
Deterministic Time-Space Tradeoffs for k-SUM
Andrea Lincoln∗1, Virginia Vassilevska Williams†2, Joshua R.
Wang‡3, and R. Ryan Williams§4

1 Computer Science Department, Stanford University, USA
andreali@cs.stanford.edu

2 Computer Science Department, Stanford University, USA
virgi@cs.stanford.edu

3 Computer Science Department, Stanford University, USA
joshua.wang@cs.stanford.edu

4 Computer Science Department, Stanford University, USA
rrw@cs.stanford.edu

Abstract
Given a set of numbers, the k-SUM problem asks for a subset of k numbers that sums to zero.
When the numbers are integers, the time and space complexity of k-SUM is generally studied in
the word-RAM model; when the numbers are reals, the complexity is studied in the real-RAM
model, and space is measured by the number of reals held in memory at any point.

We present a time and space efficient deterministic self-reduction for the k-SUM problem
which holds for both models, and has many interesting consequences. To illustrate:

3-SUM is in deterministic time O(n2 lg lg(n)/ lg(n)) and space O
(√

n lg(n)
lg lg(n)

)
. In general, any

polylogarithmic-time improvement over quadratic time for 3-SUM can be converted into an
algorithm with an identical time improvement but low space complexity as well.
3-SUM is in deterministic time O(n2) and space O(

√
n), derandomizing an algorithm of Wang.

A popular conjecture states that 3-SUM requires n2−o(1) time on the word-RAM. We show
that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that
every O(n.51)-space algorithm for 3-SUM requires at least n2−o(1) time on the word-RAM.
For k ≥ 4, k-SUM is in deterministic O(nk−2+2/k) time and O(

√
n) space.
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1 Introduction

We consider the k-SUM problem: given a list S of n values, determine whether there are
distinct a1, . . . , ak ∈ S such that

∑k
i=1 ai = 0. This classic problem is a parameterized

version of the Subset Sum problem, which is among Karp’s original NP-Complete problems.1

The brute-force algorithm for k-SUM runs in O(nk) time, and it is known [22] that an
no(k) time algorithm (where the little-o depends on k) would violate the Exponential Time
Hypothesis [18]. A faster meet-in-the-middle algorithm reduces the k-SUM problem on n

numbers to 2-SUM on O(ndk/2e) numbers, which can then be solved by sorting and binary
search in O(ndk/2e logn) time. The belief that this meet-in-the-middle approach is essentially
time-optimal is at the heart of many conditional 3-SUM-hardness results in computational
geometry (e.g. [15]) and string matching (e.g. [5, 2]).

The space usage of the meet-in-the-middle approach is prohibitive: the O(n logn) time
solution for 2-SUM uses linear space, which causes the fast k-SUM algorithm to need
Ω(ndk/2e) space. However, the brute-force algorithm needs only O(k logn) space. This
leads to the natural question: how well can one trade off time and space in solving k-SUM?

Schroeppel and Shamir [23] first studied time-space tradeoff algorithms for Subset Sum.
They showed how to reduce Subset Sum to an instance of k-SUM for any k ≥ 2: split the
elements into k sets of n/k elements each; for each set, compute 2n/k sums corresponding
to the subsets of the set; this forms a k-SUM instance of size 2n/k. Since the k-SUM
instance does not have to be explicitly stored, any time T (N), space S(N) algorithm for
k−SUM immediately implies a time T (2n/k), space S(2n/k) algorithm for Subset Sum.
Furthermore, Schroeppel and Shamir gave a deterministic Õ(n2) time, Õ(n) space algorithm
for 4-SUM, implying a O∗(2n/2) time, O∗(2n/4) space algorithm for Subset Sum.2 They
also generalized the algorithm to provide a smooth time-space tradeoff curve, with extremal
points at O∗(2n/2) time, O∗(2n/4) space and O∗(2n) time, O∗(1) space.

A recent line of work leading up to Austrin et al. [6] has improved this long-standing
tradeoff curve for Subset Sum via randomized algorithms, resulting in a more complex curve.
Wang [25] moved these gains to the k-SUM setting. In particular, for 3-SUM he obtains an
Õ(n2) time, Õ(

√
n) space Las Vegas algorithm.

Despite the recent progress on the problem, all of the improved algorithms for the general
case of k-SUM have heavily relied on randomization, either utilizing hashes or random prime
moduli. These improvements also all rely heavily on the values in the lists being integers.
For the general case of k-SUM, the previous best deterministic k-SUM results (even for
integer inputs) are the brute-force algorithm, the meet-in-the-middle algorithm, and the
Schroeppel and Shamir 4-SUM algorithm, and simple combinations thereof.

1.1 Our Results

We consider new ways of trading time and space in solving k-SUM, on both integer and real
inputs (on the word-RAM and real-RAM respectively), without the use of randomization.
Our improvements for k-SUM naturally extend to improvements to Subset Sum as well.

