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Abstract

LetG = (V;E) be an unweighted undirected graph onn
vertices. A simple argument shows that computing all dis-
tances inG with an additive one-sided error of at most 1 is
as hard as Boolean matrix multiplication. Building on re-
cent work of Aingworth, Chekuri and Motwani, we describe
an ~O(minfn3=2m1=2; n7=3g) time algorithmAPASP2 for
computing all distances inG with an additive one-sided er-
ror of at most 2. The algorithmAPASP2 is simple, easy
to implement, and faster than the fastest known matrix mul-
tiplication algorithm. Furthermore, for every evenk > 2,
we describe an~O(minfn2� 2k+2m 2k+2 ; n2+ 23k�2 g) time al-
gorithmAPASPk for computing all distances inG with
an additive one-sided error of at mostk.

We also give an~O(n2) time algorithmAPASP1 for pro-
ducing stretch 3 estimated distances in an unweighted and
undirected graph onn vertices. No constant stretch factor
was previously achieved in~O(n2) time.

We say that a weighted graphF = (V;E0) k-emulates
an unweighted graphG = (V;E) if for everyu; v 2 V
we have�G(u; v) � �F (u; v) � �G(u; v) + k. We show
that every unweighted graph onn vertices has a 2-emulator
with ~O(n3=2) edges and a 4-emulator with~O(n4=3) edges.
These results are asymptotically tight.

Finally, we show that anyweightedundirected graph onn
vertices has a 3-spanner with~O(n3=2) edges and that such
a 3-spanner can be built in~O(mn1=2) time. We also de-
scribe an ~O(n(m2=3 + n)) time algorithm for estimating
all distances in aweightedundirected graph onn vertices
with a stretch factor of at most 3.

1 Introduction

The all-pairs shortest paths (APSP) problem is one of the
most fundamental algorithmic graph problems. The com-
plexity of the fastest known algorithm for solving the prob-� E-mail addresses:fddorit,hshay,zwickg@math.tau.ac.il

lem for weighted directed graphs, without negative cycles,
isO(mn+n2 logn), wheren andm are the number of ver-
tices and edges in the graph (Johnson [22], see also [16]).

The special case of the all-pairs shortest paths prob-
lem in which the input graph is unweighted is closely re-
lated to matrix multiplication. It is fairly easy to see that
solving the APSP problem exactly, even on unweighted
graphs, is at least as hard as Boolean matrix multipli-
cation. Recent works, by Alon, Galil and Margalit [3],
Alon, Galil, Margalit and Naor [4], Galil and Margalit
[20],[21] and Seidel [25] have shown that if matrix multipli-
cation can be performed inO(M(n)) time, then the APSP
problem for unweighted directed graphs can be solved in~O(pn3M(n)) time and the APSP problem for unweighted
undirected graphs can be solved in~O(M(n)) time (~O(f)
meansO(f polylogn)). The currently best upper bound on
matrix multiplication isM(n) = O(n2:376) (Coppersmith
and Winograd [15]).

While the above results are extremely interesting from
the theoretical point of view, they are of little use in practice
as the fast matrix multiplication algorithms are better than
the naiveO(n3) time algorithm only for very large values
of n. There is interest therefore in obtaining fast algorithms
for the APSP problem that donotuse fast matrix multiplica-
tion. The currently bestcombinatorialalgorithm for the un-
weighted APSP problem is anO(n3= logn) time algorithm
obtained by Feder and Motwani [18] (see also [10]). This
offers only a marginal improvement over the naiveO(n3)
time algorithm.

As an algorithm for the APSP problem will yield an al-
gorithm with a similar time bound for Boolean matrix mul-
tiplication, there is little hope of developing a combinatorialO(n3��) time algorithm for the APSP problem. The only
hope for obtaining a practical algorithm whose running time
is O(n3��) is by relaxing our requirements. We should be
looking therefore at the problem ofapproximatingdistances
and shortest paths.

Awerbuchet al. [9] and Cohen [12] considered the prob-
lem of finding stretcht all-pairs paths, wheret is some fixed
constant and a path is of stretcht if its length is at mostt
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times the distance between its endpoints. Cohen [12], im-
proving the results of Awerbuchet al. [9], obtains, for ex-
ample, an~O(n5=2) time algorithm for finding stretch4 + �
paths and distances in weighted undirected graphs, for any� > 0 (all weights from now on are assumed to be positive).
She also exhibits a tradeoff between the running time of the
algorithm and the obtained stretch factor. For any event,
stretcht+ � paths between all pairs of vertices can be found
in ~O(n2+2=t) time. The works of Awerbuchet al. [9] and
Cohen [12] are based on the construction of sparse spanners
(Awerbuch [8], Peleg and Schäffer [24]). At-spanner of a
graphG = (V;E) is a subgraphG0 = (V;E0) of G such
that for everyu; v 2 V we have�G0(u; v) � t ��G(u; v),
where�G(u; v) is the distance between the verticesu andv
in the (possibly weighted) graphG.

A different approach all together was employed recently
by Aingworth, Chekuri and Motwani [2] (see also [1]).
They describe a simple and elegant~O(n5=2) time algo-
rithm for finding all distances in unweighted and undirected
graphs with anadditiveone-sided error of at most 2. They
also make the very important observation that the small dis-
tances, and not the long distances, are the hardest to approx-
imate. Based on the ideas of Aingworthet al. [2], Orlin (un-
published) obtained an~O(n7=3) time algorithm for finding
all distances with an additive one-sided error of at most 4.

