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Abstract lem for weighted directed graphs, without negative cycles,
is O(mn +n?logn), wheren andm are the number of ver-
LetG = (V, E) be an unweighted undirected graph an tices and edges in the graph (Johnson [22], see also [16]).
vertices. A simple argument shows that computing all dis-  The special case of the all-pairs shortest paths prob-
tances inG' with an additive one-sided error of at most 1is |em in which the input graph is unweighted is closely re-
as hard as Boolean matrix multiplication. Building on re- |ated to matrix multiplication. It is fairly easy to see that
cent work of Aingworth, Chekuri and Motwani, we describe solving the APSP problem exactly, even on unweighted
anO(min{n®?m!/? n"/3}) time algorithmAPASP, for  graphs, is at least as hard as Boolean matrix multipli-
computing all distances i&' with an additive one-sided er-  cation. Recent works, by Alon, Galil and Margalit [3],
ror of at most 2. The algorithrAPASP, is simple, easy  Alon, Galil, Margalit and Naor [4], Galil and Margalit
to implement, and faster than the fastest known matrix mul-[20],[21] and Seidel [25] have shown that if matrix multipli-

tiplication algorithm. Furthermore, for every evén> 2, cation can be performed (M (n)) time, then the APSP
we describe ar@(min{n2_k%mk%,n2+3’f——2}) time al- problem for unweighted directed graphs can be solved in
gorithm APASP,, for computing all distances i with O(+/n®M (n)) time and the APSP problem for unweighted
an additive one-sided error of at mast undirected graphs can be solved({M (n)) time (O(f)

We also give aid)(n?) time algorithmAPASP, for pro-  meang)(f polylogn)). The currently best upper bound on
ducing stretch 3 estimated distances in an unweighted andmatrix multiplication isM (n) = O(n*®7®) (Coppersmith
undirected graph om vertices. No constant stretch factor and Winograd [15]).

was previously achieved ifi(n?) time. While the above results are extremely interesting from
We say that a weighted grapi = (V,E') k-emulates the theoretical p_oint ofyie_w, t_hey are qf little use in practice
an unweighted graple = (V, E) if for everyu,v € V as the_fast matrl_x multlpllgatlon algorithms are better than
we havedsg (u,v) < 6p(u,v) < og(u,v) + k. We show the naiveO(n?3) time algorithm only for very large values

that every unweighted graph anvertices has a 2-emulator of n. There is interest therefore in obtaining fast algorithms
with O(n3/2) edges and a 4-emulator with(n*/3) edges. for the APSP problem that dmtuse fast matrix multiplica-

These results are asymptotically tight. tion. The currently bestombinatorialalgorithm for the un-
weighted APSP problem is & (n?/ logn) time algorithm
obtained by Feder and Motwani [18] (see also [10]). This
offers only a marginal improvement over the na®én?)
time algorithm.

As an algorithm for the APSP problem will yield an al-
gorithm with a similar time bound for Boolean matrix mul-
tiplication, there is little hope of developing a combinatorial
O(n®~¢) time algorithm for the APSP problem. The only
1 Introduction hope for obtaining a practical algorithm whose running time
is O(n®~¢) is by relaxing our requirements. We should be
looking therefore at the problem approximatinglistances
and shortest paths.

Awerbuchet al. [9] and Cohen [12] considered the prob-
lem of finding stretch all-pairs paths, wherkis some fixed
* E-mail addressesiddorit, hshay, zwick}emath.tau.ac.il  constant and a path is of strettfif its length is at most

Finally, we show that anweightedundirected graph om
vertices has a 3-spanner with(n?/2) edges and that such
a 3-spanner can be built i®(mn'/?) time. We also de-
scribe anO(n(m?/? + n)) time algorithm for estimating
all distances in aveightedundirected graph om vertices
with a stretch factor of at most 3.

The all-pairs shortest paths (APSP) problem is one of the
most fundamental algorithmic graph problems. The com-
plexity of the fastest known algorithm for solving the prob-




times the distance between its endpoints. Cohen [12], im-respectively. We are not able to obtain sparser emula-

proving the results of Awerbucét al. [9], obtains, for ex-
ample, anD(n°/2) time algorithm for finding stretch + ¢

tors. We are able, however, to construct 6-emulators of size
O(n*?)in O(n?) time. The bounds on the number of edges

paths and distances in weighted undirected graphs, for anyn 2-emulators and 4-emulators are asymptotically tight.
e > 0 (all weights from now on are assumed to be positive). There are graphs on vertices that cannot be 2-emulated
She also exhibits a tradeoff between the running time of theby graphs withn?/2-¢(1) edges, and there are graphson

algorithm and the obtained stretch factor. For any eyen

vertices that cannot be 4-emulated by graphs withi—(1)

stretcht + e paths between all pairs of vertices can be found edges.

in O(n>t2/t) time. The works of Awerbuckt al. [9] and

We are also able to obtain some results fegighted

Cohen [12] are based on the construction of sparse spannergndirected graphs. We show that any weighted graph on

(Awerbuch [8], Peleg and Schaffer [24]). Aspanner of a
graphG = (V, E) is a subgrapl&z’ = (V, E') of G such
that for everyu,v € V we havedg (u,v) < t-dg(u,v),
wheredg (u, v) is the distance between the vertieeandv
in the (possibly weighted) grapH.

