
Information Processing Letters 74 (2000) 115–121

Finding and counting small induced subgraphs efficiently

Ton Kloksa,∗, Dieter Kratschb,1, Haiko Müllerb,2

a Department of Mathematics and Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
b Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany

Received 20 May 1998; received in revised form 28 February 2000
Communicated by P.M.B. Vitányi

Abstract

We give two algorithms for listing all simplicial vertices of a graph running in time O(nα) and O(e2α/(α+1)) = O(e1.41),
respectively, wheren ande denote the number of vertices and edges in the graph and O(nα) is the time needed to perform a fast
matrix multiplication. We present new algorithms for the recognition of diamond-free graphs (O(nα + e3/2)), claw-free graphs
(O(e(α+1)/2)=O(e1.69)), andK4-free graphs (O(e(α+1)/2)=O(e1.69)). Furthermore, we show thatcountingthe number of
K4’s in a graph can be done in time O(e(α+1)/2). For all other graphs on four vertices we can count within O(nα + e1.69) time
the number of occurrences as induced subgraph. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Graph algorithms; Simplicial vertex; Claw-free graph; Diamond-free graph

1. Introduction

The first problem we consider is the problem of
finding all simplicial vertices of a graph. This is of
interest, since the complexity of many problems (e.g.,
CHROMATIC NUMBER, MAXIMUM CLIQUE) can be
reduced by first removing simplicial vertices from the
graph.

We first show an algorithm with time O(nα), which
is the time needed to compute the square of ann× n
0/1-matrix, wheren is the number of vertices of the
graph. (α < 2.376.) Then, using an idea of Alon et al.
in [1] we obtain an alternative algorithm with time
O(e2α/(α+1)), wheree is the number of edges in the
graph.

∗ Corresponding author. Email: kloks@cs.vu.nl.
1 Email: kratsch@minet.uni-jena.de.
2 Email: hm@minet.uni-jena.de.

A very basic problem in theoretical computer sci-
ence is the problem of finding a triangle in a graph. In
1978 Itai and Rodeh presented two solutions for this
problem. The first algorithm has a time of O(nα). The
second algorithm needs O(e3/2).

In [2] this result was refined to O(ea(G)), where
a(G) is the arboricity of the graph. Sincea(G) =
O(
√
e) in a connected graph (see [2]), this extends the

result of Itai and Rodeh. These were for almost ten
years the best known algorithms.

A drastic improvement was made recently by Alon
et al. In [1] they showed the following surprisingly
elegant and easy result. Deciding whether a directed or
an undirected graphG contains a triangle, and finding
one if it does, can be done in O(e2α/(α+1))=O(e1.41).

For finding a certain induced connected subgraph
with four vertices there are not many non-obvious re-
sults known. Two notable exceptions are the recogni-
tion of paw-free graphs and the recognition ofP4-free
graphs. Apaw is the graph consisting of a triangle

0020-0190/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00047-8

116 T. Kloks et al. / Information Processing Letters 74 (2000) 115–121

and one pendant vertex. Using a characterization of
Olariu [9], the class of paw-free graphs can be recog-
nized in O(nα) time. P4-free graphs (cographs) can
even be recognized in linear time [3]. We present new
efficient algorithms for all other induced connected
subgraphs on four vertices.

First we adopt the idea of [1] to obtain an efficient
algorithm that checks if a graph contains a diamond
and finds one if it does. The time of our algorithm is
O(nα + e3/2).

Using standard techniques, it is easy to see that
connected claw-free graphs can be recognized in
O(nα−1e) time. We show that there is also a
O(e(α+1)/2)=O(e1.69) recognition algorithm for claw-
free graphs.

In [1] an easy O(nα) algorithm counting the number
of triangles in a graph is given. Furthermore the
authors ask for an efficient algorithm counting the
K4’s. We give an O(e(α+1)/2) = O(e1.69) algorithm
counting theK4’s. Moreover we show that for any
fixed graphH on four vertices the number of copies
of H in a given graphG can be counted in time
O(nα + e(α+1)/2).

2. Listing all simplicial vertices

Definition 1. A vertex x in a graphG is called a
simplicial vertexif its neighborhoodN(x) is complete.

For many problems (e.g., coloring) simplicial ver-
tices can be safely removed, tackling the problem on
the reduced graph. It is therefore of interest to find
these simplicial vertices quickly.