In this work we improve and extend the result
of Aingworth et al. [2], and of Orlin, and ob-
tain an ~O(minfn3=2m1=2; n7=3g) time algorithm, calledAPASP2, for finding all distances in unweighted and
undirected graphs with an additive one-sided error of at
most 2. The algorithmAPASP2 is just the first in a se-
quence of algorithmsAPASPk, for evenk � 2, that
exhibits a trade-off between running time and accuracy.
For any evenk > 2, the algorithmAPASPk runs in~O(minfn2� 2k+2m 2k+2 ; n2+ 23k�2 g) time and has a one-sided
error of at mostk. The algorithmAPASP4, for example,
runs in ~O(n5=3m1=3; n11=5) time. All algorithms described
in this paper can be easily adapted to find almost shortest
paths whose lengths are equal to the estimated distances.

In addition, we show that for anyk � 2, the stretch
of the estimates produced by the algorithmAPASPk is
at most 3. Ask increases, the running time of the algo-
rithm APASPk decreases. Fork = �(logn), the run-
ning time becomes~O(n2). We letAPASP1 be the al-
gorithm APASPk with k = 2blognc. The algorithmAPASP1 produces stretch 3 distances in unweighted,
undirected graphs in~O(n2) time. As mentioned, no fixed
stretch factor was previously achieved in~O(n2) time.

We next introduce the notion ofemulators. Emula-
tors may be seen as the additive counterparts of spanners.
We show that any graph onn vertices has a 2-emulator
with ~O(n3=2) edges, and a 4-emulator with~O(n4=3) edges.
These can be constructed in~O(n5=2) and in ~O(n7=3) time,

respectively. We are not able to obtain sparser emula-
tors. We are able, however, to construct 6-emulators of size~O(n4=3) in ~O(n2) time. The bounds on the number of edges
in 2-emulators and 4-emulators are asymptotically tight.
There are graphs onn vertices that cannot be 2-emulated
by graphs withn3=2�o(1) edges, and there are graphs onn
vertices that cannot be 4-emulated by graphs withn4=3�o(1)
edges.

We are also able to obtain some results forweighted
undirected graphs. We show that any weighted graph onn
vertices has a 3-spanner with~O(n3=2) edges and that such
a 3-spanner can be found in~O(mn1=2) time. Finally, we
describe an~O(n(m2=3 + n)) time algorithm for finding
stretch 3 distances in aweightedundirected graph onn ver-
tices. Extended and improved results for weighted graphs,
including an ~O(n2) time algorithm for finding stretch 3
distances and an~O(n3=2m1=2) time algorithm for finding
stretch 2 distances appear in [14].

2 Preliminaries

The work of Aingworthet al. [2] is based on the follow-
ing simple observation: there is a small set of vertices that
dominates all the high degree vertices of a graph. A set of
verticesD is said todominatea setU if every vertex inU
has a neighbour inD. This observation is also central to our
work.

Lemma 2.1 ([2], see also [5], pp. 6-7)LetG = (V;E) be
an undirected graph withn vertices andm edges. Let1 �s � n. A setD of sizeO((n logn)=s) that dominates all
the vertices of degree at leasts in the graph can be found
deterministically inO(m+ ns) time.

Note that ass � n, the running time of this determinis-
tic algorithm is always at mostO(n2). Picking each vertex
of V independently at random with probability(c logn)=s,
for some large enoughc > 0, will yield a desired domi-
nating set of sizeO((n logn)=s) with high probability. A
deterministic algorithm can be obtained using the simple
greedy approximation algorithm for the set cover problem.
See [2] for details.

In the subsequent sections, we use an algorithm, calleddominate(G; s), that receives an undirected graphG =(V;E) and a degree thresholds. The algorithm outputs a
pair (D;E�), whereD is a set of sizeO((n logn)=s) that
dominates the set of vertices of degree at leasts in G. The
setE� � E is a set of edges ofG of sizeO(n) such that for
every vertexu 2 V with degree at leasts, there is an edge(u; u0) 2 E� such thatu0 2 D. Once a dominating setD
is obtained, the setE� is easily obtained by adding toE� a
single edge for each vertex of degree at leasts.

Another ingredient used by our algorithm is the classical
Dijkstra’s algorithm.
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Lemma 2.2 (Dijkstra’s algorithm) Let G = (V;E) be a
weighted directed graph withn vertices andm edges. Lets 2 V . Dijkstra’s algorithm runs inO(m + n logn) time
and finds distances, and a tree of shortest paths, froms to all
the vertices ofV . Furthermore, if the weights of the edges
are integers in the rangef1; 2; : : : ; ng then the algorithm
can be implemented to run inO(m+ n) time.

Dijkstra’s algorithm appeared originally in [17], though
the running time of the version described there isO(n2).
For a more modern description of Dijkstra’s algorithm see
[16]. The running time ofO(m + n logn) is obtained by
usingFibonacci heaps[19]. The observation that Dijkstra’s
algorithm can be implemented to run inO(m+n) time if the
weights are in the rangef1; 2; : : : ; ng is a simple exercise.

In all the algorithms described in this paper, except those
of Section 7, we start with anunweightedundirected graphG = (V;E). We then build many auxiliaryweightedgraphs
and run Dijkstra’s algorithm on each one of them. The
weights of the edges in these auxiliary graphs will always
be integers in the rangef1; 2; : : : ; ng, so we can in fact use
the simpleO(m+ n) time implementation of Dijkstra’s al-
gorithm.