vertices has a 3-spanner with(n/2) edges and that such

a 3-spanner can be found (mn'/?) time. Finally, we
describe anD(n(m?/® + n)) time algorithm for finding
stretch 3 distances inveightedundirected graph on ver-
tices. Extended and improved results for weighted graphs,

A different approach all together was employed recently including anO(n?) time algorithm for finding stretch 3
by Aingworth, Chekuri and Motwani [2] (see also [1]). distances and a@(n*/?m!/2) time algorithm for finding

They describe a simple and elegai(rn®/?) time algo-

rithm for finding all distances in unweighted and undirected

graphs with aradditiveone-sided error of at most 2. They

also make the very important observation that the small dis-

stretch 2 distances appear in [14].

2 Preliminaries

tances, and not the long distances, are the hardest to approx- The work of Aingworthet al. [2] is based on the follow-

imate. Based on the ideas of Aingwoetal. [2], Orlin (un-
published) obtained af (n7/?) time algorithm for finding
all distances with an additive one-sided error of at most 4.
In this work we improve and extend the result
of Aingworth et al. [2], and of Orlin, and ob-
tain an O(min{n?/?m'/2 n7/3}) time algorithm, called
APASP,, for finding all distances in unweighted and

ing simple observation: there is a small set of vertices that
dominates all the high degree vertices of a graph. A set of
verticesD is said todominatea setU if every vertex inU

has a neighbour i®. This observation is also central to our
work.

Lemma 2.1 ([2], see also [5], pp. 6-7)etG = (V, E) be

undirected graphs with an additive one-sided error of at @n undirected graph with vertices andn edges. Lel <

most 2. The algorithmrAPASP, is just the first in a se-
guence of algorithmaAPASP,, for evenk > 2, that

s < n. A setD of sizeO((nlogn)/s) that dominates all
the vertices of degree at leastin the graph can be found

exhibits a trade-off between running time and accuracy. deterministically inO(m + ns) time.

For any event > 2, the algorithmAPASP;, runs in
O(min{n?>~ Fzm¥= n>* 72 }) time and has a one-sided
error of at mosk. The algorithmAPASP,, for example,
runs inO(n®/3m!/3 n'1/5) time. All algorithms described

Note that as < n, the running time of this determinis-
tic algorithm is always at mo$®(n?). Picking each vertex
of V independently at random with probabilifylogn)/s,
for some large enough > 0, will yield a desired domi-

in this paper can be easily adapted to find almost shortestating set of size((nlogn)/s) with high probability. A
paths whose lengths are equal to the estimated distances. geterministic algorithm can be obtained using the simple

In addition, we show that for ang > 2, the stretch
of the estimates produced by the algoritthPASP;, is
at most 3. Ask increases, the running time of the algo-
rithm APASP; decreases. Fat = O(logn), the run-
ning time become®)(n?). We let APASP,, be the al-
gorithm APASP,; with k& = 2|logn|. The algorithm

greedy approximation algorithm for the set cover problem.
See [2] for details.

In the subsequent sections, we use an algorithm, called
dominate(G, s), that receives an undirected gragh=
(V, E) and a degree threshold The algorithm outputs a
pair (D, E*), whereD is a set of siz&)((nlogn)/s) that

APASP,, produces stretch 3 distances in unweighted, dominates the set of vertices of degree at leastG. The

undirected graphs i) (n?) time. As mentioned, no fixed
stretch factor was previously achievedn?) time.
We next introduce the notion aémulators Emula-

setE* C Eis a set of edges df of sizeO(n) such that for
every vertexu € V with degree at least, there is an edge
(u,u') € E* such thats' € D. Once a dominating se?

tors may be seen as the additive counterparts of spannerss obtained, the sdi* is easily obtained by adding t6* a

We show that any graph on vertices has a 2-emulator
with O(n*/?) edges, and a 4-emulator with(n*/?) edges.
These can be constructed@(n>/?) and inO(n/?) time,

single edge for each vertex of degree at least
Another ingredient used by our algorithm is the classical
Dijkstra’s algorithm.



Lemma 2.2 (Dijkstra’s algorithm) LetG = (V, E) be a
weighted directed graph with vertices andn edges. Let

s € V. Dijkstra’s algorithm runs inO(m + nlogn) time
and finds distances, and a tree of shortest paths, frtorall
the vertices o¥. Furthermore, if the weights of the edges
are integers in the rang¢l,2,...,n} then the algorithm
can be implemented to run ®(m + n) time.

Dijkstra’s algorithm appeared originally in [17], though
the running time of the version described ther@ig:?).
For a more modern description of Dijkstra’s algorithm see
[16]. The running time ofD(m + nlogn) is obtained by
usingFibonacci heap$§19]. The observation that Dijkstra’s
algorithm can be implemented to runiX{m+n) time if the
weights are in the rangl, 2, ..., n} is a simple exercise.

original graph then its weight is 1, otherwise, its weight is
greater than 1. A call tdijkstra((V, F), 5, u) updates the
row and the column belonging toin the matrix with the
distances found during this run, if they are smaller than the
previous estimates. Note that the matiéXu, v)}., , serves
as both input and output efijkstra.

