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Abstract

A recent and active line of work achieves tight lower bounds for fundamental problems under
the Strong Exponential Time Hypothesis (SETH). A celebrated result of Backurs and Indyk
(STOC’15) proves that the Edit Distance of two sequences of length n cannot be computed
in strongly subquadratic O(n2−ε) time, for some ε > 0, under SETH. Follow-up works proved
that even simpler looking problems like the Longest Common Subsequence or Edit Distance of
binary sequences suffer from the same SETH lower bound.

SETH is a very strong assumption, asserting that even linear size CNF formulas cannot
be analyzed for satisfiability with an exponential speedup over exhaustive search. We consider
much safer assumptions, e.g. that SAT on more expressive representations, like subexponential-
size NC circuits, cannot be solved in (2 − δ)n time. Intuitively, this assumption is much more
plausible: NC circuits can implement linear algebra and complex cryptographic primitives, while
CNFs cannot even approximately compute an XOR of bits.

Our main result is a surprising reduction from SAT on Branching Programs to fundamen-
tal problems in P like Edit Distance, LCS, and many others. A consequence of our reduction
is that truly subquadratic algorithms will have consequences that we consider to be far more
remarkable than merely faster CNF SAT algorithms. For example: SAT on arbitrary nondeter-
ministic branching programs of size 2o(

√

n) or on arbitrary o(n)-depth bounded fan-in circuits
(and therefore also NC-Circuit-SAT) can be solved in (2−δ)n time. To illustrate the significance
of these consequences we point at several new circuit lower bounds, that are very far from the
state of the art, which immediately follow.

A very interesting feature of our work is that we can prove major consequences even from
mildly subquadratic algorithms for Edit Distance or LCS. For example, we show that if we can
shave an arbitrarily large polylog factor from n2 for Edit Distance then NEXP does not have
non-uniform NC

1 circuits. A more fine-grained examination shows that even shaving a logc n
factor, for a specific constant c ≈ 103, already implies new circuit lower bounds.
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1 Introduction

A central goal of complexity theory is to understand and prove lower bounds for the time complex-
ity of fundamental problems. One of the most important computational problems is Edit-Distance,
the problem of computing the minimum number of edit operations (insertions, deletions, and sub-
stitutions) required to transform one sequence into another. A classical dynamic programming
algorithm that is taught in basic algorithms courses solves Edit-Distance on sequences of length n
in O(n2) time [29]. This quadratic runtime is prohibitive in many applications, like computational
biology and genomics where n is typically a few billions. The significance of a faster, e.g. linear time,
algorithm cannot be overstated. Despite decades of attempts, no upper bound below O(n2/ log2 n)
is known for Edit-Distance [35]. All the above applies to the simpler looking Longest Common
Subsequence problem (LCS), for which the existence of a faster algorithm was already posed as an
important open question in combinatorics by Knuth decades ago [28]. This is a situation where
lower bounds are highly desirable, but unfortunately, the current state of the art in complexity is
far from providing a lower bound that is close to quadratic for any natural problem in NP, let alone
Edit-Distance. Therefore, researchers have turned their attention to conditional lower bounds, and
a recent breakthrough by Backurs and Indyk [16] showed that Edit-Distance cannot be solved in
truly subquadratic O(n2−ε) time, for some ε > 0, unless the following well-known hypothesis on
the complexity of k-SAT is false.

Hypothesis 1 (Strong exponential time hypothesis (SETH)). There does not exists an ε > 0 such
that for all k ≥ 3, k-SAT on n variables and m clauses can be solved in O(2(1−ε)n ·m) time.

This lower bound was received with a great deal of excitement1. Other interesting recent
results show that under SETH, the current algorithms for many central problems in diverse areas of
computer science are optimal, up to no(1) factors. These areas include pattern matching [10, 7, 22, 6],
graph algorithms [39, 8, 9, 11, 13], parameterized complexity [36, 7], computational geometry
[21, 23], and the list is growing by the day. Bringmann and Künnemann [22] generalize many of
the previous SETH lower bounds [10, 21, 16, 7] into one framework; they prove that the problem of
computing any similarity measure δ over two sequences (of bits, symbols, points, etc) will require
quadratic time, as long as the similarity measure has a certain property (namely, if δ admits
alignment gadgets). Such similarity measures include Edit-Distance and LCS (even on binary
sequences), and the Dynamic Time Warping Distance, which is an extensively studied metric in
time-series analysis.