By running Dijkstra’s algorithm from every vertex of
a graphG = (V;E), we get anO(mn + n2 logn) time
algorithm for solving the all pairs shortest paths problem
(APSP). Our goal in this paper is to reduce the running time
of APSP algorithms to as close to~O(n2) as possible. To
achieve this goal we are willing to settle for almost shortest
paths instead of genuine shortest paths.

Our algorithms also involve many runs of Dijkstra’s al-
gorithm. Most of these runs, however, are performed on
graphs with substantially less edges than the original in-
put graph. A typical step in our algorithms is composed
of choosing a vertexu 2 V , choosing a set of edgesF ,
and then running Dijkstra’s algorithm, fromu, on the graphH = (V; F ). The set of edgesF is notnecessarily a subset
of the edge setE of the input graph. Furthermore, the setF
variesfrom step to step. The weight of an edge(u; v) 2 F
is taken to be the currently best upper bound on the distance
betweenu andv in the input graphG. Bounds obtained in
a run of Dijkstra’s algorithm are used, therefore, in some of
the subsequent runs.

In our algorithms, we use asymmetricn� n matrix, de-
notedf�̂(u; v)gu;v, to hold the currently best upper bounds
on distances between all pairs of vertices in the input graphG = (V;E). Initially �̂(u; v) = 1, if (u; v) 2 E, and�̂(u; v) = +1 otherwise. Bydijkstra((V; F ); �̂; u) we
denote an invocation of Dijkstra’s algorithm, from the ver-
tex u, on the graph(V; F ), where the weight of an edge(u; v) 2 F is taken to bê�(u; v). The edges ofF are con-
sidered to beundirected. As mentioned, an edge ofF is not
necessarily an edge ofE. If (u; v) 2 F is an edge of the

original graph then its weight is 1, otherwise, its weight is
greater than 1. A call todijkstra((V; F ); �̂; u) updates the
row and the column belonging tou in the matrix�̂ with the
distances found during this run, if they are smaller than the
previous estimates. Note that the matrixf�̂(u; v)gu;v serves
as both input and output ofdijkstra.

If the graph(V; F ) is a subgraph of the input graphG = (V;E), then a call todijkstra((V; F ); �̂; u) amounts
to running a BFS on(V; F ) fromu. When we want to stress
this fact, we denote such a call bybfs((V; F ); �̂; u).

It should be clear from the above discussion that at any
time during the run of our algorithms and for anyu; v 2 V
we have�(u; v) � �̂(u; v), where�(u; v) is the distance
betweenu andv in the input graphG.

3 Additive error 2

Aingworth et al. [2] obtained an ~O(n5=2) algorithm
for approximating all distances in an undirected and un-
weighted graph with a one-sided additive error of 2. We
describe two faster algorithms that have the same accuracy.
The first algorithm,apasp2, runs in ~O(n3=2m1=2) time.
The second algorithm,apasp3, runs in ~O(n7=3). The first
algorithm is faster if the input graph is sufficiently sparse,
namely, ifm < n5=3. By combining these two algorithms
we get the algorithmAPASP2 mentioned in the abstract.

A description of the algorithmapasp2 is given in Fig-
ure 1. Throughout the paper, we letdeg(v) denote the de-
gree of a vertexv. The algorithm is extremely simple. It
starts by partitioning the vertices of the graphG into two
classes,V1 andV2 = V n V1. The classV1 includes the
high degree vertices, i.e., the vertices of degree at leasts1 =(m=n)1=2. The classV2 includes all the low degree vertices,
i.e., the vertices of degree less thans1 = (m=n)1=2. A sim-
ilar partition is used by Aingworthet al. [2] and also by
Alon, Yuster and Zwick [6]. The edge setE2 is composed
of all the edges that touch a low degree vertex and thereforejE2j = O(n�(m=n)1=2) = O((nm)1=2). The algorithm pro-
ceeds by finding a setD1 of size ~O(n3=2=m1=2) that dom-
inates the vertices ofV1 and an edge setE� � E of sizeO(n) such that for everyu 2 V1 there existsv 2 D1 such
that(u; v) 2 E�. Finally, the main part of the algorithm is
composed of two steps. In the first, a BFS is pefromed on
the graphG from every vertexu 2 D1. In the second and fi-
nal step, Dijkstra’s algorithm is run, from everyu 2 V nD1,
on the graphG2(u) = (V;E2 [E� [ (fug�D1)). It is im-
portant to note that Dijkstra’s algorithm is not run on the
input graphG, that may contain too many edges, and that a
slightly different graph is used for each vertexu 2 V nD1.
The graphG2(u), on which Dijkstra’s algorithm is run
from u, includes all the edges that touch low degree ver-
tices, edges that connect each high degree vertex with a ver-
tex of the dominating set, and edges connectingu with all
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Algorithm apasp2:

input: An unweighted undirected graphG = (V;E).
output: A matrix f�̂(u; v)gu;v of estimated distances.s1  (m=n)1=2V1  fv 2 V j deg(v) � s1gE2  f(u; v) 2 E j deg(u) < s1 or deg(v) < s1g(D1; E�) dominate(G; s1)
For everyu; v 2 V let �̂(u; v) � 1 if (u; v) 2 E,+1 otherwise.