Our main result is a deterministic self-reduction for k-SUM. Informally, we show how to
deterministically decompose a list of n numbers into a small collection of shorter lists, such

1 Karp’s definition of the Knapsack problem is essentially Subset Sum [19].
2 The notation Õ suppresses polylogarithmic factors in n, and O∗ suppresses polynomial factors in n.
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that the k-SUM solution is preserved. This result is shown for k = 3 in Section 4. It is
shown for general k in Section 5.

I Theorem 1. Let g be any integer between 1 and n. k-SUM on n numbers can be reduced
to O(kgk−1) instances of k-SUM on n/g numbers. The reduction uses O(ngk−1) additional
time and O(n/g) additional words of space.

Theorem 1 has several interesting applications. First, it leads to more efficient k-SUM
algorithms. For example, Gold and Sharir, building on other recent advances, report a
deterministic algorithm for 3-SUM that works in both the word-RAM and real-RAM models
and which runs in time O(n2 lg lg(n)/ lg(n)) [16]. However, this algorithm uses a considerable
amount of space to store a table of permutations. Applying Theorem 1 in multiple ways and
calling their algorithm, we recover the same asymptotic running time but with drastically
better space usage:

I Theorem 2. There is an O(n2 lg lg(n)/ lg(n)) time deterministic algorithm for 3-SUM
that stores at O(

√
n lg(n)
lg lg(n) ) numbers in memory at point. (An analogous statement holds for

3-SUM over the integers.)

Theorem 1 also directly leads to a derandomization of Wang’s space-efficient algorithm
for 3-SUM:

I Theorem 3. For all s ∈ [0, 1/2] there is a deterministic time O(n3−2s), algorithm which
uses O(ns) words of space for 3-SUM.

From Theorem 1 we can also derive a more space-efficient algorithm for 4-SUM, and lift
it to a new algorithm for k-SUM:

I Theorem 4. For k ≥ 4, k-SUM is solvable in deterministic O(nk−2+2/(k−3)) time and
O(
√
n) space in terms of words.

A more plausible 3-SUM conjecture.

A rather popular algorithmic conjecture is the 3-SUM Conjecture that 3-SUM on n integers
requires n2−o(1) time on a word-RAM with O(logn) bit words. This conjecture has been
used to derive conditional lower bounds for a variety of problems [15, 5, 2, 20, 3], and appears
to be central to our understanding of lower bounds in low-polynomial time. To refute the
conjecture, one could conceivably construct an algorithm that runs in O(n1.99) time, but
utilizes Ω(n1.99) space in some clever way. Here we consider a seemingly weaker (and thus
more plausible) conjecture:

I Conjecture 5 (The Small-Space 3-SUM Conjecture). On a word-RAM with O(logn)-bit
words, there exists an ε > 0 such that every algorithm that solves 3-SUM in O(n1/2+ε) space
must take at least n2−o(1) time.

This conjecture looks weaker than the original 3-SUM Conjecture, because we only have
to prove a quadratic-time lower bound for all algorithms that use slightly more than

√
n

space. Proving time lower bounds is generally much easier when space is severely restricted
(e.g. [9, 14, 12, 26, 8]).

Our self-reduction for 3-SUM yields the intriguing consequence that the original 3-SUM
Conjecture is equivalent to the Small-Space 3-SUM conjecture! That is, the non-existence
of a truly subquadratic-time 3-SUM algorithm is equivalent to the non-existence of a truly
subquadratic-time n0.51-space 3-SUM algorithm, even though the latter appears to be a
more plausible lower bound. We prove:

ICALP 2016
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I Theorem 6. If 3-SUM is solvable in time O(n2−ε) time, then for every α > 0 there is a
δ > 0 such that 3-SUM is solvable in O(n2−δ) time and space O(n1/2+α) in terms of words.

Theorem 6 is interesting, regardless of the veracity of the 3-SUM conjecture. On the
one hand, the theorem reduces the difficulty of proving the 3-SUM Conjecture if it is true,
because we only have to rule out small-space sub-quadratic time algorithms. On the other
hand, the theorem means that refuting the 3-SUM conjecture immediately implies a truly-
subquadratic time algorithm for 3-SUM using small space as well, which would be an al-
gorithmic improvement.

2 Preliminaries

2.1 k-SUM and Selection
We will use the following version of the k-SUM problem:

I Definition 7. In the k-SUM problem, we are given an unsorted list L of n values (over Z
or R) and want to determine if there are a1, . . . , ak ∈ L such that

∑k
i=1 ai = 0.

One fundamental case is the 3-SUM problem. Sometimes 3-SUM is presented with three
separate lists, which we denote as 3-SUM’, but the two are reducible to each other in linear
time, and with no impact on space usage.

I Definition 8. In the 3-SUM problem, we are given an unsorted list L of n values and want
to know if there are a, b, c ∈ L such that a+ b+ c = 0. In the 3-SUM’ problem, we are given
three unsorted lists A, B, and C of values, where |A| = |B| = |C| = n, and want to know if
there are a ∈ A, b ∈ B, c ∈ C such that a+ b+ c = 0.