These SETH lower bounds are a part of a more general line of work in which one bases the
hardness of important problems in P on well-known conjectures about the exact complexity of other
famous problems. Other conjectures are 3-SUM and All-Pairs-Shortest-Paths, but in recent years,
SETH has been the most “successful” conjecture at explaining barriers.

How strong is SETH? SETH was introduced [31, 25] as a plausible explanation for the lack of
(2− ε)n algorithms for CNF-SAT, despite of it being one of the most extensively studied problems
in computer science. The fastest known algorithms for k-SAT run in time 2n−n/O(k) (e.g. [37]), and
for CNF-SAT the bound is 2n−n/O(log∆) where ∆ = m/n is the clause-to-variable ratio [24, 30, 12].
That is, these algorithms are just not enough to refute SETH. Evidence in favor of SETH is

1It is among the few STOC papers that made it to the Boston Globe news website [1]. See also the Quanta article
[2], the MIT news article [3], and the blog posts by Aaronson [4] and Lipton [5].
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circumstantial. For example, natural algorithmic approaches like resolution were shown to require
exponentially many steps [19].

There is evidence that SETH will be hard to refute, in the form of a “circuit lower bounds
barrier”: refuting SETH is as hard as proving longstanding open lower bound results. Williams
showed that faster-than-trivial Circuit-SAT algorithms for many circuit classes C would imply
interesting new lower bounds against that class [44, 46]. Via this connection, and known reductions
from certain circuit families to CNF formulas, it is possible to show that refuting SETH implies a
new circuit lower bound [33]: ENP cannot be solved by linear-size series-parallel circuits2. However,
this is a very weak lower bound consequence.

A hierarchy of SAT problems. A weakness of SETH as a hardness hypothesis is that it is an
assumption about CNF SAT, as opposed to a more general SAT problem. Consider a problem in
which you are given some representation of a function B on n input bits and are asked whether B
is satisfiable. If B is treated as a black-box that we only have input/output access to, then any
algorithm will need to spend Ω(2n) time in the worst case. Of course, a clever algorithm should
attempt to analyze B in order to decide satisfiability in o(2n) time. Whether this is possible,
depends on how complex and obfuscating the representation is. There is a whole spectrum of
increasing complexity of representations, starting from simple objects like DNFs, which are very
bad at hiding their satisfiability, up until large circuits or nondeterministic turing machines that
we have no idea how to analyze.

For each class of representations C we can define the corresponding C-SETH, stating that this
abstract SAT problem cannot be solved in (2 − ε)n time. For example, NC-SETH would be the
assumption that Circuit-SAT on polynomial size polylog depth circuits (NC circuits) cannot be
solved in (2 − ε)n time. It is well known that NC circuits are capable of complex computations,
including most linear-algebraic operations. Moreover, they are believed to be capable of implement-
ing cryptographic primitives like One Way Functions and Pseudorandom Generators, for which the
ability to hide satisfiability is essential. In sharp contrast, the original SETH is equivalent (due to
the sparsification lemma [32, 24]) to the assumption that even representations that are very low
on this spectrum, namely linear size CNF formulas, are enough to obfuscate satisfiability. While
from the viewpoint of polynomial time solvability, CNF-SAT and NC-SAT are equivalent, this is
not the case from a more fine-grained perspective: an algorithm that can decide satisfiability of ar-
bitrary polynomial size circuits faster than exhaustive search is far more remarkable than a similar
algorithm that can handle only linear size CNF formulas.

As our class C gets more complex and rich, the C-SETH becomes more credible and appealing as
a basis for conditional lower bounds than SETH. However, all previous SETH lower bound proofs
relied heavily on the simple nature of CNFs. In this work, we prove the first lower bounds under
the much more reliable C-SETH, for classes C that are far more expressive than CNFs.

