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ABSTRACT

The symmetric traveling salesman problem (TSP) is the problem

of finding the shortest Hamiltonian cycle in an edge-weighted

undirected graph. In 1962 Bellman, and independently Held and

Karp, showed that TSP instances with 𝑛 cities can be solved in

𝑂 (𝑛2
2
𝑛) time. Since then it has been a notorious problem to improve

the runtime to𝑂 ((2−𝜀)𝑛) for some constant 𝜀 > 0. In this work we

establish the following progress: If (𝑠×𝑠)-matrices can be multiplied

in 𝑠2+𝑜 (1)
time, than all instances of TSP in bipartite graphs can be

solved in𝑂 (1.9999
𝑛) time by a randomized algorithmwith constant

error probability. We also indicate how our methods may be useful

to solve TSP in non-bipartite graphs.

On a high level, our approach is via a new problem calledMin-

HamPair: Given two families of weighted perfect matchings, find

a combination of minimum weight that forms a Hamiltonian cy-

cle. As our main technical contribution, we give a fast algorithm

for MinHamPair based on a new sparse cut-based factorization

of the ‘matchings connectivity matrix’, introduced by Cygan et

al. [JACM’18].
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1 INTRODUCTION

The Traveling Salesman Problem (TSP) is one of the favorite and

most well-studied computational problems in theoretical computer
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science. Its simple statement and clear applicability – a salesman

needs to find the shortest tour through 𝑛 different cities – make the

problem extremely attractive. From a theoretical perspective, the

problem poses crisp yet very challenging research challenges that

make it representative for many NP-complete problems.

As an example, improving the famous polynomial time 1.5-

approximation algorithm by Christofides [Chr76] (and indepen-

dently, by Serdyukov [Ser78]) is one of the favorite open questions

in the theory of approximation algorithms. While this question

remains open, recent years witnessed a plethora of breakthroughs

related to approximating TSP solutions such as the first constant

factor approximation for asymmetric
1
TSP (ATSP) with triangle in-

equality by Svensson et al. [STV18] and an algorithm generalizing

the 1.5-approximation to the more general path-TSP by Traub and

Vygen [TV19] and Zenklusen [Zen19].

Another, perhaps even more classic, line of research is to solve

TSP exactly as fast as possible in the worst case. Of course we do not

expect to solve the problem in polynomial time since its decision

variant is NP-complete, but nevertheless it is of interest to deter-

mine how fast it can be solved. This study was initiated already in

the 1920’s by Menger (see [Sch05] for an historial account). In 1962,

Bellman [Bel62] and, independently, Held and Karp [HK62] pro-

posed a Dynamic Programming (DP) algorithm with table entries

defined for each subset of the vertices to build partial tours. We

quote the following excerpt from the popular text book ‘In Pursuit

of the Traveling Salesman’ about this result:

“
This team’s dynamic programming algorithm solves

any instance in time proportial to 𝑛2
2
𝑛
, and this is

where we still stand, after nearly fifty years. A revolu-

tion may be overstating what is needed to push beyond

Held-Karp, but it clearly is going to take an exciting

new idea.

”— William Cook [Coo11]

As also formalized in [Coo11], the research challenge can be more

precisely stated as follows:

Open Question 1: Can (A)TSP on 𝑛 cities be

solved in𝑂 ((2−𝜀)𝑛) time, for some constant 𝜀 > 0?

A positive answer to Open Question 1 would be valuable because

of several reasons: First, generally speaking, ‘improved algorithms’

such as the one asked here would indicate that relatively simple

approaches can be improved and thus that the computational land-

scape of worst-case complexity of NP-complete problems is even

more complex than we may think. Second, such improved algo-

rithms are highly relevant for the blooming area of Fine-Grained

1
Meaning the distance from 𝑖 to 𝑗 can be different from the distance from 𝑗 to 𝑖 .
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Complexity. For example, the increasingly popular Strong Exponen-

tial Time Hypothesis [IPZ01] states that a similar type of improved

algorithm does not exist for CNF-SAT. Third, improved algorithms

for TSP would show how to break the natural mold of DP over

subsets from [Bel62, HK62], because within this mold it seems un-

avoidable to discard any of the

( 𝑛
𝑛/2

)
≈ 2

𝑛
candidates of the 𝑛/2 first

cities the salesman may visit. This is probably the main motivation

for asking for improvements as in Open Question 1: We expect that

progress on them will imply new algorithmic paradigms.

Algebraic Algorithms. An important case of (A)TSP is the case

where all weights are either 0 or ∞. Then the input can be rep-

resented with a (directed) graph in which we need to detect a

Hamiltonian cycle. Thus, before attacking Open Question 1 we first

need to detect Hamiltonian cycles faster than [Bel62, HK62]. For-

tunately, in the last decade a beautiful line of algebraic algorithms

was developed that led to spectacular progress and culminated in

a breakthrough randomized algorithm by Björklund [Bjö14] (see

also [BHKK17]) that detects Hamiltonian cyles in undirected graphs

in𝑂 (1.66
𝑛) time. See also a survey by Koutis andWilliams [KW16a].

Inspired by [Bjö14], Cygan et al. [CNP
+
11] showed such an

algebraic approach can be used to solve the Hamiltonicity problem

fast on graphs of small ‘treewidth’. A follow-up work [CKN18]

introduced the matchings connectivity matrix (see Section 2.2 for a

definition), determined its rank, and used it to detect Hamiltonian

cycles in graphs of small ‘pathwidth’ and bipartite directed graphs.

On the positive side, these algorithms step out of the ‘DP over sub-

sets’ mold of [Bel62, HK62] significantly. Especially the approach

from [CNP
+
11, CKN18] is extremely flexible in how the solution is

divided into sub-solutions, which make it the right approach in the

case that the input graph has nice structure such as low treewidth.

However, these algorithms are algebraic, which means they

count certain candidate solutions and use the power of algebraic

cancellation (i.e. subtraction or cancellation modulo 2) to filter out

the actual solutions. Extending such algorithm to weighted prob-

lems such as TSP can be done by counting candidates of fixed

weight, but this typically incurs pseudo-polynomial time overhead

in the runtime. Avoiding such overhead is a significant research

challenge that, for example, also underlies the well-known open

problem of solving the All-Pairs-Shortest-Path problem in sub-cubic

time (see e.g. [Wil18]).

Rank-Based Method for TSP. For long, improvements over [Bel62,

HK62] for TSP were only known in graphs of bounded (average)

degree
2
based on branching or truncating the ‘DP over subsets’-

approach [BHKK12, CP15, Epp07, Geb08, IN07]. But in 2015, Bod-

laender et al. [BCKN15] showed how to employ insights from the

algebraic algorithms to weighted problems such as TSP while avoid-

ing the aforementioned pseudo-polynomial overhead in the max-

imum input weight. They presented fast algorithms for TSP on

instances in graphs of small treewidth that are very flexible in how

sub-solutions are built similar to the tools from [CNP
+
11, CKN18].

The main observation from [BCKN15] was that, in any dynamic

programming algorithm, the number of partial solutions could po-

tentially be reduced significantly by using Gaussian elimination, if

2
With every (A)TSP instance we can associate a (directed) graph formed by all

(directed) arcs with finite weight.

an appropriate ‘partial solutions matrix’ has sufficiently low rank.

For (weighted) Hamiltonian cycle this turned out an especially use-

ful approach since the associated partial solutions matrix is the

aforementioned matchings connectivity matrix which has remark-

ably low rank [CKN18].

Given the rank-based method of [BCKN15] and the rank bound

from [CKN18], it is natural to be optimistic about a resolution of

Open Question 1. While there still turn out to be several obstacles,

we suggest in this work that this optimism may be justified.

1.1 Our Contribution

For our main result, we restrict Open Question 1 to undirected

bipartite graphs. The motivation for this is that (1) general directed
graphs seem out of reach as even in the unweighted case a 𝑂 ((2 −
𝜀)𝑛) time algorithm for 𝜀 > 0 remains elusive (see Subsection 1.2),

and (2) the case of bipartite graphs was an important special case

that also played a crucial role in the algorithm by Björklund [Bjö14].

Theorem 1. Suppose that (𝑠 × 𝑠)-matrices can be multiplied in

𝑠2+𝑜 (1)
time. Then there is a Monte Carlo algorithm that, given an

undirected bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) and weights 𝑤 : 𝐸 → R,
finds a Hamiltonian tour of minimum weight in 𝑂 (1.9999

𝑛) time.

All arithmetic operations on the input weights used in the algo-

rithm behind Theorem 1 are additions and comparisons, thus in

the commonly used computational random access model the run

time is independent of the involved weights.

We let 𝜔 denote the smallest number such that (𝑠 × 𝑠)-matrices

can be multiplied in 𝑠𝜔+𝑜 (1) time. Thus we assume 𝜔 = 2. As the

tiny slack in our run-time suggests, there exists an 𝜀 > 0 such that

𝜔 < 2+𝜖 implies a𝑂 ((2−𝜀)𝑛). We briefly further discuss the𝜔 = 2

assumption below.

Theorem 1 should be considered to be interesting independent

of whether 𝜔 = 2: It is (to the best of the author’s knowledge) the

first result that ‘breaks a barrier’ (e.g. improves over a relative naïve

algorithm with a natural run-time) conditioned on whether 𝜔 = 2.

Thus, the fact that we are able to find improved algorithms even

with this assumption indicates substantial progress on the open

problem.

Minimum Weight Hamiltonian Pair. En route to Theorem 1, we

significantly break the ‘DP over subsets’-mold and decompose the

sought tour in path systems (e.g. a collection of disjoint paths)

similarly to [BCKN15, CKN18]. To be able to detect the pair of path-

systems that jointly form an optimal tour, we need a fast algorithm

for the following (to our knowledge, new) computational problem:

MinHamPair

Input: Families A,B ⊆ Πm ( [𝑡]) × R of weighted perfect

matchings

Asked: (𝐴,𝑤1) ∈ A and (𝐵,𝑤2) ∈ B withminimum𝑤1+𝑤2

and 𝐴 ∪ 𝐵 forming an Hamiltonian Cycle

One of our main technical contributions is a fast algorithm for this

problem. Specifically:

Theorem 2. There is a Monte Carlo algorithm for MinHamPair

that solves instance A,B ⊆ Π𝑚 ( [𝑡]) × R in 𝑂 (( |A| + |B|)23𝑡/10 +
3
𝑡/2) time.
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The algorithm behind Theorem 2 relies on new structural in-

sights on the Matchings Connectivity Matrix. For even 𝑡 ≥ 2 this a

Boolean matrix H𝑡 indexed by perfect matchings on 𝐾𝑡 that indi-

cates whether the two matchings form a Hamiltonian cycle. After

a relatively simple preprocessing step to remove the weights, the

algorithm behind Theorem 2 follows a variant of Freivalds’ matrix

multiplication verification algorithm (stated in Lemma 2.2) to check

whether the matrix H𝑡 [A,B] is non-zero using a factorization of

H𝑡 .

Our crucial insight comes in here: A new factorization of H𝑡 ,

that we call the narrow cut factorization, can be used to check

H𝑡 [A,B] faster than possible with previous factorizations. Two of

such factorizations were previously known [BCKN15, CKN18]:

• A cut-based factorization with inner dimension 2
𝑡−1

and

relatively sparse factorizing matrices,

• A matching-based factorization with inner dimension 2
𝑡/2−1

and relatively dense factorizing matrices.

See Subsection 2.2 for more details. Curiously, using either fac-

torization would lead to an 𝑂 (( |A| + |B|)2𝑡/2) time algorithm for

MinHamPair for different reasons: One factorization is sparse and

the other is narrow. Our new factorization is (relatively) narrow

and sparse and therefore leads to an improved algorithm. The same

factorization can also be used to obtain new simple algorithms for

undirected Hamiltonicity and Directed Bipartite Hamiltonicity. We

refer to Section 3 for more intuition and details.

Reducing Bipartite TSP to MinHamPair. To obtain Theorem 1

from Theorem 2 we use a slight variant of a known algorithm using

the rank-based method by Bodlaender et al. [BCKN15, Theorem

3.9]. This algorithm solves TSP in 𝑛(2 + 2
𝜔/2)pw

pw
𝑂 (1)

time, if a

path decomposition of the underlying graph 𝐺 of pathwidth pw

is given.
3
It does so by running a fairly straightforward dynamic

programming algorithm that (roughly speaking) stores for every

matching on a separator the minimum weight of a partial solution

(i.e. a set of paths) that connects the vertices on the separator as

dictated by the matching. Since there are 𝑘𝑂 (𝑘) matchings on 𝑘

vertices and a separator can be as large pw this implies a pw
𝑂 (pw)𝑛

time algorithm. To obtain the 2
𝑂 (pw)𝑛 run time, the rank-based

method uses a reducematchings subroutine that employs Gaussian

elimination to reduce the number of matchings to only 2
𝑂 (pw)

that are representative for all matchings (see Definition 2.11). An

important fact to note is that this Gaussian elimination step is a

major bottleneck for the algorithm. If there would be a linear time

implementation of reducematchings, the algorithm would run in

𝑛(2 +
√

2)pw
pw

𝑂 (1)
time (we continue this discussion below). See

Section 2.3 for formal definitions.

