Lecture 5: Hardness for
Sequence Problems under
SETH and OVC

o

Thanks to Piotr Indyk
and Arturs Backurs for
some slides

Plan

Plan

e Define sequence problems:

— (Discrete) Frechet Distance
— Edit Distance and LCS
— Dynamic Time Warping (DTW)

Plan

e Define sequence problems:

— (Discrete) Frechet Distance
— Edit Distance and LCS
— Dynamic Time Warping (DTW)

e Birds eye view on the upper bounds

— Dynamic programming, quadratic time

Plan

e Define sequence problems:

— (Discrete) Frechet Distance
— Edit Distance and LCS
— Dynamic Time Warping (DTW)
e Birds eye view on the upper bounds
— Dynamic programming, quadratic time

* Show conditional quadratic lower bounds
— Assuming SETH / OV, example: LCS

Walks on sequences

pl p2 p3 pa p5

q2 a3 q4

Given two sequences {p,} and {qj}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

Walks on sequences

pl p2 p3 p4 p5
@)
0 O—0 90O 0
q2 a3 q4

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

Walks on sequences

pl p2 p3 p4 p5
@)
0 O—0 90O 0
q2 a3 q4

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

+ go right only on p to (p,,y, a)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

+ go right only on p to (p,,y, a)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

+ go right only on p to (p,,y, a)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

+ go right only on p to (p,y, Gy
* go right only on q to (p; q;,4)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

+ go right only on p to (p,y, Gy
* go right only on q to (p; q;,4)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

+ go right only on p to (p,y, Gy
* go right only on q to (p; q;,4)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

e goright only on p to (pi,1, qj)
* go right only on q to (p; q;,4)
* go right on both to (p,,, di,4)

Walks on sequences

S

p5

2@ O
w OS]

N

ql q2 q a5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

e goright only on p to (pi,1, qj)
* go right only on q to (p; q;,4)
* go right on both to (p,,, di,4)

Walks on sequences

pl p2 p3 p4)
@ @
O—©O

ql q2 g3 qé g5

Given two sequences {p;} and {q;}, a walk on them
starts at p; and q,. In each step it is in some
position (p;,q;) and can next:

) Sequence walk problems
* g0 I‘Ight Only onp to (pi+1r qj) optimize, over all such walks,

e o0 richt onlvonato (p. a. some measure depending on
5 g Y 9 (p" qJ+1) the distances between p; and g

e goright on both to (pi+1, qj+1) over all steps (p,q;) of the walk.

(Discrete) Frechet Distance [Alt-Godau’95]

e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau’95]

e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

(Discrete) Frechet Distance [Alt-Godau’95]

e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

lats

(Discrete) Frechet Distance [Alt-Godau’95]

e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

eDefinition:
— Let F = set of monotone functions [0,1]->[0,1]
— For two curves P,Q: [0,1] >R?:

D¢ (PQ) = ming, ¢ g Max, ¢ 47 | [P(F(t)) — Q(g(t) | |

(Discrete) Frechet Distance [Alt-Godau’95]

e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

eDefinition:
— Let F = set of monotone functions [0,1]->[0,1]
— For two curves P,Q: [0,1] >R?:
 Dy(PQ) = ming, ¢ max, ¢ o | [P(D) — Qlg(t)] |
eDiscrete version:
— F={f:]0,1] =>{1...n}, nondecreasing},
— PQ:{1..n} > R? : Curves are sequences of points in the plane

(Discrete) Frechet Distance [Alt-Godau’95]

e “Dog walking distance”
— Smallest length leash that enables dog-walking along two routes

Find a walk along P and Q
that minimizes the max
distance over all steps.

eDefinition:
— Let F = set of monotone functions [0,1]->[0,1]
— For two curves P,Q: [0,1] >R?:
~ Dg(RQ) = ming, c e max, ¢ g4 | [P(F(t)) — Qlg(t))] |
eDiscrete version:
— F={f:]0,1] =>{1...n}, nondecreasing},
— PQ:{1..n} > R? : Curves are sequences of points in the plane

Frechet Distance: Algorithm

Frechet Distance: Algorithm

* Discrete version:
— Let F={f:[0,1] -{1...n}, nondecreasing }, mapping time to position,
— For two sequences of points, P,Q: {1...n}>R?:
De(P,Q) = mingg e g max; e o1 | [P(F(t)) — Qlg(t)) | |

Frechet Distance: Algorithm

* Discrete version:
— Let F={f:[0,1] -{1...n}, nondecreasing }, mapping time to position,
— For two sequences of points, P,Q: {1...n}>R?:
D (P,Q) = mingg c e max; ¢ o1y | |P(f(t) — Qlg(t)) | |

 Dynamic programming:
— A][i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
— Ali, jl=max[| |P()-Q(j)| |, min (A[i-1, j-1], A[i, j-1], A[i-1,)]

Frechet Distance: Algorithm

* Discrete version:
— Let F={f:[0,1] -{1...n}, nondecreasing }, mapping time to position,
— For two sequences of points, P,Q: {1...n}>R?:
De(P,Q) = mingg e g max; e o1 | [P(F(t)) — Qlg(t)) | |

 Dynamic programming:
— A][i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
— Ali, jl=max[| |P()-Q(j)| |, min (A[i-1, j-1], A[i, j-1], A[i-1,)]
 Time: O(n?)