Our results. Our main result is a new efficient reduction from SAT on super-polynomial size
nondeterministic Branching Programs (BPs) to Edit-Distance, LCS and many other important
problems in P. As we discuss below, BPs are vastly more expressive than CNFs. For example, our
reduction allows us to tightly reduce SAT on arbitrary polynomial size NC circuits to problems

2The class ENP or TIME[2O(n)]NP is the class of problems solvable in exponential time with access to an NP oracle.
Series-parallel circuits are a special kind of log-depth circuits, also known as Valiant-Series-Parallel circuits [42].
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in P. Thus, we are able to replace SETH with NC-SETH, and derive far more remarkable conse-
quences from truly subquadratic algorithms for Edit Distance and LCS. Moreover, we show that
any problem for which the general framework of Bringmann and Künnemann is capable of showing
an n2−o(1) SETH lower bound, will suffer from the much stronger NC-SETH hardness barrier. In
fact, we are able to show reductions even to problems that fall outside their framework, like LCS on
k sequences, a classical problem in parameterized complexity with an O(nk) algorithm [20, 38, 7].

BPs are a popular non-uniform model of computation [15]. Roughly speaking, a nondetermin-
istic Branching Program on n input variables of width W and length T is a layered directed graph
on T layers, each layer having W nodes, such that every edge is labelled with a constraint of the
form (xi = b) where xi is an input variable, and b ∈ {0, 1}. Note that typically T ≫ n and each
node appears on many edges. One of the nodes in the first layer is marked as the start node, and
one of the nodes in the last layer is marked as the accept node. For an input x ∈ {0, 1}n let Gx be
the subgraph of edges whose constraints are satisfied by x. We say that the BP accepts the input
x iff the accept node is reachable from the start node in Gx. The size of a BP is the total number
of edges, i.e. O(W 2T ). We refer to Section 2 for additional details about branching programs.
Even when the width is constant, BPs are surprisingly expressive: Barrington’s Theorem states
that any fan-in 2, depth d circuit can be converted into an equivalent BP of width 5 and size 4d,
over the same set of inputs [18]. Therefore, any circuit with fan-in 2 of polylog depth of any size
(in particular, NC circuits) can be expressed as a BP of length 2polylogn and constant width. Our
reduction shows that truly subquadratic Edit Distance would imply a (2− δ)n algorithm for SAT
of constant-width 2o(n)-length BPs.

Theorem 2. There is a reduction from SAT on nondeterministic branching programs on n vari-
ables, length T , and width W , to an instance of Edit-Distance or LCS on two binary sequences of
length N = 2n/2 · TO(logW ), and the reduction runs in O(N) time.

Besides the constant width case, another interesting setting is where W and T are both 2o(
√
n),

which corresponds to BPs that can represent any nondeterministic Turing machine that uses o(
√
n)

space [15]. Thus, truly subquadratic Edit Distance or LCS would allow us to get an exponential
improvement over exhaustive search for checking SAT of complex objects that can easily implement
cryptographic primitives, and many of our favorite algorithms. This would be much more surprising
than a faster SAT algorithm on linear size CNFs (as in SETH). To support this, we point at a few
strong circuit lower bounds that would follow from such an algorithm.

If we assume that Edit-Distance or LCS can be solved in truly subquadratic time, then (among
other things) Theorem 2 implies O(2n−εn/2) time algorithms for SAT on arbitrary formulas of size
2o(n) and for SAT on nondeterministic branching programs of size 2o(

√
n). Combining this with

connections between faster SAT algorithms and circuit lower bounds from prior work (see Section 6
for formal statements and a sketch of the proof), we obtain the following circuit lower bound
consequences.

Corollary 1. If Edit Distance or LCS on two binary sequences of length N is in O(N2−ε) time
for some ε > 0, then the complexity class ENP does not have:

1. non-uniform 2o(n)-size Boolean formulas,

2. non-uniform o(n)-depth circuits of bounded fan-in, and

3. non-uniform 2o(n
1/2)-size nondeterministic branching programs.
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Furthermore, NTIME[2O(n)] is not in non-uniform NC.