Note that if the underlying graph 𝐺 is bipartite with parts 𝐿, 𝑅,

then pw can be assumed to be at most 𝑛/2. If 𝑅 = {𝑟1, . . . , 𝑟𝑛/2} an
easy path decomposition is obtained by adding 𝐿 to each bag and

iteratively introducing and forgetting 𝑟𝑖 for 𝑖 = 1, . . . , 𝑛/2. If 𝜔 =

2 the algorithm from [BCKN15] would already run in 2
𝑛

poly(𝑛)
time, and the slow Gaussian elimination step is the only obstacle

preventing further improvement.

3
Though this paragraph relies on basic knowledge of path decompositions, it will

not be used in the formal description.

To turn this into an 𝑂 (1.9999
𝑛) time reduction, we (conceptu-

ally) split the sought tour 𝑇 in 𝑇1 = 𝑇 ∩ 𝐸1 and 𝑇2 = 𝐸 ∩ 𝐸2 where

𝐸1 = 𝐸 (𝐺) ∩ (𝐿 × 𝑅1) and 𝐸2 = 𝐸 (𝐺) × (𝑅 \ 𝑅1), 𝑅1 = 𝑟1, . . . , 𝑟𝑛/2.
We compute representative sets for all possibilities of 𝑇1 and 𝑇2.

However, we settle for a slightly larger representative set than guar-

anteed by only applying reducematchings sporadically, thereby

avoiding using Ω(2𝑛) time to compute the representative sets. Af-

terwards we use Theorem 2 to find the tour𝑇1 ∪𝑇2 of small weight.

Computing Representative Sets. Asmentioned above, a bottleneck

in the rank-based method is procedure reducematchings that com-

putes a representative set of matchings. An ambitious open question

is whether the run time of this algorithm can be improved to input-

linear time. This would imply an𝑂 ((2+
√

2)𝑛/2) time algorithm for

bipartite TSP by the algorithm from [BCKN15]. We do not make

progress on this question, but present consequences of a relaxed

version of this open question:

Theorem 3. Let 𝛼, 𝛽, 𝜀 be such that 𝛼 < 0.7 − 𝜀 and 𝛼 + 𝛽 <

log
2
(3)/2 − 𝜀. Suppose there an algorithm that, given an 𝑛-vertex

undirected graph 𝐺 with edge weights𝑤 : 𝐸 (𝐺) → R and a family

of perfect matchings A ⊆ Πm (𝑉 (𝐺)), computes a set A ′ ⊆ A that

represents A and satisfies |A ′ | ≤ 2
𝛼𝑛

in |A|2𝛽𝑛 time. Then TSP can

be solved in 𝑂 (2(1−𝜀′)𝑛) for some constant 𝜀 ′ > 0 that depends on

𝜀 > 0.

The proof relies on a non-trivial randomized procedure to build

representative sets of large subgraphs from small subgraphs. After-

wards, it applies Theorem 2 similarly as in the proof of Theorem 1.

We believe that the structure of perfect matchings guaranteed in this

special case makes Theorem 3 a promising route towards resolving

the symmetric case of Open Question 1.

The Quadratic Matrix Multiplication Assumption. The current

record upper bound for 𝜔 is 𝜔 < 2.3728639 by Le Gall [Gal14],

and it is popularly conjectured that 𝜔 = 2. While conjectures even

stronger than 𝜔 = 2 have been made [CKSU05, Str94], much of

the recent work focuses on limitations of the currently known

methods [Alm19].

As mentioned before, our work is one of the first works that

break a natural barrier assuming 𝜔 = 2, and it should therefore be

taken as an indication that a similar unconditional result is also

within reach.

By using standard proof systems from Linear Algebra [DLP17]

our methods also imply a ‘Merlin-Arthur’ proof (see e.g. [Wil16]

for a definition) with 𝑂 (1.9999
𝑛) proof size and verification time

unconditionally. We briefly elaborate on this in Appendix A This is

also interesting because the methods to obtain such fast protocols

(see e.g. [Wil16]) are also ‘algebraic’ and do not seem able to deal

with weighted variants.

1.2 Related Work

Algebraic Algorithms. The earliest algebraic algorithms forHamil-

tonicity (and TSP) are by Karp [Kar82] and Gottlieb et al. [KGK77].

The aforementioned research line of ‘algebraic algorithms’ started

with the work by Koutis [Kou08] and was at first used to obtain

fast Fixed Parameter Tractable algorithms to find paths of length

at least 𝑘 . The currently fastest algorithms to detect paths on 𝑘

42



STOC ’20, June 22–26, 2020, Chicago, IL, USA Jesper Nederlof

vertices are 1.66
𝑘𝑛𝑂 (1) time in undirected graphs [BHKK17] and

2
𝑘𝑛𝑂 (1) time in directed graphs [KW16b, Wil09].

Especially tantalizing is the current progress on detecting Hamil-

tonian Cycles in directed graphs: If 𝑑 is a constant, the input graph

has at most 𝑑𝑛 Hamiltonian Cycles, their exact quantity can be de-

termined in𝑂 ((2− 𝑐𝑑 )𝑛) time for some constant 𝑐𝑑 > 0 depending

on 𝑑 . Nevertheless, it remains an open problem whether directed

Hamiltonian cycles can be detected in 𝑂 ((2 − 𝜀)𝑛) time for some

constant 𝜀 > 0 [BKK17].

All algorithms mentioned above are randomized. Improved de-

terministic algorithm are unknown even for bipartite graphs. As

mentioned before, all these algorithm have consequences for the

weighted (TSP) variant as well. For example, the algorithm [Bjö14]

Björklund solves (undirected) TSP in𝑂 (1.66
𝑛𝑊 ) time if all weights

are in {1, . . . ,𝑊 }, and consequently it can also compute a (1 − 𝜀)-
approximate optimal tour in 𝑂 (1.66/𝜀) time via standard rounding

arguments.

The natural idea to use of sparse or narrow matrix factorizations

to solve the detecting of a pair satisfying a certain relation based

on Freivalds has the same general blueprint of some algorithms in

quite different settings [BHKK09, CKN18, FLPS16].

Matchings Connectivity Matrix. The matchings connectivity ma-

trix was defined in [CKN18], where the authors showed its rank

over F2 equals 2
𝑡/2−1

. They used their factorization in a way similar

to how we use it in Subsection 3.3 to decompose the sought Hamil-

tonian cycle in two perfect matchings. Additionally they showed

Hamiltonian cycles in graphs with given path decomposition of

width pw can be detected in (2 +
√

2)pw𝑛𝑂 (1) time and this cannot

be improved to (2+
√

2−𝜀)pw𝑛𝑂 (1) time for 𝜀 > 0 unless the Strong

Exponential Time Hypothesis (SETH) fails.

The submatrix of the matchings connectivity matrix induced by

all matchings on the complete bipartite graph was studied in [RS95].

They showed its rank over the reals is 2
𝑡
(up to 𝑡𝑂 (1) factors)

using representation theory of the symmetric group. In [CLN18]

the authors used representation theory of the symmetric group

and various other tools from algebraic combinatorics to prove that

the rank of H𝑡 over the reals is 4
𝑛
, (up to 𝑡𝑂 (1) factors). They

used this to show that Hamiltonian cycles cannot be counted in

(6 − 𝜀)pw𝑛𝑂 (1) time for any 𝜀 > 0 unless the SETH fails. Assuming

𝜔 = 2, a matching upper bound exists as well [Wlo19].

Exponential Time Algorithms for TSP.. There have been many

studies of exact algorithms for ATSP. A general result is that for

every integer 𝑑 there exists a constant 𝑐𝑑 > 0 such that ATSP on

graphs of average degree at most 𝑑 can be solved in 𝑂 ((2 − 𝑐𝑑 )𝑛)
time [CP15] An 𝑛1.5

2
𝑛
time algo was reported in an invited talk by

Chan [Cha13]. Using quantum algorithms, ATSP can be solved in

𝑂 (1.729
𝑛) time [ABI

+
19].

An especially big effort has been made on the space-time trade-

offs for ATSP. The best polynomial space algorithms run in 4
𝑛𝑛𝑂 (log𝑛)

time [GS87] and 2
𝑛𝑊 time [LN10], where𝑊 denotes the maximum

input weight.

1.3 Organization

The remainder of this paper is organized as follows: In Section 2

we outline the required preliminary knowledge and notation, in

Section 3 we present the narrow cut factorization, which we subse-

quently use in Section 4 to prove Theorem 2. Theorem 2 is subse-

quently used in Section 5 to prove Theorem 1 and Theorem 3.

2 PRELIMINARIES

Given an integer 𝑡 we use [𝑡] to denote {1, . . . , 𝑡}. If 𝑡 is Boolean,
[𝑡] denotes 1 if 𝑡 = true and 0 otherwise. In this paper ≡ denotes
congruence modulo 2. We use 𝑎 to denote the binary complement

of a bit-string 𝑎, and let 𝜀 denote the empty string.

If𝐺 is an undirected graph, Πm (𝐺) denotes the set of all perfect
matchings of 𝐺 . For a set 𝑈 , we let Πm (𝑈 ) denote the set of all

perfect matchings of the complete graph with vertex set𝑈 . We use

Π2 ( [𝑡]) for the family of subsets of all [𝑡] that contain the element

1. We let Π(𝑈 ) denotes the set of all partitions of𝑈 . This set gives

rise to a lattice when partially ordered by coarsening with {𝑈 }
being the maximum element and the partition into singletons being

the minimum element. We let ⊓ and ⊔ denote the meet and ⊔
operations of this lattice. If 𝐴 is a set we let 𝑎 ∈𝑅 𝐴 denote that 𝑎 is

a uniformly sampled element from 𝐴.

2.1 Matrices

All matrices in this paper are denoted with bold-face characters. We

let A ∈ F𝑅×𝐶 denote that A is a matrix with rows 𝑅, columns𝐶 and

elements from a field F. If 𝑋 ⊆ 𝑅,𝑌 ⊆ 𝐶 we denote A[𝑋,𝑌 ] for the
submatrix of A induced by rows 𝑋 and columns 𝑌 . To indicate no

restriction we use · as an alternative, i.e. A[𝑋, ·] and A[·, 𝑌 ] denote
the matrix induced by all rows 𝑋 , and respectively, columns 𝑌 . We

use A𝑇
to denote the transpose of A. We let 𝜔 denote the smallest

number such that two (𝑠 × 𝑠)-matrices can be multiplied in 𝑠𝜔+𝑜 (1)

time. The current best bounds are the trivial lower bound 𝜔 ≥ 2,

and the upper bound 𝜔 < 2.3728639 by Le Gall [Gal14]. Given

a matrix A ∈ F𝑅×𝐶 , the 𝑘 ′𝑡ℎ Kronecker power A⊗𝑘 is the matrix

indexed with rows by 𝑅𝑘 and columns by 𝐶𝑘 such that

A⊗𝑘 [𝑟1, . . . , 𝑟𝑘 , 𝑐1, . . . , 𝑐𝑘 ] =
𝑘∏
𝑖=1

A[𝑟𝑖 , 𝑐𝑖 ] .

Kronecker powers will be useful for us by virtue of the following

lemma:

Lemma 2.1 (Yates’ Algorithm [Yat37]). Let A ∈ F𝑅×𝐶 , 𝑘 be an

integer and 𝑣 ∈ F𝑅𝑘
given as input. Then A⊗𝑘𝑣 can be computed in

𝑂 (max{|𝑅 |𝑘+2, |𝐶 |𝑘+2}) time.

The lemma is proved by a simple Fast-Fourier-Transform style

procedure. We recommend [Kas18, Section 3.1] for a proof in mod-

ern language.

Lemma 2.2 ([Fre77]). Let F be a field and A ∈ F𝑛×𝑛 be given as

input. If 𝑣 ∈𝑅 F𝑛 , then the probability that A𝑣 equals the all-zero
vector is at most

1

2
.