Frechet Distance: Algorithm

Discrete version:
— Let F={f:[0,1] -{1...n}, nondecreasing }, mapping time to position,
— For two sequences of points, P,Q: {1...n}>R?:

D (P,Q) = mingg c e max; ¢ o1y | |P(f(t) — Qlg(t)) | |

Dynamic programming:
— A][i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
— Ali, jl=max[| |P()-Q(j)| |, min (A[i-1, j-1], A[i, j-1], A[i-1,)]
Time: O(n?)

Can be improved to O(I’\2 Iog Iog n/Iog n) [Agarwal-Avraham-Kaplan-Sharir'12] (aIso
[Buchin—Buchin—MeuIemans—MuIzer'14])

Frechet Distance: Algorithm

Discrete version:
— Let F={f:[0,1] -{1...n}, nondecreasing }, mapping time to position,
— For two sequences of points, P,Q: {1...n}>R?:

D (P,Q) = mingg c e max; ¢ o1y | |P(f(t) — Qlg(t)) | |

Dynamic programming:
— A][i, j] = distance between curves P(1)...P(i) and Q(1) ...Q(j)
— Ali, jl=max[| |P()-Q(j)| |, min (A[i-1, j-1], A[i, j-1], A[i-1,)]
Time: O(n?)

Can be improved to O(I’\2 Iog Iog n/Iog n) [Agarwal-Avraham-Kaplan-Sharir'12] (aIso
[Buchin—Buchin—MeuIemans—MuIzer'14])

Many algorithms for special cases and variants

Dynamic Time Warping

Dynamic Time Warping

e Definition:
— X, y: two sequences of points of length n
— Al[i, j]=dist(x; y;)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
— DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of
distances at each step.

Dynamic Time Warping

e Definition:
— X, y: two sequences of points of length n
— Al[i, j]=dist(x; y;)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
— DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of
distances at each step.

» Speech processing and other applications

Dynamic Time Warping

e Definition:
— X, y: two sequences of points of length n
— Al[i, j]=dist(x; y;)+min(A[i-1,j], A[i-1,j-1], A[i,j-1])
— DTW(x,y)=A[n,n]

Find a walk along x and y that minimizes the sum of
distances at each step.

» Speech processing and other applications

e Asimple O(n?) time dynamic programming algorithm

Longest Common Subsequence (LCS)

e Definition:
— two sequences s and t of letters, length n
— find a subsequence of both s and t of max length

e Example: LCS(meaning , matching) = maing

Longest Common Subsequence (LCS)

e Definition:
— two sequences s and t of letters, length n
— find a subsequence of both s and t of max length

e Example: LCS(meaning , matching) = maing

e Simple O(n?) time algorithm:

Longest Common Subsequence (LCS)

e Definition:
— two sequences s and t of letters, length n
— find a subsequence of both s and t of max length

e Example: LCS(meaning , matching) = maing
e Simple O(n?) time algorithm:
max {A[i-1, j], Ali, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }

Ali,j]=
max {A[i-1, j], Ali, j-1]} otherwise.

Longest Common Subsequence (LCS)

e Definition:
— two sequences s and t of letters, length n
— find a subsequence of both s and t of max length

e Example: LCS(meaning , matching) = maing
e Simple O(n?) time algorithm:
max {A[i-1, j], Ali, j-1], 1+A[i-1, j-1]} if s[i]=t[i] }
Ali,j]=

max {A[i-1, j], Ali, j-1]} otherwise.

Best algorithm: O(n?/log n) [Masek-Paterson’80]

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

meaning

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

) insert a)
meaning ——— maeaning

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

) insert a _ e >t .
meaning —— maeaning —— mataning

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

) insert a _ e>t .
meaning —— maeaning —— mataning

)

matcning

Edit distance
(a.k.a. Levenshtein distance)

e Definition:
— X,y —two sequences of symbols of length n

— edit(x,y)=the minimum number of symbol insertions,
deletions or substitutions needed to transform x into y

* Example: edit(meaning,matching)=4

) insert a _ e>t .
meaning —— maeaning —— mataning

)

matcning n—$>hmatching

Computing edit distance

Computing edit distance

e Asimple O(n?) time dynamic programming algorithm (wagner-
Fischer’74]

Computing edit distance

e Asimple O(n?) time dynamic programming algorithm (wagner-
Fischer’74]

e Can be improved to O(n?/log n) Masek-Paterson’8o]

47

Computing edit distance

e Asimple O(n?) time dynamic programming algorithm (wagner-
Fischer’74]

e Can be improved to O(n?/log n) Masek-Paterson’8o]

e Better algorithms for special cases:uss,vss,mss,
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AK010...]

48

Computing edit distance

A simple O(n?) time dynamic programming algorithm (wagner-

Fischer’74]

Can be improved to O(n?/log n) [Masek-Paterson’80]

Better algorithms for special cases:(uss,wvss vss,
GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,AK08,AK010...]

Approximation algorithms: O(1) —approx in O(n?*) time

[Chakraborty-Das-Goldenberg-Koucky-Saks’18],

O(f(g)) —approx in O(n**€) time [andoni-Nowatzki20]

49

What do these problems have in common ?

What do these problems have in common ?

e Widely used metrics

What do these problems have in common ?

e Widely used metrics

e Simple dynamic-programming algorithms with (essentially)
guadratic running time

What do these problems have in common ?

e Widely used metrics

e Simple dynamic-programming algorithms with (essentially)
guadratic running time

 We have no idea if/how we can do any better

What do these problems have in common ?

Widely used metrics

Simple dynamic-programming algorithms with (essentially)
guadratic running time

We have no idea if/how we can do any better

Plausible explanation:
— 3SUM-hard ? People tried for years...

What do these problems have in common ?