The above lower bound consequences are far stronger than any state of the art. The first
consequence is interesting due to the rarity of 2Ω(n) circuit lower bounds: it is still open whether
the humongous class Σ2EXP has 2o(n) size depth-three circuits. The third consequence is interesting
because it yields an exponential lower bound for arbitrary nondeterministic BPs; this model is vastly
bigger than NL/poly. The fourth is interesting because the lower bound holds for the smaller class
NTIME[2O(n)]. These consequences are on a different scale compared to the ones obtained from
refuting SETH, and therefore the “circuit lower bounds barrier” for faster Edit Distance is much
stronger.

Our first corollary was a strict improvement over the previously known SETH lower bounds,
in terms of the significance of the consequences. Next, we show that our reduction allows us to
derive consequences even from mildly subquadratic algorithms, a feature that did not exist in the
previous conditional lower bounds in P.

Given the status of Edit-Distance and LCS as core computer science problems, any asymptotic
improvement over the longstanding O(n2/ log2 n) upper bound is highly desirable. Recent algo-
rithmic techniques were able to beat similar longstanding bounds for other core problems like All
Pairs Shortest Path (APSP) [45, 27], 3-SUM [34], and Boolean Matrix Multiplication[17, 26, 47].
For example, the polynomial method [45] has allowed for superpolylogarithmic shavings for APSP,
and more recently to two other problems that are more closely related to ours, namely Longest
Common Substring [12], and Hamming Nearest Neighbors [14]. A natural open question [45, 12, 14]
is whether these techniques can lead to an n2/ logω(1) n algorithm for Edit-Distance as well. The
lower bound of Backurs and Indyk is not sufficient to address this question, and only a much faster
n2/2ω(log n/ log logn) would have been required to improve the current CNF-SAT algorithms. Our
approach of considering C-SETH for more expressive classes C allows us to prove strong “circuit
lower bounds barriers” even for shaving log factors.

Any formula of size O(nf ) can be transformed into an equivalent BP of width 5 and size O(n8f )
(first rebalance into a formula of depth 4f log n [41] and then use Barrington’s Theorem [18]).
Applying Theorem 1 to the resulting BPs, we get LCS instances of size N = O(2n/2 · n8fd), for
some constant d ≤ 25 (the constant depends on the problem and the alphabet size). Shaving an
Ω((logN)8fd+f+10) factor would translate into an O(2n/(n10 ·nf )) algorithm for SAT of formulas of
size O(nf ). Thus, we get that if LCS can be solved in O(n2/ log1000 n) time, then SAT on formulas
of size O(n5) can be solved in O(2n/n15) time, which would imply that ENP does not have such
formulas. We obtain that solving Edit-Distance or LCS in n2/ logω(1) n time still implies a major
circuit lower bound, namely that NTIME[2O(n)] is not in non-uniform NC

1.

Corollary 2. If Edit Distance or LCS on two binary sequences of length N can be solved in
O(n2/ logc n) time for every c > 0, then NTIME[2O(n)] does not have non-uniform polynomial-size
log-depth circuits.

It is likely that these connections could be sharpened even further and that similar consequences
can be derived even from shaving fewer log factors. Some inefficiencies in these connections are
due to constructions of certain gadgets in our proofs, while others come from the framework for
obtaining circuit lower bounds from faster SAT algorithms, and the reductions from circuits to
BPs.

One striking interpretation of these corollaries is that when an undergraduate student learns the
simple dynamic programming algorithms for Edit-Distance or Longest Common Subsequence and
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wonders whether there is a faster algorithm, he or she is implicitly trying to resolve very difficult
open questions in complexity theory.