For everyu 2 D1 runbfs(G; �̂; u)
For everyu 2 V nD1 rundijkstra( (V;E2 [ E� [ (fug �D1)) ; �̂; u)

Figure 1. An ~O(n3=2m1=2) time algorithm for computing surplus 2 distances

u v u vw0 2 D1w0 2 D1w 2 V1 w 2 V1
(a) (b)

Figure 2. (a) Case 1 in the proof of Theorem 3.1. (b) Case 1 in the proof of Theorem 3.2.

the vertices of the dominating set. The number of edges inG2(u) is thereforeO((nm)1=2). It is also important to note
that the graphG2(u) is a weightedgraph. The weight of
the edges inE2 [ E� is 1, as in the unweighted graph. The
weight of an edge(u; v) 2 fug�D1, however, is the dis-
tance betweenu andv in G. This distance was found by the
BFS that started atv 2 D1.
Theorem 3.1 The algorithmapasp2 runs in ~O(n3=2m1=2)
time, wheren is the number of vertices andm is the number
of edges in the input graphG = (V;E), and for everyu; v 2V we have�(u; v) � �̂(u; v) � �(u; v) + 2.

Proof: We start with the complexity analysis. Finding
the dominating setD1 requires, according to Lemma 2.1,
only O(n2) time. As jD1j = ~O(n3=2=m1=2), the to-
tal running time of all the BFS’s is~O(n3=2=m1=2 �m) =~O(n3=2m1=2). As the number of edges in each graph on
which Dijkstra’s algorithm is applied is~O((nm)1=2), the
total running time of all these calls is also~O(n�(nm)1=2) =~O(n3=2m1=2) and this is also the running time of the whole
algorithm.

We now examine the accuracy of the algorithm. The
weights attached to the weighted edges in the graphsG2(u)

are distances in the graphG. This implies that the approxi-
mations produced by the algorithm cannot be too small. In
other words,�(u; v) � �̂(u; v) for everyu; v 2 V . We now
prove that thê�(u; v) � �(u; v) + 2 for everyu; v 2 V .
Let u andv be two vertices inG. We consider the follow-
ing two (non-exclusive but exhaustive) cases:

Case 1: There is a shortest path betweenu andv that
contains a vertex fromV1.

Let w be thelast vertex on the path that belongs toV1
(see Figure 2(a)). All the edges on the path fromw to v
touch vertices inV2 and therefore belong toE2, and there-
fore toG2(u). Let w0 2 D1 be such that(w;w0) 2 E�.
The edge(w;w0) also belongs toG2(u). As w0 2 D1, a
weighted edge(u;w0) was added toG2(u). The weight of
this edge is�(u;w0), the distance betweenu andw0 in G,
found by the BFS fromw0 2 D1. Note that�(u;w0) ��(u;w) + 1. By running Dijkstra’s algorithm fromu, onG2(u), we find therefore that�̂(u; v) � �(u;w0) + �(w0; w) + �(w; v)� (�(u;w) + 1) + 1 + �(w; v) = �(u; v) + 2 :

Case 2: There is a shortest path betweenu andv that
does not contain any vertex fromV1.
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Algorithm apasp3:

input: An unweighted undirected graphG = (V;E).
output: A matrix f�̂(u; v)gu;v of estimated distances.s1  n2=3 ; s2  n1=3
For i 1 to 2 letVi  fv 2 V j deg(v) � sig
For i 2 to 3 letEi  f(u; v) 2 E j deg(u) < si�1 or deg(v) < si�1g
For i 1 to 2 let(Di; E�i ) dominate(G; si)E�  E�1 [ E�2
For everyu; v 2 V let �̂(u; v) � 1 if (u; v) 2 E,+1 otherwise.

For everyu 2 D1 runbfs(G; �̂; u)
For everyu 2 D2 runbfs((V;E2); �̂; u)
For everyu 2 V rundijkstra( (V;E3 [ E� [ (D1 � V ) [ (D2 �D2) [ (fug �D2)) ; �̂; u)

Figure 3. An ~O(n7=3) time algorithm for computing surplus 2 distances

This shortest path is contained in(V;E2) and therefore�̂(u; v) = �(u; v). 2
Algorithm apasp3, described in Figure 3, is similar to

algorithmapasp2. Instead of dividing the vertices into two
classes according to their degrees, we now divide them into
three classes. Instead of using the ‘threshold’(m=n)1=2,
we now use the two thresholdsn1=3 andn2=3. Another im-
portant difference betweenapasp3 andapasp2 is that the
graphs on which Dijkstra’s algorithm is run now contain the
edges(D1�V )[(D2�D2). These edges are weighted. The
weight of an edge(u; v) 2 D1�V is the distance betweenu
andv in G, found by the BFS fromu 2 D1. The weight of
an edge(u; v) 2 D2�D2 is the distance betweenu andv
in the graph(V;E2). Note that this distance may be larger
then the distance betweenu andv in G.

Theorem 3.2 The algorithmapasp3 runs in ~O(n7=3) time,
wheren is the number of vertices in the input graphG =(V;E), and for everyu; v 2 V we have�(u; v) � �̂(u; v) ��(u; v) + 2.

Proof: We start again with the complexity analysis.
Finding the two dominating setsD1 andD2 requires onlyO(n2) time. AsjD1j = ~O(n1=3), jD2j = ~O(n2=3), jE2j =O(n5=3) andjE3j = O(n4=3), the BFS’s from the vertices
of D1 take ~O(n1=3 �n2) = ~O(n7=3) time and the BFS’s
from the vertices ofD2 take ~O(n2=3 �n5=3) = ~O(n7=3)
time. As jD1�V j = ~O(n4=3) and jD2�D2j = ~O(n4=3),
each graph on which Dijkstra’s algorithm is run has only~O(n4=3) edges. The total time taken by all these runs is
therefore~O(n�n4=3) = ~O(n7=3).