As part of our k-SUM algorithms, the classical Selection Problem will also arise:

I Definition 9. In the s-Select problem, we are given an unsorted list L of n values and
a natural number s, and want to determine the sth smallest value in L.

2.2 Computational Model
As standard when discussing sub-linear space algorithms, the input is provided in read-only
memory, and the algorithm works with auxiliary read/write memory which counts towards
its space usage.

Computation on Integers. When the input values are integers, we work in the word-RAM
model of computation: the machine has a word size w, and we assume all input numbers
can be represented with w bits so that they fit in a word. Arithmetic operations (+,−, ∗)
and comparisons on two words are assumed to take O(1) time. Space is counted in terms of
the number of words used.

Computation on Reals. When the input values are real numbers, we work in a natural
real-RAM model of computation, which is often called the comparison-addition model (see,
for example, [21]). Here, the machine has access to registers that can store arbitrary real
numbers; addition of two numbers and comparisons on real numbers take O(1) time. Space
is measured in terms of the number of reals stored.

Time-Space Complexity Notation. We say that k-SUM is solvable in TISP(T (n), S(n))
if k-SUM on lists of length n can be solved by a single algorithm running in deterministic
O(T (n)) time and O(S(n)) space simultaneously on the real-RAM (and if the lists contain
integers, on the word-RAM).
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2.3 Other Prior Work
Baran, Demaine and Patrascu [7] obtained randomized slightly subquadratic time algorithms
for Integer 3-SUM in the word-RAM. Grønlund and Pettie [17] studied 3-SUM over the reals,
presenting an O(n2/(logn/ log logn)) time randomized algorithm, as well as a deterministic
algorithm running in O(n2/(logn/ log logn)2/3) time. Recently, Gold and Sharir [16] im-
proved this deterministic running time to O(n2/(logn/ log logn)). Abboud, Lewi and Wil-
liams [1] showed that Integer k-SUM is W[1]-complete under randomized FPT reductions
(and under some plausible derandomization hypotheses, the reductions can be made determ-
inistic). In the linear decision tree model of computation, k-SUM over the reals is known
to require Ω(ndk/2e) depth k-linear decision trees [13, 4], but the problem can be solved
with O(nk/2√logn) depth (2k − 2)-linear decision trees [17]. The randomized decision tree
complexity was improved by Gold and Sharir [16] to O(nk/2).

3 Building Blocks

In this section, we describe two tools we use to obtain our main self-reduction lemma for
k-SUM and 3-SUM. The first tool helps us guarantee that we don’t have to generate too
many subproblems in our reduction; the second will allow us to find these subproblems in a
time and space efficient way.

3.1 Domination Lemma
Our deterministic self-reduction for k-SUM will split lists of size n into g sublists of size n/g,
then solve subproblems made up of k-tuples of these sublists. Naively, this would generate
gk subproblems to enumerate all k-tuples. In this section, we show that we only need to
consider O(kgk−1) subproblems.

First, we define a partial ordering on k-tuples on [n]k. For t, t′ ∈ [n]k, we say that t ≺ t′
if t[i] < t′[i] for all i = 1, . . . , k. (Geometrically, the terminology is that t′ dominates t.)

I Lemma 10 (Domination Lemma). Suppose all tuples in a subset S ⊆ [n]k are incomparable
with respect to ≺. Then |S| ≤ knk−1.

The Domination Lemma can be seen as an extension of a result in [24] (also used in [11]
in a different context) which covers the k = 3 case.

Proof. We will give a cover of all elements in [n]k with few chains under ≺. Then by
Dilworth’s theorem, any set of incomparable elements under ≺ can only have one element
from each chain.

Take any k-tuple t ∈ [n]k such that t[i] = 1 for some i = 1, . . . , k. Letting ` ∈ [n] be the
largest element in t, we define the chain C(t) = {t0, t1, . . . , tn−`}, where each tj is given by
tj [i] = t[i] + j for all i = 1, . . . , k. Clearly C(t) forms a chain in [n]k under ≺. Moreover
these chains cover all elements of [n]k: observe that the tuple t appears in the chain C(t′)
where t′[i] = t[i]−minj t[j] + 1 for all i = 1, . . . , k.

The number of chains is exactly the number of k-tuples with a 1 in at least one coordinate.
This number is less than k times the number of tuples that have a 1 in dimension i. The
number of tuples with a 1 in dimension i is nk−1. Thus, the total number of chains is
≤ knk−1. J

The Domination Lemma can be applied to show that in any list of numbers, not too
many k-SUM subproblems can have k-SUM solutions. In the following, let g divide n for

ICALP 2016
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Figure 1 Domination Lemma chains when n = 3 and k = 3. The chain {(1, 1, 1), (2, 2, 2), (3,
3, 3)} is highlighted in red. In three dimensions, the number of chains is roughly proportional to
the surface area of the cube, which is only O(n2), despite the fact that there are O(n3) points.