For any graphG= (V ,E) andX ⊆ V we denote by
G[X] the subgraph ofG inducedbyX. We denote by
N[x] theclosedneighborhood ofx, i.e.,N[x] = {x} ∪
N(x). Letd(x) be the degree ofx, i.e.,d(x)= |N(x)|.

Lemma 1. A vertexx is simplicial if and only if for
all neighborsy of x,N[x] ⊆N[y].

Proof. The ‘only if’ part is obvious. Assumex is a
vertex such that for every neighbory, N[x] ⊆ N[y].
Assumex is not simplicial. Lety andz be two non
adjacent neighbors ofx. Thenz ∈N[x], butz /∈N[y],
contradictingN[x] ⊆N[y]. 2

Corollary 1. A vertexx is simplicial if and only if for
all neighborsy of x, |N[x] ∩N[y]| = |N[x]|.

Now let A be the 0/1-adjacency matrix ofG =
(V ,E) with 1’s on the diagonal, i.e.,Ax,x = 1 for all
x and forx 6= y, Ax,y = 1 if x andy are adjacent in
G andAx,y = 0 otherwise. HenceA is a symmetric
n×n 0/1-matrix. ConsiderA2. The following is a key
observation. For allx, y ∈ V :

(A2)x,y =
∣∣N[x] ∩N[y]∣∣.

(In particular(A2)x,x = d(x)+ 1).)

Theorem 1. There exists anO(nα) algorithm which
finds a list of all simplicial vertices of a graphG with
n vertices.

Proof. We assume that we have for each vertex a list
of its neighbors. Construct the 0/1-adjacency matrixA
with 1’s on the diagonal. ComputeA2 in time O(nα).
By Corollary 1 a vertexx is simplicial if and only
if (A2)x,y = (A2)x,x holds for all y ∈ N(x). Hence
for each vertexx this test can be performed in time
O(d(x)). The result follows. 2

The next algorithm is based on a technique pre-
sented in [1]. LetD be some integer (to be determined
later). We call a vertexx of low degreeif d(x)6 D.
A vertex which is not of low degree, is said to be of
high degree. Our algorithm consists of four phases.

Phase 1Search all simplicial vertices that are of low
degree.

Phase 2Mark all vertices of high degree that have a
low degree neighbor.

Phase 3Remove all low degree vertices from the
graph. Call the resulting graphG∗.

Phase 4Perform a matrix multiplication for the 0/1-
adjacency matrix ofG∗ with 1’s on the diagonal.
Make a list of all simplicials ofG∗ which are
not marked in Phase 2, using the algorithm of
Theorem 1.

Correctness follows from the following observation.

Lemma 2. If a vertexx of high degree is simplicial,
then all its neighbors are of high degree.

T. Kloks et al. / Information Processing Letters 74 (2000) 115–121 117

Proof. Assume a vertexx of high degree is simplicial.
Then for every neighbory of x, d(y)+ 1= |N[y]|>
|N[x]| = d(x)+ 1>D + 1, by Lemma 1. Hencey is
also of high degree.2
Theorem 2. There exists anO(e2α/(α+1)) time algo-
rithm to compute a list of all simplicial vertices of a
graph.

Proof. LetD = e(α−1)/(α+1). We assume we have for
every vertex a list of its neighbors. LetL be the set of
vertices of low degree and letH be the set of vertices
of high degree.

The first phase of the algorithm can be implemented
as follows. For eachx ∈ L, we check if every pair of
its neighbors is adjacent. Hence the first phase can be
performed in time proportional to∑
x∈L

d(x)26 2De.

Phases 2 and 3 can clearly be implemented in linear
time.

Now notice that

2e>
∑
x∈H

d(x)> |H |D,

hence the number of vertices ofG∗ is at most 2e/D.
Computing the square of the 0/1-adjacency matrix
for G∗ with 1’s on the diagonal can be performed in
time O((2e/D)α). Hence the total time needed by the
algorithm is

O
(
eD + (2e/D)α)=O(e2α/(α+1))

by our choice ofD. 2

3. Diamond-free graphs

In this section we consider the recognition of
diamonds in graphs.

Definition 2. A diamondis a graph isomorphic to the
graph depicted in Fig. 1 on the left.

Fig. 1. Diamond (left) and claw (right).

For the following result, see also [11].

Lemma 3. A graphG is diamond-free if and only if
for every vertexx, the graphG[N(x)] is a disjoint
union of cliques.