It is again clear that�(u; v) � �̂(u; v), for everyu; v 2V . It remains to show therefore that�̂(u; v) � �(u; v) + 2,
for everyu; v 2 V . Let u andv be two vertices inG. We
consider the following three cases:

Case 1: There is a shortest path betweenu andv that
contains a vertexw from V1.

Let w0 2 D1 such that(w;w0) 2 E (see Figure 2(b)).
The edges(u;w0) and(w0; v) belong to the graph on which
Dijkstra’s algorithm is run fromu. The weights of these
edges are�(u;w0) and�(w0; v), the distances found by the
BFS onG fromw0 2 D1. Note that�(u;w0) � �(u;w)+ 1
and�(w0; v) � 1+�(w; v). By running Dijkstra’s algorithm
from u, we find therefore that�̂(u; v) � �(u;w0) + �(w0; v) � �(u; v) + 2 :

Case 2: There is a shortest path betweenu andv that
contains vertices fromV2 but not fromV1.

This case is very similar to case 1 in the proof of Theo-
rem 3.1. Letw be thelast vertex on the path that belongs
to V2. All the edges on the path fromw to v touch vertices
in V3 and therefore belong to the graphG3(u) on which
Dijkstra’s algorithm is run fromu. Let w0 2 D2 be such
that (w;w0) 2 E�. The graphG3(u) contains weighted
edges connectingu to all the vertices ofD2. It contains
in particular a weighted edge(u;w0). The weight of this
edge is the distance�2(u;w0) betweenu andw0 in the graphG2 = (V;E2), found by the BFS fromw0 2 D2 onG2. As
all the edges on the path fromu tow, as well as(w;w0) be-
long toE2, we get that�2(u;w0) � �(u;w)+1. By running
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Dijkstra’s algorithm fromu we find therefore that�̂(u; v) � �2(u;w0) + �(w0; w) + �(w; v) � �(u; v) + 2 :
Case 3: There is a shortest path betweenu andv that

does not contain any vertex fromV2.
This shortest path is then contained in(V;E3) and there-

fore �̂(u; v) = �(u; v). 2
The above proof remains correct even if the edge setD2�D2 is not added to the graphs on which Dijkstra’s al-

gorithm is run. We have added it as it may improve the ac-
curacy of the algorithm, in certain cases, and as it is used in
the proof of Theorem 6.3. We can also replace the edge setfug�D1, in algorithmapasp2, and the edge setfug�D1,
in algorithmapasp3, by the larger edge setfug�V with-
out increasing the running times of the algorithms.

We can easily get a randomized version of algorithmapasp3 which has the property thatall reported distances
greater thann2=3 are, with high probability, correct. Simi-
larly, we can get a randomized version ofapasp2 for which
all reported distances greater thann3=2=m1=2 are, with high
probability, correct. We use the following simple observa-
tion (a similar idea is used by Ullman and Yannakakis [26]):

Theorem 3.3 Let G = (V;E) be a weighted directed
graph withn vertices andm edges. Let1 � s � n. There is
an ~O(n3=s) time randomized algorithm that finds, with high
probability, the exact distance between any pair of vertices
connected by a shortest path that uses at leasts edges.

Proof: Let D be a random set of vertices obtained
by picking each vertex independently with probability(c logn)=s, for some large enoughc > 0. The expected
size ofD is ~O(n=s). Run Dijkstra’s algorithm from each
vertex ofD in bothG, and the graph obtained fromG by re-
versing the edges. The complexity of this step is~O(nm=s).
For everyu 2 D andv 2 V , we now know�(u; v) and�(v; u) exactly. For every pair of verticesu; v 2 V , let�̂(u; v) = minw2Df�(u;w) + �(w; v)g. The complexity of
this step is~O(n3=s). It is easy to see that̂�(u; v) = �(u; v)
if and only if there is a shortest path betweenu andv that
passes through a vertex ofD. If there is a shortest path be-
tweenu andv of lengths, then with high probability, at least
one of the vertices on the path will belong toD. As there
areO(n2) pairs of vertices connected by shortest paths that
use at mosts edges, and as we can focus on one such path
for each pair, we get that, with high probability, each one of
theseO(n2) paths will pass through a vertex ofD, and the
exact distances between all these pairs will be found.2

It follows that if the setD1 in algorithmapasp3 is cho-
sen at random, by picking each element with probabilitycn�2=3 logn, then, with high probability, if̂�(u; v) � n2=3
then �̂(u; v) is the exact distance betweenu andv. Long
distances are therefore easier to compute.

4 Trading time and accuracy

Aingworth et al. [2] obtained their~O(n5=2) algorithm
by splitting the vertices into two classes according to their
degree. We obtain our~O(n7=3) time algorithm by divid-
ing them into three classes. It is natural to try to divide
the vertices into more classes. In Figure 4 we describe an
algorithmapaspk that divides the vertices intok classes
and runs in~O(n2�1=km1=k) time. Algorithmapasp2 de-
scribed in Figure 1 is a special case of this more general
algorithm. We next show that algorithmapaspk has an ad-
ditive error of at most2(k � 1).
Theorem 4.1 For every2 � k = O(logn), the algorithmapaspk runs in ~O(n2�1=km1=k) time, wheren is the num-
ber of vertices andm is the number of edges in the in-
put graphG = (V;E), and for everyu; v 2 V we have�(u; v) � �̂(u; v) � �(u; v) + 2(k � 1).