Figure 2 A depiction of how L is divided.

simplicity. Given a list L of n numbers divided into g groups of size n/g, a subproblem of L
is simply the union of a k-tuple of groups from L. Note that a subproblem contains at most
kn/g numbers.

I Corollary 11. Given a k-SUM instance L, suppose L is divided into g groups L1, . . . , Lg
where |Li| = n/g for all i, and for all a ∈ Li and b ∈ Li+1 we have a ≤ b. Then there are
O(k · gk−1) subproblems L′ of L such that the smallest k-sum of L′ is less than zero and
the largest k-sum of L′ is greater than zero. Furthermore, if some subproblem of L has its
largest or smallest k-sum equal to 0, then the corresponding k-SUM solution can be found
in O(gk) time.

Proof. We associate each subproblem of L with a corresponding k-tuple (x1, . . . , xk) ∈ [g]k
corresponding to the k sublists (Lx1 , . . . , Lxk

) of L.
Let m[i] be the element in position i · (n/g) when L is in sorted order. Consider any

subproblem with
∑k
i=1 m[xi] > 0 (smallest k-sum greater than zero) or

∑k
i=1 m[xi + 1] < 0

(largest k-sum less than zero). We call such a subproblem trivial, since it cannot contain
k-SUM solutions.

In O(gk) time, we can determine whether any subproblem has
∑k
i=1 m[xi] = 0, and
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return the corresponding k-SUM solution if this is the case. Otherwise, we can assume that
for each subproblem either it is trivial, or

∑k
i=1 m[xi] < 0 <

∑k
i=1 m[xi + 1].

Consider the set of non-trivial subproblems. Because for all a ∈ Li and b ∈ Li+1 we
have a ≤ b, if for two subproblem k-tuples we have t ≺ t′, then the smallest k-sum of the
subproblem t′ is at least the largest k-sum of the subproblem t. This implies that at least
one of the two subproblems must be trivial. In other words, the set of nontrivial problems
corresponds to a set of incomparable k-tuples in [g]k. Applying Lemma 10, the number of
nontrivial subproblems is O(kgk). J

3.2 Bucket Retrieval and Space-Efficient Selection
A randomized algorithm for k-SUM can partition a list of numbers by choosing a hash
function at random, then loop over the hash function range to partition a given list into
smaller buckets. Given a hash and a bucket number, it is easy to retrieve the contents of
that bucket by scanning the list.

To derandomize this process, we could try to create small “hash” buckets by grouping
the n/g smallest elements together, then the next n/g smallest elements, and so on, without
actually sorting the list. However, retrieving the contents of a bucket may now be difficult
to do with small space: we need to know the smallest and largest elements of a bucket to
retrieve its elements, and we may not be able to store all of these extrema. We require an
efficient algorithm to compute the largest element of a bucket, given the smallest element
and the bucket size.

This problem is equivalent to the selection problem, also known as s-Select, which asks
for the sth smallest element of a list, when we set s = n/g. To reduce from our problem to
s-Select, pretend that every entry less than our smallest element is ∞. (To reduce from
s-Select to our problem, we can pretend our smallest element is −∞.)

The classic median-of-median algorithm can solve s-Select in O(n) time and O(n)
space [10]. Since we care about space usage, we provide an algorithm below which has O(n)
running time, but uses much less space. This algorithm turns out to be optimal for our
purposes, since retrieving the bucket afterwards will already take O(n) time and O(s) space.

I Lemma 12. s-Select can be solved in O(n) time and O(s) space.

Proof. The plan is to scan through the elements of the list, inserting them to a data structure
D which will allow us to track the smallest s elements. We perform n insertions, then query
D to ask for the smallest s elements it contains. To get the claimed algorithm for selection,
we give a data structure can handle these operations in O(1) amortized update time and
O(s) query time, with a data structure using only O(s) space.

One first attempt might be to build a heap of s + 1 elements, which throws away the
largest element whenever it gets full. Since heaps have logarithmic update time and linear
space usage, this results in O(log s) update time, O(s) query time, and O(s) space.

We can improve the update time by batching when we throw out large elements. Suppose
instead we keep an array which can hold up to 2s elements. When the array gets full, we
throw out the largest s elements. To do this, we first compute the (s+1)th smallest element
in the array. This can be done in O(s) time and O(s) space via the classical median-of-
medians algorithm. We then do a linear scan of the array, and write all elements strictly
less than the median to a new array. To handle ties, we write a copy of the median to the
new array, until it has s elements. When we are given our final query, we again throw out
large elements so that we only have s elements left, and then return those.

