Lecture 5: Hardness for
Sequence Problems under
SETH and OVC
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Thanks to Piotr Indyk
and Arturs Backurs for
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e Define sequence problems:

— (Discrete) Frechet Distance
— Edit Distance and LCS
— Dynamic Time Warping (DTW)
e Birds eye view on the upper bounds
— Dynamic programming, quadratic time

* Show conditional quadratic lower bounds
— Assuming SETH / OV, example: LCS
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Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

) Sequence walk problems
* g0 I‘Ight Only onp to (pi+1r qj) optimize, over all such walks,

e o0 richt onlvonato (p. a. some measure depending on
5 g Y 9 (p" qJ+1) the distances between p; and g

e goright on both to (pi+1, qj+1) over all steps (p,q;) of the walk.
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e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

Find a walk along P and Q
that minimizes the max
distance over all steps.

eDefinition:
— Let F = set of monotone functions [0,1]->[0,1]
— For two curves P,Q: [0,1] >R?:
~ Dg(RQ) = ming, c e max, ¢ g4 | [P(F(t)) — Qlg(t))] |
eDiscrete version:
— F={f:]0,1] =>{1...n}, nondecreasing},
— PQ:{1..n} > R? : Curves are sequences of points in the plane
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Frechet Distance: Algorithm

Discrete version:
— Let F={f:[0,1] -{1...n}, nondecreasing }, mapping time to position,
— For two sequences of points, P,Q: {1...n}>R?:

D (P,Q) = mingg c e max; ¢ o1y | |P(f(t) — Qlg(t)) | |

Dynamic programming:
— A][i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
— Ali, jl=max[ | |P()-Q(j)| |, min (A[i-1, j-1], A[i, j-1], A[i-1, )]
Time: O(n?)

Can be improved to O(I’\2 Iog Iog n/Iog n) [Agarwal-Avraham-Kaplan-Sharir'12] (aIso
[Buchin—Buchin—MeuIemans—MuIzer'14])

Many algorithms for special cases and variants
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Find a walk along x and y that minimizes the sum of
distances at each step.
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Dynamic Time Warping

e Definition:
— X, y: two sequences of points of length n
— Al[i, j]=dist(x; y;)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
— DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of
distances at each step.

» Speech processing and other applications

e Asimple O(n?) time dynamic programming algorithm
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e Example: LCS(meaning , matching) = maing
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Longest Common Subsequence (LCS)

e Definition:
— two sequences s and t of letters, length n
— find a subsequence of both s and t of max length

e Example: LCS(meaning , matching) = maing
e Simple O(n?) time algorithm:
max {A[i-1, j], Ali, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
Ali,j]=

max {A[i-1, j], Ali, j-1]} otherwise.

Best algorithm: O(n?/log n) [Masek-Paterson’80]
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Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

) insert a _ e>t .
meaning —— maeaning —— mataning

)

matcning n—$>hmatching
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Computing edit distance

e Asimple O(n?) time dynamic programming algorithm (wagner-
Fischer’74]

e Can be improved to O(n?/log n) Masek-Paterson’8o]

e Better algorithms for special cases:uss,vss,mss,
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AK010...]
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Computing edit distance

A simple O(n?) time dynamic programming algorithm (wagner-

Fischer’74]

Can be improved to O(n?/log n) [Masek-Paterson’80]

Better algorithms for special cases:(uss,wvss vss,
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AK010...]

Approximation algorithms: O(1) —approx in O(n?*) time

[Chakraborty-Das-Goldenberg-Koucky-Saks’18],

O(f(g)) —approx in O(n**€) time [andoni-Nowatzki20]

49
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What do these problems have in common ?

Widely used metrics

Simple dynamic-programming algorithms with (essentially)
guadratic running time

We have no idea if/how we can do any better

Plausible explanation:
— 3SUM-hard ? People tried for years...
— hard under OVH and SETH ?



Plan

 Show conditional quadratic lower bounds
— Assuming SETH / OVH
— Basic approach
— Hardness for LCS
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Reminder: Orthogonal Vectors Hypothesis (OVH)

* Orthogonal Vectors Problem (OV). Given a set of
vectors S € {0, 1}4, d = w(log n), |S|=n, are
therea,beSs.t.2_%ab =07

— Can be solved trivially in O(n?d) time

— Best known algorithm runs in n2/0loe cn) time,
where d=c(n)-log n [Abboud-Williams-Yu’15]

OV Hypothesis (implied by SETH):
OV can’t be solved in n?£-d°® time for any € > 0.



Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]
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Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:

— SC{0,1}¥ > sequence x, |x|< n-d°M)
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Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:

— SCE{0,1}¢ > sequence x, |x|< n-d°®

— SE{0,1}¥ > sequence vy, |y|< n-d°®

— distance(x,y)=small if exists a, b € S with Z.a.b, =0
— distance(x,y)=large, otherwise

— The construction time is n-d°®

— Gadgets for coordinates and vectors

*See also [Abboud-V. Williams-Weimann’14]
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Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:
— SCE{0,1}¢ > sequence x, |x|< n-d°®
— Sc{0,1}¢ > sequence y, |y|< n-d°®
— distance(x,y)=small if exists a, b € S with Z.a.b, =0
— distance(x,y)=large, otherwise
— The construction time is n-d°®
— Gadgets for coordinates and vectors ENSAHUEICESS

for LCS

*See also [Abboud-V. Williams-Weimann’14]

65



Hardness for LCS

| will present the ideas behind the proof from
[Abboud-Backurs-VW’15].
Full construction. NO full proof.

[Bringmann-Kunnemann’15] obtained an independent proof.
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OV to LCS

Given vectors {sq, ..., S,},s; € {0,1}¢ Vi, OV is
Vo ety Mty (= i[K] V =55 [KD.

Coordinate gadgets c, e taking bits

Outgr OR gadgets x, y taking sets of | Vector gadgets f, g taking bit vectors to short sequences s.t.
bit vectors {sy, ..., S}, to short to short sequences s.t. for some T LCS(c(x),e(y)) = 0ifx =y =1,

sequences s.t. for some () LCS (f(si),g(sj)) =T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1lifx-y=0.

LCS(x,y) = QifVi,j: s;-s; # 0,
LCS(x,y) = Q + 1if3i,j: s;-5;,=0. | LCS (f(si),g(sj)) =Tifs;-s; # 0.
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L,jE[n]
e LetS={s,s,,..., S} be the vectors from OV instance
* Suppose we have s, — gadget sequences f(s,) and g(s))
LCS(f(s)),8(s;)) = B if s;'s; # 0, LCS(f(s;),8(s)) =B + 1 otherwise.

* s,—vector of all 1s (no vector orthog. to s)
Want to create sequences x

Attempt 1: " and y so that LCS(x,y) is Large

_ if there is an OV pair and
x = f(s,) f(s;) ... fls;) ... f(s,) LCS(x,y) is Small otherwise.
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Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/”'szczou er Boolean

L,j€[n]
e LetS={s,;s,,.., S,} be the vectors from OV instance
» Suppose we have s, — gadget sequences f(s,) and g(s;)
LCS(f(s;),8(s;)) = B if s;-s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

* s,— vector of all 1s (no vector orthog. to s,)
Want to create sequences x
- and y so that LCS(x,y) is Large
Attempt 1: an
P if there is an OV pair and

x = f(sy) f(s;) ... f(s;) ... f(s,) LCS(x,y) is Small otherwise.
y = (8(sp))"" 8(s,) 8(s,) - 8(s)) - 8(s,) (8(sp))™*
Idea: Imagine gadgets are letters.

If no OV, LCS length is n B; If s;-s,=0 can align f(s;) and g(s;) and all
other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.
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If no OV, LCS length is n B; If s;-s,=0 can align f(s;) and g(s;) and all
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other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.

Problem: Opt LCS might not align entire gadgets!
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* s,— vector of all 1s (no vector orthog. to s,) Want t X
ant to create sequences x
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other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.
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Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s;) and g(s)) Idea fOr hard ness

LCS(f(s)),8(s)) = B if s;'s; #0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS
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LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q=09 R=14¢

x =Q f(sy)R Qf(s,)R ... Qf(s,) R

y = (Qg(sy) R)"* Qg(s;)R Qg(s,) R... Qg(s,) R (Qglsy) R)™
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Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.
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Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s,) is aligned with two different f(s;) and f(s;).



Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q =09, R=1¢

x = Q f(s;)R Qf(s,)R k

y = (Qg(s) )" Qg(sy)R Qg[S,) R... Qgls,) R (Qgls) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s,) is aligned with two different f(s;) and f(s;).

Problem: LCS might align f(s,) with several g(s,).



Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f
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y = (Qglso) )" Qg(s;)R Qgls) R... Qg(s,) R (Qgls,) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s) is aligned with two different f(s;) and f(s)).

Problem: LCS might align f(s,) with several g(s,).
The g(s,) are partitioned into blocks aligned with at most a single f(s;).



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .

LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea

otherwise.

s, — vector of all 1s (no vector orthog. to s;)
Attempt 3: Q=Oq,R=1q,P=2r

x = PVIQ f(s,)R Q f(s,)R Q ... RQ f(s) R PIV!
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Each s, — sequences f(s;) and g(s;) .
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otherwise.
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P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.
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P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

> n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.



Let S ={s,,s,,..., S} be the vectors
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and also as many Ps as possible from y are aligned.