Proof: We start again with the complexity analysis. For
every1 � i � k andu 2 Di, letEi(u) be the edge set of
the graph on which Dijkstra’s algorithm is run fromu. It
is easy to check thatjDij = ~O(n2�i=k=m1�i=k), and thatjEij = ~O(n � (m=n)1�(i�1)=k) = ~O(n(i�1)=km1�(i�1)=k),
for every 1 � i � k. The cost of running Dijkstra’s
algorithm from everyu 2 Di, where 1 � i � k,
is therefore ~O(n2�i=k=m1�i=k � n(i�1)=km1�(i�1)=k) =~O(n2�1=km1=k). The total running time of the algorithm
is therefore ~O(k � n2�1=km1=k) = ~O(n2�1=km1=k), ask = O(logn).

For every1 � i � k andu; v 2 V , let �i(u; v) be the
value of�̂(u; v) after runningdijkstra from all the vertices
of Di. We now prove by induction oni, that if u 2 Di
andv 2 V , then�(u; v) � �i(u; v) � �(u; v) + 2(i � 1).
Recall thatDk = V . For everyu; v 2 V , we get that�̂(u; v) = �k(u; v) � �(u; v) + 2(k � 1), as required.

Let Gi(u) = (V;Ei(u)) be the graph on which Dijk-
stra’s algorithm is run fromu 2 Di. For i = 1, the
claim is clear, as for everyu 2 D1 we haveG1(u) = G,
and therefore�1(u; v) = �(u; v) for everyu 2 D1 andv 2 V . Suppose therefore thati > 1 and that the claim
is true fori � 1. Let u 2 Di and letv 2 V . Consider a
shortest pathp from u to v. If all the edges onp belong
toEi, then�i(u; v) = �(u; v) and we are done. Otherwise,
there must be a vertex fromVi�1 on the pathp. The ar-
gument that follows is again similar to the argument used
in case 1 in the proof of Theorem 3.1 and case 2 in the
proof of Theorem 3.2. Letw be the last vertex fromVi�1
on the pathp. Let p0 be the subpath ofp that connectsw
andv. As all the vertices onp0, exceptw, do not belong
to Vi�1, all the edges ofp0 belong toEi. Let w0 2 Di�1
be such that(w;w0) 2 E�. The graphGi(u) contains the
edge(w;w0) and a weighted edge(u;w0) whose weight is�i�1(u;w0) = �i�1(w0; u). By the induction hypothesis,
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Algorithm apaspk:

input: An unweighted undirected graphG = (V;E).
output: A matrix f�̂(u; v)gu;v of estimated distances.

For i 1 to k � 1 let si  (m=n)1� ik
For i 1 to k � 1 let Vi  fv 2 V j deg(v) � sig
For i 2 to k letEi  f(u; v) 2 E j deg(u) < si�1 or deg(v) < si�1g
For i 1 to k � 1 let (Di; E�i ) dominate(G; si)E1  E ; Dk  V ; E�  [1�i<kE�i
For everyu; v 2 V let �̂(u; v) � 1 if (u; v) 2 E,+1 otherwise.

For i 1 to k do
For everyu 2 Di rundijkstra( (V;Ei [E� [ (fug � V )) ; �̂; u)

Figure 4. An ~O(n2�1=km1=k) time algorithm for computing surplus 2(k � 1) distances�i�1(w0; u) � �(w0; u) + 2(i � 2) � �(u;w) + (2i � 3).
As a consequence, we get that�i(u; v) � �i�1(u;w0) + �(w0; w) + �(w; v)� (�(u;w) + (2i� 3)) + 1 + �(w; v)� �(u; v) + 2(i� 1) :
This completes the proof of the theorem. 2

As in the previous section, we can obtain a slightly bet-
ter algorithm for denser graphs. Algorithmapaspk is de-
scribed in Figure 5. There are two differences betweenapaspk andapaspk. The first is that the degree thresh-
olds are nowsi = n1�i=k, and notsi = (m=n)1�i=k .
The second is that for any1 � j1; j2 � k such thati + j1 + j2 � 2k + 1, the edges ofDj1�Dj2 are added
to the graph on which Dijkstra’s algorithm is run from ev-
ery vertexu 2 Di.
Theorem 4.2 For every2 � k = O(logn), the algorithmapaspk runs in ~O(n2+1=k) time, wheren is the number of
vertices in the input graphG = (V;E), and for everyu; v 2V we have�(u; v) � �̂(u; v) � �(u; v) + 2(bk=3c+ 1).

The analysis of this algorithm is slightly more compli-
cated than the analysis of the previous algorithms and it
is omitted. To get an additive error of at mostk, wherek > 2 is even, we can either use the algorithmapasp k2+1,

whose running time is~O(n2� 2k+2m 2k+2 ), or the algorithmapasp (3k�2)=2, whose running time is~O(n2+2=(3k�2)).
The combination of these two algorithms is the algorithmAPASPk mentioned in the abstract.

We can show that the multiplicative error of the estimates
produced by the algorithmapaspk is at most 3.

Theorem 4.3 For every2 � k = O(logn), the algorithmapaspk runs in ~O(n2�1=km1=k) time, and for everyu; v 2V we have�(u; v) � �̂(u; v) � 3�(u; v)� 2.

The proof of this theorem is again omitted. By takingk = �(logn), we get an~O(n2) time algorithm for find-
ing stretch 3 approximate distances. An extension of this
algorithm for weighted graph is presented in [14].