Using the random subsum principle (i.e. for every non-zero𝑤 ∈
F𝑑 , the inner product

∑𝑑
𝑖=1

𝑟𝑖𝑤𝑖 with a random vector 𝑟 ∈𝑅 F𝑑 is

non-zero with probability at least 1/4) we obtain the following easy

consequence:

Lemma 2.3. Let F be a field and A ∈ F𝑛×𝑛 . If 𝑢, 𝑣 ∈𝑅 F𝑛 , then the

probability that 𝑢𝑇A𝑣 equals the all-zero vector is at most
1

4
.
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2.2 The Matchings Connectivity Matrix and Its

Factorizations

The following matrix will play a crucial role in this paper:

Definition 2.4 (Matchings Connectivity matrix). For even

𝑡 ≥ 2, define H𝑡 ∈ {0, 1}Πm ( [𝑡 ])×Πm ( [𝑡 ])
as

H𝑡 [𝐴, 𝐵] =
{

1, if 𝐴 ∪ 𝐵 is an Hamiltonian Cycle,

0, otherwise.

Definition 2.5 (Split matrix). A cut 𝐶 ∈ Π2 ( [𝑡]) is split by a

matching 𝐴 ∈ Πm ( [𝑡]) if every edge of 𝐴 is either contained in 𝐶 or

is disjoint from 𝐶 . For even 𝑡 ≥ 2, define S𝑡 ∈ {0, 1}Πm ( [𝑡 ])×Π2 ( [𝑡 ])

as

S𝑡 [𝐴,𝐶] =
{

1, if 𝐴 is split by 𝐶,

0, otherwise.

For a perfect matching𝑀 ∈ Πm ( [𝑡]) define function 𝛼𝑀 : [𝑡] →
[𝑡] with 𝛼𝑀 (𝑖) = 𝑗 if and only if {𝑖, 𝑗} ∈ 𝑀 , i.e., 𝛼𝑀 maps each

element of𝑈 to its partner in the perfect matching𝑀 .

Definition 2.6 (Basis Matchings from [CKN18]). Let 𝑋 (𝜀) :=

{{1, 2}} and X2 := {𝑋 (𝜀)}. Let 𝑡 ≥ 4 be an even integer and let 𝑎 ∈
{0, 1}𝑡/2−2

. Define perfect matchings 𝑋 (𝑎0) and 𝑋 (𝑎1) on [𝑡] as
follows, using 𝛼 := 𝛼𝑋 (𝑎) :

𝑋 (𝑎1) := 𝑋 (𝑎) ∪ {{𝑡 − 1, 𝑡}},
𝑋 (𝑎0) := (𝑋 (𝑎) \ {{𝑡 − 2, 𝛼 (𝑡 − 2)}}) ∪ {{𝑡 − 2, 𝑡}, {𝑡 − 1, 𝛼 (𝑡 − 2)}}.
Finally, we let X𝑡 be the family of perfect matchings 𝑋 (𝑎) for any
𝑎 ∈ {0, 1}𝑡/2−1

.

The matching 𝑋 (𝑎) can be pictorially constructed from vector

𝑎 ∈ {0, 1}𝑡/2−1
as follows: Draw the integers 1, . . . , 𝑡 and draw a

vertical ‘bar’ before each even integer. For 𝑖 ≤ 𝑡 − 1 associate the

value 𝑎𝑖 with the 𝑖’th bar placed between 2𝑖 − 1 and 2𝑖 . To form the

matching 𝑋 (𝑎) we iterate over 𝑖 = 1, . . . , 𝑡/2 and connect the yet

unmatched vertex from {2𝑖 − 2, 2𝑖 − 1} with 2𝑖 if 𝑎𝑖 = 1 and with

2𝑖 + 1 if 𝑎𝑖 = 0. See Figure 1 for an illustration.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 0 0

10 0

Figure 1: The basis matchings 𝑋 (100) and 𝑋 (010).

The following factorization shows that H𝑡 has rank only 2
𝑡/2−1

over F2.

Lemma 2.7 (Matchings Factorization [CKN18]). If 𝐴, 𝐵 ∈
Πm ( [𝑡]), then

H𝑡 [𝐴, 𝐵] ≡
∑

𝑎∈{0,1}𝑡/2−1

H𝑡 [𝐴,𝑋 (𝑎)] · H𝑡 [𝑋 (𝑎), 𝐵] .

Weoften prefer to write formulas as the above inmatrix language

to keep notation clean. To do so, we use the following facilitating

matrix:

Definition 2.8 (Flip Matrix). Let F𝑡 ∈ {0, 1}𝑡/2−1 × {0, 1}𝑡/2−1

denote the matrix that satisfies F𝑡 [𝑎, 𝑏] = 1 if 𝑏 = 𝑎 and F𝑡 [𝑎, 𝑏] = 0

otherwise.

With the definition of F𝑡 in hand, Lemma 2.7 can be written as

the following matrix multiplication:

H𝑡 ≡ H𝑡 [·,X𝑡 ] · F𝑡 · H𝑡 [X𝑡 , ·] (1)

We will also need the following easier, but less narrow, factor-

ization based on cuts. It was implicitly used in [CNP
+
11] and made

more explicit in [BCKN15].

Lemma 2.9 (Cut Factorization [BCKN15]). H𝑡 ≡2 S𝑡S𝑇𝑡 . More

explicitly, if 𝐴, 𝐵 ∈ Πm ( [𝑡]), then

H𝑡 [𝐴, 𝐵] ≡
∑

𝐶∈Π2 ( [𝑡 ])
S𝑡 [𝐴,𝐶] · S𝑇𝑡 [𝐵,𝐶] .

2.3 Representative Sets via Gaussian

Elimination

We list preliminary key properties of representative sets as formal-

ized in [BCKN15]. These are listed here to facilitate the high level

overview of the approach in Section 5.

Definition 2.10. A set of weighted partitions is a set A ⊆
Π(𝑈 ) × N, i.e., a family of pairs, each consisting of a matching in

Πm ( [𝑡]) and a non-negative integer weight.

Definition 2.11 (Representation). Given a set of weighted par-

titions A ⊆ Π(𝑈 ) × N and a partition 𝑞 ∈ Π(𝑈 ), define
opt(𝑞,A) = min {𝑤 | (𝑝,𝑤) ∈ A ∧ 𝑝 ⊔ 𝑞 = {𝑈 }} .

For another set of weighted partitions A ′ ⊆ Π(𝑈 ) × N, we say that
A ′ represents A if for all 𝑞 ∈ Π(𝑈 ) it holds that opt(𝑞,A ′) =
opt(𝑞,A).

Theorem 4 (Corollary 3.17 in [BCKN15]). There exists an algo-

rithm reducematchings that given set of weighted matchings A ⊆
Πm (𝑈 ) × N, outputs in |A|2

(𝜔−1)
2
|𝑈 | |𝑈 |𝑂 (1) time a set of weighted

matchings A ′ ⊆ A such that A ′ represents A and |A ′ | ≤ 2
|𝑈 |/2

,

where 𝜔 denotes the matrix multiplication exponent.

3 NARROW CUT FACTORIZATION

In this section we present the narrow cut factorization. As men-

tioned in the introduction, it is obtained as combination of the cut-

factorization (Lemma 2.9 and matching factorization (Lemma 2.7).

In Subsection 3.1 we describe the family of cuts that will index

the inner-dimension of the factorization, along with some useful

properties. In Subsection 3.2 we will use these to state and proof

the factorization. While the proof of Theorem 2 in the next section

will crucially rely on this factorization, we also provide another

application of the factorization to reobtain some known results in

a different way in Subsection 3.3.

3.1 Narrow Cut Basis

Wenow define the inner dimension of the factorization that we refer

to as the narrow cut basis. It’s definition has the similar structure

as the basis matchings from Definition 2.6. This is no coincidence:

Intuitively, the narrow cut basis can be defined as all cuts that split

some basis matching.
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Definition 3.1 (Narrow Cut Basis). Let 𝐶 (𝜀) := {1, 2} and let
C2 = {{1, 2}} Let 𝑡 ≥ 4 be even and let 𝑎 ∈ {0, 1, 2}𝑡/2−2

. Define

subsets 𝐶 (𝑎0), 𝐶 (𝑎1) and 𝐶 (𝑎2) of [𝑡] as follows:

𝐶 (𝑎0) :=

{
𝐶 (𝑎), if 𝑡 − 2 ∈ 𝐶 (𝑎)
𝐶 (𝑎) ∪ {𝑡 − 1, 𝑡}, otherwise.

𝐶 (𝑎1) :=

{
𝐶 (𝑎) \ {𝑡 − 2} ∪ {𝑡 − 1}, if 𝑡 − 2 ∈ 𝐶 (𝑎)
𝐶 (𝑎) ∪ {𝑡 − 2, 𝑡}, otherwise.

𝐶 (𝑎2) :=

{
𝐶 (𝑎) ∪ {𝑡 − 1, 𝑡}, if 𝑡 − 2 ∈ 𝐶 (𝑎)
𝐶 (𝑎), otherwise.

Finally, let C𝑡 be the family of subsets𝐶 (𝑎) for any 𝑎 ∈ {0, 1, 2}𝑡/2−1
.

The cut 𝐶 (𝑎) can be pictorially constructed from vector 𝑎 ∈
{0, 1, 2}𝑡/2−1

in the following way that is analogous to the construc-

tion of𝑋 (𝑎) in Subsection 2.2: Draw the integers 1, . . . , 𝑡 and draw a

vertical ‘bar’ before each even integer. Start with the cut {1, 2} and
for 𝑖 = 2, . . . , 𝑡/2 − 1, read the ‘state’ (i.e. is a vertex in the current

cut) of 2𝑖 and if

• 𝑎𝑖 = 0, let 2𝑖 + 1 and 2𝑖 + 2 have the opposite state of 2𝑖 ,

• 𝑎𝑖 = 1, let 2𝑖 + 1 have the same state as 2𝑖 , 2𝑖 + 2 the opposite

state of 2𝑖 , and flip the state of 2𝑖 ,

• 𝑎𝑖 = 2 copy the state of 2𝑖 to 2𝑖 + 1, 2𝑖 + 2.

See also Figure 2 for two examples. Note that 1 ∈ 𝐶 for every𝐶 ∈ C𝑡
so indeed C is a family of cuts.

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 1 2 02 1

1 2 3 4 5 6 1 2 3 4 5 6

1 1 02

1 2 3 4 1 2 3 4

1 2

1 2 1 2

Figure 2: The basis cuts 𝐶 (1),𝐶 (11),𝐶 (112) on the left and

𝐶 (2),𝐶 (20),𝐶 (201) on the right.

Lemma 3.2. Let 𝑡 ≥ 2, 𝑎 ∈ {0, 1, 2}𝑡/2−1
and 𝑏 ∈ {0, 1}𝑡/2−1

. Then

𝐶 (𝑎) splits 𝑋 (𝑏) if and only if 𝑎𝑖 ≠ 𝑏𝑖 for every 𝑖 = 1, . . . , 𝑡/2 − 1.

Proof. We use induction on 𝑡 . For 𝑡 = 2 the statement clearly

holds since 𝐶 (𝜀) splits 𝑋 (𝜀), so assume 𝑡 ≥ 4. Let 𝑥 ∈ {0, 1, 2} and
𝑦 ∈ {0, 1}. We will use a case analysis to show that 𝐶 (𝑎𝑥) splits
𝑋 (𝑏𝑦) if and only if 𝐶 (𝑎) splits 𝑋 (𝑏) and 𝑥 ≠ 𝑦.

Case 1: t − 2 ∈ C(a). We distinguish cases depending on 𝑥 :

C(a0) contains 𝑡 − 2 but not 𝑡 − 1 and 𝑡 .

X(b0) contains the edge {𝑡 − 2, 𝑡} and will therefore not

be split by 𝐶 (𝑎0).
X(b1) contains the edge {𝑡 − 1, 𝑡} that is split by 𝐶 (𝑎0).
Since 𝐶 (𝑎0) ∩ [𝑡 − 2] = 𝐶 (𝑎), the remaining edges of

𝑋 (𝑏1) are split by 𝐶 (𝑎0) if and only if 𝐶 (𝑎) splits 𝑋 (𝑏).
C(a1) contains 𝑡 − 1 but not 𝑡 − 2 and 𝑡 .

X(b1) contains the edge {𝑡 − 1, 𝑡} and will therefore not

be split by 𝐶 (𝑎1).
X(b0) contains the edge {𝑡 − 2, 𝑡} that is split by 𝐶 (𝑎1).
Recall 𝛼𝑋 (𝑏0) (𝑡 − 1) = 𝛼𝑋 (𝑏) (𝑡 − 2). Since 𝑡 − 2 ∈ 𝐶 (𝑎)
and 𝑡 − 1 ∈ 𝐶 (𝑎1), the remaining edges of 𝑋 (𝑏0) are
split by 𝐶 (𝑎1) if and only if 𝐶 (𝑎) splits 𝑋 (𝑏).