Technical remarks. All known SETH lower bound proofs for problems in P have relied as a
first step on a reduction [43] to the following Orthogonal Vectors (OV) problem: given a set of
n boolean vectors S ⊆ {0, 1}d of dimension d = ω(log n), does there exist a pair a, b ∈ S such
that for all j ∈ [d] we have (a[j] = 0) or (b[j] = 0), i.e. the vectors are orthogonal or “disjoint”.
If OV can be solved in O(n2−ε) time, then CNF-SAT can be solved in O(2(1−ε/2)n) time. It is
important to notice that reductions in the direction are not known, i.e. refuting SETH is not
known to imply subquadratic algorithms for some hard quadratic-time problems. Therefore, lower
bounds under the assumption that OV requires n2−o(1) time are more reliable than SETH lower
bounds. However, the above weaknesses of SETH apply to OV as well: a much harder problem
is the C-Satisfying-Pair problem, where instead of searching for an orthogonal pair of vectors, we
ask for a pair of vectors that (together) satisfy a certain function that can be represented in more
complex ways than an orthogonality check. Again, there is a spectrum of increasing expressiveness,
and OV is quite low on it. Indeed, we have no idea how to solve the NC-Satisfying-Pair problem
in O(n2/ log3 n) time (it would readily imply faster NC-SAT algorithms), while for OV the current
upper bound n2−1/O(log (d/ logn)) is barely not truly subquadratic. All the reductions in this paper
(except for the k-LCS proof) are via a certain Branching-Program-Satisfying-Pair problem, which
can be solved in quadratic time, while faster algorithms would be very surprising and imply all the
aforementioned consequences.

Previous SETH lower bound proofs, when stripped of all the gadgetry, are rather simple, due
to the simplicity of the OV problem (which, in turn, is due to the simplicity of CNFs). Each vector
is represented by some vector gadget, so that two gadgets “align well” if and only if the vectors
are good (in this case, orthogonal), and then all the gadgets are combined so that the “total score”
reflects the existence of a good pair. Vector gadgets that are capable of checking orthogonality
can be constructed in natural ways by concatenating coordinate gadgets that have straightforward
functionality (checking that not both coordinates are 1), which in turn can be constructed via
certain atomic sequences of constant size. We observe that these reductions do not exhaust the
expressive capabilities of problems like Edit Distance and LCS.

Our new reductions follow this same scheme, except that the functionality of the vector gadgets
is no longer so simple. Our main technical contribution is the construction of certain reachability
gadgets, from which our vector gadgets are constructed. These gadgets are capable of checking
reachability between two nodes in a subgraph (e.g. ustart and uacc) of a graph (the branching
program) that is obtained from two given vectors. These gadgets exhibit the ability of sequence
similarity measures to execute nontrivial algorithmic tasks. Our reduction can be viewed as encod-
ing of graphs into two sequences such that the optimal LCS must implicitly execute the classical
small-space algorithm for directed reachability of Savitch’s Theorem [40].

Previous work on basing hardness on better hypotheses. Finding more reliable hypotheses
(than SETH, 3-SUM, APSP, etc) that can serve as an alternative basis for the “hardness in P”
is an important goal. Previous progress towards this end was achieved by Abboud, Vassilevska
Williams, and Yu [11] where the authors prove tight lower bounds for various graph problems
under the hypothesis that at least one of the SETH, APSP, and 3-SUM conjectures is true. The
C-SETH hypothesis (say, for C = NC) that we consider in this work is incomparable in strength to
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theirs, yet it has certain advantages. First, the known connections between faster SAT algorithms
and circuit lower bounds allow us to point at remarkable consequences of refuting our hypothesis,
which is not known for any of the previous conjectures. Second, it allows us to show barriers
even for mildly subquadratic algorithms. And third, it allows us to explain the barriers for many
problems like Edit Distance and LCS for which a lower bound under 3-SUM or APSP is not known
(unless the alphabet size is near-linear [10]).

Organization of the paper. The rest of the paper is organized as follows. In Section 2 we
define the SAT problem on Branching Programs (BP-SAT), and briefly describe how it is used as
the source of our reductions. In Section 3 we give a direct and simplified reduction from BP-SAT to
LCS and k-LCS. We present the framework of Bringmann and Künnemann [22] in Section 4, along
with a sketch of our full reduction. We then present the details of the full reduction in Section 5.
The full reduction also applies to LCS, and is more efficient than the simplified reduction from
Section 3. In Section 6 we discuss the consequences of a faster algorithm for BP-SAT which follow
from combining classical connections between formulas, low-depth circuits, and BPs, with the more
modern connections between faster SAT algorithms and circuit lower bounds.