Widely used metrics

Simple dynamic-programming algorithms with (essentially)
guadratic running time

We have no idea if/how we can do any better

Plausible explanation:
— 3SUM-hard ? People tried for years...
— hard under OVH and SETH ?

Plan

 Show conditional quadratic lower bounds
— Assuming SETH / OVH
— Basic approach
— Hardness for LCS

Reminder: Orthogonal Vectors Hypothesis (OVH)

Reminder: Orthogonal Vectors Hypothesis (OVH)

* Orthogonal Vectors Problem (OV). Given a set of
vectors S € {0, 1}4, d = w(log n), |S|=n, are
therea,beSs.t.2_%ab =07

— Can be solved trivially in O(n?d) time

— Best known algorithm runs in n2/0loe cn) time,
where d=c(n)-log n [Abboud-Williams-Yu’15]

Reminder: Orthogonal Vectors Hypothesis (OVH)

* Orthogonal Vectors Problem (OV). Given a set of
vectors S € {0, 1}4, d = w(log n), |S|=n, are
therea,beSs.t.2_%ab =07

— Can be solved trivially in O(n?d) time

— Best known algorithm runs in n2/0loe cn) time,
where d=c(n)-log n [Abboud-Williams-Yu’15]

OV Hypothesis (implied by SETH):

Reminder: Orthogonal Vectors Hypothesis (OVH)

* Orthogonal Vectors Problem (OV). Given a set of
vectors S € {0, 1}4, d = w(log n), |S|=n, are
therea,beSs.t.2_%ab =07

— Can be solved trivially in O(n?d) time

— Best known algorithm runs in n2/0loe cn) time,
where d=c(n)-log n [Abboud-Williams-Yu’15]

OV Hypothesis (implied by SETH):
OV can’t be solved in n?£-d°® time for any € > 0.

Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

*See also [Abboud-V. Williams-Weimann’14]

61

Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:

*See also [Abboud-V. Williams-Weimann’14]

Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:

— SC{0,1}¥ > sequence x, |x|< n-d°M)
—SCE{0,1}4 > sequencey, |y|< n-d°W

*See also [Abboud-V. Williams-Weimann’14]

63

Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:

— SCE{0,1}¢ > sequence x, |x|< n-d°®

— SE{0,1}¥ > sequence vy, |y|< n-d°®

— distance(x,y)=small if exists a, b € S with Z.a.b, =0
— distance(x,y)=large, otherwise

— The construction time is n-d°®

— Gadgets for coordinates and vectors

*See also [Abboud-V. Williams-Weimann’14]

64

Quadratic hardness under OVC

Theorem*: No nZ2% time algorithm for EDIT, DTW,

Frechet distances or LCS unless OVC fails [Bringmann’14;
Backurs-Indyk’15; Abboud-Backurs-VW’15; Bringmann-Kunnemann’15]

e Approach: reduce OV to distance computation:
— SCE{0,1}¢ > sequence x, |x|< n-d°®
— Sc{0,1}¢ > sequence y, |y|< n-d°®
— distance(x,y)=small if exists a, b € S with Z.a.b, =0
— distance(x,y)=large, otherwise
— The construction time is n-d°®
— Gadgets for coordinates and vectors ENSAHUEICESS

for LCS

*See also [Abboud-V. Williams-Weimann’14]

65

Hardness for LCS

| will present the ideas behind the proof from
[Abboud-Backurs-VW’15].
Full construction. NO full proof.

[Bringmann-Kunnemann’15] obtained an independent proof.

OV to LCS

Given vectors {sq, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn) Meta) (- iK1V s [KD).

OV to LCS

Given vectors {sy, ..., S, },s; € {0,1}¢ Vi, OV is
Vi jem Mecta (= iK1V =5 kD).

N\

Coordinate gadgets c, e taking bits
to short sequences s.t.
LCS(c(x),e(y)) =0ifx=y=1,

LCS(c(x),e(y)) =1lifx-y=0.

OV to LCS

Given vectors {sy, ..., S, },s; € {0,1}¢ Vi, OV is
V [,JE[n /\kE[d (_' Si [k] \% —5j [k])

N\

Coordinate gadgets c, e taking bits
Vector gadgets f, g taklng bit vectors to short sequences s.t.

to short sequences s.t. for some T LCS(C(x), e(y)) =0ifx=y =1,

LCS (f(si),g(sj)) =T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y=0.
LCS (f(si),g(sj)) =Tifs;-s; #0.

OV to LCS

Given vectors {sq, ..., S,},s; € {0,1}¢ Vi, OV is
Vo ety Mty (= i[K] V =55 [KD.

Coordinate gadgets c, e taking bits

Outgr OR gadgets x, y taking sets of | Vector gadgets f, g taking bit vectors to short sequences s.t.
bit vectors {sy, ..., S}, to short to short sequences s.t. for some T LCS(c(x),e(y)) = 0ifx =y =1,

sequences s.t. for some () LCS (f(si),g(sj)) =T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1lifx-y=0.

LCS(x,y) = QifVi,j: s;-s; # 0,
LCS(x,y) = Q + 1if3i,j: s;-5;,=0. | LCS (f(si),g(sj)) =Tifs;-s; # 0.

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f(:]rc(c;\/l:cg)LC:OU er Boolean

[,jE|n]

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/”;gLC:OU er Boolean

L,j€[n]
e LetS={s,s,,..., S} be the vectors from OV instance

* Suppose we have s, — gadget sequences f(s,) and g(s))
LCS(f(s,),8(s;)) = B if s;s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/l:chzou er Boolean

L,j€[n]
e LetS={s,s,,..., S} be the vectors from OV instance

* Suppose we have s, — gadget sequences f(s,) and g(s))
LCS(f(s,),8(s;)) = B if s;s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

Want to create sequences x
- and y so that LCS(x,y) is Large
if there is an OV pair and
LCS(x,y) is Small otherwise.