5 Boolean Matrix Multiplication

LetA andB be two Booleann� n matrices. Construct
a graphGA;B = (V;E) withV = fu1; : : : ; ung [ fv1; : : : ; vng [ fw1; : : : ; wng ;E = f(ui; vk) j aik = 1g [ f(vk; wj) j bkj = 1g :
The graph corresponding to two3� 3 matrices is depicted

in Figure 6. LetC = A � B (Boolean matrix multipli-
cation). Clearly,cij = 1 if and only if �G(ui; wj) = 2. 1 0 11 1 00 1 1!� 0 1 10 1 01 0 0!

Figure 6. Boolean matrix multiplication.
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Algorithm apaspk:

input: An unweighted undirected graphG = (V;E).
output: A matrix f�̂(u; v)gu;v of estimated distances.

For i 1 to k � 1 let si  n1� ik
For i 1 to k � 1 let Vi  fv 2 V j deg(v) � sig
For i 2 to k letEi  f(u; v) 2 E j deg(u) < si�1 or deg(v) < si�1g
For i 1 to k � 1 let (Di; E�i ) dominate(G; si)E1  E ; Dk  V ; E�  [1�i<kE�i
For everyu; v 2 V let �̂(u; v) � 1 if (u; v) 2 E,+1 otherwise.

For i 1 to k do
For everyu 2 Di rundijkstra( (V;Ei [E� [ (fug � V )) [ ([i+j1+j2�2k+1Dj1 �Dj2)) ; �̂; u)

Figure 5. An ~O(n2+1=k) time algorithm for computing surplus O(k) distances

Furthermore, as the graphGA;B is bipartite,cij = 1 if and
only if �G(ui; wj) � 3. As an consequence we get

Theorem 5.1 If all the distances in an undirectedn vertex
graph can be approximated with a one-sided additive er-
ror of at most one inO(A(n)) time, then Boolean matrix
multiplication can also be performed inO(A(n)) time.

By adding a disjoint path of lengthk � 2 ending at eachui, we get that distinguishing between distancek andk+2,
for any fixed k � 2, is also as hard as Boolean matrix
multiplication. Note that ifk � n2=3, then we can distin-
guish, with high probability, between distancek andk + 2
in ~O(n7=3) time.

Similarly, as any approximation algorithm that finds ap-
proximated distances of stretch strictly less than 2 can dis-
tinguish between distance 2 and distance 4, we get that get-
ting approximate distances of stretchlessthan 2, between
all pairs of vertices, is also as hard as Boolean matrix mul-
tiplication.

By turning the graphGA;B into a directed graph, where
edges are directed to the right, we get thatcij = 1 iff�G(ui; wj) < 1. Approximating distances indirected
graphs, to within anymultiplicative factor, is therefore as
hard as Boolean matrix multiplication. It is not difficult to
see that this remains so even if the directed graph is required
to be strongly connected.

6 Distance Emulators

Closely related to the algorithms of Sections 3 and 4 is
the notion of emulators.

Definition 6.1 (Emulators) Let G = (V;E) be an un-
weighted undirected graph. A weighted graphF = (V;E0)
is said to be ak-emulatorof G if and only if for everyu; v 2 V we have�G(u; v) � �F (u; v) � �G(u; v) + k.

There is one significant difference, however, between
emulators and the auxiliary graphs used in the algorithms of
Sections 3 and 4. There, we constructed for each vertexu an
auxiliary graphGk(u) that supplied good approximations to
the distances fromu to all the vertices of the graph. Here
we want a single graph that will supply good approxima-
tions ofall distances. Constructing a sparsek-emulator is
therefore harder than computing surplusk distances.

The definition ofk-emulators is related to the definition
of k-spanners(Awerbuch [8], Peleg and Schäffer [24]). LetG = (V;E) be a weighted undirected graph. A subgraphG0 = (V;E0) ofG is said to be ak-spanner ofG if and only
if for everyu; v 2 V we have�G0(u; v) � k��G(u; v). AsG0
is a subgraph ofG, we always have�G(u; v) � �G0(u; v).
This definition differs from the definition of emulators in
three respects. We require additive error, not multiplicative
error. We do not insist on getting a subgraph of the original
graph and we allow weighted edges. Althöferet al. [7] also
considerSteiner spannersin which vertices and edges may
be added to the graph. Steiner spanners are more closely
related to emulators. Liestman and Shermer [23] consider
additive spanners. They are able, however, to obtain sparse
additive spanners only for specific graphs such as pyramids,
grids and hypercubes. Additive spanners, unlike emulators,
must be subgraphs of the original graph. Emulators may
be described as weighted additive Steiner spanners. The

8



definition ofk-emulators is also related to the definition of
hop sets(Cohen [13]).

Implicit in the work of Aingworthet al. [2] is an ~O(n5=2)
time algorithm for constructing 2-emulators with~O(n3=2)
edges. We can get the following slightly stronger result.

Theorem 6.2 Every unweighted undirected graphG =(V;E) on n vertices can be 2-emulated by asubgraphG0 = (V;E0) with ~O(n3=2) edges. Such a subgraph can
be constructed in~O(n2) time.

We omit the simple proof due to lack of space. A sub-
graph 2-emulator is also an additive 2-spanner and a mul-
tiplicative 3-spanner. In Section 7 (Theorem 7.3) we show
that weighted graphs also have 3-spanners of size~O(n3=2).
We present there a more efficient algorithm, whose running
time is ~O(mn1=2), for finding such 3-spanners. As there
are bipartite graphs with
(n3=2) edges that do not contain
cycles of length four [27], this result is tight, up to polylog-
arithmic factors. We can also show:

Theorem 6.3 Every unweighted undirected graphG =(V;E) onn vertices has a 4-emulator with~O(n4=3) edges.
Such a graph can be constructed in~O(n7=3) time.