C(a2) contains 𝑡 − 2, 𝑡 − 1 and 𝑡 and therefore splits the

edge of 𝑋 (𝑏𝑦) incident to 𝑡 . Since 𝐶 (𝑎2) ∩ [𝑡 − 2] = 𝐶 (𝑎)
the remaining edges are split by 𝐶 (𝑎2) if and only if 𝐶 (𝑎)
splits 𝑋 (𝑏).

Case 2: t − 2 ∉ C(a). We again distinguish cases depending on 𝑥 :

C(a0) contains 𝑡 − 1 and 𝑡 but not 𝑡 − 2.

X(b0) contains the edge {𝑡 − 2, 𝑡} and will therefore not

be split by 𝐶 (𝑎0).
X(b1) contains the edge {𝑡 − 1, 𝑡} that is split by 𝐶 (𝑎0).
Since 𝐶 (𝑎0) ∩ [𝑡 − 2] = 𝐶 (𝑎), the remaining edges of

𝑋 (𝑏1) are split by 𝐶 (𝑎0) if and only if 𝐶 (𝑎) splits 𝑋 (𝑏).
C(a1) contains 𝑡 − 2 and 𝑡 , but not 𝑡 − 1.

X(b1) contains the edge {𝑡 − 1, 𝑡} and will therefore not

be split by 𝐶 (𝑎1).
X(b0) contains the edge {𝑡 − 2, 𝑡} that is split by 𝐶 (𝑎1).
Recall 𝛼𝑋 (𝑏0) (𝑡 − 1) = 𝛼𝑋 (𝑏) (𝑡 − 2). Since 𝑡 − 2 ∉ 𝐶 (𝑎)
and 𝑡 − 1 ∉ 𝐶 (𝑎1), the remaining edges of 𝑋 (𝑏0) are
split by 𝐶 (𝑎1) if and only if 𝐶 (𝑎) splits 𝑋 (𝑏).

C(a2) does not contain 𝑡 − 2, 𝑡 − 1 and 𝑡 and therefore splits

the edge of𝑋 (𝑏𝑦) incident to 𝑡 . Since𝐶 (𝑎2)∩[𝑡−2] = 𝐶 (𝑎)
the remaining edges are split by 𝐶 (𝑎2) if and only if 𝐶 (𝑎)
splits 𝑋 (𝑏).

□

The following property that was already mentioned in the intu-

ition above makes the basis cuts so useful:

Lemma 3.3. Let 𝑋 ∈ X𝑡 be a basis matching and 𝐶 ∈ Π2 ( [𝑡]) be
a cut that splits 𝑋 . Then 𝐶 ∈ C𝑡 .

Proof. Since 𝐶 splits 𝑋 it contains {1, 𝛼𝑋 (1)}, and either con-

tains or avoids all the other 𝑡/2−1 edges of𝑋 . Thus there are 2
𝑡/2−1

cuts 𝐶 ∈ Π2 ( [𝑡]) that split𝑀 . Thus, to prove the lemma, it suffices

to show there also exist 2
𝑡/2−1

cuts𝐶 ∈ C𝑡 that split𝑀 . This follows

directly from Lemma 3.2: If 𝑋 = 𝑋 (𝑏) for 𝑏 ∈ {0, 1}𝑡/2−1
, there are

2
𝑡/2−1

possibilities for 𝑎 ∈ {0, 1, 2}𝑡/2−1
with 𝑎𝑖 ≠ 𝑏𝑖 for every 𝑖 . □

3.2 The Factorization

We are now ready to present the main result of this section.

Lemma 3.4 (Narrow Cut Factorization). Let 𝑡 ≥ 2 be an even

integer. Unify C𝑡 and {0, 1, 2}𝑡/2−1
with the bijection 𝑎 ↦→ 𝐶 (𝑎). Then

there exists a (3 × 3)-matrix B ∈ {0, 1}{0,1,2}×{0,1,2} such that

H𝑡 ≡ S𝑡 [·, C𝑡 ] · B⊗𝑡/2−1 · (S𝑡 [·, C𝑡 ])𝑇 .

Proof. Let 𝐴 ∈ Πm ( [𝑡]) and 𝑋 ∈ X𝑡 . By Lemma 2.9 we have

H𝑡 [𝐴,𝑋 ] ≡
∑

𝐶∈Π2 ( [𝑡 ])
S𝑡 [𝐴,𝐶]S𝑡 [𝑋,𝐶] =

∑
𝐶∈C𝑡

S𝑡 [𝐴,𝐶]S𝑡 [𝑋,𝐶],

where the second equality uses that all summands indexed by cuts

not in C vanish by Lemma 3.3. Thus, in matrix notation, we have
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H𝑡 [·,X𝑡 ] ≡ S𝑡 [·, C𝑡 ] · (S𝑡 [X, C𝑡 ])𝑇 . Expanding in (1) gives:

H𝑡 ≡
(
S𝑡 [·, C𝑡 ] · (S𝑡 [X, C𝑡 ])𝑇

)
· F ·

(
S𝑡 [·, C𝑡 ] · (S𝑡 [X, C𝑡 ])𝑇

)𝑇
≡ S𝑡 [·, C𝑡 ] ·

(
(S𝑡 [X, C𝑡 ])𝑇 · F · S𝑡 [X, C𝑡 ]

)
· (S𝑡 [·, C𝑡 ])𝑇 ,

and it remains to rewrite the middle expression in parentheses

into B⊗𝑡/2−1
, for some matrix B. By Lemma 3.2 we have that

S𝑡 [𝑋 (𝑎),𝐶 (𝑏)] = 1 if and only if 𝑎𝑖 ≠ 𝑏𝑖 for every 𝑖 . Let 𝑝 = 𝑡/2 − 1

and index S𝑡 [X, C𝑡 ] with vectors in {0, 1}𝑡/2−1×{0, 1, 2}𝑡/2−1
. Then

we see that

S𝑡 [X, C𝑡 ] =
(
0 1 1

1 0 1

)⊗𝑝
,

and thus we have

B = (S𝑡 [X, C𝑡 ])𝑇 · F · S𝑡 [X, C𝑡 ]

=
©­«
0 1

1 0

1 1

ª®¬
⊗𝑝 (

0 1

1 0

)⊗𝑝 (
0 1 1

1 0 1

)⊗𝑝
=

©­«
0 1 1

1 0 1

1 1 0

ª®¬
⊗𝑝

,

and the lemma follows. □

3.3 Hamiltonicity via the Narrow Cut

Factorization

In this subsection we demonstrate a simple application of the Nar-

row Cut Factorization for Hamiltonicity. These algorithmic results

simplify and improve a similar approach from [CKN18], but are

in turn inferior to the results from [Bjö14] and [BKK17]. We nev-

ertheless present the result here since it already follows from a

combination of Lemma 3.4 with standard methods.

Theorem 5. There are randomized algorithms to detect Hamil-

tonian cycles in undirected graphs and directed bipartite graphs on 𝑛

vertices in 𝑂∗ (3𝑛/2) time.

The proof relies on the following well-known definition and

lemma:

Definition 3.5 (Tutte Matrix [Tut47]). Let 𝐺 = (𝑉 , 𝐸) be a
graph with linear ordering ≺ on𝑉 , let F be a field and for every 𝑖 < 𝑗

let 𝑥𝑖 𝑗 ∈ F. Define

𝐴
(𝑥)
𝐺
[𝑖, 𝑗] =


𝑥𝑖 𝑗 if {𝑖, 𝑗} ∈ 𝐸 and 𝑖 ≺ 𝑗,
−𝑥 𝑗𝑖 if {𝑖, 𝑗} ∈ 𝐸 and 𝑗 ≺ 𝑖,
0 otherwise .

Lemma 3.6 ([Tut47]). The determinant det(𝐴(𝑥)
𝐺
) is the polyno-

mial in variables 𝑥 {𝑖, 𝑗 } satisfying

det(𝐴(𝑥)
𝐺
) =

∑
𝑀 ∈Πm (𝐺)

∏
{𝑖, 𝑗 }∈𝑀
𝑖≺ 𝑗

𝑥2

𝑖 𝑗 .

Proof of Theorem 5. The algorithm is outlined in Algorithm 1.

Note it takes 𝑂∗ (3𝑛/2) time because there are 3
𝑛/2−1

iterations of

the loop at Line 2, the determinants on Lines 3, 4 are computed

in polynomial time with standard algorithms, and the product

on Line 5 can be computed in 𝑂∗ (3𝑛/2) using Yates’ algorithm

Algorithm 1 Undirected Hamiltonicity via the Narrow Cut Factor-

ization.

Algorithm undirectedHamiltonicity(𝐺 = (𝑉 , 𝐸))
Output: true with probability at least 1/2 if𝐺 is Hamiltonian, and

false otherwise.
1: For each {𝑖, 𝑗} ∈ 𝐸 with 𝑖 < 𝑗 pick 𝑥𝑖 𝑗 , 𝑦𝑖 𝑗 ∈𝑅 𝐺𝐹 (2𝑘 ), where
𝑘 = log

2
4𝑛

2: for 𝑎 ∈ {0, 1, 2}𝑛/2−1
do

3: 𝑙𝑖 ← det(𝐴(𝑥)
𝐺 [𝐶 (𝑎) ] ) · det(𝐴(𝑥)

𝐺 [𝑉 \𝐶 (𝑎) ] )

4: 𝑟𝑖 ← det(𝐴(𝑦)
𝐺 [𝐶 (𝑎) ] ) · det(𝐴(𝑦)

𝐺 [𝑉 \𝐶 (𝑎) ] )
5: 𝑟𝑒𝑠 ← 𝑙𝑇 · B⊗𝑛/2−1 · 𝑟
6: if 𝑟𝑒𝑠 ≠ 0 then return true else return false

(Lemma 2.1). For correctness, notice the algorithm evaluates the

polynomial 𝑝 (𝑥,𝑦) :=∑
𝑎,𝑏∈{0,1,2}𝑛/2−1

∀𝑖:𝑎𝑖≠𝑏𝑖

det

(
𝐴
(𝑥)
𝐺 [𝐶 (𝑎) ]

)
det

(
𝐴
(𝑥)
𝐺 [𝑉 \𝐶 (𝑎) ]

)
·

det

(
𝐴
(𝑦)
𝐺 [𝐶 (𝑏) ]

)
det

(
𝐴
(𝑦)
𝐺 [𝑉 \𝐶 (𝑏) ]

)
=

∑
𝑎,𝑏∈{0,1,2}𝑛/2−1

∀𝑖:𝑎𝑖≠𝑏𝑖

( ∑
𝑀1∈Πm (𝐺)

𝐶 (𝑎) splits𝑀1

∏
{𝑖, 𝑗 }∈𝑀1

𝑖≺ 𝑗

𝑥2

𝑖 𝑗

)
·

( ∑
𝑀2∈Πm (𝐺)

𝐶 (𝑏) splits𝑀2

∏
{𝑖, 𝑗 }∈𝑀2

𝑖≺ 𝑗

𝑦2

𝑖 𝑗

)

=
∑

𝑀1,𝑀2∈Πm (𝐺)

©­­­­«
∑

𝑎,𝑏∈{0,1,2}𝑛/2−1

∀𝑖:𝑎𝑖≠𝑏𝑖

[𝐶 (𝑎) splits𝑀1] [𝐶 (𝑏) splits𝑀2]
ª®®®®¬
·

( ∏
{𝑖, 𝑗 }∈𝑀1

𝑖≺ 𝑗

𝑥2

𝑖 𝑗

) ( ∏
{𝑖, 𝑗 }∈𝑀2

𝑖≺ 𝑗

𝑦2

𝑖 𝑗

)

≡
∑

𝑀1,𝑀2∈Πm (𝐺)
H𝑡 [𝑀1, 𝑀2]

( ∏
{𝑖, 𝑗 }∈𝑀1

𝑖≺ 𝑗

𝑥2

𝑖 𝑗

) ( ∏
{𝑖, 𝑗 }∈𝑀2

𝑖≺ 𝑗

𝑦2

𝑖 𝑗

)
.

Here the first equality follows from Lemma 3.6, and the second

equality is a simple reordering of summations. The last equivalence

(in the field𝐺𝐹 (2𝑘 )) uses the narrow cut factorization Lemma 3.4: in

the third expression, the number of possibilities of 𝑎, 𝑏 that lead to

summand of value 1 will be 1 if𝑀1∪𝑀2 is an Hamiltonian cycle and

0 otherwise, and since 𝐺𝐹 (2𝑘 ) has characteristic the equivalence
follows.