2 Satisfiability of Branching Programs

In this section we define the SAT problem on Branching Programs (BP-SAT), which we later reduce
to various sequence-problems such as Edit Distance and LCS.

A nondeterministic Branching Program (BP) of length T and width W on n boolean inputs
x1, . . . , xn is a layered directed graph P with T layers L1, . . . , LT . The nodes of P have the form
(i, j) where i ∈ [T ] is the layer number and j ∈ [W ] is the index of the node inside the layer. The
node ustart = (1, 1) is called the starting node of the program, and the node uacc = (T, 1) is the
accepting node of the program. For all layers i < T except the last one: all nodes in Li are marked
with the same variable x(i) = xf(i), and each node has an arbitrary number of outgoing edges, each
edge marked with 0 or 1. Note that typically T ≫ n and each variable appears in many layers.

An evaluation of a branching program P on an input x1, . . . , xn ∈ {0, 1} is a path that starts
at ustart and then (nondeterministically) follows an edge out of the current node: if the node is in
layer Li we check the value of the corresponding variable xf(i), denote it by η ∈ {0, 1}, and then we
follow one of the outgoing edges marked with η. The BP accepts the input iff the evaluation path
ends in uacc. That is, each input restricts the set of edges that can be taken, and the BP accepts
an input iff there is a path from ustart to uacc in the subgraph induced by the input.

Definition 1 (BP-SAT). Given a Branching Program P on n boolean inputs, decide if there is an
assignment to the variables that makes P accept.

To prove a reduction from BP-SAT to a sequence-problem we go through the following problem:
Let X1 = {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} be the first and last half of the inputs to the

branching program, respectively. Do there exist a ∈ {0, 1}n/2 and b ∈ {0, 1}n/2, such that when
viewed as partial assignments to X1 and X2, respectively, together they form an accepting input to
the branching program? This problem is clearly just a reformulation of BP-SAT. Our reductions
also work, however, when a and b are restricted to two given sets of vectors S1, S2 ⊆ {0, 1}n/2, i.e.,
we ask whether there exists an accepting pair (a, b) ∈ S1 × S2. We refer to this problem as the
satisfying pair problem on branching programs. Proving a reduction from this more general problem
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corresponds to proving a reduction from the orthogonal vectors problem (OV) to get a SETH-based
lower bound (see [43]). To simplify the presentation we assume, however, that S1 = S2 = {0, 1}n/2.

Our reductions construct for each set Si a sequence composed of subsequences that correspond
to elements of Si. The length of these subsequences depends on the branching program but will
generally be bounded by 2o(n). The combined sequence-length is therefore N = 2(1/2+o(1))n . This
establishes a connection between BP-SAT, which is solvable in exponential time, and sequence-
problems that are solvable in quadratic time.

3 A Simplified Reduction to Longest Common Subsequence

Given two strings of N symbols over some alphabet Σ, the longest common subsequence (LCS)
problem asks for the length of the longest sequence that appears as a subsequence in both input
strings. In this section we prove the following reduction from LCS to BP-SAT. To simplify the
presentation we give a less efficient reduction that uses |Σ| = O(W log T ) symbols for branching
programs of width W and length T . We refer to sections 4 and 5 for a more efficient reduction
with |Σ| = 2, that is based on the framework of Bringmann and Künnemann [22].

Theorem 3. There is a constant c such that if LCS can be solved in time S(N), then BP-SAT on
n variables and programs of length T and width W can be solved in S(2n/2 · T c logW ) time.

Let P be a given branching program on n boolean inputs, and let F be the corresponding
function. As mentioned in Section 2, we prove Theorem 3 by reducing the satisfying pair problem
on branching programs to LCS. Let therefore X1 = {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} be
the first and last half of the inputs to F , respectively. For two partial assignments a and b in
{0, 1}n/2, we use the notation a⊙ b to denote concatenation, forming a complete assignment. We
must decide whether there exist a, b ∈ {0, 1}n/2 such that F (a⊙ b) = 1.