\/ /\ce[d] (_I S; [C] V —|Sj [C])]IcE:rcgc\j/lr;(g) tf(l:(; outer Boolean OR
L,j€[n]
e LetS={s,s,,..., S} be the vectors from OV instance
* Suppose we have s; — gadget sequences f(s;) and g(s;)
LCS(f(s)),8(s;)) = B if s;'s; # 0, LCS(f(s;),8(s)) =B + 1 otherwise.

* s,—vector of all 1s (no vector orthog. to s)
Want to create sequences x

- and y so that LCS(x,y) is Large
if there is an OV pair and

LCS(x,y) is Small otherwise.

\/ /\ce[d] (_I S; [C] V S;j [C])]IcE:rcgc\j/lr;(g) tf(l:(; outer Boolean OR
L,jE[n]
e LetS={s,s,,..., S} be the vectors from OV instance
* Suppose we have s, — gadget sequences f(s,) and g(s))
LCS(f(s)),8(s;)) = B if s;'s; # 0, LCS(f(s;),8(s)) =B + 1 otherwise.

* s,—vector of all 1s (no vector orthog. to s)
Want to create sequences x

Attempt 1: " and y so that LCS(x,y) is Large

_ if there is an OV pair and
x = f(s,) f(s;) ... fls;) ... f(s,) LCS(x,y) is Small otherwise.

y = (8(s0))"" 8(s1) 8(s5) ... 8(s;) ... 8(s,) (8(s0))™

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/”'szczou er Boolean

L,j€[n]
e LetS={s,;s,,.., S,} be the vectors from OV instance
» Suppose we have s, — gadget sequences f(s,) and g(s;)
LCS(f(s;),8(s;)) = B if s;-s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

* s,— vector of all 1s (no vector orthog. to s,)
Want to create sequences x
- and y so that LCS(x,y) is Large
Attempt 1: an
P if there is an OV pair and

x = f(sy) f(s;) ... f(s;) ... f(s,) LCS(x,y) is Small otherwise.
y = (8(sp))"" 8(s,) 8(s,) - 8(s)) - 8(s,) (8(sp))™*
Idea: Imagine gadgets are letters.

If no OV, LCS length is n B; If s;-s,=0 can align f(s;) and g(s;) and all
other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/”'szC:OU er Boolean

L,j€[n]
e LetS={s,;s,,.., S,} be the vectors from OV instance
» Suppose we have s, — gadget sequences f(s,) and g(s;)
LCS(f(s;),8(s;)) = B if s;-s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

* s,— vector of all 1s (no vector orthog. to s,)
Want to create sequences x
- and y so that LCS(x,y) is Large
Attempt 1: an
P if there is an OV pair and

x = f(sy) f(s;) ... f(s;) ... f(sh) LCS(x,y) is Small otherwise.
y = (8(sp))"" 8(s,) 8(s,) - 8(s;) - 8(s,) (8(sp))™*
Idea: Imagine gadgets are letters.

If no OV, LCS length is n B; If s;-s,=0 can align f(s;) and g(s;) and all
other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/”'szczou er Boolean

L,j€[n]
e LetS={s,;s,,.., S,} be the vectors from OV instance
» Suppose we have s, — gadget sequences f(s,) and g(s;)
LCS(f(s;),8(s;)) = B if s;-s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

* s,— vector of all 1s (no vector orthog. to s,) Want t X
ant to create sequences x

. - and y so that LCS(x,y) is Large
Attempt 1: if there is an OV pair and
x = f(sy) f(s,) ... f(s;) ... f(s,) LCS(x,y) is Small otherwise.

y = (g(50))"" gls,) gls,) - () - &(5,) (&(s0)"

Idea: Imagine gadgets are letters.

If no OV, LCS length is n B; If s;-s,=0 can align f(s;) and g(s;) and all
other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.

Problem: Opt LCS might not align entire gadgets!

Encoding the outer Boolean OR
\/ /\CE[d](_' Si[C] V—IS]'[C]) f:rcg\/”'szczou er Boolean

L,j€[n]
e LetS={s,;s,,.., S,} be the vectors from OV instance
» Suppose we have s, — gadget sequences f(s,) and g(s;)
LCS(f(s;),8(s;)) = B if s;-s; # 0, LCS(f(s;),8(s;)) =B + 1 otherwise.

* s,— vector of all 1s (no vector orthog. to s,) Want t X
ant to create sequences x

- and y so that LCS(x,y) is Large
1. an

Attempt if there is an OV pair and

x = f(sy) f(s,) ... f(s)) ... f(s,) LCS(x,y) is Small otherwise.

y = (8(s0))"" 8(s1) &) .. &(s)) .. 8(s,) (8(s5))™"

Idea: Imagine gadgets are letters.

If no OV, LCS length is n B; If s;-s,=0 can align f(s;) and g(s;) and all
other f(s,) with g(s,) to get LCS length > (n-1) B + (B+1) > n B.

Problem: Opt LCS might not align entire gadgets!