Thus 𝑝 (𝑥,𝑦) is a polynomial of degree at most 2𝑛 with a separate

monomial for each pair of perfect matchings that form a Hamilton-

ian cycle. Thus Algorithm 1 will never output true if 𝐺 does not

have a Hamiltonian cycle.

Moreover, the monomials will not cancel each other since a

Hamiltonian cycle has a unique unordered decomposition into

two perfect matchings, and the two different variables 𝑥,𝑦 ensure
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they contribute distinct monomials. Thus 𝑝 will not be the zero

polynomial if 𝐺 has a Hamiltonian cycle, and the Demillo-Lipton-

Schwartz-Zippel polynomial identity testing lemma [DL78, Sch80]

states that, since 2
𝑘 ≥ 4𝑛, an evaluation of 𝑃 at a random point will

be non-zero with probability at least 1/2.
For Bipartite Directed Hamiltonicity a very similar algorithm

may be used. If𝐺 = (𝐿∪𝑅, 𝐸1∪𝐸2) where 𝐸1 ⊆ 𝐿×𝑅 and 𝐸2 ⊆ 𝑅×𝐿,
we count pairs of perfect matchings that are subsets of 𝐸1 and 𝐸2

respectively. □

4 THE HAMILTONIAN PAIR PROBLEM

The main contribution of this section a fast algorithm for the Min-

HamPair problem. For concenience, we first restate the result:

Theorem 2 (restated). There is a randomized algorithm for

MinHamPair that solves an instance A,B ⊆ Π𝑚 ( [𝑡]) in 𝑂 (( |A| +
|B|)20.3𝑡 + 3

𝑡/2) time.

The algorithm behind Theorem 2 heavily builds on the narrow

cut factorization, Lemma 3.4, from the previous section. The main

technical effort is to obtain an algorithm with the same runtime as

in Theorem 2 for the following special case of MinHamPair:

HamPair

Input: Two families A,B ∈ Π( [𝑡])
Asked: Whether there exists a pair 𝐴 ∈ A, 𝐵 ∈ B such that

𝐴 ∪ 𝐵 is an Hamiltonian cycle.

We will discuss this in Subsection 4.1. Afterwards Theorem 2

is obtained by simple reduction from MinHamPair to HamPair

outlined in Subsection 4.2.

4.1 Algorithm for the Unweighted Problem

In this subsection we present an algorithm to prove an unweighted

analogue of Theorem 2:

Lemma 4.1. There is a randomized algorithm for HamPair that

solves an instance A,B ⊆ Π𝑚 ( [𝑡]) in 𝑂 (( |A| + |B|)20.3𝑡 + 3
𝑡/2)

time.

The corresponding algorithm is listed in Algorithm 2. We start

Algorithm 2 Algorithm for the HamPair problem.

Algorithm hamPair(A,B) Assumes A,B ⊆ Πm ( [𝑡])
Output: true with probability 1/2 if ∃𝐴, 𝐵 ∈ A × B such that

H𝑡 [𝐴, 𝐵] = 1, false otherwise.
1: Let 𝜋 : [𝑡] ↔ [𝑡] be a random permutation

2: Let A1 := {𝜋 (𝐴) : 𝐴 ∈ A}, and B1 := {𝜋 (𝐴) : 𝐴 ∈ A}
3: Let A2,B2 by removing matchings from A2,B2 of cutwidth

at least 0.26𝑡

4: LetA3,B3 be obtained fromA2,B2 by removing each element

of A and B with probability
1

2

5: for 𝐴 ∈ A3,𝐶 ∈ enumCuts(𝐴) do
6: 𝑙𝐶 ← 𝑙𝐶 + 1 mod 2

7: for 𝐵 ∈ B3,𝐶 ∈ enumCuts(𝐵) do
8: 𝑟𝐶 ← 𝑟𝐶 + 1 mod 2

9: 𝑟𝑒𝑠 ← 𝑙𝑇 · B⊗𝑡/2−1 · 𝑟
10: if 𝑟𝑒𝑠 ≠ 0 then return true else return false

with describing the intuition and all intermediate lemmas before

we proceed to the formal proof of Lemma 4.1. The intuition behind

the algorithm is as follows: We first preprocess A and B to ensure

each matching satisfies certain nice properties that we will explain

later. LetA2,B2 be the resulting sets. We are interested in whether

the matrix H𝑡 [A2,B2] equals the all-zero matrix. By Lemma 2.3

we can check this by picking 𝑢 ∈ F |A |
2

and 𝑣 ∈ F |B |
2

and evaluating

𝑢𝑇H𝑡 [A2,B2]v. Algorithm 2 does this by using the narrow cut

factorization and exploits that the cut-split-matrices are sparse.

To get the target run time, this means we need that the given

matchings are on average consistent with at most 2
0.3𝑡

, and we can

enumerate them in this time bound. This enumeration will be done

by the subroutine enumCuts(𝐴) that will output the set of all basis
cuts that split the matching 𝐴.

Unfortunately, the number of basis cuts that split 𝐴 can be too

large: For example if𝑀 is a basis matching it will be split by 2
𝑡/2−1

cuts by Lemma 3.2. But this seems a very special case: Anymatching

is split by 2
𝑡/2−1

cuts, and since there the probability that a random

cut is a basis cut is exponentially small, we expect this number to

be much lower is𝑀 is a random matching. To make this intuition

work, we therefore apply a random permutation to all matchings

as a preprocessing step.

More formally, we start with discussing how to enumerate basis

cuts that split a given matching quickly. To do so we use prepro-

cessing to ensure all matchings have small cutwidth:

Definition 4.2 (Cutwidth of Matching). The cutwidth of𝑀

is defined as

ctw(𝑀) = max

1≤ 𝑗<𝑛

��{{𝑖, 𝑘} ∈ 𝑀 �� 𝑖 ≤ 𝑗 ∧ 𝑗 < 𝑘}��.
That is, we think of the 𝑖’th cut as the set of edges with an

coordinate at most 𝑖 and a coordinate larger than 𝑖 . For a random

permutation, the expected number of edges split by the 𝑡/4’th cut

is 𝑛/2 by linearity of expectation. Via standard arguments it can

be shown that the cutwidth will deviate little from this with high

probability:

Lemma 4.3 (Cutwidth of a Matching). Let 𝑀 ∈ Πm ( [𝑡]), 𝜋
be a random permutation and let 𝑀 ′ := 𝜋 (𝑀). For large enough 𝑡 ,
the probability that ctw(𝑀 ′) ≥ 0.26𝑡 is at most 1/2Ω (𝑡 ) .

Proof. Consider the cut at position 𝑖 ≤ 𝑡/2, and let 0.26𝑡 ≤ 𝑘 ≤
𝑖 . The number of partitions of [𝑡] in subsets𝑉1,𝑉2 such that |𝑉1 | = 𝑖
and 𝑘 edges of𝑀 have both a vertex in 𝑉1 and in 𝑉2 is(

𝑡/2
𝑘, (𝑖 − 𝑘)/2, (𝑡 − 𝑖 − 𝑘)/2

)
2
𝑘≤ 𝑘

(
𝑡/2

𝑘/2, 𝑘/2, (𝑖 − 𝑘)/2, (𝑡 − 𝑖 − 𝑘)/2

)
= 𝑘

(
𝑡/2
𝑖/2

) (
𝑖/2
𝑘/2

) (
𝑡/2 − 𝑖/2
𝑘/2

)
= 𝑘

(
𝑡/2
𝑖/2

) (
𝑡/2
𝑘/2

)
≤ 𝑘

(
𝑡/2
𝑖/2

) (
𝑡/2
𝑖/2

)
/2Ω (𝑡 )

≤
(
𝑡

𝑖

)
/2Ω (𝑡 ) .
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Thus with probability at least 1 − 1/2Ω (𝑡 ) , the number of edges at

the 𝑖’th cut will be at most 0.26𝑡 for any 𝑖 and the lemma follows

by a union bound. □

We now focus on enumerating basis cuts that split a given match-

ing of cutwidth at most 0.26𝑡 . We first show these cuts can be enu-

merated in amortized polynomial time, if there are sufficientlymany.

Intuitively, the approach is to formulate a relatively straightforward

dynamic programming table, and use that dynamic programming

algorithms can be used to enumerate solution quickly once the

table it built.

Lemma 4.4. There is an algorithm enumCuts that, given 𝑀 ∈
Πm ( [𝑡]), enumerates all cuts 𝐶 ∈ C𝑡 that split 𝑀 in (2ctw(𝑀) +
|O|)𝑡𝑂 (1) , where |O| denotes the output.

Proof. Let 𝑀𝑗 := {(𝑖, 𝑘) ∈ 𝑀 : 𝑖 < 𝑗 ∧ 𝑗 < 𝑘} to be all edges

crossing the ‘ 𝑗 ’th cut’. For even 𝑗 = 2, 4, . . . , 𝑛 and 𝑋 ⊆ {𝑖 | {𝑖, 𝑘} ∈
𝑀𝑗 , 𝑖 < 𝑘} define 𝑇 𝛽

𝑗
[𝑋 ] to be true if and only if there exists a bit

string 𝑎 ∈ {0, 1, 2} 𝑗/2−2
such that

𝑋 =

( {
𝑖
��∃{𝑖, 𝑘} ∈ 𝑀𝑗 : 𝑖 < 𝑘

}
∩𝐶 (𝑎𝛽)

)
.

That is, there exists a ‘partial’ basic cut that has intersection 𝑋 with

the set of all endpoints of 𝑀𝑖 . Using the recursive definition of a

basis cut from Definition 3.1, it is easy to check that𝑇
𝛽

𝑗
[𝑋 ] satisfies

a recursion of the type

𝑇
𝛽

𝑗
[𝑋 ] = 𝑇 0

𝑗−2
[𝑋0] ∨𝑇 1

𝑗−2
[𝑋1] ∨𝑇 2

𝑗−2
[𝑋2],

where 𝑋0, 𝑋1, 𝑋2 depend on the value of 𝛽 and whether 𝛼𝑀 ( 𝑗 − 1)
and 𝛼𝑀 ( 𝑗 −2) are larger than 𝑗 , at most 𝑗 or either others neighbors.

Note the number of table entries of this dynamic programming al-

gorithm is 2
ctw(𝑀)𝑡𝑂 (1) . To see that we can enumerate all basis cuts

consistent with 𝑀 , note we are interested in 𝑇 0

𝑡 [∅],𝑇 1

𝑡 [∅],𝑇 2

𝑡 [∅]
and if any of them are true can be backtrack in a straightforward

manner to enumerate all basis cuts that make them true. The run-

time overhead is only polynomial per basis cut since we enumerate

a basis cut only once and in the algorithm only explores table en-

tries that are true which ensures in each branch a basis cut will be

found. □

To analyze the runtime of the Algorithm 2, it remains to bound

the expected number of basis cuts consist with a matching. To this

end, the following bound will be useful:

Lemma 4.5 (Number of basis cuts). For every even 𝑘 the number

of basis cuts of cardinality 𝑘 satisfies����C𝑡 ∩ (
[𝑡]
𝑘

)���� ≤ 𝑡/2∑
𝑐=0

( 𝑘
2

𝑐/2

) ( 𝑡−𝑘
2

𝑐/2

)
2
𝑐 .

Proof. We show that a cut in C𝑡 ∩
( [𝑡 ]
𝑘

)
can be encoded in a

unique way as a quadruple (𝑐, 𝐴𝑒 , 𝐴ℎ, 𝐴𝑓 ), where 𝑐 ≤ 𝑡/2 is an

integer, 𝐴ℎ ⊆ [𝑐], 𝐴𝑒 ∈
(𝑘/2
𝑐/2

)
and 𝐴𝑓 ∈

( (𝑡−𝑘)/2
𝑐/2

)
.

Note this is sufficient to prove the desired claim as the number

of such quadruples equals the claimed upper bound on the basis

cuts.

Fix a basis cut𝐶 (𝑎) satisfying |𝐶 (𝑎) | = 𝑘 . For even 𝑗 < 𝑡 , we refer
to 𝑗, 𝑗+1 as a group and call it empty, half and full if |{ 𝑗, 𝑗+1}∩𝐶 (𝑎) |

𝑓 𝑓 𝑐 𝑒𝑒 𝑐 𝑓 𝑓 𝑓 𝑐 𝑒 𝑐 𝑐 𝑒 𝑐 𝑓 𝑐 𝑒

Figure 3: An example of the encoding from the proof of

Lemma 4.5 with (𝑓1, 𝑓2, 𝑓3, 𝑓4) = (2, 3, 0, 1) and (𝑒1, 𝑒2, 𝑒3, 𝑒4) =
(2, 1, 1, 1).

equal 0, 1 and 2, respectively. Similarly, we call group 𝑡 full if 𝑡 ∈
𝐶 (𝑎) and we call it empty otherwise.