ICALP 2016
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Updates now take amortized constant time: after s updates, we take O(s) time to clear
out the large elements. The final query takes O(s) time, since we again need to throw out
large elements. The space usage is O(s) since we store up to 2s elements, and running
median-of-medians takes O(s) space. This completes the proof. J

We will call the above algorithm NextGroup. NextGroup takes as input a value
v, a natural number s, and a list of numbers L, and outputs the next s elements of L in
sorted order after the value v. Other variations on deterministic s-Select algorithms are
mentioned in Appendix A.

4 Subquadratic 3-SUM implies Subquadratic small-space 3-SUM

We will begin by using our building blocks to prove a self reduction for 3-SUM. Then we will
show three intriguing consequences of this self reduction. First, the self reduction can be
used to show a general theorem that takes subquadratic algorithms for 3-SUM and produces
subquadratic time algorithms that run in nearly

√
n space. Second, we show that algorithms

for 3-SUM that are subquadratic by polylog factors can be used to obtain 3-SUM algorithms
with the same asymptotic running time and simultaneously small space. Finally, we will
prove that the Small-Space 3-SUM conjecture is equivalent to the 3-SUM conjecture.

4.1 3-SUM Self Reduction
We now proceed to solve 3-SUM using our bucket retrieval subroutine. We will use maxS
and minS to refer to the maximum and minimum elements of a list S, respectively.

As anticipated, we split the three arrays into groups of size n/g, and solve 3-SUM on sub-
problems of this size. Naively there are O(g3) subproblems to solve, but we use Corollary 11
to argue we only get O(g2) subproblems.

I Theorem 13 (3-SUM Self-Reduction Theorem). If 3-SUM is solvable in TISP(T (n), S(n))
then for any g, 3-SUM can be solved in TISP(g2(n+ T (n/g)), n/g + S(n/g)).

Proof. Consider the following algorithm.
Algorithm 1: 3-SUM Algorithm
Set preva = −∞;
for i ∈ [0, g − 1] do

Set A′ = NextGroup(A, preva, n/g + 1);
Set prevb = −∞;
for j ∈ [0, g − 1] do

Set B′ = NextGroup(B, prevb, n/g + 1);
Set C ′ = NextGroup(C,−maxA′ −maxB′, n/g + 1);
while minC ′ ≤ −minA′ −minB′ do

if 3-SUM(A′, B′, C ′) returns true then
return true;

Set C ′ = NextGroup(C,maxC ′, n/g + 1);
Set prevb = maxB′;

Set preva = maxA′;
return false;
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Algorithm 1 is correct because we consider all possible elements of C where the sum of
elements from A′ and B′ could land, and the choices of A′ and the choices of B′ cover all
of A and B, respectively. If there are multiple copies of a value in a list we will fail to list
all copies only if it already appeared in a previous sublist. This will not affect correctness
because the value will have already been analyzed.

It’s easy to see that the algorithm calls NextGroup O(g) times for A′, O(g2) times for
B′. We claim that we also only call it O(g2) times for C ′. To show this, we want to apply
Corollary 11. Unfortunately, the groups of C that we extract don’t always line up with our
ideal n/g division; since we start at −maxA′ −maxB′, we may not align at the endpoints
of blocks. Fortunately, we’ve only introduced an extra O(1) possibilities of C ′ for every
(A′, B′) pair, or O(g2) extras total. Hence we still only make O(g2) calls to NextGroup.
By Lemma 12, these calls will require O(ng2) time and O(n/g) space.

Our algorithm also calls the TISP(T (n), S(n)) algorithm for 3-SUM O(g2) times on
instances of size O(n/g), which requires O(g2T (n/g)) time and O(S(n/g)) space.

We have shown Algorithm 1 is correct and has the desired runtime and space usage, so
this completes the proof. J

4.2 General Theorem for Space Reduction
Our self-reduction for 3-SUM yields the following intriguing consequence: subquadratic-time
algorithms for 3-SUM imply subquadratic-time small-space algorithms for 3-SUM. Plugging
this connection into known 3-SUM algorithms, we can automatically obtain more space-
efficient 3-SUM algorithms for free. From a complexity-theoretic point of view, the con-
sequence is perhaps even more intriguing: it means that the 3-SUM Conjecture is equivalent
to the statement that there is no subquadratic-time n0.51-space 3-SUM algorithm, even
though the latter appears to be a more plausible lower bound(!).

We begin by stating our generic space reduction theorem.

I Theorem 14 (3-SUM Space Reduction). Suppose 3-SUM is solvable in n2/f(n) time, where
1 ≤ f(n) ≤ n. Then 3-SUM is solvable by an algorithm running in O(n2/f(n/g)) time and
O(n/h) space simultaneously, where g(n), h(n) ∈ [1, n] satisfy the relations

g(n) ≥ Ω
(√

n

f(n/g(n))

)
and h2 + n

f(n/(hg(n/h))) ≤ O
(

n

f(n/g(n))

)
.

Proof. We will apply our Self-Reduction Theorem for 3-SUM (Theorem 13) in two different
ways. First, we will use the self-reduction (and the constraint on g(n)) to convert our 3-
SUM algorithm into a linear-space algorithm, with a modest increase in running time (if at
all). Pushing the linear-space algorithm through the self-reduction once more will reduce
the space bound further, without increasing the running time asymptotically (using the
constraint on h(n)).