If the graph(V, F') is a subgraph of the input graph
G = (V, E), then a call tadijkstra((V, F), §,u) amounts
to running a BFS oAV, F') fromw. When we want to stress
this fact, we denote such a call bfs((V, F), 8, u).

It should be clear from the above discussion that at any
time during the run of our algorithms and for anyv € V
we haved(u,v) < &(u,v), whered(u,v) is the distance
between; andv in the input grapit.

In all the algorithms described in this paper, exceptthose3  aAdditive error 2

of Section 7, we start with amnweightedundirected graph
G = (V, E). We then build many auxiliarweightedgraphs
and run Dijkstra’s algorithm on each one of them. The
weights of the edges in these auxiliary graphs will always
be integers in the rangd, 2, ..., n}, so we can in fact use
the simpleO(m + n) time implementation of Dijkstra’s al-
gorithm.

By running Dijkstra’s algorithm from every vertex of
a graphG = (V, E), we get anO(mn + n?logn) time
algorithm for solving the all pairs shortest paths problem

(APSP). Our goal in this paper is to reduce the running time

of APSP algorithms to as close t@(n?) as possible. To

achieve this goal we are willing to settle for almost shortest

paths instead of genuine shortest paths.
Our algorithms also involve many runs of Dijkstra’s al-

Aingworth et al. [2] obtained anO(n5/2) algorithm
for approximating all distances in an undirected and un-
weighted graph with a one-sided additive error of 2. We
describe two faster algorithms that have the same accuracy.
The first algorithm,apasp,, runs inO(n?/?m'/?) time.
The second algorithnapasp,, runs inO(n"/?). The first
algorithm is faster if the input graph is sufficiently sparse,
namely, ifm < n®/3. By combining these two algorithms
we get the algorithnrAPASP, mentioned in the abstract.

A description of the algorithmapasp, is given in Fig-
ure 1. Throughout the paper, we tiig(v) denote the de-
gree of a vertew. The algorithm is extremely simple. It
starts by partitioning the vertices of the gra@hinto two
classes}; andV, = V \ Vi. The classl; includes the

gorithm. Most of these runs, however, are performed on high degree vertices, i.e., the vertices of degree at lgast

graphs with substantially less edges than the original in-

put graph. A typical step in our algorithms is composed
of choosing a vertex. € V, choosing a set of edgds,
and then running Dijkstra’s algorithm, from) on the graph

H = (V, F). The set of edges’ is notnecessarily a subset
of the edge seF of the input graph. Furthermore, the gét
variesfrom step to step. The weight of an edgev) € F

(m/n)'/?. The clasd/ includes all the low degree vertices,
i.e., the vertices of degree less than= (m/n)"/2. A sim-

ilar partition is used by Aingwortlet al. [2] and also by
Alon, Yuster and Zwick [6]. The edge sé&k is composed

of all the edges that touch a low degree vertex and therefore
|Ey| = O(n{m/n)'/?) = O((nm)"'/?). The algorithm pro-

ceeds by finding a séd; of sizeO(n?/?/m'/?) that dom-

is taken to be the currently best upper bound on the distancgpates the vertices df; and an edge séi* C E of size

betweernu andv in the input grapi. Bounds obtained in

O(n) such that for every, € V; there existe € D; such

arun of Dijkstra’s algorithm are used, therefore, in some of that (4, v) € E*. Finally, the main part of the algorithm is

the subsequent runs.
In our algorithms, we usesymmetrior x n matrix, de-

composed of two steps. In the first, a BFS is pefromed on
the graphG from every vertex, € D, . Inthe second and fi-

noted{d(u, v) }u,v, to hold the currently best upper bounds nal step, Dijkstra’s algorithm is run, from evesye V' \ D,
on distances between all pairs of vertices in the input graphgn the grapltis (u) = (V, E; U E* U ({u}xDy)). Itisim-

G = (V,E). Initially §(u,v) = 1, if (u,v) € E, and
5(u,v) = +oo otherwise. Bydijkstra((V, F),d,u) we
denote an invocation of Dijkstra’s algorithm, from the ver-
tex u, on the graph(V, F'), where the weight of an edge
(u,v) € F is taken to be(u, v). The edges of” are con-
sidered to beindirected As mentioned, an edge éfis not
necessarily an edge @&. If (u,v) € F' is an edge of the

portant to note that Dijkstra’s algorithm is not run on the
input graph, that may contain too many edges, and that a
slightly different graph is used for each vertexc V' \ D;.

The graphGs(u), on which Dijkstra’s algorithm is run
from u, includes all the edges that touch low degree ver-
tices, edges that connect each high degree vertex with a ver-
tex of the dominating set, and edges connectingith all



Algorithm apasp,:

51 < (m/n)/?

Vi {veV|deg(v) >si}
E; + {(u,v) € E | deg(u) < s; or deg(v) < s1}

(D1, E*) < dominate(G, s1)
For everyu,v € V letd(u,v) {

For everyu € Dy runbfs(G, 4, u)

input: An unweighted undirected gragh= (V, E).
output: Amatrix {0(u,v)}, ., of estimated distances.

1 if (u,v) € E,
+o00 otherwise.