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s;) and g(s)) Idea fOr hard ness

LCS(f(s)),8(s)) = B if s;'s; #0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q=09 R=14¢

x =Q f(sy)R Qf(s,)R ... Qf(s,) R

y = (Qg(sy) R)"* Qg(s;)R Qg(s,) R... Qg(s,) R (Qglsy) R)™

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q=09 R=14¢

x = Qf(s;)R Qf(s,)R ... Qf(s.) R
y = (Qglsy) R)"* Qg(s;)R Qg(s,) R... Qg(s,) R (Qglsy) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q=09 R=14¢

x = Qf(s;)R Qf(s,)R ... Qf(s.) R
y = (Qg(s))" Qg(s,)R Qg(s,) R... Qglsy) R (Qe(s) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q=09 R=14¢

x = Qf(s;)R Qf(s,)R ... Qf(s.) R
y = (Qglsy) R)"* Qg(s;)R Qg(s,) R... Qg(s,) R (Qglsy) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s,) is aligned with two different f(s;) and f(s;).

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness
LCS(f(s;),g(s)) = B if s;'s, # 0, LCS(f(s;),g(s:)) = B + 1 otherwise.
s, — vector i)f all 1s (noJ vector orthog. t(J) So) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q =09, R=1¢

x = Q f(s;)R Qf(s,)R k

y = (Qg(s))" Qg(sy)R Qg[S,) R... Qgls,) R (Qgls) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s,) is aligned with two different f(s;) and f(s;).

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q =09, R=1¢

x = Q f(s;)R Qf(s,)R k

y = (Qg(s))" Qg(sy)R Qg[S,) R... Qgls,) R (Qgls) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is
matched.

Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s,) is aligned with two different f(s;) and f(s;).

Problem: LCS might align f(s,) with several g(s,).

Let S = {s,,S,,..., S} be the vectors

Each s, — gadget sequences f(s.) and g(s;) Idea fOr hard ness

LCS(f(s)),8(s;) = B if s;'s; # 0, LCS(f(s;),&(s;)) = B + 1 otherwise.
s, — vector of all 1s (no vector orthog. to s;) for LCS

0 and 1 don’t
appear in the f

and g gadgets
Attempt 2: Q =09, R=1¢

x = Qf(s;)R Qf(s)R...Qf(sn)R\

y = (Qglso))" Qg(s;)R Qgls) R... Qg(s,) R (Qgls,) R)™

Lemma: If a 0 (or 1) is matched, its entire 09 (or 19) block is matched.
Idea: Pick q big so all Qs and Rs of x must be matched in an LCS.
Now no g(s) is aligned with two different f(s;) and f(s)).

Problem: LCS might align f(s,) with several g(s,).
The g(s,) are partitioned into blocks aligned with at most a single f(s;).

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .

LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea

otherwise.

s, — vector of all 1s (no vector orthog. to s;)
Attempt 3: Q=Oq,R=1q,P=2r

x = PVIQ f(s,)R Q f(s,)R Q ... RQ f(s) R PIV!

y= P (Qgl(sy) RP)""Qgl(s;) RP Qglsy) RP ... Qgls,) RP (Qglsy) RP)™

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3:

=N4d R=14d =2r
x = PI¥IQ f(s,)R Q f(s,)R Q ... RQ f(s) R P! Q=09,R=19,P

y= P (Qgl(sy) RP)""Qgl(s;) RP Qglsy) RP ... Qgls,) RP (Qglsy) RP)™

Idea:

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09 R=19 P=2"
x = PVIQ f(s,)R Q f(s,)R Q ... RQ f(s) R PIV! I

y= P (Qgl(sy) RP)""Qgl(s;) RP Qglsy) RP ... Qgls,) RP (Qglsy) RP)™

Idea:

P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09 R=19 P=2"
x = PVIQ f(s,)R Q f(s,)R Q.... RQ f(s) R P!V I

y = P (Qglsy) RP)""Q g(s;) R P"Qgls,) RP.."Qgls,) RP (Q g[5) RP)™

Idea:

P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

> n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09 R=19 P=2"
x = PIVlQ f(s,)R Qf(s,)R Q.... RQ (s) R P!V B

y = P (Qglsy) RP)""Q g(s;) R P"Qgls,) RP.."Qgls,) RP (Q g[5) RP)™

Idea:

P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

> n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Thus, exactly n-1 Ps will be unmatched, and every f(s,) will be fully
aligned with some g(s;) (possibly j=0).

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f(s),&(s)) = B if sis, %0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09 R=19 P=2"
x = PIVlQ f(s,)R Qf(s,)R Q.... RQ (s) R P!V B

y = P (Qglsy) RP)""Q g(s;) R P"Qgls,) RP.."Qgls,) RP (Q g[5) RP)™

Idea:

P =2" r big but r<<q, so that in an LCS all Qs and Rs of x are still aligned,
and also as many Ps as possible from y are aligned.

> n-1 Ps of y not matched in an LCS due to the matched Qs and Rs of x.

Thus, exactly n-1 Ps will be unmatched, and every f(s,) will be fully
aligned with some g(s;) (possibly j=0).

The gadgets f(s;) and g(s;) act as letters!