> n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Thus, exactly n-1 Ps will be unmatched, and every f(s,) will be fully
aligned with some g(s;) (possibly j=0).



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09 R=19 P=2"
x = PIVlQ f(s,)R Qf(s,)R Q.... RQ (s ) R P!V B

y = P (Qglsy) RP)""Q g(s;) R P"Qgls,) RP.."Qgls,) RP (Q g[5) RP)™

Idea:

P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

> n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Thus, exactly n-1 Ps will be unmatched, and every f(s,) will be fully
aligned with some g(s;) (possibly j=0).

The gadgets f(s;) and g(s;) act as letters!



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09,R=19,P=2"

x = PIvIQ f(s;)R Q f(s,)R Q... RQ f(s,) R P!V
y = P(Qglsy) RP)™* Qg(s;) RP Qglsy) RP... Qgls,) RP (Qglsy) RP)™

LCS length:



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09,R=19,P=2"
x = PIVIQ f(s;)R Q f(s,)R Q... RQ f(s,) R PIY!
y = P(Qglsy) RP)™* Qg(s;) RP Qglsy) RP... Qgls,) RP (Qglsy) RP)™

#Psinyis 3n-1, and n-1 are not matched, so 2n

LCS length: aligned.
2n|P| + n(|Q|+|R|)+2"_, LCS(f(s:),8(s;)), &ls)) aligned with f(s;)



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09,R=19,P=2"
x = PIVIQ f(s;)R Q f(s,)R Q... RQ f(s,) R PIY!
y = P(Qglsy) RP)™* Qg(s;) RP Qglsy) RP... Qgls,) RP (Qglsy) RP)™

#Psinyis 3n-1, and n-1 are not matched, so 2n

LCS length: aligned.
2n|P| + n(|Q|+|R|)+2"_, LCS(f(s:),8(s;)), &ls)) aligned with f(s;)

=2nr+ 2gn +n B if no orthog. pair
> [2nr + 2gn + n B] + 1 if 9 an orthog. pair.



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Reduction:
x = PVIQ f(s,)R Q. f(s,)R Q ... RQ f(s.) R P!V
y = P (Qg(sy) RP)"*Qg(s;) RP Qg(s,) RP.. Qg(s,) RP(Qgls,) RP)"*



Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Reduction:
x = PVIQ f(s,)R Q. f(s,)R Q ... RQ f(s.) R P!V
y = P (Qg(sy) RP)"*Qg(s;) RP Qg(s,) RP.. Qg(s,) RP(Qgls,) RP)"*

Tricky proof in paper shows the following suffice:
|Ql, [RI,IP], |f(s;)],]8(s)| < poly(d), so that
1], 1y| < n poly(d).



OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.
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Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is
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Done!
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for (x,y) # (1,1).



OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.

_ c(0) = e(0) =
Done! All that remains! c(1)=4  e(l)=

LCS(c(1),e(1)) =0, and
LCS(c(x),e(y)) =
for (x,y) # (1,1).



Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS

\/ /\ce[d] (mvilc

i,j€[n]
Recall we have coordinate gadgets

x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

V v, [c])
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If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.
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LCS(c(x),e(y))=0ifx=y=1and 1

otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3" 5%c(s;[1]) 5"... 5" c(s;[d]) 5" LCS(f(s),, g(s)) = rif s, -s# 0

s)=5Y¢e(s.[1]) 5Y... 5Ye(s.[d]) 5Y 3" and
g(s) = 5 e(s,[1]) (s1d) eS(e), 8o = o1
where r = u(d+1)+d-1, u > d. otherwise.
Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(s;[t]) and e(s;[t]) are matched.

If s;'s; # 0, the alignment of c(s;[t]) with e(s;[t]) for all t gives < d,
SO we get <(d+1)u+d-1 =r. (but then the 3s Would be matched, so =r)
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OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.

c(0) = e(0) =
Done! Done! c1)=4  e(l)=

LCS(c(1),e(1)) =0, and
LCS(c(x),e(y)) =
for (x,y) # (1,1).
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e Thm: For any integer k2 2,

k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

* Hardness based on even more believable assumptions:
— Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2"(*-¢) poly(n) time for all k.
(although — maybe this is equivalent to SETH...)

— On much more believable assumptions!
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Circuit-Strong-ETH

e SETH is ultimately about SAT of linear size CNF-formulas
There are more difficult satisfiability problems:

— CIRCUIT-SAT C-SETH: satisfiability of circuits from
— NC-SAT circuit class C on n variables and size s

— NC1-SAT requires 2"°" poly(s) time.

E.g. NC-SETH should be much more believable!
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n2

OV and APSP 2 A
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W’14,AWY'15 ENPis not in NCL1.
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