For everyu € V \ D; rundijkstra( (V, B, U E* U ({u} x D1)),0,u)

Figure 1. An O(n3/?2m!/?) time algorithm for computing surplus 2 distances

w' € Dy

u w eV v

(a)
Figure 2. (a) Case 1 in the proof of Theorem 3.1. (b) Case 1in the proof of Theorem 3.2.

w' € Dy

(b)

the vertices of the dominating set. The number of edges inare distances in the grajgh This implies that the approxi-

Go(u) is thereforeD((nm)'/?). Itis also important to note
that the graphG,(u) is aweightedgraph. The weight of
the edges i, U E* is 1, as in the unweighted graph. The
weight of an edgéu,v) € {u}xD;, however, is the dis-
tance between andv in G. This distance was found by the
BFS that started at € D;.

Theorem 3.1 The algorithmapasp,, runs inO(n?/2m'/?)
time, wheren is the number of vertices and is the number
of edgesinthe inputgraphl = (V, E), and for everyu, v €
V we haved(u, v) < §(u,v) < 6(u,v) + 2.

Proof: We start with the complexity analysis. Finding
the dominating seD; requires, according to Lemma 2.1,
only O(n?) time. As|D;| = O(n*?/m'/?), the to-
tal running time of all the BFS'’s i (n*/2/m!/? . m) =
O(n?/?m1/?). As the number of edges in each graph on
which Dijkstra’s algorithm is applied i©((nm)'/?), the
total running time of all these calls is alét(n-(nm)'/?) =
O(n3/?>m'/?) and this is also the running time of the whole
algorithm.

We now examine the accuracy of the algorithm. The
weights attached to the weighted edges in the gréplis)

mations produced by the algorithm cannot be too small. In
other wordsg (u, v) < §(u,v) for everyu,v € V. We now
prove that thed(u,v) < &(u,v) + 2 for everyu,v € V.

Let v andv be two vertices irG. We consider the follow-
ing two (non-exclusive but exhaustive) cases:

Case 1: There is a shortest path betweerandv that
contains a vertex fror; .

Let w be thelast vertex on the path that belongs %
(see Figure 2(a)). All the edges on the path fronto v
touch vertices irt; and therefore belong t&,, and there-
fore to G3(u). Letw' € D; be such thatw,w’) € E*.
The edge(w, w') also belongs ta@7;(u). Asw’ € Dy, a
weighted edgéu, w') was added t@7»(u). The weight of
this edge i (u, w'), the distance betweenandw' in G,
found by the BFS fromw' € D;. Note thatd(u,w’) <
d(u,w) + 1. By running Dijkstra’s algorithm fromu, on
G2 (u), we find therefore that

d(u,v) < d(u,w') + 6w, w) + 6(w,v)

; (0(u,w) +1) + 1+ d(w,v) = 6(u,v) +2.

Case 2: There is a shortest path betweerandv that
does not contain any vertex froij.



Algorithm apasp;:

input: An unweighted undirected gragh= (V, E).
output: Amatrix {0(u,v)}, ., of estimated distances.

51<—n2/3; 82(—711/3

Fori < 1to2letV; < {v € V | deg(v) > s;}

Fori <— 1to 2 let(D;, E}) < dominate(G, s;)
E* « Ef UE}

For everyu,v € V letd(u, v) « {

For everyu € Dy runbfs(G, 4, u)
For everyu € D, runbfs((V, Es), 0, u)

Fori < 2to 3 letE; < {(u,v) € E | deg(u) < s;_1 or deg(v) < s;_1}

1 if (u,v) € E,
+o00 otherwise.

For everyu € V rundijkstra((V, Es U E* U (D; x V) U (D3 x D2) U ({u} x D3)),8,u)

Figure 3. An O(n"/?) time algorithm for computing surplus 2 distances

This shortest path is contained (i, E2) and therefore
0(u,v) = d(u,v). a

Algorithm apasp,, described in Figure 3, is similar to
algorithmapasp,. Instead of dividing the vertices into two

classes according to their degrees, we now divide them into

three classes. Instead of using the ‘thresh@td)/n)'/?,
we now use the two thresholds$/? andn?/3. Another im-
portant difference betweeipasp; andapasp, is that the
graphs on which Dijkstra’s algorithm is run now contain the
edgeg D, xV)U(D2xD5). These edges are weighted. The
weight of an edgéu, v) € Dy xV is the distance between
andv in G, found by the BFS fromy € D;. The weight of
an edggu,v) € Dy x D5 is the distance betweanandv

in the graph(V, E,). Note that this distance may be larger
then the distance betwearandv in G.

Theorem 3.2 The algorithmapasp, runsinO(n7/?) time,
wheren is the number of vertices in the input graph=
(V, E), and for everyi, v € V we have¥(u, v) < 6(u,v) <
0(u,v) + 2.

Proof: We start again with the complexity analysis.
Finding the two dominating set®,; and D, requires only
O(n?) time. As|Dy| = O(n'/?), |Ds| = O(n?/?), |Es| =
O(n°/?) and|E3| = O(n*/?), the BFS’s from the vertices
of D, take O(n'/? -n?) = O(n7/?) time and the BFS’s
from the vertices ofD, take O(n*/?-n®/3) = O(n"/3)
time. As|D;xV| = O(n*/?) and|Dyx Ds| = O(n*/3),

It is again clear tha(u,v) < §(u,v), for everyu,v €
V. It remains to show therefore théu, v) < d(u,v) + 2,
for everyu,v € V. Letu andv be two vertices inG. We
consider the following three cases:

Case 1: There is a shortest path betweerandv that
contains a vertex from V;.