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09,R=19,P=2"

x = PIvIQ f(s;)R Q f(s,)R Q... RQ f(s,) R P!V
y = P(Qglsy) RP)™* Qg(s;) RP Qglsy) RP... Qgls,) RP (Qglsy) RP)™

LCS length:

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09,R=19,P=2"
x = PIVIQ f(s;)R Q f(s,)R Q... RQ f(s,) R PIY!
y = P(Qglsy) RP)™* Qg(s;) RP Qglsy) RP... Qgls,) RP (Qglsy) RP)™

#Psinyis 3n-1, and n-1 are not matched, so 2n

LCS length: aligned.
2n|P| + n(|Q|+|R|)+2"_, LCS(f(s:),8(s;)), &ls)) aligned with f(s;)

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Attempt 3: Q=09,R=19,P=2"
x = PIVIQ f(s;)R Q f(s,)R Q... RQ f(s,) R PIY!
y = P(Qglsy) RP)™* Qg(s;) RP Qglsy) RP... Qgls,) RP (Qglsy) RP)™

#Psinyis 3n-1, and n-1 are not matched, so 2n

LCS length: aligned.
2n|P| + n(|Q|+|R|)+2"_, LCS(f(s:),8(s;)), &ls)) aligned with f(s;)

=2nr+ 2gn +n B if no orthog. pair
> [2nr + 2gn + n B] + 1 if 9 an orthog. pair.

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Reduction:
x = PVIQ f(s,)R Q. f(s,)R Q ... RQ f(s.) R P!V
y = P (Qg(sy) RP)"*Qg(s;) RP Qg(s,) RP.. Qg(s,) RP(Qgls,) RP)"*

Let S ={s,,s,,..., S} be the vectors

Each s, — sequences f(s;) and g(s;) .
LCS(f{s)g(s) = B if 5r5, 0, 2B +1 LCS hardness idea
otherwise.

s, — vector of all 1s (no vector orthog. to s;)

Reduction:
x = PVIQ f(s,)R Q. f(s,)R Q ... RQ f(s.) R P!V
y = P (Qg(sy) RP)"*Qg(s;) RP Qg(s,) RP.. Qg(s,) RP(Qgls,) RP)"*

Tricky proof in paper shows the following suffice:
|Ql, [RI,IP], |f(s;)],]8(s)| < poly(d), so that
1], 1y| < n poly(d).

OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.

OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.

Done!

OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {sy, ..., s, }, to short to short sequences s.t. forsome T LCS(c(x),e(y)) =0ifx =y =1,
sequences s.t. for some @ . :
LCS),9(si)) =T+ 1ifs;-s; =0, = -y = 0.
LCS(x,y) = Qif Vi, j: 5;- 5 % 0, (FG0.g(s)) =T+ 1155 LeS(cGa,en) = 1ifx-y =0
LCS(x,y) = Q + 1if3i,j: s;-s; = 0. LCS (f(si),g(sj)) =Tifs; 55 #0.

c(0) = e(0) =
Done! c1)=4 e(l)=

LCS(c(1),e(1)) =0, and
LCS(c(x),e(y)) =
for (x,y) # (1,1).

OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.

_ c(0) = e(0) =
Done! All that remains! c(1)=4 e(l)=

LCS(c(1),e(1)) =0, and
LCS(c(x),e(y)) =
for (x,y) # (1,1).

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS

\/ /\ce[d] (mvilc

i,j€[n]
Recall we have coordinate gadgets

x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

V v, [c])

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS

\/ Ncefa (= vilc

i,j€[n]
Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 3"5Yc(s;[1]) 5 ... 5¥c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5V... 54 e(s;[d]) 53"

where r = u(d+1)+d-1, u > d+1.

V v, [c])

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Aceraiuilel v —wylel)
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(si) =35 C(Si[l]) SR C(Si[d]) Sh 3,5 brand
g(s) = 5 e(s[1]) 5 .. 5 e(s,[d]) 53" g,

wherer = u(d+1)+d_1’ u>d+1. r even larger

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Acera) (= vilel v e
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(si) =35 C(Si[l]) SR C(Si[d]) Sh 3,5 brand
g(s) = 5 e(s[1]) 5*... 5 e(s[d]) 53" g,

wherer = u(d+1)+d_1’ u>d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Aceraiuilel v —wylel)
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 375" c(s[1]) 5"... 5 c(s;[d]) 5 3,5 brand
g(s) = 5 e(s[1]) 5 .. 5* e{s[d]) 573" g,

wherer = u(d+1)+d_1’ u>d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Acera) (= vilel v e
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 3" 5¥¢(s;[1]) 5" ... 5¥ c(s;[d]) 5 < brana

. u u uar new symbol
g(s;) = 5 e(s;[1]) 5¢... 5 e(s;[d]) 543 ew symbok
where r = u(d+1)+d-1, u > d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5 block is not matched,
then the subsequence length would be £ du +2d <.

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Acera) (= vilel v e
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 3" 5¥¢(s;[1]) 5" ... 5¥ c(s;[d]) 5" < brana

. u u uar new symbol
g(s;) = 5" e(s;[1]) 5V... 5V e(s;[d]) 543 ew symbok
where r = u(d+1)+d-1, u > d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5 block is not matched,
then the subsequence length would be £ du +2d <.

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Acera) (= vilel v e
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 3" 5¥¢(s;[1]) 5" ... 5¥ c(s;[d]) 5" < brana

. u u uar new symbol
g(s;) = 5" e(s;[1]) 5¥... 5 e(s;[d]) 543 ew symbok
where r = u(d+1)+d-1, u > d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5 block is not matched,
then the subsequence length would be £ du +2d <.

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Acera) (= vilel v e
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 3" 5¥¢(s;[1]) 5" ... 5¥ c(s;[d]) 5" < brana

. u u uar new symbol
g(s;) = 5" e(s;[1]) 5¢... 5 e(s;[d]) 543 ew symbok
where r = u(d+1)+d-1, u > d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5 block is not matched,
then the subsequence length would be £ du +2d <.