Proof. Consider a vertexx of degree 3 in a diamond.
Then the neighborhood ofx contains aP3. Hence
G[N(x)] cannot be a disjoint union of cliques. Con-
versely, if for some vertexx,G[N(x)] is not a disjoint
union of cliques, thenG[N(x)] must contain aP3. It
follows thatG contains a diamond.2
Corollary 2. MAXIMUM CLIQUE is solvable in time
O(n(n+ e)) for diamond-free graphs.

Our algorithm for checking if a graph is diamond-
free works as follows. Again, letD be some number.
We partition the vertices into vertices of low degree,
i.e., vertices of degree at mostD and vertices of high
degree. LetL be the set of low degree vertices, andH
the set of high degree vertices.

Phase 1Check if there is an induced diamond with a
vertex of degree 3 which is of low degree inG.

Phase 2Check if there is an induced diamond with a
vertex of degree 2 which is of low degree inG.

Phase 3 If no diamond is found in the two previous
steps, then remove all vertices of low degree from
the graph (otherwise stop). Call the resulting graph
G∗.

Phase 4Check ifG∗ has a diamond.

We can implement this algorithm as follows. We as-
sume we have the 0/1-adjacency matrixA with 0’s
on the diagonal. For each vertexx of low degree, con-
struct adjacency lists forG[N(x)]. This can be accom-
plished in time O(d(x)2). Compute the components
of G[N(x)] (for example using depth first search).
Check if each component is a clique. This can be done
in O(d(x)2) time. Notice that if some component in
N(x) is not a clique, aP3, and hence a diamond, can
easily be computed in O(d(x)2) time (for example if
y and z are non adjacent vertices in the same com-
ponent, then start a breadth first search fromy). It

118 T. Kloks et al. / Information Processing Letters 74 (2000) 115–121

follows that Phase 1 can be implemented to run in∑
x∈L d(x)26 2De time.
Next consider Phase 2. For each vertexx of low

degree, we now have the cliques in the neighborhood
(as a result of the previous phase). First computeA2

in time O(nα). Let C be a clique inN(x). For each
pairy, z in C, we check whether(A2)y,z > |C| − 1. If
this is the case, theny andz have a common neighbor
outsideN[x]. Hence in that case we find a diamond.
(Producing the diamond can then be done in linear
time, if all adjacency lists are sorted.) Hence, Phase
2 can be implemented to run in time O(De+ nα).

Finally, assume that neither Phase 1 nor Phase 2
produces a diamond. ComputeG∗. The number of
vertices inG∗ is at most 2e/D. Now, simply repeat
the procedure described in Phase 1, forall vertices of
G∗. This takes time proportional to∑
x∈H

dH (x)
2=O

(
e|H |)=O(e2/D).

Hence the total running time is bounded by O(De+
e2/D + nα). Taking D = √e we obtain following
theorem.

Theorem 3. There is anO(e3/2+ nα) algorithm that
checks if a graph has a diamond and produces one if
it does.

4. Claw-free graphs

The importance of claw-free graphs follows from
matching properties, line graphs, Hamiltonian prop-
erties and the polynomial time algorithm for com-
puting the independence number [4,7]. However, al-
though many characterizations are known, there is no
fast recognition algorithm known. Even the extensive
survey on claw-free graphs in [4] mentions only an
O(n3.5) recognition algorithm. We present in this sec-
tion an O(e(α+1)/2)=O(e1.69) recognition algorithm.

Definition 3. A claw is a graph isomorphic to the
graph depicted in Fig. 1 on the right. A graph is
claw-free if it does not have an induced subgraph
isomorphic to a claw. We denote the vertex of degree
3 in a claw as thecentral vertex.

Let G be a graph withn vertices ande edges. We
start with an easy observation.

Lemma 4. If G is claw-free then every vertex has at
most2

√
e neighbors.

Proof. Consider a vertexx. If G is claw-free, then
G[N(x)] is triangle-free. Letp = |N(x)|. By Turán’s
theorem, a graph withp vertices and without triangles
can have at most14p

2 edges (see, e.g., [10,5]). Hence,
there must be at least1

2p(p − 1)− 1
4p

2 = 1
4p

2− 1
2p

edges inG[N(x)]. Then (adding the edges incident
with x), G[N[x]] must contain at least14p

2 − 1
2p +

p > 1
4p

2 edges. This can be at most the number of
edges ofG. Hencep 6 2

√
e. 2

Our algorithm for recognizing claw-free graphs
works as follows. First we check whether every vertex
has at most 2

√
e neighbors. If there is a vertex with

more than 2
√
e neighbors, there must be a claw with

this vertex as the central vertex by Lemma 4.
If every vertex has at most 2

√
e neighbors, we per-

form a fast matrix multiplication for each neighbor-
hood to check if the complement of such a neighbor-
hood contains a triangle. This step of the algorithm can
be performed in time proportional to∑
x

d(x)α 6 (2
√
e)α−1

∑
x

d(x)6 2αe(α+1)/2.