Proof: It is not difficult to check that the graphG3 =(V;E3 [E� [ (D1�V ) [ (D2�D2)) constructed by algo-
rithm apasp3 is a 4-emulator ofG = (V;E). 2

It is tempting to claim that thek-emulators, fork > 4,
can be similarly obtained by runningapaspk with k > 4.
Unfortunately, this is not true.

Let ek be the infimum of all numbers for which each
graph onn vertices has ak-emulator with~O(n1+ek ) edges.
We have shown thate2 � 1=2 ande4 � 1=3. We conjecture
that ek ! 0 as k ! 1. We are not able, however, to
construct emulators witho(n4=3) edges. We can, however,
construct 6-emulators with~O(n4=3) edges in~O(n2) time.

Theorem 6.4 LetG = (V;E) be an unweighted undirected
graph ofn vertices. A 6-emulator ofG with ~O(n4=3) edges
can be constructed in~O(n2) time.

It is easy to see thatk-emulators are Steiner(k+1)-spanners. Althöferet al. [7] show that Steiner(k+1)-spanners of some graphs onn vertices must have~
(n1+ 43(k+3) ) edges. We can show that Steiner 3-spanners
may require~
(n3=2) edges and that Steiner 5-spanners may
require~
(n4=3) edges (where~
(f) = 
(f = polylogn)).
7 Stretched Paths and Distances

In this section we describe algorithms for finding
stretched paths inweightedgraphs. We use the following
result which is part of the folklore.

Lemma 7.1 (Truncated Dijkstra) Let G = (V;E) be a
weighted graph onn vertices. Suppose that the adjacency
lists of the vertices ofG are sorted according to weight. Letv 2 V be a vertex ofG and let1 � s � n. Shortest paths
fromv to s vertices closest tov can be found in~O(s2) time.

The set ofs vertices returned by the truncated Dijkstra
algorithm running fromv is not uniquely defined, as there
may be many vertices at the same distance fromv. All that
we require is that ifS is the set of vertices returned by the
algorithm then for everyu 2 S andw 2 V n S we have�(v; u) � �(v; w).
Theorem 7.2 Let G = (V;E) be a weighted undirected
graph with n vertices andm edges. We can preprocess
the graph in ~O(m2=3n) time so that given any two verticesu; v 2 V , we can inO(1) time output an estimated distance�̂(u; v) satisfying�(u; v) � �̂(u; v) � 3��(u; v).

Proof: Let s be a parameter to be chosen later. We run
the truncated Dijkstra algorithm from every vertexv 2 V
and find a setN(v) of s vertices closest tov. The time
required for finding these sets is~O(ns2). Next, we find
a setD of size ~O(n=s) so that for everyv 2 V , there isu 2 D such thatu 2 N(v). Such a set can be found inO(ns) time. For every vertexv 2 V , we keep a pointer to a
vertexu = P (v) such thatu 2 D \N(v). We now run the
full Dijkstra algorithm from all the vertices ofD. The time
required is~O(nm=s). We keep an(n=s) � n matrix with
the distances from the vertices ofD to all the other vertices
of the graph. The time used so far is~O(ns2 + nm=s). This
is minimized by takings = m1=3. The total time is then~O(m2=3n).

Given a pair of verticesu andv, we first check whetherv 2 N(u). If so, we output the exact distance�(u; v) com-
puted during the truncated Dijkstra fromu. Otherwise, we
let w = P (u) 2 D \ N(u) and we output the estimated
distancê�(u; v) = �(u;w) + �(w; v). The distance�(u;w)
was found during the truncated Dijkstra fromu. The dis-
tance�(w; v) was found during the full Dijkstra fromw.

Clearly�(u; v) � �̂(u; v). If v 2 N(u), then�̂(u; v) =�(u; v). If v 62 N(u), then�(u;w) � �(u; v) and the esti-
mate�̂(u; v) satisfies�̂(u; v) = �(u;w) + �(w; v)� �(u;w) + (�(w; u) + �(u; v))� 2�(u;w) + �(u; v) � 3�(u; v) ;
as required. 2

Using essentially the same algorithm we can get:

Theorem 7.3 Every weighted undirected graphG =(V;E) onn vertices has a 3-spanner with~O(n3=2) edges.
Such a 3-spanner can be constructed in~O(mn1=2) time.
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Proof: Let s be a parameter to be chosen later. Run
the truncated Dijkstra algorithm from every vertex and find
for every vertexv 2 V a setN(v) of s vertices closest
to v. Find a setD of size ~O(n=s) such that for everyv 2V , there isu 2 D \ N(v). We then run a full Dijkstra
from every vertex ofD. The 3-spanner will be composed
of the shortest paths trees found in all the truncated and full
runs of Dijkstra’s algorithm. The total number of edges will
therefore be~O(ns + n2=s). We chooses = n1=2. The
number of edges in the 3-spanner is then~O(n3=2) and the
total running time is~O(ns2 + nm=s) = ~O(n2 +mn1=2).
Note however, that ifmn1=2 � n2 thenm � n3=2 and the
original graph is the required 3-spanner. 2

If we are not interested in all distances, if we are will-
ing to settle for a larger stretch factor, and if the number of
edges in the graph is not too close ton2, we can get more
efficient algorithms. These will appear in the full version of
the paper.
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