Want: Each s, — sequences f(s;) and g(s;)

LCS(f(s;),8(s;)) = B if s;'s; #0, =B + 1 otherwise Vector gadC gEtS
\/ Acera) (= vilel v e
L,j€[n]

Recall we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y)) =0 if x=y =1 and 1 otherwise; also, |c(x)[,]|e(x)]|< 2.

f(s;) = 3" 5¥¢(s;[1]) 5" ... 5¥ c(s;[d]) 5" < brana

. u u uar new symbol
g(s;) = 5" e(s;[1]) 54... 5t e(s;[d]) 543 ew symbok
where r = u(d+1)+d-1, u > d+1. r even larger

If two 5s are matched together, their entire 5Y blocks are matched.
If any 3 is matched, no other symbols are, so the LCS length is r.

If no 3 is matched in an LCS, then all 5s must be: if a 5 block is not matched,
then the subsequence length would be £ du +2d <.

Recall that we have coordinate gadgets
x € {0, 1} — c(x) and e(x), s.t.
LCS(c(x),e(y))=0ifx=y=1and 1
otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3"5"¢(s,[1]) 5"... 5% c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5“... 5" e(s;[d]) 5" 3"

where r = u(d+1)+d-1, u > d.

Vector gadgets

Recall that we have coordinate gadgets

X € {0, 1} — c(x) and e(x), s.t. Vector gadgets
LCS(c(x),e(y))=0ifx=y=1and 1
otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3"5"¢(s,[1]) 5"... 5% c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5“... 5" e(s;[d]) 5" 3"

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.

Recall that we have coordinate gadgets

X € {0, 1} — c(x) and e(x), s.t. Vector gadgets
LCS(c(x),e(y))=0ifx=y=1and 1
otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3" 5"¢(s,[1]) 5"... 5% c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5“... 5" e(s;[d]) 53"

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.

Recall that we have coordinate gadgets

X € {0, 1} — c(x) and e(x), s.t. Vector gadgets
LCS(c(x),e(y))=0ifx=y=1and 1
otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3" 5"¢(s,[1]) 5"... 5% c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5“... 5" e(s;[d]) 53"

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(s;[t]) and e(s;[t]) are matched.

Recall that we have coordinate gadgets

X € {0, 1} — c(x) and e(x), s.t. Vector gadgets
LCS(c(x),e(y))=0ifx=y=1and 1
otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3" 5"¢(s,[1]) 5"... 5% c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5“... 5" e(s;[d]) 53"

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(s;[t]) and e(s;[t]) are matched.

If s;'s; # 0, the alignment of c(s;[t]) with e(s;[t]) for all t gives < d,
SO we get <(d+1)u+d-1 =r. (but then the 3s Would be matched, so =r)

Recall that we have coordinate gadgets

X € {0, 1} — c(x) and e(x), s.t. Vector gadgets
LCS(c(x),e(y))=0ifx=y=1and 1

otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3" 5"¢(s,[1]) 5"... 5% c(s;[d]) 5"
g(s;) = 5"e(s;[1]) 5“... 5" e(s;[d]) 53"

where r = u(d+1)+d-1, u > d.

Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(s;[t]) and e(s;[t]) are matched.

If s;'s; # 0, the alignment of c(s;[t]) with e(s;[t]) for all t gives < d,
SO we get <(d+1)u+d-1 =r. (but then the 3s Would be matched, so =r)

If s;'s; =0, we get (d+1)u+d = r+1.

Recall that we have coordinate gadgets

X € {0, 1} — c(x) and e(x), s.t. Vector gadgets
LCS(c(x),e(y))=0ifx=y=1and 1

otherwise; also, |c(x)][,|e(x)|< 2.

f(s;) = 3" 5%c(s;[1]) 5"... 5" c(s;[d]) 5" LCS(f(s),, g(s)) = rif s, -s# 0

s)=5Y¢e(s.[1]) 5Y... 5Ye(s.[d]) 5Y 3" and
g(s) = 5 e(s,[1]) (s1d) eS(e), 8o = o1
where r = u(d+1)+d-1, u > d. otherwise.
Assume no 3 is matched. Then all 5s are matched.
Thus, for all t, c(s;[t]) and e(s;[t]) are matched.

If s;'s; # 0, the alignment of c(s;[t]) with e(s;[t]) for all t gives < d,
SO we get <(d+1)u+d-1 =r. (but then the 3s Would be matched, so =r)

If s;'s; =0, we get (d+1)u+d = r+1.

OV to LCS

Given vectors {sy, ..., S,},s; € {0,1}¢ Vi, OV is

Vi jepn Aegar (= iK1V =s; [K]).

_ Coordinate gadgets c, e taking bits
Outer OR gadgets x, y taking sets of Vector gadgets f, g taking bit vectors to short sequences s.t.

bit vectors {s, ..., s}, to short to short sequences s.t. for some T LCS(c(x),e(y)) =0ifx =y =1,

sequences s.t. for some _ 3) — e — e
LCS(x,y) = Q i Vi, j: 55+ 5 % 0, LCS (f(sl),g(s])) T+ 1ifs;-s; =0, LCS(c(x),e(y)) =1ifx-y =0.

LCS(x,y) = Q + 1if3i,j: s;- 55 = 0. LCS (f(Si)»g(Sj)) =Tifs;-s;#0.

c(0) = e(0) =
Done! Done! c1)=4 e(l)=

LCS(c(1),e(1)) =0, and
LCS(c(x),e(y)) =
for (x,y) # (1,1).

Extensions

Extensions

e Thm: For any integer k2 2,
k-LCS cannot be solved in O(n*€) time under SETH.