The first parameter 𝑐 in the encoding describes the number of

half groups. This implies that there are (𝑘 − 𝑐)/2 full groups and

thus (𝑡 − 𝑘 − 𝑐)/2 remaining empty groups.

The crucial observation that directly follows from the definition

of the basis cuts is that all full groups can only occur after an even

number of half groups and all empty groups can only occur after

an odd number of half groups.

Therefore, we can describe the state (i.e. empty, half or full) of

each group with 𝑐 and two integer partitions

𝑒1 + 𝑒2 + · · · + 𝑒𝑐/2+1 = 𝑒 𝑓1 + 𝑓2 + · · · + 𝑓𝑐/2+1 = 𝑓 .

into non-negative integers where 𝑒 = (𝑡 − 𝑘 − 𝑐)/2 is the total

number of empty groups and 𝑓 = (𝑘 − 𝑐)/2 is the total number of

full groups. Note that for both the empty and full groups we have

at most 𝑐/2 alternative on between two which two consecutive half

groups we place them. For an illustration see Figure 3.

It is well known that the number of integer partitions 𝑎1 + . . . +
𝑎𝑘 = 𝑎 into non-negative integers can be injectively encoded as

a subset 𝐴 ⊆
(𝑎+𝑘
𝑘

)
. Thus we can encode 𝑒1, . . . , 𝑒𝑐/2+1 as 𝐴𝑒 and

𝑓1, . . . , 𝑎𝑐/2+1 as 𝐴𝑓 . This uniquely determines which is group is

empty, half and full, and it only remains to describe of each half

group which vertex is in and which one is not. For this, the remain-

ing set 𝐴𝑒 can be used. □

Given Lemma 4.5, the step of taken a random permutation is

now used as already intuitively described above:

Lemma 4.6. Let𝑀 ∈ Πm ( [𝑡]) and let 𝜋 : [𝑡] ↔ [𝑡] be a random
permutation. Then

E[|{𝐶 ∈ C𝑡 : 𝐶 splits 𝜋 (𝑀)}|] ≤ 2
3𝑡/10 .

Proof. First note that 𝑀 is split by exactly

(𝑡/2
𝑘/2

)
cuts of cardi-

nality 𝑘 since such a cut is formed by taking the union of exactly

𝑘/2 of the 𝑡/2 edges of𝑀 .

Denoting 𝜋 (𝐶) = {𝜋 (𝑖) ∈ 𝑖 ∈ 𝐶} we have that 𝐶 splits𝑀 if and

only if 𝜋 (𝐶) splits 𝜋 (𝑀).
Thus, if 𝐶 is a fixed cut of cardinality 𝑘 , it splits 𝜋 (𝑀) if and

only if 𝜋−1 (𝐶) splits 𝑀 . Since 𝜋−1 (𝐶) is uniformly over

( [𝑡 ]
𝑘

)
, we

see that

Pr[𝐶 splits 𝜋 (𝑀)] =
(
𝑡/2
𝑘/2

) (
𝑡

𝑘

)−1

=

(
𝑡/2
𝑘/2

)−1

.
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Thus, the expected number E[| |{𝐶 ∈ C𝑡 : 𝐶 splits 𝜋 (𝑀)}|] of
basis cuts that split 𝜋 (𝑀) is at most

≤
𝑛∑

𝑘=0

𝑘 even

����C𝑡 ∩ (
[𝑡]
𝑘

)���� (𝑡/2𝑘/2

)
Pr[𝐶 splits 𝜋 (𝑀)]

≤
𝑛∑

𝑘=0

𝑘 even

𝑡/2∑
𝑐=0

( 𝑘
2

𝑐/2

) ( 𝑡−𝑘
2

𝑐/2

)
2
𝑐

(
𝑡/2
𝑘/2

)−1

≤

√
max

𝑐≤𝑘

(
𝑘

𝑐

) (
𝑡 − 𝑘
𝑐

)
4
𝑐

(
𝑡

𝑘

)−1

,

where we use Lemma 4.5 in the second inequality. If we substitute

𝛼 := 𝑐/𝑡 , 𝛽 := 𝑘/𝑡 , take the base-two logarithm, divide by 𝑡 , and use

that

2
ℎ (𝛼)𝑡−𝑜 (𝑡 ) ≤

(
𝑡

𝛼𝑡

)
≤ 2

ℎ (𝛼)𝑡+𝑜 (𝑡 ) ,

we arrive at the following expression:

1

2
· max

0≤𝛼≤𝛽≤0.5
ℎ

(
𝛼

𝛽

)
𝛽 +ℎ

(
𝛼

1 − 𝛽

)
(1− 𝛽) + 2𝛼 −ℎ(𝛽) < 3/10. (2)

The inequality can be verified using a standard computer software

such as Mathematica. See the full version for Mathematica sheet.
4

□

With all ingredients in place, Lemma 4.1 follows:

Proof of Lemma 4.1. We use Algorithm 2. It is easy to see that

the (A1,B1) forms an instance of HamPair that is equivalent with

the instance (A,B). By Lemma 4.3 and a union bound on the

two matchings that could form an Hamiltonian cycle, the instance

A2,B2 is a YES-instance of HamPair with high probability if the

instance (A1,B1) is.
By Lemma 3.4, 𝑟𝑒𝑠 = 𝑢𝑇H𝑡 [A3,B3]𝑣 . Thus, by Lemma 2.3 𝑟𝑒𝑠 =

1 with probability at least 1/4 if H𝑡 [A3,B3] is non-zero and there

exists a solution. Moreover, if H𝑡 [A3,B3] is the all-zero matrix

then 𝑟𝑒𝑠 = 0. This concludes the correctness.

For the runtime, note that Line 5 and Line 7 run in time∑
𝐴∈A∪B

2
0.26𝑡 + |enumCuts(A) |,

by Lemma 4.4. By Lemma 4.6 and the random permutation step,

we have E[|enumCuts(A) |] ≤ 2
3𝑡/10

. Using Lemma 2.1 on Line 9 to

make it run in 3
𝑡/2𝑡𝑂 (1) time, the run time follows.

Note this only gives an expected run time guarantee, but by

terminating the run time after 𝑛 times its expectation we get a

guaranteed run time probabilistic algorithm by Markov’s inequality

in a standard fashion. □

4.2 Weight Reduction

Proof of Theorem 2. Consider Algorithm 3. Note it works in

general for weighted objects.
5
It is easy to see that the number of

instances of HamPair generated is at most 𝑂 (log( |A| · |B|)) since
any pair (𝐴𝑖 , 𝑎𝑖 ), (𝐵 𝑗 , 𝑏 𝑗 ) cannot be both inA1×B2 and in B1×A2

4
Unfortunately, we were not able to show this analytically.

5
We are not aware of previous work where this natural algorithm appeared, but

similar ideas were used in other weight-reduction schemes [WW18, NvLvdZ12].

Algorithm 3 Simple Weight Reduction Scheme.

Algorithm list(A,B, 𝑡)
Output: Instances (A𝑖 ,B𝑖 )𝑖≤log𝑛 withA𝑖 ⊆ A,B𝑖 ⊆ B such that

(A,B) is a YES-instance of HamPair if and only if (A𝑖 ,B𝑖 ) is
a YES-instance for some 𝑖 .

1: Sort A = {(𝐴1, 𝑎1), . . . , (𝐴𝑙 , 𝑎𝑙 )} such that 𝑎1 ≤ 𝑎2 ≤ . . . ≤ 𝑎𝑙
2: Let A1 = {(𝐴1, 𝑎1), . . . , (𝐴 ⌊𝑙/2⌋ , 𝑎 ⌊𝑙/2⌋ )}; A2 = A \ A1

3: SortB = {(𝐵1, 𝑏1), . . . , (𝐵𝑙 ′, 𝑏𝑙 ′)} suchothat𝑏1 ≤ 𝑏2 ≤ . . . ≤ 𝑏𝑙 ′

4: Let 𝑘 be the maximimum integer such that 𝑎𝑙 + 𝑏𝑘 ≤ 𝑡
5: Let B1 = {(𝐵1, 𝑏1), . . . , (𝐵𝑘 , 𝑏𝑘 )}; B2 = B \ B1

6: return list(A1,B2, 𝑡) ∪ {(A1,B1)} ∪ list(A2,B1, 𝑡)

and the recursion depth is at most 𝑂 (log( |A| + |B|)). It follows
that runtime of Algorithm 3 is at most 𝑂 (( |A| + |B|)𝑡𝑂 (1) ).

For correctness, suppose there is a pair 𝑃 = ((𝐴𝑖 ,𝑤𝑖 ), (𝐵 𝑗 ,𝑤 𝑗 ))
with 𝑤𝑖 + 𝑤 𝑗 ≤ 𝑡 . If 𝑖 ≤ ⌊𝑙/2⌋ and 𝑗 ≤ 𝑘 it is in 𝑃 ∈ A1 × B1.

If 𝑖 ≤ ⌊𝑙/2⌋ and 𝑗 > 𝑘 then 𝑃 ∈ A1 × B2 and it will be covered

in the recursive call with A1 and B2. Vice versa if 𝑖 > ⌊𝑙/2⌋ and
𝑗 ≤ 𝑘 then 𝑃 ∈ A2 × B1 and it will be covered in the recursive call

withA2 and B1. Note 𝑃 cannot be inA2 ×B2 since it would imply

𝑤𝑖 +𝑤 𝑗 > 𝑡 .

Theorem 2 now follows directly from applying Algorithm 3

to reduce the given instance of MinHamPair to an instances of

HamPair, and using Theorem 5 on the resulting instances.

□

5 REDUCING (BIPARTITE) TSP TO

MINHAMPAIR

In this section we use the algorithm from Theorem 2 as a blackbox

to find fast algorithms for TSP. These reductions crucially rely on an

algorithm proposed by Bodlaender et al. [BCKN15]. Intuitively their

algorithm is a natural Dynamic Programming algorithm, but it uses

a table reduction technique. It was shown in [BCKN15] that, if the

recurrence associated with the dynamic programming algorithm

only uses a fixed set of operations (defined below in Definition 5.2),

then this technique can be automatically applied.

In this section we will need to slightly reorder the algorithm

of [BCKN15], and therefore we will need several parts of their

methods. While it will be very helpful for the reader to be familiar

with [BCKN15], we made our presentation self-contained. and we

recall the relevant parts from [BCKN15] in Subsection 5.1.

In Subsection 5.2 we present the proof of Theorem 1, and in

Subsection 5.3 we prove Theorem 3.

5.1 Tools and Notations From [BCKN15]

Given a base set𝑈 , we use Π(𝑈 ) for the set of all partitions of𝑈 . It

is known that, together with the coarsening relation ⊑, Π(𝑈 ) gives
a lattice, with the minimum element being {𝑈 } and the maximum

element being the partition into singletons. We denote ⊓ for the

meet operation and ⊔ for the join operation in this lattice; these

operators are associative and commutative. If 𝑋 ⊆ 𝑈 we let 𝑝↓𝑋 ∈
Π(𝑋 ) be the partition obtained by removing all elements not in 𝑋

from it, and analogously we let for 𝑈 ⊆ 𝑋 denote 𝑝↑𝑋 ∈ Π(𝑋 ) for
the partition obtained by adding singletons for every element in
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𝑋 \𝑈 to 𝑝 . Also, for𝑋 ⊆ 𝑈 , we let𝑈 [𝑋 ] be the partition of𝑈 where

one block is {𝑋 } and all other blocks are singletons. If 𝑎, 𝑏 ∈ 𝑈 we

shorthand𝑈 [𝑎𝑏] = 𝑈 [{𝑎, 𝑏}]. The empty set, vector and partition

are all denoted by ∅.
Given a set 𝑋 ⊆ 𝐸, we denote 𝑁𝑋 (𝑣) for the neighbors of 𝑣 in

the graph with edge set 𝑋 , and we denote deg𝑋 (𝑣) = |𝑁𝑋 (𝑣) |.

Definition 5.1 (set ofweighted partitions). A set of weighted

partitions is a setA ⊆ Π(𝑈 )×N, i.e., a family of pairs, each consisting

of a partition of𝑈 and a non-negative integer weight.

For notational ease, we let rmc(A) denote the set obtained by

removing non-minimal weight copies:

rmc(A) =
{
(𝑝,𝑤) ∈ A

���(𝑝,𝑤 ′) ∈ A ∧𝑤 ′ < 𝑤}
.