Let T (n) := n2/f(n). Set the parameter g(n) ≥ 1 to satisfy

T (n/g) = n2/g2

f(n/g) = O(n); or, equivalently g = Ω
(√

n

f(n/g)

)
. (1)

Assuming g satisfies (1), applying the 3-SUM Self-Reduction (Theorem 13) with T (n) = S(n)
and g, we can then solve 3-SUM in

TISP
(
g2(n+ T (n/g)), n/g + T (n/g)

)
= TISP

(
n2

f(n/g) , n
)
. (2)

ICALP 2016



XXX:10 Deterministic Time-Space Tradeoffs for k-SUM

Now, set new time and space bounds T (n) := n2/f(n/g(n)), S(n) = n from (2). Then,
applying the 3-SUM Self-Reduction (Theorem 13) with the new T (n), S(n) and some para-
meter h, we can then solve 3-SUM in TISP(h2(n+ T (n/h)), n/h+ S(n/h)) =

TISP
(
h2
(
n+ n2/h2

f(n/(hg(n/h)))

)
, n/h

)
⊆ TISP

(
n2

f(n/g) , n/h
)
,

by our hypothesis on h. J

4.3 Space-Efficient Fast 3-SUM
When we apply Theorem 14 directly to known algorithms, we obtain immediate space im-
provements with negligible loss in running time. Very recently, Gold and Sharir [16] have
given a faster 3-SUM algorithm in the real-RAM model, building on the work of Gronlund
and Pettie [17]:

I Theorem 15 (Gold and Sharir [16]). 3-SUM can be solved in O(n2 lg lg(n)/ lg(n)) time
over the reals and integers.

As discussed in the introduction, their novel approach uses quite a bit of space. Applying
Theorem 14, we can reduce the space usage to only O

(√
n lg(n)/ lg lg(n)

)
, with the same

asymptotic running time of Gold and Sharir.

I Corollary 16 (Space-Efficient 3-SUM Algorithm). 3-SUM is in TISP
(
n2 lg lg(n)

lg(n) ,
√

n lg(n)
lg lg(n)

)
.

Proof. We shall apply Theorem 14. First, set f(n) := lg(n)/ lg lg(n), so that 3-SUM is
solvable in O(n2/f(n)) time by Theorem 15.

Set g(n) :=
√

n lg lg(n)
lg(n) and h(n) :=

√
n lg lg(n)

lg(n) . By our choice of f(n) and basic properties
of logarithms, observe that

f(n/g) = f(Õ(
√
n)) = Θ(f(n)), (3)

and furthermore

f(n/(hg(n/h))) = f
(
Õ(
√
n)/Õ(n1/4)

)
= Θ(f(n)). (4)

By (3), we have

g =

√
n lg lg(n)

lg(n) ≥ Ω
(√

n

f(n/g)

)
, so the first constraint of Theorem 14 is satisfied.

Moreover, by (4) we have

h2 + n

f(n/(hg(n/h))) = n lg lg(n)
lg(n) + n

Θ(f(n)) , which is O
(

n

f(n/g)

)
by (3).

Therefore the second constraint of Theorem 14 is also satisfied, and 3-SUM is solvable by
an algorithm running in O(n2/f(n)) time and O

(√
nf(n)

)
space simultaneously. J

In general, Theorem 14 provides a generic reduction from faster 3-SUM algorithms to
faster space-efficient 3-SUM algorithms. To illustrate:

I Corollary 17. If 3-SUM is solvable in O(n2/ lga(n)) time for some constant a > 0, then
3-SUM is in TISP(n2/ lga(n),

√
n lga/2(n)).
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Proof. We apply Theorem 14. By assumption we have 3-SUM in O(n2/f(n)) time, where
f(n) = lga n. Set g(n) :=

√
n/ lga/2(n), and h(n) :=

√
n/ lga/2(n). Note that f(n/g(n)) =

Θ(lga(n)) and f(n/(h(n) · g(n/h(n)))) = Θ(lga(n)), similar to Corollary 16. Therefore

g(n) =
√
n/ lga/2(n) ≥ Ω

(√
n

f(n/g(n))

)
and

h2 + n

f(n/(hg(n/h))) ≤ O
(

n

lga n

)
≤ O

(
n

f(n/g(n))

)
.

Hence Theorem 14 applies to these settings of the parameters, and 3-SUM is inO(n2/f(n/g)) =
O(n2/ lga(n)) time and O(n/h) = O(

√
n lga/2(n)) space. J

4.4 The 3-SUM Conjecture and Small Space
Finally, we use the Space Reduction Theorem (Theorem 14) to show that the 3-SUM con-
jecture is false, then it is also false with respect to small-space algorithms.