Extensions

e Thm: For any integer k2 2,
k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

Extensions

e Thm: For any integer k2 2,

k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

* Hardness based on even more believable assumptions:

Extensions

e Thm: For any integer k2 2,

k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

* Hardness based on even more believable assumptions:
— Reduction works from Max-k-SAT, so base on:

Extensions

e Thm: For any integer k2 2,

k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

* Hardness based on even more believable assumptions:
— Reduction works from Max-k-SAT, so base on:

MAX-k-SAT cannot be solved in 2"(*-¢) poly(n) time for all k.

Extensions

e Thm: For any integer k2 2,

k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

* Hardness based on even more believable assumptions:
— Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2"(*-¢) poly(n) time for all k.
(although — maybe this is equivalent to SETH...)

Extensions

e Thm: For any integer k2 2,

k-LCS cannot be solved in O(n*€) time under SETH.
e [BK’15]: LCS hard even for binary alphabet

* Hardness based on even more believable assumptions:
— Reduction works from Max-k-SAT, so base on:
MAX-k-SAT cannot be solved in 2"(*-¢) poly(n) time for all k.
(although — maybe this is equivalent to SETH...)

— On much more believable assumptions!

Circuit-Strong-ETH

e SETH is ultimately about SAT of linear size CNF-formulas

Circuit-Strong-ETH

e SETH is ultimately about SAT of linear size CNF-formulas
There are more difficult satisfiability problems:

Circuit-Strong-ETH

e SETH is ultimately about SAT of linear size CNF-formulas
There are more difficult satisfiability problems:

— CIRCUIT-SAT
— NC-SAT
— NC1-SAT

Circuit-Strong-ETH

e SETH is ultimately about SAT of linear size CNF-formulas
There are more difficult satisfiability problems:

— CIRCUIT-SAT C-SETH: satisfiability of circuits from
— NC-SAT circuit class C on n variables and size s

— NC1-SAT requires 2"°" poly(s) time.

Circuit-Strong-ETH

e SETH is ultimately about SAT of linear size CNF-formulas
There are more difficult satisfiability problems:

— CIRCUIT-SAT C-SETH: satisfiability of circuits from
— NC-SAT circuit class C on n variables and size s

— NC1-SAT requires 2"°" poly(s) time.

E.g. NC-SETH should be much more believable!

LCS, Edit Distance and Friends
are very hard

Many Consequences:

LCS, Edit Distance and Friends
are very hard

Many Consequences:

1. Edit Distance / LCS / ... require n27°M time under NC-SETH.

LCS, Edit Distance and Friends
are very hard

Many Consequences:

1. Edit Distance / LCS / ... require n27°M time under NC-SETH.

2. Shaving logarithms from n? implies novel
circuit lower bounds!

LCS, Edit Distance and Friends
are very hard

Many Consequences:

1. Edit Distance / LCS / ... require n27°M time under NC-SETH.

2. Shaving logarithms from n? implies novel
circuit lower bounds!

2

n
An log“)Tn alg. -
ENPis not in NC1.

LCS, Edit Distance and Friends
are very hard

Many Consequences:

1. Edit Distance / LCS / ... require n27°M time under NC-SETH.

2. Shaving logarithms from n? implies novel
circuit lower bounds!

OV and APSP .
have suchalgs. | An;—Jnyalg. =
W’14,AWY’15 ENPis not in NCL1.

2

LCS, Edit Distance and Friends
are very hard

Many Consequences:

1. Edit Distance / LCS / ... require n27°M time under NC-SETH.

2. Shaving logarithms from n? implies novel
circuit lower bounds!

n2

OV and APSP 2 A
have suchalgs. | An;—Jnyalg. =
W’14,AWY'15 ENPis not in NCL1.

time alg. > ENP

n 10g1000 1,
has no non-uniform
Boolean formulas of size n>.

LCS, Edit Distance and Friends
are very hard

Many Consequences:

1. Edit Distance / LCS / ... require n27°M time under NC-SETH.

2. Shaving logarithms from n? implies novel
circuit lower bounds!

n2

OV and APSP 2 A
have suchalgs. | An;—Jnyalg. =
W’14,AWY'15 ENPis not in NCL1.

time alg. > ENP Best alg:

n2

n 10g1000 1,
has no non-uniform
Boolean formulas of size n>.

logZn

	Lecture 5: Hardness for Sequence Problems under SETH and OVC
	Plan
	Plan
	Plan
	Plan
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	Walks on sequences
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	(Discrete) Frechet Distance [Alt-Godau’95]
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Frechet Distance: Algorithm
	Dynamic Time Warping
	Dynamic Time Warping
	Dynamic Time Warping
	Dynamic Time Warping
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Longest Common Subsequence (LCS)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Edit distance�(a.k.a. Levenshtein distance)
	Computing edit distance
	Computing edit distance
	Computing edit distance
	Computing edit distance
	Computing edit distance
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	What do these problems have in common ?
	Plan
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Reminder: Orthogonal Vectors Hypothesis (OVH)
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Quadratic hardness under OVC
	Hardness for LCS
	OV to LCS
	OV to LCS
	OV to LCS
	OV to LCS
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Idea for hardness for LCS
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	LCS hardness idea
	LCS hardness idea
	LCS hardness idea
	LCS hardness idea
	LCS hardness idea
	OV to LCS
	OV to LCS
	OV to LCS
	OV to LCS
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	Vector gadgets
	OV to LCS
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Extensions
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	Circuit-Strong-ETH
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard
	LCS, Edit Distance and Friends are very hard