Letw' € D; such thatw,w') € E (see Figure 2(b)).
The edgesu, w') and(w’, v) belong to the graph on which
Dijkstra’s algorithm is run fromu. The weights of these
edges aré(u,w') andé(w', v), the distances found by the
BFS onG fromw' € D;. Note thaif(u, w') < §(u,w) +1
andé(w', v) < 146(w,v). By running Dijkstra’s algorithm
from u, we find therefore that

A

O(u,v) < 6(u,w") + 6(w',v) < 6(u,v) +2.

Case 2: There is a shortest path betweerandv that
contains vertices frorir, but not fromV;.

This case is very similar to case 1 in the proof of Theo-
rem 3.1. Letw be thelast vertex on the path that belongs
to V5. All the edges on the path from to v touch vertices
in V3 and therefore belong to the gragh (u) on which
Dijkstra’s algorithm is run fromu. Letw' € D, be such
that (w,w’) € E*. The graphGs(u) contains weighted
edges connecting to all the vertices ofD,. It contains
in particular a weighted edg@:, w’). The weight of this
edge is the distandg (u, w') betweery andw’ in the graph

each graph on which Dijkstra’s algorithm is run has only G» = (V, E»), found by the BFS fromv' € D, onG. As
O(n*/?) edges. The total time taken by all these runs is all the edges on the path fromto w, as well agw, w') be-
thereforeD (n-n*/?) = O(n"/?). long to E,, we get thab, (u, w') < 6(u,w)+1. By running



Dijkstra’s algorithm fromu we find therefore that 4 Trading time and accuracy

! !
0(u,v) < 03 (u, w') + 0w, w) + 6(w, v) < 0w, v) +2. Aingworth et al. [2] obtained theirO(n%/2) algorithm
by splitting the vertices into two classes according to their
degree. We obtain oud(n7/?) time algorithm by divid-
ing them into three classes. It is natural to try to divide
the vertices into more classes. In Figure 4 we describe an
algorithmapasp,, that divides the vertices intb classes
and runs inO(n>~/km1/k) time. Algorithmapasp, de-
scribed in Figure 1 is a special case of this more general
algorithm. We next show that algorithapasp,, has an ad-

Case 3: There is a shortest path betweerandv that
does not contain any vertex from.

This shortest path is then contained i) £5) and there-
fore §(u, v) = d(u,v). m

The above proof remains correct even if the edge set
D, x D5 is not added to the graphs on which Dijkstra’s al-
gorithm is run. We have added it as it may improve the ac-
curacy of the algorithm, in certain cases, and as it is used in

the proof of Theorem 6.3. We can also replace the edge set

{u}x D1, in algorithmapasp,, and the edge s} x D1,
in algorithmapasps, by the larger edge s} xV with-
out increasing the running times of the algorithms.

ditive error of at mosg(k — 1).

Theorem 4.1 For every2 < k = O(logn), the algorithm
apasp;, runs inO(n*>~/¥m!/*) time, wheren is the num-
ber of vertices andn is the number of edges in the in-

We can easily get a randomized version of algorithm put graphG = (V, E), and for everyu,v € V we have

apasp; which has the property thail reported distances
greater tham?/3 are, with high probability, correct. Simi-
larly, we can get a randomized versioragfasp,, for which
all reported distances greater thait? /m'/? are, with high

8(u,v) < 8(u,v) < 6(u,v) + 2(k — 1).

Proof: We start again with the complexity analysis. For
everyl < i < kandu € D;, let E;(u) be the edge set of

probability, correct. We use the following simple observa- the graph on which Dijkstra’s algorithm is run from It

tion (a similar idea is used by Ullman and Yannakakis [26]): IS €asy to check thdﬂz| = O(n* ¥ m

Theorem3.3Let G = (V,E) be a weighted directed
graph withn vertices andn edges. Let < s < n. There is

1=i/k) and that
| Z|—O(n (m/n) (i— 1)/L) O( (2— 1)/Lm1 (ifl)/k)’
for everyl < i < k. The cost of running Dijkstra’s
algorithm from everyu € D;, wherel < i < k,

anO(n?/s) time randomized algorithm that finds, with high g thereforeO (n2=#/k fm1=i/k . pi=1/kpl- ~(i— 1)/k) =
probability, the exact distance between any pair of vertices ¢ (,2-1/k;1/k) The total running time of the algorithm

connected by a shortest path that uses at leastges.

Proof:

(clogn)/s, for some large enough > 0. The expected
size of D is O(n/s). Run Dijkstra’s algorithm from each
vertex of D in bothG, and the graph obtained frohby re-
versing the edges. The complexity of this stePi@im/s).
For everyu € D andv € V, we now knowd(u,v) and
d(v,u) exactly. For every pair of vertices,v € V, let
6(u,v) = minyep{6(u, w) + 6(w, v)}. The complexity of
this step isD(n3/s). Itis easy to see tha(u, v) = d(u, v)

if and only if there is a shortest path betweeandwv that
passes through a vertex bf. If there is a shortest path be-
tweenu andv of lengths, then with high probability, at least
one of the vertices on the path will belongfn As there
areO(n?

theseO(n?) paths will pass through a vertex 6f, and the
exact distances between all these pairs will be foundd

It follows that if the setD; in algorithmapasp; is cho-

Let D be a random set of vertices obtained
by picking each vertex independently with probability

) pairs of vertices connected by shortest paths that
use at mosk edges, and as we can focus on one such path
for each palr we get that, with high probability, each one of :

is thereforeO(k - n2~kml/k) = O(n?>Ykml/*), as
k = O(logn).