This proves the following theorem.

Theorem 4. There is anO(e(α+1)/2) algorithm to
check whether a connected graph is claw-free.

5. Counting the number ofK4’s

In this section we first describe an algorithm that
decides whether a connected graph has aK4 as an
induced subgraph and outputs one if there exists one.
Moreover, we show how to extend it to an algorithm
that counts the number of occurrences ofK4 as an
induced subgraph of the given connected graph. Both
algorithms have time O(e(α+1)/2)=O(e1.69). The first
one improves upon an O(e1.89) algorithm mentioned
in [1].

As in the preceding sections the vertex set of the
input graphG is partitioned into the setsL andH .

T. Kloks et al. / Information Processing Letters 74 (2000) 115–121 119

The vertices ofL are those with degree at mostD.
The recognition algorithm works as follows.

Phase 1For each vertexx ∈H compute the square of
the adjacency matrix ofG[N(x) ∩ H] to decide if
there is a triangle contained inG[N(x)∩H].

This can be done in time∑
x∈H

dH (x)
α =O(eα/Dα−1).

Phase 2For each vertexx ∈ L compute the square of
the adjacency matrix ofG[N(x)] to decide whether
G[N(x)] contains a triangle.

This can be done in time∑
x∈L

d(x)α =O(Dα−1e).

Theorem 5. There is anO(e(α+1)/2) algorithm that
checks whether a connected graph has aK4 and
outputs one if it does.

Proof. G has aK4 if and only if the algorithm finds
a triangle inG[N(x) ∩H] in Phase 1 or a triangle in
G[N(x)] in Phase 2. The time bound follows by taking
D =√e. 2

In [1] an easy O(nα+1) algorithm for counting the
K4’s in a graph is given and the authors ask whether it
can be improved to an o(nα+1) algorithm. We present
an O(e(α+1)/2) algorithm that counts the number of
K4’s in a given connected graph. Note that this is at
least as good as the algorithm of [1] for all graphs.
However it is an o(nα+1) algorithm only for sparse
graphs.

We distinguish five different types of aK4, depend-
ing on the number of low and high vertices, respec-
tively, in theK4. We denote byLi the set ofK4’s with
exactlyi vertices of low degree. Clearly, eachK4 is of
exactly one of the typesL0, L1, L2, L3 andL4. The
counting algorithm determines the number ofK4’s in
G from each type, denoted bỳ0, `1, `2, `3 and`4,
respectively. The algorithm starts as the recognition
algorithm, however in each phase it counts the corre-
sponding number of triangles using the O(nα) algo-
rithm given in [1].

Phase 1For each vertexx ∈ H compute the square
of the adjacency matrix ofG[N(x) ∩ H]. Com-
pute the sum of the number of triangles contained

in G[N(x) ∩ H] taken over allx ∈ H . This num-
ber is exactly 4̀0. The time is

∑
x∈H dH (x)α =

O(eα/Dα−1).

Phase 2For each vertexx ∈L compute the square of
the adjacency matrix ofG[N(x)]. Compute the sum
of the number of triangles contained inG[N(x)]
taken over allx ∈ L. This number is equal to 4̀4+
3`3+ 2`2+ `1 since eachK4 is counted exactlyi
times,i ∈ {1,2,3,4}, if and only if it containsi low
vertices.

Phase 2 can be done in time
∑
x∈L d(x)α =

O(Dα−1e), because
∑
x∈L d(x)= 2e.

The next two phases compute`4 and `1, respec-
tively, in a similar fashion.

Phase 3For every x ∈ L computeG[N(x) ∩ L].
Compute the sum of the number of triangles in
G[N(x)∩L]. This number is equal to 4̀4.

This takes time
∑
x∈L dL(x)α =O(eDα−1).

Phase 4For every x ∈ L computeG[N(x) ∩ H].
Compute the sum of the number of triangles in
G[N(x)∩H]. This number is equal tò1.

This takes time
∑
x∈L dH (x)α =O(eDα−1).