I Lemma 18. If 3-SUM is in O(n2−ε) time for some ε > 0, then for every α > 0, there is a
δ > 0 such that 3-SUM is solvable in O(n2−δ) time and O(n1/2+α) space, simultaneously.

Proof. The proof of Theorem 14 applies the 3-SUM Self Reduction (Theorem 13) twice.
We will basically perform the first part of the proof of Theorem 14, but instead of applying
the second part of the proof, we have to choose a different setting of parameters, focused on
minimizing the space usage instead of preserving running time.

Let T (n) := n2/f(n) with f(n) = nε. We first reduce the space usage of the algorithm
to linear. To this end, set g(n) := n(1−ε)/(2−ε). Then, applying the 3-SUM Self-Reduction
(Theorem 13) with T (n) = S(n) and g(n), we can then solve 3-SUM in

TISP(g2(n+ T (n/g)), n/g + T (n/g)) = TISP
(

n2

f(n/g) , n
)

= TISP
(

n2

nε/(2−ε) , n

)
.

Now reset f(n) := nε/(2−ε), and reset g(n) := n1/2+α with α ∈ (0, 1/2). Applying the
3-SUM Self-Reduction (Theorem 13) with T (n) = n2/f(n), S(n) = n, and g(n) as above,
we find an algorithm for 3-SUM in

TISP
(
n2−2α + n2−(1/2−α)ε/(2−ε), n1/2+α

)
.

Note that for all ε > 0 and α ∈ (0, 1/2), the running time bound is truly subquadratic.
Further note that for any α ≥ 1/2, we only have more space to work with, so we clearly
obtain O(n2−δ) time and O(n1/2+α) space (for some δ > 0) in that case as well. J

This lemma can be applied to show that the 3-SUM Conjecture is equivalent to seemingly
much weaker statement:
Reminder of The Small-Space 3-SUM Conjecture (Conjecture 5) On a word-RAM with
O(logn)-bit words, there exists an ε > 0 such that every algorithm that solves 3-SUM in
O(n1/2+ε) space must take at least n2−o(1) time.

I Theorem 19. The Small-Space 3-SUM Conjecture is equivalent to the 3-SUM Conjecture.
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Proof. It suffices to show that the 3-SUM Conjecture if true implies the Small-Space 3-SUM
Conjecture and that the refutation of the 3-SUM Conjecture implies the Small-Space 3-SUM
Conjecture. First, we observe that the 3-SUM Conjecture trivially implies the Small-Space
3-SUM Conjecture.

Suppose the 3-SUM Conjecture is false. Then a O(n2−ε) time algorithm for 3-SUM
exists, and Lemma 18 implies that for every α > 0, there is a δ > 0 such that 3-SUM is
solvable in O(n2−δ) time and O(n1/2+α) space, simultaneously. But this means that for any
choice of ε′ > 0 for the Small-Space 3-SUM Conjecture, we can find a truly-subquadratic
3-SUM algorithm that uses only O(n1/2+ε′/2) space. This would falsify the Small-Space
3-SUM Conjecture. J

We conclude that, in order to prove the 3-SUM conjecture, it is sufficient to prove that
no algorithm can solve 3-SUM in TISP(n2−ε, n0.51) for some ε > 0.

5 k-SUM

5.1 k-SUM Self-Reduction
We now generalize from 3-SUM to k-SUM. Again, we plan to split the lists into g groups
of size O(n/g). By Corollary 11, we will have only O(gk−1) subproblems of size O(n/g).
Unlike 3-SUM, where we just used the naive algorithm to solve subproblems, in this section
we use a general algorithm; we reduce from k-SUM to itself (albeit on smaller instances).

I Theorem 20. Suppose real k-SUM can be solved in TISP(T (n), S(n)). Then for any g, it
can also be solved in TISP(gk−1(n+ T (n/g)), n/g + S(n/g)).

Proof. This follows from a generalized analysis of the proof of Theorem 13. We brute force
over which groups the first k−1 elements are in. We then extract groups where the negative
sum of elements from these first k − 1 groups could land. By Corollary 11 and similar
reasoning as before, there are only O(gk−1) tuples of blocks. For each tuple, we make a call
to NextGroup and to our input k-SUM algorithm on a subproblem of size O(n/g). This
gives the desired time and space, completing the proof. J

5.2 Applying our k-SUM Self-Reduction
We want to apply the self-reduction on efficient deterministic algorithms. One of the best
starting points is the Schroeppel-Shamir 4-SUM algorithm, which we note is actually de-
terministic and works on reals because it simply uses priority queues and reduces to the
classic 2-SUM algorithm, both of which only use comparisons.

I Lemma 21 (From [23]). Real 4-SUM is solvable in TISP(n2, n).

Another useful fact observed by Wang is that an algorithm for k-SUM can be transformed
into an algorithm for (k + 1)-SUM by brute-forcing one element:

I Lemma 22 (From [25]). If Real k-SUM is solvable in TISP(T (n), S(n)) then real k+1-SUM
is solvable in TISP(nT (n), S(n) + 1).