For everyl < i < k andu,v € V, letd;(u,v) be the
value ofS(u, v) after runningdijkstra from all the vertices
of D;. We now prove by induction ol that if u € D;
andv € V, thend(u,v) < 6;(u,v) < d(u,v) +2(i — 1).
Recall thatD, = V. For everyu,v € V, we get that
6(u,v) = 0k (u,v) < 6(u,v) + 2(k — 1), as required.

Let Gi(u) = (V, E;(u)) be the graph on which Dijk-
stra’s algorithm is run fromw € D;. Fori = 1, the
claim is clear, as for every € D; we haveG;(u) = G,
and thereforey, (v,v) = d(u,v) for everyu € D; and
v € V. Suppose therefore that> 1 and that the claim
is true fori — 1. Letu € D; and letv € V. Consider a
shortest pattp from v to v. If all the edges omp belong
to E;, thend;(u,v) = §(u,v) and we are done. Otherwise,
there must be a vertex frofi_; on the pathp. The ar-

gument that follows is again similar to the argument used
in case 1 in the proof of Theorem 3.1 and case 2 in the

proof of Theorem 3.2. Leiw be the last vertex fron;
on the pattp. Letp’ be the subpath gb that connectsw
andwv. As all the vertices on’, exceptw, do not belong

sen at random, by picking each element with probability to V;_,, all the edges op’ belong toE;. Letw’ € D;_;

en~2/3logn, then, with high probaibility, i (u, v) > n2/3
thend(u,v) is the exact distance betweerandv. Long
distances are therefore easier to compute.

be such thafw,w') € E*. The graph#;(u) contains the
edge(w,w') and a weighted edge:, w') whose weight is
di—1(u,w") = §;—1(w',u). By the induction hypothesis,



Algorithm apaspy:

input: An unweighted undirected graggh= (V, E).
output: A matrix {0(u,v)}.,, Of estimated distances.
Fori < 1tok —1lets; « (m/n)t *

Fori< 1tok —1letV; < {v € V| deg(v) > s;}
Fori < 2tokletE; < {(u,v) € E| deg(u) < s;—1 or deg(v) < si—1}

Fori < 1tok — 1let(D;, E}) < dominate(G, s;)
Ey <+ E; D+ V; E*+ U1§i<kE;=

1 if (uv) € E,

For ever letd — i
yu,v €V (u,v) {+oo otherwise.

Fori < 1tok do .
For everyu € D; rundijkstra( (V, E; UE* U ({u} x V)),0,u)

Figure 4. An O(n?~/km!/*) time algorithm for computing surplus 2(k — 1) distances

di1(w',u) < o(w',u) + 20 — 2) < d(u,w) + (2i — 3). We can show that the multiplicative error of the estimates
As a consequence, we get that produced by the algorithmpasp,, is at most 3.
di(u,v) < imi(u,w') + d(w', w) + §(w,v) Theorem 4.3 For every2 < k = O(logn), the algorithm
< (O(u,w) + (2 —3)) + 1+ 5(w, v) apasp,, runs inO(n?~*/¥m!/k) time, and for every, v €
< Suv) +206—1). V we haved(u,v) < d(u,v) < 36(u,v) — 2.

The proof of this theorem is again omitted. By taking
_ _ _ _ _ k = ©(logn), we get anO(n?) time algorithm for find-
As in the previous section, we can obtain a slightly bet- jng stretch 3 approximate distances. An extension of this

ter algorithm for denser graphs. Algorith@pasp,, is de-  algorithm for weighted graph is presented in [14].
scribed in Figure 5. There are two differences between

apasp, andapasp,. The first is that the degree thresh-
olds are nows; = n'~¥* and nots; = (m/n)' =¥k,

The second is that for any < ji,j2 < k such that .
i+ j1 + jo < 2k + 1, the edges oD, xD;, are added Let A andB be two Booleam x n matrices. Construct

agraphG 4 g = (V, E) with

This completes the proof of the theorem. O

5 Boolean Matrix Multiplication

to the graph on which Dijkstra’s algorithm is run from ev-
ery vertexu € D;.