Finally we are going to count the triangles in the
neighbourhood of a vertex in a slightly different way.

Phase 5For every low vertexx compute the adja-
cency matrixA(x) ofG[N(x)] and then compute its
squareA(x)2. Then(A(x)2)i,j is exactly the num-
ber of common neighbors ofi, j ∈ N(x) belonging
to N(x). We compute the sum over all(A(x)2)i,j
for which {i, j } ∈E, i < j andi, j ∈H . Moreover,
we sum these values over all low verticesx. Hence,
we only count thoseK4 of typeL(2) or L(1). The
final value we get is exactly 2̀2+ 3`1. This can be
done in time

∑
x∈L d(x)α =O(eDα−1).

Theorem 6. There is anO(e(α+1)/2)=O(e1.69) time
algorithm counting the number ofK4’s in a given
graph.

Proof. Using all the values we computed by the
algorithm it is easy to computè0+ `1+ `2+ `3+ `4,
i.e., the number ofK4’s occurring as induced subgraph
inG. The time bound follows by takingD := √e. 2

120 T. Kloks et al. / Information Processing Letters 74 (2000) 115–121

6. RecognizingK`’s

Nešeťril and Poljak gave in [8] an O(nαb`/3c+i) time
algorithm that decides whether a given graph contains
a K`. Here i is the remainder of̀ by division by
3 which we will also denote byi = mod(`,3). As
mentioned in [1] it is easy to see that the method
of [8] can also be used for countingK`’s within the
same time bound. Alon, Yuster and Zwick mention
in [1] that combining thisK` counting algorithm of [8]
with their methods leads to O(nd(G)αb(`−1)/3c+i) and
O(e d(G)αb(`−2)/3c+i) time algorithms for counting
the number ofK`’s in a given graph whered(G)
denotes the degeneracy of the input graph.

We show that the algorithm of [8] can also be used
to design another type of algorithm that recognizes
K`’s by generalizing the O(e2α/(α+1)) time triangle
recognition algorithm of [1] and the O(e(α+1)/2) time
K4 recognition algorithm of Section 5.

As in the preceding sections the vertex set of the
input graphG is partitioned into the setsL andH .
The vertices ofL are those with degree at mostD.
The algorithm recognizingK`’s works as follows.

Phase 1For each vertexx ∈ L compute the adjacency
matrix of G[N(x)] and decide whetherG[N(x)]
contains aK`−1 by applying theK`−1 recognition
algorithm of [8].

Phase 2Compute the adjacency matrix ofG[H] and
decide whether there is aK` contained inG[H] by
applying theK` recognition algorithm of [8].

Theorem 7. There is anO(e(αb`/3c+i)/2) time algo-
rithm deciding whether a given graph contains aK` if
i =mod(`,3) ∈ {1,2}.

There is anO(eβ(β−α+2)/(2β−α+1)), where β =
(α`)/3, time algorithm that decides whether a given
graph contains aK` if ` is a multiple of3.

Proof. The adjacency matrices ofG[N(x)], x ∈ L,
ared(x) × d(x) matrices withd(x) 6 D. Hence the
time of Phase 1 is∑
x∈L

O
(
d(x)αb(`−1)/3c+ mod(`−1,3))

=O
(
eDαb(`−1)/3c+ mod(`−1,3)−1).

Since |H | 6 2e/D the running time of Phase 2 is
O((e/D)αb`/3c+ mod(`,3)).

Now we haveαb(` − 1)/3c + mod(` − 1,3) =
αbl/3c +mod(`,3)− 1 if ` is not a multiple of 3 and
αb(`− 1)/3c + mod(`− 1,3)= β − α + 2 if ` is a
multiple of 3.

Supposè is not a multiple of 3, i.e.,i = mod(`,3) ∈
{1,2}. Then we chooseD := √e implying that the
time of theK` recognition algorithm is O(e(αb`/3c+i)/2).

Suppose` is a multiple of 3. ChoosingD :=
e(β−1)/(2β−α+1) we get the stated time of theK`
recognition algorithm. 2

It is worth mentioning that our algorithms are at
least as fast as the algorithms of Nešetřil and Poljak
on all input graphs if̀ is not a multiple of 3. If` is
a multiple of 3 then this is not the case in general.
However, notice that the time of the algorithm given
in [8] is better only when the number of edges in the
graph exceeds

�
(
n2−(3−α)/(β−α+2))=�(n2−2(1/`)).

Hence, for large values of̀, the algorithm of [8] is
faster only for very dense graphs.