Suppose we want to use our results to derive a linear-space algorithm for k-SUM. We
will assume k is a multiple of 4, although Lemma 22 allows us to fill in for the other values
of k. By writing down sums of k/4 elements, we can transform k-SUM to 4-SUM, yielding
a TISP(nk/2, nk/4) algorithm. We can then apply Theorem 20 with g = n(k−4)/k to get a
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TISP(nk−3+4/k, n) algorithm. Notice that this algorithm runs significantly faster than O(nk)
time; we get O(n11/2) for 8-SUM and O(n28/3) for 12-SUM. As a coarse upper bound, we
can apply Lemma 22 and round down our savings (to make things cleaner), compensating
for k which are not a multiple of 4, we get:

I Corollary 23. For k ≥ 4, k-SUM is solvable in TISP(nk−3+4/(k−3), n).

Suppose we wanted to use O(
√
n) space instead. We get smaller subproblems by making

more groups; choosing g = n(k−2)/k instead yields a TISP(nk−2+2/k,
√
n). Similarly applying

Lemma 22 and round down our savings to compensate for k which are not a multiple of 4,
we get another coarse upper bound:

I Corollary 24. For k ≥ 4, k-SUM is solvable in TISP(nk−2+2/k,
√
n).

6 Future Work

We would like to extend these results to derandomize other known randomized algorithms
for k-SUM. To do that, it seems we require a “deterministic simulation” of the hash func-
tions used in those results. Baran, Demaine, and Patrascu use hashing to get subquadratic
algorithms for 3-SUM [7]; Patrascu uses it to reduce 3-SUM to Convolution 3-SUM [20];
Wang uses it to produce a family of linear-space algorithms for k-SUM [25]. Which of these
results, if any, can be derandomized?

The hash families involved have three crucial properties: load-balancing (the hash buck-
ets are not “too large”), few subproblems (the number of k-tuples of hash buckets examined
is “small”), and few false positives (there are few non-k-SUM solutions mapped to k-tuples
of hash buckets examined). Our s-Select algorithm (Lemma 12) and Domination Lemma
(Lemma 10) are used to achieve the first two properties, without using randomization. Can
the last property also be simulated deterministically? (Note that it’s not entirely clear what
it would mean to simulate “few false positives” deterministically.) If so, it is likely that all
these results can be derandomized efficiently.
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A s-Select

In addition to NextGroup we have two other s-Select algorithms. We present two
algorithms to solve this subtask. The first requires the values to be integers in the range
[−R,R] and runs in word-TISP(n logR, 1) (recall we are in the word-RAM model and we are
measuring space in terms of the number of words). The other needs no assumptions and
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returns the answers for g choices of k in TISP(n2, g). The NextGroupalgorithm discussed
in subsection 3.2 runs in TISP(n, s).

A.1 Bounded Range s-Select

This first algorithm runs a binary search over the bounded range to locate the sth smallest
element.

Algorithm 2: Bounded Range s-Select Algorithm
Set ` = −R, r = R;
while ` < r do

Set m = b `+r2 c;
Set c = 0;
for a ∈ L do

if m ≥ a then
Increment c;

if c ≥ s then
Set r = m;

else
Set ` = m+ 1;

return `;

I Theorem 25. Algorithm 2 solves s-Select in word-TISP(n logR, 1).

Proof. Algorithm 2 returns the smallest integer v such that there are s values less than or
equal to v. Since all values are integers, by assumption, this is the sth smallest value. The
algorithm runs for O(logR) iterations, but each iteration does a scan of L that takes O(n)
time. The algorithm keeps a constant number of values, so it uses O(1) space. J

A.2 Batch real k-Select

When we lose the range and integrality assumptions, we can still gain when we have several
s-Select instances with the same list L. In particular, suppose there are g indices we want
to know: s1, . . . , sg, where g ≤ n, we can go through the list in order in n2 time noting and

ICALP 2016
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saving the value of all of those indices. Furthermore, we can use this method over the reals.
Algorithm 3: Batch s-Select Algorithm
Set prev = −∞;
Create a return vector V of length g;
Set i = 1;
while i ≤ n do

Set curr =∞;
for a ∈ L do

If a > prev, set curr = min(curr, a);
Set dup = 0;
for a ∈ L do

If a = curr, increment dup;
for j = [1, g] do

If kj ∈ [i, i+ dup), set V [j] = curr;
Set prev = curr;
Increment i by dup;

return V ;

I Theorem 26. Algorithm 3 solves batch real s-Select in TISP(n2, g).

Proof. Algorithm 3 repeatedly scans L, each time finding the next largest element. After
it finds the sth smallest element, it checks to see if s was one of the requested indices, and
if so, fills it into its answer. The algorithm performs O(n) scans of L and the kj , but since
g ≤ n, this runs in O(n2) time. Keeping g elements around takes O(g) space. J
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