Definition 5.2 (operators on weighted partitions). Let𝑈

be a set and A ⊆ Π(𝑈 ) × N.
Union. For B ⊆ Π(𝑈 ) × N, define A ∪↓ B = rmc(A ∪ B). Com-

bine two sets of weighted partitions and discard dominated

partitions.

Insert. For 𝑋 ∩𝑈 = ∅, let ins(𝑋,A) =
{
(𝑝↑𝑈∪𝑋 ,𝑤)

�� (𝑝,𝑤) ∈ A}
.

Insert additional elements into𝑈 and add them as singletons

in each partition.

Shift. For𝑤 ′ ∈ N define shft(𝑤 ′,A) = {(𝑝,𝑤 +𝑤 ′) | (𝑝,𝑤) ∈ A}.
Increase partition’s weight by𝑤 ′.

Glue. For 𝑢, 𝑣 , let𝑈 = 𝑈 ∪ {𝑢, 𝑣} and let glue(𝑢𝑣,A) ⊆ Π(𝑈 ) × N

glue(𝑢𝑣,A) = rmc(
{
(𝑈 [𝑢𝑣] ⊓ 𝑝↑�̂� ,𝑤)

��� (𝑝,𝑤) ∈ A}
).

Moreover, if𝑤 : 𝑈 ×𝑈 → N, then we define glue𝑤 (𝑢𝑣,A) =
shft(𝑤 (𝑢, 𝑣), glue(𝑢𝑣,A)). In each partition combine the

sets containing 𝑢 and 𝑣 into one; add 𝑢 and 𝑣 to the base set

if needed.

Project. For𝑋 ⊆ 𝑈 let𝑋 = 𝑈 \𝑋 , and define proj(𝑋,A) ⊆ Π(𝑋 )×
N as proj(𝑋,A) =

rmc(
{
(𝑝↓𝑋 ,𝑤)

��� (𝑝,𝑤) ∈ A ∧ ∀𝑒 ∈ 𝑋 : ∃𝑒 ′ ∈ 𝑋 : 𝑝 ⊑ 𝑈 [𝑒𝑒 ′]
}
) .

Remove all elements of𝑋 from each partition, but discard par-

titions where this would reduce the number of blocks/sets.

Join. For B ⊆ Π(𝑈 ′) ×N let𝑈 = 𝑈 ∪𝑈 ′ and define join(A,B) ⊆
Π(𝑈 ) × N as join(A,B) =

rmc(
{
(𝑝↑�̂� ⊓ 𝑞↑�̂� ,𝑤1 +𝑤2)

��� (𝑝,𝑤1) ∈ A ∧ (𝑞,𝑤2) ∈ B
}
) .

Extend all partitions to the same base set. For each pair of

partitions return the outcome of the meet operation ⊓ , with
weight equal to the sum of the weights.

Definition 5.3 (Preserving representation). A function 𝑓 :

2
Π (𝑈 )×N × 𝑍 → 2

Π (𝑈 ′)×N
is said to preserve representation if for

every A,A ′ ⊆ Π(𝑈 ) × N and 𝑧 ∈ 𝑍 it holds that if A ′ represents
A then 𝑓 (A ′, 𝑧) represents 𝑓 (A, 𝑧). (Note that 𝑍 stands for any

combination of further inputs.)

Lemma 5.4 ([BCKN15]). Each of the operations union, shift, glue

and project can be performed in 𝑆 |𝑈 |𝑂 (1) time where 𝑆 is the size of

the input of the operation. GivenA, B, join(A,B) can be computed

in time |A| · |B| · |𝑈 |𝑂 (1) .

5.2 Splitting the Bipartite Graph into

Subgraphs

In this section we prove Theorem 1. As mentioned in the introduc-

tion, the basic idea of the reduction is as follows: The starting point

is an algorithm from [BCKN15] that solves TSP in𝑂 ((2+2
𝜔/2)pw𝑛)

time. Note that this algorithm already solves TSP on bipartite

graphs in 2
𝑛𝑛𝑂 (1) if 𝜔 = 2. Moreover, the algorithm only com-

putes 𝑂 ((2 +
√

2)𝑛/2𝑛𝑂 (1) ) bits of data, and the only bottleneck of

the algorithm is the computation of representative sets.

Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸) be an undirected bipartite graph and let

𝑤 : 𝐸 → R. We can assume that |𝐿 | = |𝑅 | = 𝑛/2, as otherwise
𝐺 has no Hamiltonian cycle. A bipartite graph has a special path

decomposition in which each bag contains 𝐿 and the vertices in

𝑅 are one by one introduced and forgotten. Our approach is to

compute all table entries corresponding to the the sub-problem

where half (say 𝑅′) of the vertices are introduced. Afterwards we
do the same for 𝑅 \𝑅′. To compute all these table entries within the

time bound we slightly lower the frequency of calls to the procedure

reducematchings from Theorem 4. Concretely, we split 𝑅′ in 𝑅1

and 𝑅2, where |𝑅1 | = 𝛼𝑛/2 and |𝑅2 | = ( 1
2
− 𝛼)𝑛/2 and 𝛼 will be a

small constant. Then we find representative sets for sub-solutions

using 𝑅1 and 𝑅2 and take all combinations without reducing the

number of sub-solutions with reducematchings afterwards.

While this avoid the computational bottleneck in the run time,

it causes different problems as an increase in sub-solutions also

increase the run time. Here Theorem 2 comes to the rescue: Given

the sub-solutions using both 𝑅 and 𝑅′, it finds the minimum weight

pair fast enough to compensate for the increased number of sub-

solutions.

To guide the dynamic programming algorithm we will use the

following definition:

Table 1: Probabilities of each type.

(1, 2)-type 𝜏 (2, 0) (0, 2) (1, 1) (1, 0) (0, 1) (0, 0)
Probability 𝑝𝜏 𝛼2 ( 1

2
− 𝛼)2 2𝛼 ( 1

2
− 𝛼) 𝛼 2( 1

2
− 𝛼) 1

2

1

4

(3, 4)-type 𝜏 (2, 0) (0, 2) (1, 1) (1, 0) (0, 1) (0, 0)
Probability 𝑝𝜏 𝛼2 ( 1

2
− 𝛼)2 2𝛼 ( 1

2
− 𝛼) 𝛼 2( 1

2
− 𝛼) 1

2

1

4

Definition 5.5. An 𝛼-partition is a partition 𝜌 of 𝑅 into 𝑅1∪𝑅2∪
𝑅3 ∪ 𝑅4 such that

|𝑅1 |, |𝑅3 | ∈ 𝛼𝑛 ± 10

√
𝑛 and |𝑅2 |, |𝑅4 | ∈ 𝛼𝑛 ± 10

√
𝑛. (3)

Let 𝐶 ⊆ 𝐸. Fix a partition 𝜌 = (𝑅1, 𝑅2, 𝑅3, 𝑅4) of 𝑅. Define the (1, 2)-
type of a vertex 𝑙 as ( |𝑁𝐶 (𝑙) ∩ 𝑅1 |, |𝑁𝐶 (𝑙) ∩ 𝑅2 |). Similarly, define

the (3, 4)-type of a vertex 𝑙 as ( |𝑁𝐶 (𝑙) ∩ 𝑅3 |, |𝑁𝐶 (𝑙) ∩ 𝑅4 |). Say 𝜌 is

𝛼-regular for 𝐶 if it is 𝛼 partition and the following condition hold

for all 𝜏 and 𝑝𝜏 as listed in Table 1:

|{𝑙 ∈ 𝐿 : 𝑙 has (1, 2)-type 𝜏}| ∈ (𝑝𝜏𝑛/2 ± 10

√
𝑛),

|{𝑙 ∈ 𝐿 : 𝑙 has (3, 4)-type 𝜏}| ∈ (𝑝𝜏𝑛/2 ± 10

√
𝑛) .

(4)

By upper bounding the probability that (3) and (4) fail with stan-

dard Chernoff bounds
6
and using the union bound, the following

observation can be obtained:

6
If 𝑎1, . . . , 𝑎𝑛 are independent and Bernoulli and 𝑋 = 𝑎1 + 𝑎2 + . . . + 𝑎𝑛 , then

Pr[ |𝑋 − 𝐸 [𝑥 ] | ≥ 𝑡 ] ≤ 2 exp(−2𝑡2/𝑛) .
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Observation 5.6. Let 𝐶 be a Hamiltonian cycle of𝐺 . And let 𝜌 =

(𝑅1, 𝑅2, 𝑅3, 𝑅4) be obtained by adding each vertex of 𝑅 independently

to

𝑅1 with probability 𝛼, 𝑅2 with probability
1

2
− 𝛼,

𝑅3 with probability 𝛼, 𝑅4 with probability
1

2
− 𝛼.

Then 𝜌 is 𝛼-regular for 𝐶 with at least constant probability.

For a subset 𝑍 ⊆ 𝑅 we let𝐺𝑍 = (𝑉𝑍 , 𝐸𝑍 ) be the graph𝐺 [𝐿 ∪𝑍 ],
and we define 𝐴𝑍 (𝑠) =

{(𝑀, min

𝑋 ∈E (𝑀,𝑠)
𝑤 (𝑋 )) : 𝑀 ∈ Πm (𝑠−1 (1)) ∧ E𝑍 (𝑀, 𝑠) = ∅},

E𝑍 (𝑀, 𝑠) =
{
𝑋 ⊆ 𝐸𝑍 : 𝑣 ∈ 𝐿 → deg𝑋 (𝑣) = 𝑠 (𝑣),

and ∀𝑗 ∈ 𝑍 : 𝑣 ∈ deg𝑋 (𝑟 ′𝑗 ) = 2,

and {𝑢, 𝑣} ∈ 𝑀 → 𝑢 and 𝑣 are connected in 𝐺 [𝑋 ],
and 𝐺 [𝑋 ] contains no cycles

}
.

Note this definition is the same as the corresponding definition

in Section [BCKN15, Section 3.4] in the special case that the path

decomposition has 𝐿 in each bag and has forgotten set 𝑍 from 𝑅

and not yet introduced 𝑅 \ 𝑍 . It will also be useful to refer to a

degree-sequence as regular if it acts as expected:

Definition 5.7. We say a vector 𝑠 ∈ {0, 1, 2}𝐿 is 𝛼-regular if

|𝑠−1 (0) | ∈ (1 − 𝛼)2𝑛/2 ± 10

√
𝑛, |𝑠−1 (1) | ∈ 𝛼 (1 − 𝛼)𝑛/2 ± 10

√
𝑛

|𝑠−1 (2) | ∈ 𝛼2𝑛/2 ± 10

√
𝑛.

Lemma 5.8. Let |𝑍 | = 𝛼𝑛/2 where 𝛼 < 1

2
. There is an algo-

rithm that computes for every 𝛼-regular 𝑠 ∈ {0, 1, 2}𝐿 a family of

weighted matchings𝐴′
𝑍
(𝑠) that represents𝐴𝑍 (𝑠) such that |𝐴𝑍 (𝑠) | ≤

2
|𝑠−1 (1) |/2. The algorithm runs in time∑

𝛼−regular 𝑠

(
𝑛/2

|𝑠−1 (0) |, |𝑠−1 (1) |, |𝑠−1 (2) |

)
2
𝜔 |𝑠−1 (1) |/2 .

The proof of Lemma 5.8 is a straightforward adaption of the

algorithm described in [BCKN15, Section 3.4]. A self-contained

proof is given in Appendix ??

Theorem 1 (restated). Suppose that (𝑠 × 𝑠)-matrices can be

multiplied in 𝑠2+𝑜 (1)
time. Then there is a Monte Carlo algorithm that,

given an undirected bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) and weights𝑤 :

𝐸 → R, finds a Hamiltonian tour of minimum weight in 𝑂 (1.9999
𝑛)

time.

Proof. Let 𝛼 = 0.493526, and note that by our assumption we

may use 𝜔 = 2. Let 𝐶 be a Hamiltonian cycle of minimum weight.

Pick a random partition 𝜌 = (𝑅1, 𝑅2, 𝑅3, 𝑅4) as in Observation 5.6.

This splits the Hamiltonian cycle in 𝐶𝑖 = 𝐶 ∩ 𝐸𝑅𝑖
Thus 𝜌 is 𝛼-regular for 𝐶 with at least constant probability.

This means that if 𝑠 (𝑣) = 𝑑𝐶𝑖
(𝑣) for every 𝑣 ∈ 𝐿, then 𝐴𝑅𝑖 (𝑠)

contains the matching obtained by contracting all vertices in 𝑠−1 (2)
in 𝐶𝑖 , and it will have associated weight 𝑤 (𝐶 ∩ 𝐸𝑅𝑖 ). Moreover,

𝑠1, 𝑠3 will be 𝛼-regular and 𝑠2, 𝑠4 will be ( 1
2
− 𝛼) regular since 𝜌 is

𝛼-regular for 𝐶 .