Vo= u,...,uptU{or, ..., U{wy,...,wp},
Theorem 4.2 For every2 < k = O(logn), the algorithm E = {(ui,vr) | ai =1} U {(vg,wy) | b =1}
apasp,, runs inO(n?+'/k) time, where: is the number of _ o _
vertices in the input graptd = (V, E), and for every, v € . Thg graph corresponding to tvgox 3 matrlces_ls dep|_ct_ed
V we havey(u, v) < 5(u,v) < 8(u,v) +2([k/3) + 1). in Figure 6. LetC = A x B (Boolean matrix multipli-

cation). Clearlyc;; = 1 if and only if ¢ (u;, w;) = 2.
The analysis of this algorithm is slightly more compli-
cated than the analysis of the previous algorithms and it

is omitted. To get an additive error of at mdst where Lo 1 01 1
k > 2is even, we can either use the algorithpasp ki (1 1 0) X (0 1 0)
whose running time i@(nZ_kLJrzkaJrz), or the algorithm 0 11 Loo
ApaspP (3,_s)/5, Whose running time i) (n?+2/(3¢-2)),

The combination of these two algorithms is the algorithm

APASP,. mentioned in the abstract. Figure 6. Boolean matrix multiplication.



Algorithm apasp:

input: An unweighted undirected gragh= (V, E).
output: Amatrix {0(u,v)}, ., of estimated distances.

Fori < 1tok — 1lets; « nl=%
Fori < 1tok —1letV; - {v eV |deg(v) > s;}
Fori < 2tokletE; < {(u,v) € E'| deg(u) < s;_1 or deg(v) < si_1}

Fori < 1tok — 1let(D;, E}) < dominate(G, s;)
Ei+ E; Dy« V; E* U1§i<kEZ

1 if (u,v) € E,
+o00 otherwise.

For everyu,v € V letd(u, v) + {

Fori < 1tok do

For everyu € D; rundijkstra((V, E; U E* U ({u} x V)) U (Uitj, +ja<2k+1Dj, X Dj,)),0,u)

Figure 5. An O(n?+1/*) time algorithm for computing surplus O(k) distances

Furthermore, as the graghy » is bipartite,c;; = 1 if and
only if ¢ (u;, w;) < 3. As an consequence we get
Theorem 5.1 If all the distances in an undirectedvertex
graph can be approximated with a one-sided additive er-
ror of at most one i (A(n)) time, then Boolean matrix
multiplication can also be performed ®(A(n)) time.

By adding a disjoint path of length — 2 ending at each
u;, we get that distinguishing between distak@ndk + 2,
for any fixed £k > 2, is also as hard as Boolean matrix
multiplication. Note that ift > n2/3, then we can distin-
guish, with high probability, between distane@ndk + 2
in O(n"/?) time.

Similarly, as any approximation algorithm that finds ap-

Definition 6.1 (Emulators) Let G = (V,E) be an un-

weighted undirected graph. A weighted graph= (V, E’)

is said to be ak-emulatorof G if and only if for every
u,v € V we haveg(u,v) < dp(u,v) < dg(u,v) + k.

There is one significant difference, however, between
emulators and the auxiliary graphs used in the algorithms of
Sections 3 and 4. There, we constructed for each varéex
auxiliary graphG, (v) that supplied good approximations to
the distances from to all the vertices of the graph. Here

we want a single graph that will supply good approxima-

tions ofall distances. Constructing a spafsemulator is
therefore harder than computing surpkudistances.
The definition ofk-emulators is related to the definition

proximated distances of stretch strictly less than 2 can dis- ¢ k-spannergAwerbuch [8], Peleg and Schaffer [24]). Let

tinguish between distance 2 and distance 4, we get that get; _ (V,E)

ting approximate distances of stretidssthan 2, between
all pairs of vertices, is also as hard as Boolean matrix mul-
tiplication.

By turning the graplt7 4 g into a directed graph, where
edges are directed to the right, we get thgt = 1 iff
da(ui, wj) < oo. Approximating distances imirected
graphs, to within anynultiplicative factor, is therefore as
hard as Boolean matrix multiplication. It is not difficult to

be a weighted undirected graph. A subgraph
G' = (V, E') of G is said to be &-spanner of7 if and only

if for everyu, v € V we havélg: (u, v) < kdg(u,v). ASG’

is a subgraph of7, we always havéq (u,v) < g (u,v).
This definition differs from the definition of emulators in
three respects. We require additive error, not multiplicative
error. We do not insist on getting a subgraph of the original
graph and we allow weighted edges. Althddenl. [7] also
considerSteiner spanners which vertices and edges may

see that this remains so even if the directed graphiis requireqys 5qded to the graph. Steiner spanners are more closely

to be strongly connected.

6 Distance Emulators

Closely related to the algorithms of Sections 3 and 4 is
the notion of emulators.

related to emulators. Liestman and Shermer [23] consider
additive spannetsThey are able, however, to obtain sparse
additive spanners only for specific graphs such as pyramids,
grids and hypercubes. Additive spanners, unlike emulators,
must be subgraphs of the original graph. Emulators may
be described as weighted additive Steiner spanners. The



definition of k-emulators is also related to the definition of Lemma 7.1 (Truncated Dijkstra) Let G = (V,E) be a

hop set{Cohen [13]).

Implicit in the work of Aingworthet al. [2] is anO (n%/?)
time algorithm for constructing 2-emulators wifh(n3/2)
edges. We can get the following slightly stronger result.

Theorem 6.2 Every unweighted undirected grapli =
(V,E) on n vertices can be 2-emulated by subgraph
G' = (V,E') with O(n?/?) edges. Such a subgraph can
be constructed i) (n?) time.

We omit the simple proof due to lack of space. A sub- §(y, u) < §(v, w)

weighted graph om vertices. Suppose that the adjacency
lists of the vertices aff are sorted according to weight. Let
v € V be avertex of7 and letl < s < n. Shortest paths
fromu to s vertices closest to can be found ir0(s?) time.