It is an interesting open problem whether there is an
O(eα `/6) algorithm for recognizing whether a graph
contains aK`, if ` is a multiple of 3, in particular
whether there is a O(eα/2) algorithm for recognizing
triangles.

7. Other small subgraphs

We show that for any connected subgraphH on
four vertices there is a O(nα + e(α+1)/2) algorithm
counting the number of occurrences ofH in the given
graphG. More precisely, on inputG = (V ,E) we
compute the cardinality of{W : W ⊆ V andG[W] is
isomorphic toH } for a fixed graphH on four vertices.
The connected graphs on four vertices areK4,K4− e
(the diamond),C4 (the square),P4, P3+K1 (the paw)
andK1,3 (the claw).

Theorem 8. Let H̃ be a connected graph on four
vertices such that there is anO(t (n, e)) time algorithm
counting the number of̃H ’s in a given graph. Then
there is anO(nα + t (n, e)) time algorithm counting
the number ofH ’s for all connected graphsH on four
vertices.

T. Kloks et al. / Information Processing Letters 74 (2000) 115–121 121

Proof. The number of occurrences of the connected
subgraphs on four vertices in a graphG fulfill the
following system of linear equations, andK, D, S,
P , Q and Y denote the number of subgraphs inG
isomorphic toK4, diamond, square,P4, paw and claw,
respectively.∑
(x,y)∈E

(
(A2)x,y

2

)
= 6K +D,

∑
(x,y)/∈E

(
(A2)x,y

2

)
=D + 2S,

∑
(x,y)∈E

(AC)x,y(CA)x,y = 4S + P,
∑
x∈V

(A3C)x,x = 4D + 2P + 4Q,

∑
(x,y)∈E

(
(AC)x,y

2

)
=Q+ 3Y.

On left hand side,A denotes the adjacency matrix of
the graphG, C the adjacency matrix ofG, both with
zeros on the main diagonal. We are able to compute the
values on left sides of these equations in time O(nα).

Let us explain how to see the first equation. We

consider an edge(x, y) ∈ E such that
((A2)x,y

2

) = k.
Then there exist exactlyk pairs of different verticesp
andq such thatp,q ∈ N(x) ∩N(y), i.e.,p, q , x and
y induce either aK4 (if (p, q) ∈ E) or a diamond (if
(p, q) /∈ E). Summing up we count eachK4 exactly
six times, since every edge ofK4 will play the role of
(x, y), and every diamond exactly once, wherex and
y are the vertices of degree three in the diamond. The
equation follows. Similar observations give the other
equations.

On the right side we need the number of̃H ’s for
one subgraph̃H to be able to solve the system and find
the numbers ofH ’s for all the other subgraphsH . 2

A similar theorem can be shown for all graphs
on four vertices by extending the system of linear
equations. This and Theorem 6 imply

Corollary 3. For any graphH on four vertices there
is aO(nα + e(α+1)/2) algorithm counting theH ’s in a
given graphG.

References

[1] N. Alon, R. Yuster, U. Zwick, Finding and counting given
length cycles, Algorithmica 17 (1997) 209–223.

[2] N. Chiba, T. Nishizeki, Arboricity and subgraph listing algo-
rithms, SIAM J. Comput. 14 (1985) 210–223.

[3] D.G. Corneil, Y. Perl, L.K. Stewart, A linear recognition
algorithm for cographs, SIAM J. Comput. 4 (1985) 926–934.

[4] R. Faudree, E. Flandrin, Z. Ryjáček, Claw-free graphs—
A survey, Discrete Math. 164 (1997) 87–147.

[5] F. Harary, Graph Theory, Addison-Wesley, Reading, MA,
1969.

[6] A. Itai, M. Rodeh, Finding a minimum circuit in a graph, SIAM
J. Comput. 7 (1978) 413–423.

[7] G.J. Minty, On maximal independent sets of vertices in claw-
free graphs, J. Combin. Theory B 28 (1980) 284–304.

[8] J. Nešeťril, S. Poljak, On the complexity of the subgraph
problem, Comment. Math. Univ. Carolinae 14 (1985) 415–419.

[9] S. Olariu, Paw-free graphs, Inform. Process. Lett. 28 (1998)
53–54.

[10] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat.
Fiz. Lapok 48 (1941) 436–452.

[11] A. Tucker, Coloring perfectK4—e-free graphs, J. Combin.
Theory B 42 (1987) 313–318.

