials
does not exceed 8M (each basic construction entails polynomials of degree 4, and
the degrees are additive in the 2M iterations, yielding a total overall degree of 8M),
each such polynomial multiplication involves only 8M + 1 essential multiplications.
Combining these results, we have that

Rank ((N, N, N)) _<-K"N2(log N)2,

as desired.
Remarks. If we were more careful, we would probably get a bound of

K,,N2(log N)3/2.
Sch6nhage’s construction involves two parameters k and n, each of which must

be an integer greater than 1. The present theorem goes through exactly for each
choice of k and n, and the value of c so obtained is

2 log ((k- 1)(n 1)+ 1)
kn + 1) log (kn + 1)

The present theorem selects k n 2 to maximize c at 2 log 2/5 log 5.
The technique of partial matrix multiplication is due to Sch6nhage [3], and is

valid in more generality than presented here. Here we are specializing his results
(particularly by choice of m) to make possible the agreement between upper and
lower bounds in our theorem.

Proof version 2 (via exponential direct sum theorem). Begin with Sch6nhage’s
construction which performs two completely disjoint matrix multiplications, of sizes
(k, n, 1) and (1, 1, (k 1)(n 1)), in kn + 1 multiplications over the ring of polynomials
in x. The construction is similar to that given above for partial matrix multiplication,
and will not be repeated. His specialization to k n 4 gives the exponent 2.54...
for symmetric matrix multiplication.

Note again that kn + 1 is the best possible result for this case, since the number
of independent variables in the first two dimensions is kn for the first matrix and 1
for the second, thus kn + 1 in all. Again this is the fact which will allow the close
agreement between upper and lower bounds in the theorem.

Represent this construction as

(,) Border Rank ((k, n, 1) +(1, 1, (k- 1)(n 1)))= kn + 1.

Again we fix values of k and n which will maximize the eventual value of c’,
namely k n 3, and go through the proof for these fixed values, bearing in mind
that the proof works for the general values as well.
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470 D. COPPERSMITH

Then (.) becomes

or in other words,

Border Rank ((3, 3, 1)+(1, 1, 4))= 10,

((3, 3, 1)+(1, 1, 4)) -- 10(1, 1, 1),

which can be tensorized by (a, b, c) to obtain

((3a, 3b, c)+(a, b, 4c)) 10(a, b, c).

Here means "homomorphic image by approximating algorithm", and summation
of several matrices implies direct sum (the matrices are completely disjoint).

Suppose we are allowed to do M arbitrary multiplications in the ring of poly-
nomials in x. That is, we have at our disposal M(1, 1, 1). We wish to apply (**) as
often as possible; thus we divide M into groups of 10, with possibly some left over,
and from M(1, 1, 1) we get at least (M/10-1)(3, 3, 1)+(M/10-1)(1, 1, 4). That is,
there are at least (M/IO-1) disjoint groups of 10 among the M multiplications we
are allowed, and each group will yield a (3, 3, 1) and a (1, 1, 4), all disjoint. Apply
(**) to the (M/10-1)(3,3,1) to get at least ((M/10-1)/10-1)(9,9,1)+
((M/10-1)10-1)(3,3,4). Similarly applying (**) to (M/10-1)(1,1, 4) we get
((M/10-1)/10-1)(3, 3, 4)+((M/10-1)/10-1)(1, 1, 16). Combining, and doing
the implied divisions, we get at least (M/100-1.1)(9, 9, 1) + (2M/100- 2.2)(3, 3, 4)+
(M/100-1.1)(1, 1, 16). Continue in like fashion. After k iterations we have at least

---2.5)(3i, 3j, -i),

as can be proved by induction.
Again nothing is new; this is just a proof of the exponential direct sum theorem

[3]. But now we choose our/" to maximize, again, the "area" of the resulting expression,
i.e., its projection to the first two dimensions, rather than its volume. Indeed, choosing
f to maximize the product of the binomial coefficient with the first two dimensions,
that is, roughly,

we get the value of/" 9k/10. Fixing k we may choose M so that the factor (()M/IOk)
is just greater than 2.5; this will insure us that we will have at least one piece of size
(3, 3, 4k-). Thus we choose:

9k 2.5(10k)
j=--, M= 1+ ()

With these choices, we get that

Border Rank ((3, 3, 4k-))<-M,
or, in terms of k,

Border Rank ((39k/l, 39k/l, 4k/1))_--< 2.5(o)D
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RAPID MATRIX MULTIPLICATION 471

Again we use Stirling’s approximation to get that

k ) C’ k/lO 1/210k9-9 k-
9k/10

Letting N 39k/l and substituting, we get

Border Rank ((N, N, N"’)) < C"NE(log N)1/2.

Here a’ is (2 log 4)/(9 log 9)= .1402, or in general, (2 log ((k 1)(n 1)))/
(kn log (kn )).

Again, we may replace Border Rank by Rank (i.e., eliminate the x-polynomials)
at the price of a factor of N. (The error bound is not as good as before, since we
have no nice bound on the degrees of the x-polynomials.) Thus we get

Rank ((N, N, N’))= O(N2+e).
Conclusion. We present, by two different routes, means by which matrix multipli-

cation problems of size (N, N, N") can be done with N2+e operations, for numbers a

strictly bounded away from 0. We do not see directly how this can be used to accelerate
the symmetric matrix multiplication problem, but we present the result as interesting
in its own right, and also with the hope that progress may be made in this new and
different direction towards the solution of the symmetric matrix multiplication
problem.

Perhaps one can find a way of arguing that if this theorem holds for some ce
between 0 and 1, then it must hold for a larger a, and that the sequence of a’s so
obtained would converge to 1. But I see no path which such a construction would take.

Another result which would be of interest, and which we cannot seem to obtain,
would be the existence of a number a > 1 such,that Rank ((N, N, N)) O(N+"+).
We can almost get this result, namely, by similar techniques, for each/3 > 0 there is
an a > 1 such that

Rank ((N, N, N)) O(N’+l+t (log N)3/2).
A literature search shows that in 1976 Brockett and Dobkin obtained the related

result

Rank ((N, N, log N)) N2 + 0 (N2).
The present result is incomparable, in the sense that we do a larger problem and
require a larger number of multiplications.

Note. More recent results by Coppersmith and Winograd [4] (this issue, pp.
472-492), combined with these techniques, all yield a better estimate of a"

Rank ((N, N, N)) O(N2+e) for ce 0.197.

Acknowledgment. The present paper was inspired by a conversation with Victor
Pan.
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