The set ofs vertices returned by the truncated Dijkstra
algorithm running fromv is not uniquely defined, as there
may be many vertices at the same distance frorll that
we require is that ifS is the set of vertices returned by the
algorithm then for every, € S andw € V \ S we have

graph 2-emulator is also an additive 2-spanner and a mul-

tiplicative 3-spanner. In Section 7 (Theorem 7.3) we show Theorem 7.2 Let G = (V, E) be a weighted undirected

that weighted graphs also have 3-spanners ofGize’/?). graph withn_vertices andm edges. We can preprocess
We present there a more efficient algorithm, whose runningthe graph inO(m?/3n) time so that given any two vertices
time is O(mn!/?), for finding such 3-spanners. As there u,v € V, we caninO(1) time output an estimated distance

are bipartite graphs witR(n?/?) edges that do not contain
cycles of length four [27], this result is tight, up to polylog-
arithmic factors. We can also show:

Theorem 6.3 Every unweighted undirected gragh =
(V, E) onn vertices has a 4-emulator with (n*/?) edges.
Such a graph can be constructeddn’/?) time.

Proof: It is not difficult to check that the grapiz =
(V,Es U E* U (D;xV) U (D2xD5)) constructed by algo-
rithm apasp; is a 4-emulator of = (V, E). |

It is tempting to claim that thé-emulators, fork > 4,
can be similarly obtained by runnirgpasp,, with & > 4.
Unfortunately, this is not true.

Let e, be the infimum of all numbers for which each
graph om vertices has &-emulator withO (n!¢*) edges.
We have shown that, < 1/2 andey < 1/3. We conjecture
thate, — 0 ask — oo. We are not able, however, to
construct emulators with(n*/?) edges. We can, however,
construct 6-emulators with (n*/3) edges inD(n?) time.

Theorem 6.4 LetG: = (V, E) be an unweighted undirected
graph ofn vertices. A 6-emulator @ with O(n*/?) edges
can be constructed i®(n?) time.

It is easy to see thatk-emulators are Steiner
(k+1)-spanners. Althofeet al. [7] show that Steiner
(k+1)-spanners of some graphs envertices must have

Q(n1+3('ﬁ+3>) edges. We can show that Steiner 3-spanners
may require(n?/?) edges and that Steiner 5-spanners may

requireQ(n/3) edges (wher@(f) = Q(f / polylogn)).

7 Stretched Paths and Distances

6(u, v) satisfyingd(u,v) < 8(u,v) < 3-8(u,v).

Proof: Lets be a parameter to be chosen later. We run
the truncated Dijkstra algorithm from every vertexc V
and find a setV(v) of s vertices closest te. The time
required for finding these sets 3(ns?). Next, we find
a setD of sizeO(n/s) so that for everyw € V, there is
u € D such thatu € N(v). Such a set can be found in
O(ns) time. For every vertex € V, we keep a pointer to a
vertexu = P(v) such thats € D N N(v). We now run the
full Dijkstra algorithm from all the vertices ab. The time
required isO(nm/s). We keep ar(n/s) x n matrix with
the distances from the vertices Dfto all the other vertices
of the graph. The time used so far¥§ns> + nm/s). This
is minimized by takings = m!/?. The total time is then
O(m?/n).

Given a pair of vertices andv, we first check whether
v € N(u). If so, we output the exact distanégu, v) com-
puted during the truncated Dijkstra from Otherwise, we
letw = P(u) € DN N(u) and we output the estimated
distance)(u, v) = d(u, w) + 6(w, v). The distancé (u, w)
was found during the truncated Dijkstra fram The dis-
tanced(w, v) was found during the full Dijkstra fror.

Clearly 6(u,v) < 6(u,v). If v € N(u), thend(u,v) =
d(u,v). If v ¢ N(u), thend(u,w) < d(u,v) and the esti-
mated (u, v) satisfies

o(u,v) = d(u,w)+ d(w,v)
< 0w, w) + (6(w,u) + (u,v))
< 26(u,w) + d(u,v) < 36(u,v),
as required. O

Using essentially the same algorithm we can get:

In this section we describe algorithms for finding Theorem 7.3 Every weighted undirected grapty =

stretched paths imeightedgraphs. We use the following
result which is part of the folklore.

(V, E) onn vertices has a 3-spanner withi(n*/2) edges.
Such a 3-spanner can be constructedimn!/?) time.



Proof: Let s be a parameter to be chosen later. Run
the truncated Dijkstra algorithm from every vertex and find
for every vertexv € V a setN(v) of s vertices closest
to v. Find a setD of sizeO(n/s) such that for every ¢
V, there isu € D N N(v). We then run a full Dijkstra
from every vertex ofD. The 3-spanner will be composed
of the shortest paths trees found in all the truncated and full ;4
runs of Dijkstra’s algorithm. The total number of edges will
therefore beD(ns + n?/s). We chooses = n'/2. The
number of edges in the 3-spanner is thigfn3/?) and the
total running time iO(ns? + nm/s) = O(n? + mn'/?).
Note however, that ifnnt/? < n? thenm < n®/2? and the
original graph is the required 3-spanner. a
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