For two sequences x, y, let LCS(x, y) denote the length of the longest common subsequence of
x and y. The reduction consists of two steps. First, for each a ∈ {0, 1}n/2 we construct a sequence
G(a), and for each b ∈ {0, 1}n/2 we construct another sequence G(b). These sequences are defined
by recursive gadget constructions. Let Y be some integer that depends on the width W and length
T of the branching program. The sequences are constructed such that LCS(G(a), G(b)) = Y if
F (a⊙ b) = 1, and such that LCS(G(a), G(b)) ≤ Y − 1 otherwise. Solving LCS for G(a) and G(b)
can therefore be viewed as evaluating F (a⊙ b). Constructing G(a) and G(b) is the main challenge
in proving our reduction. In previous such reductions from OV this step was nearly trivial.

The second step is to combine G(a) for all a ∈ {0, 1}n/2 into a single sequence A, and G(b) for
all b ∈ {0, 1}n/2 into a single sequence B. Let E be some integer that depends on the width W and
length T of the branching program. Then A and B are constructed such that LCS(A,B) = E if
there exist a, b ∈ {0, 1}n/2 with F (a ⊙ b) = 1, and such that LCS(A,B) ≤ E − 1 otherwise. The
construction of A and B therefore completes the reduction.

For the second step we simply use the following lemma by Abboud et al. [7]. The proof of the
lemma uses normalized vector gadgets similar to those used in the reduction by Backurs and Indyk
[16] from orthogonal vectors to Edit Distance. We sketch the proof in Section 4 in the context of
Bringmann and Künnemann’s framework [22], and give a formal proof of a corresponding lemma
in Section 5.

Lemma 1 ([7]). Let F be a function that takes {0, 1}n to {0, 1}. Suppose that given any a, b ∈
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{0, 1}n/2, one can construct gadget sequences G(a) and G(b) of length L and L′, respectively, such
that for an integer Y , for all a, b ∈ {0, 1}n/2,

• if F (a⊙ b) = 1, then LCS(G(a), G(b)) = Y , and

• if F (a⊙ b) = 0, then LCS(G(a), G(b)) ≤ Y − 1.

Then, one can construct two sequences A,B of length 2n/2poly(L,L′) such that for an integer E,

• LCS(A,B) = E if there exist a, b ∈ {0, 1}n/2 such that F (a⊙ b) = 1, and

• LCS(A,B) ≤ E − 1 otherwise.

Armed with this lemma, we see that in order to prove our theorem, it suffices to create sequence
gadgets G and G of length TO(logW ) such that for some Y , LCS(G(a), G(b)) = Y if on input a⊙ b,
the starting state of the branching program reaches the accepting state, and LCS(G(a), G(b)) ≤
Y − 1 otherwise.

To construct G(a) and G(b) we follow an inductive approach, mimicking Savitch’s theorem [40].
Note that at this point the input is fixed, but we must implement G(a) and G(b) independently.
Let P be the given branching program of length T and width W , and assume for simplicity that
T = 2t + 1 for some t ≥ 0. Since a and b are fixed, G(a) and G(b) represent the corresponding
subsets of edges of P , and the goal is to decide if there is a directed path from ustart to uacc in the
resulting graph. Such a path must go through some node in layer 2t−1+1, and if we can guess which
node then we can split P into two branching programs of half the length and evaluate each part
recursively. We use a reachability gadget to implement this decomposition, and an LCS algorithm
must then make the correct guess to find the longest common subsequence. The construction is
thus recursive, and it roughly works as follows.

At the k-th level of the recursion we are given two nodes u ∈ Li and v ∈ Lj with j − i = 2k,
and we want to decide if there is a directed path from u to v. We denote the sequence constructed
in this case for a by RG

u→v
k (a) and for b by RG

u→v
k (b). In particular G(a) = RG

ustart→uacc
t (a) and

G(b) = RG
ustart→uacc
t (b). We define the sequences such that for some Yk,

• LCS(RGu,v
k (a),RG

u,v
k (b)) = Yk if on input a⊙ b, one can reach v from u in 2k steps, and

• LCS(RGu,v
k (a),RG

u,v
k (b)) ≤ Yk − 1 otherwise.