We use Lemma 5.8 to compute tables 𝐴′
𝑅𝑖

representing 𝐴𝑅𝑖 for

𝑖 = 1, 2, 3, 4. The runtime will be(
𝑛/2

𝛼2, 2𝛼 (1 − 𝛼), (1 − 𝛼)2

)
2

2𝛼 (1−𝛼)𝑛/2 ≤ 1.9999
𝑛,

where the upper bound follows from a simple Mathematica com-

putation. Similarly to the case of the join bag in [BCKN15, Section

3.4], it holds that 𝐴𝑅1∪𝑅2
(𝑠)⋃

↓

𝑙+𝑟=𝑠
proj(𝑠−1 (2) \ (𝑙−1 (2) ∪ 𝑟−1 (2)), join(𝐴𝑅1

(𝑙), 𝐴𝑅2
(𝑟 ))) . (5)

Note here that 𝑙, 𝑟 , 𝑠 ∈ {0, 1, 2}𝐿 hence the summation is vector sum-

mation. Since we combine two characteristics of partial solutions

into a new one, the degrees of the left and right partial solution (𝑙

and 𝑟 ) have to sum up to the degrees of the new one (𝑠). Two char-

acteristics (𝑀1,𝑤1) ∈ 𝐴𝑅1
(𝑙) and (𝑀2,𝑤2) ∈ 𝐴𝑅2

(𝑟 ) combine to a

characteristic of 𝐴𝑅1∪𝑅2
(𝑠) if and only if𝑀1 ∪𝑀2 is acyclic which

is equivalent to saying that all vertices in 𝑠−1 (2) are connected to

vertices in 𝑠−1 (1) in the resulting partition𝑀1 ⊓ 𝑀2, and the latter

is ensured by the project operation.

Note that (5) uses only operations that preserve representation

by Lemma 5.4. Using the tables𝐴′
𝑅𝑖

representing𝐴𝑅𝑖 for 𝑖 = 1, 2, 3, 4

we can compute tables 𝐴′
𝑅1∪𝑅2

and 𝐴′
𝑅3∪𝑅4

that represent 𝐴𝑅1∪𝑅2

and 𝐴𝑅3∪𝑅4
respectively.

Moreover, we can even restrict the evaluation according to (5)

by only iterating over 𝛼-regular 𝑙 and ( 1
2
− 𝛼)-regular 𝑟 by the

assumption that 𝜌 is 𝛼-regular for 𝐶 . This means that |𝑙−1 (1) | =
2𝛼 (1 − 𝛼) and |𝑟−1 (1) | = 2( 1

2
− 𝛼) ( 1

2
+ 𝛼).

In summary, we can compute 𝐴′
𝑅1∪𝑅2

(𝑠) =⋃
↓

𝑙+𝑟=𝑠
𝑙 is 𝛼-regular

𝑟 is (1/2−𝛼) regular

proj(𝑠−1 (2) \ (𝑙−1 (2) ∪ 𝑟−1 (2)), join(𝐴𝑅1
(𝑙), 𝐴𝑅2

(𝑟 ))).

Using this expression for 𝐴′
𝑅1∪𝑅2

(𝑠) and observing join(A,B)
can be computed in time |A| · |B| · |𝑈 |𝑂 (1) (by Lemma 5.4), we

obtain the following bound:

∑
𝑠 is 𝛼−regular |𝐴′𝑅1∪𝑅2

(𝑠) | is at most

≤
(

𝑛/2
𝛼2𝑛/2, ( 1

2
− 𝛼)2𝑛/2, 2𝑎( 1

2
− 𝛼)𝑛/2, 𝛼𝑛/2, 2( 1

2
− 𝛼) 1

2
𝑛/2, 1

4
𝑛/2

)
·

2
( |𝑙−1 (1) |+ |𝑟−1 (1) |)𝑛/4 .

Here the multinomial coefficient counts the number of ways of com-

binations of 𝑙 and 𝑟 using Table 1 and 2
|𝑙−1 (1) |𝑛/4

and 2
|𝑟−1 (1) |𝑛/4

count the number of matchings in the table 𝐴𝑅𝑖 (𝑙) and 𝐴𝑅𝑖 (𝑟 ). By
the definition of 𝛼-regularity |𝑙−1 (1) | = 2𝛼 (1 − 𝛼) and |𝑟−1 (1) | =
2(1/2 − 𝛼) (1/2 + 𝛼). Evaluating the upper bound for the chosen

value of 𝛼 shows ∑
𝑠 is 𝛼−regular

|𝐴′𝑅1∪𝑅2

(𝑠) | ≤ 2
0.924879𝑛 .

Similarly, we can also compute𝐴𝑅1∪𝑅2
(𝑠) that represents𝐴𝑅3∪𝑅4

(𝑠).
Now it remains to iterate over all 𝑠 and search for the mini-

mum weight combination of perfect matchings in 𝐴′
𝑅1∪𝑅2

(𝑠) and
𝐴′
𝑅3∪𝑅4

(®2 − 𝑠), where ®2 denotes the vector with all values equal to
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2. Using Theorem 2 we see that the total runtime becomes( ∑
𝑠 is 𝛼−regular

( |𝐴′𝑅1∪𝑅2

| + |𝐴′𝑅3∪𝑅4

|)23 |𝑠−1 (1) |/10

)
+
( ∑
𝑠 is 𝛼−regular

3
|𝑠−1 (1) |/2

)
≤ 2

0.9999𝑛,

where we use |𝑠−1 (1) | = 𝑛/4 since 𝑠 is 𝛼-regular. □

5.3 Towards Faster TSP in Non-Bipartite

Graphs

In this subsection we prove Theorem 3. Suppose the (not necessarily

bipartite) undirected graph𝐺 = (𝑉 , 𝐸) andweight function𝑤 : 𝐸 →
R form an instance of the TSP problem.We can assume without loss

of generality that 𝑛 := |𝑉 | is an even number by an easy reduction.

Then the optimal solution tour𝑇 can be decomposed in two perfect

matchings𝑀1 and𝑀2.

Let 𝑀0 ∈𝑅 Π(𝑉 ). For an edge set 𝑋 ⊆ 𝐸 we define 𝑉 (𝑋 ) =
∪{𝑢,𝑣 }∈𝑋 {𝑢, 𝑣}. We focus on computing a set of matchings that

represents all matchings that form an Hamiltonian cycle with𝑀0.

To this end we arbitrarily fix 𝑠 ∈ 𝑉 , and define for 𝑋 ⊆ 𝑀0, and 𝑡

such that 𝑠 ∉ 𝑉 (𝑋 ) and 𝑡 ∈ 𝑉 (𝑋 ):

𝐴𝑡 (𝑋 ) = {(𝑀,𝑤 (𝑀)) : 𝑀 ∈ Πm (𝑉 (𝑋 ) ∪ {𝑠} \ {𝑡}),
𝑀 ∪ 𝑋 acyclic and connects 𝑠 to 𝑡}

If |𝑋 | ≤ 1, it is easily seen that 𝐴𝑡 (𝑋 ) = {(∅, 0)} if 𝑠 = 𝑡 and

𝑋 is only one edge that contains 𝑡 , and 𝐴𝑡 (𝑋 ) = ∅ otherwise. For
|𝑋 | > 1 we have the following recurrence:

𝐴𝑡 (𝑋 ) =
⋃
↓

𝑡 ′∈𝑉 (𝑋 )\{𝑡,𝛼𝑀
0
(𝑡 ) }

glue𝑤 ({𝑡, 𝛼𝑀0
(𝑡 ′)},

ins({𝑡, 𝛼𝑀0
(𝑡 ′)}, 𝐴𝑡 ′ (𝑋 \ {𝑡, 𝛼𝑀0

(𝑡)}))) . (6)

To see that this recurrence holds, recall that for any matching

𝑀 ∈ 𝐴𝑡 (𝑋 ) the edge set𝑀 ∪𝑋 forms a path from 𝑠 to 𝑡 , and it must

use edges from𝑀 and𝑀0 in an alternating fashion. Therefore penul-

timate vertex of this path is 𝛼𝑀0
(𝑡). The recurrence tries all possibil-

ities of the predecessor 𝑡 ′ of 𝛼𝑀0
(𝑡). If 𝑡 ′ is such a predecessor, the

matching𝑀 is formed from a matching𝑀 ′ ∈ 𝐴𝑡 ′ (𝑋 \ {𝑡, 𝛼𝑀0
(𝑡)})

and the edge {𝑡 ′, 𝛼𝑀0
(𝑡)}. Thus the right-hand side of (6) indeed

computes all matchings in 𝐴𝑡 (𝑋 ).
Note that 𝐴𝑠 (𝑀0) contains all matchings that form an Hamilton-

ian cycle.

Let 𝛼, 𝛽 be such that 𝛼 < 0.7 and 𝛼 + 𝛽 < log(3)/2. Assume there

is an algorithm reducematching that, given an 𝑛-vertex undirected
graph 𝐺 with edge weights𝑤 : 𝐸 (𝐺) → R and a family of perfect

matchingsA ⊆ Πm (𝑉 (𝐺)), computes a setA ′ ⊆ A that represents

A and satisfies |A ′ | ≤ 2
𝛼𝑛

in |A|2𝛽𝑛 time.

We can build a representative set of 𝐴𝑠 (𝑀0) using (6) an apply-

ing the assumed reducematchings procedure since all operations

used preserve representation by Lemma 5.4. The runtime of this

operation would be∑
𝑡 ∈𝑉 (𝑋 )

𝑛/2∑
|𝑋 |=0

(
𝑛/2
|𝑋 |

)
|𝐴𝑡 (𝑋 ) |22𝛽 |𝑋 | ≤

𝑛/2∑
|𝑋 |=0

(
𝑛/2
|𝑋 |

)
2

2(𝛼+𝛽) |𝑋 |𝑛𝑂 (1)

≤ (1 + 2
𝛼+𝛽 )𝑛/2𝑛𝑂 (1) ≤ (1 + 3

1−𝜀 )𝑛/2𝑛𝑂 (1) ,

and this is 2
(1−𝜀′)𝑛

for some 𝜀 ′ > 0 that depends on 𝜀.

It is well known that the probability that two random perfect

matchings on the complete graph on𝑛 vertices form anHamiltonian

cycle is at least 1/𝑛𝑂 (1) .
Thus, if the optimal tour is𝑀1 ∪𝑀2, and we sample 𝑛𝑂 (1) ran-

dom perfect matchings𝑀0 and take A to be union of all obtained

representing sets, then this set will represent both𝑀1 and𝑀2 with

high probability. Thus it remains to solve the instance (A,A) of
MinHamPair.

The size of A will be 𝑛𝑂 (1)2𝛼𝑛 , and since by assumption 𝛼 <

0.7 − 𝜀, Theorem 3 follows from Theorem 2.
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A MERLIN-ARTHUR PROTOCOLS

We briefly elaborate
7
the claim that there exist𝑂 (1.9999

𝑛) verifica-
tion time Merlin-Arthur protocols for bipartite TSP. Specifically, we

claim a prover can design a proof on 𝑂 (1.9999
𝑛) bits that a given

bipartite TSP instance has no tour of weight at most 𝑡 , and this proof

can be verified by a probabilistic verfied using𝑂 (1.9999
𝑛) time. The

verifier will always agree with the prover is the proof was correct

and there is no tour of weight at most 𝑡 . On the other hand, if there

is tour of weight at most 𝑡 the prover will not accept the proof of

the non-existence of such a tour with at least constant probability.

We refer to [Wil16, BK16] for further definition of Merlin-Arthur

proof systems.

To turn the algorithm behind Theorem 1 into a Merlin-Arthur

proof system we use the following adaptions:

• Observation 5.6 is derandomized by letting F = {𝑓 →
{1, 2, 3, 4}} be an appropriate pair-wise independent hash

function and letting 𝑅𝑖 = 𝑓 𝑖−1 (𝑖). Observation 5.6 can still

be proven to hold by bounding the variance and applying

Chebyshev’s inequality.

• For each 𝑓 ∈ F , Merlin computes the appropriate repre-

sentative sets and sends them to Arthur. He also provides

for each row basis computation underlying each invocation

of reducematchings the according PLUQ decomposition

(see [DLP17, Theorem 1]).

• Arthur verifies all row basis computations using Freivalds

algorithm (see [DLP17, Theorem 1]).

• Arthur runs the randomized algorithm from Theorem 2 to

verify that indeed there is no pair of matchings of weight at

most 𝑡 .
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