For k = 0, u and v are in neighboring layers, and they are connected if and only if there is an edge
from u to v. Whether this is the case depends on the variable x(i) = xf(i), which either belongs
to a or b. The sequence with no control over the edge is assigned a fixed symbol e, and the other
sequence is assigned e if and only if the edge is present. It follows that Y0 = 1. For k > 0, we
inductively construct RG

u,v
k (a) and RG

u,v
k (b) from the W choices RG

u,y
k−1(a) and RG

y,v
k−1(b) where y

is one of the W nodes in the layer of the branching program right in the middle between the layers
of u and v.

Our construction ensures that the length of the gadgets for each k is WO(k), so that when we
apply Lemma 1 we obtain sequences of length 2n/2 · TO(logW ), completing the proof.
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Weighted LCS. To simplify the proof we will work with the following generalized version of LCS
in which each letter in the alphabet can have a different weight. For two sequences P1 and P2 of
length N over an alphabet Σ and a weight function w : Σ → [K], let X be the sequence that appears

in both P1, P2 as a subsequence and maximizes the expression w(X) =
∑|X|

i=1w(X[i]). We say thatX
is the Weighted Longest Common Subsequence (WLCS) of P1, P2 and write WLCS(P1, P2) = w(X).
The WLCS problem asks us to output WLCS(P1, P2).

Note that a common subsequence X of two sequences P1, P2 can be thought of as an alignment

or a matching A = {(ai, bi)}|X|
i=1, where ai, bi ∈ N are indices, between the two sequences, so that

for all i ∈ [|X|] : P1[ai] = P2[bi], and a1 < · · · < a|X| and b1 < · · · < b|X|. Clearly, the weight
∑|X|

i=1w(P1[ai]) =
∑|X|

i=1w(P2[bi]) of the matching A corresponds to the weighted length w(X) of
the common subsequence X.

Abboud et al. [7] showed a simple reduction fromWLCS on length N sequences over an alphabet
Σ with largest weight K to LCS on (unweighted) sequences of length N ·K over the same alphabet.
The reduction simply copies each symbol ℓ ∈ Σ in each of the sequences w(ℓ) times and then treats
the sequences as unweighted. Abboud et al. showed that the optimal solution is preserved under
this reduction.

For a sequence over a weighted alphabet Σ we define the total length of the sequence to be
the sum of the weights of all symbols in this sequence. Note that this is the real length of the
unweighted sequence that we obtain after applying the reduction from WLCS to LCS.

Reachability gadgets. The main component in our reduction are recursive constructions of two
kinds of reachability gadgets RG(a) and RG(b), with the following very useful property. For every
pair of vectors a ∈ A, b ∈ B and pair of nodes in the branching program P , u from layer i and v
from layer j, such that j − i = 2k is a power of two, we have that:

• The LCS of the two sequences RG
u→v
k (a) and RG

u→v
k (b) is equal to a certain fixed value Yk

that depends only on k if u can reach v with a path of the branching program that is induced
by the assignment a⊙ b, and the LCS is less than Yk otherwise.

• The total length Zk of any of these gadgets can be upper bounded by W ck for some constant
c.

We will now show how to construct such gadgets and upper bound their lengths.
Let k ∈ {0, . . . , log2 s}. We will inductively show how to construct, for any u, v, RGu→v

k (a) and
RG

u→v
k (b) from RG

u→y
k−1 (a) and RG

y→v
k−1 (b) for W nodes y.

Base Case: k = 0. Let u and v be two nodes lying in adjacent layers, i.e. u is in some layer i and
v is in layer i+ 1. In the base case, we check whether the layer i corresponds to an input variable
x(i) from X1 or from X2. Assume that x(i) is from X1. Let η ∈ {0, 1} be the boolean value that
a assigns to x(i). Then check whether (u, v) is an edge in P and whether it is marked with η. If
both conditions hold, we define RG

u→v
0 (a) = e (for a letter e in the alphabet) and otherwise we

define RG
u→v
0 (a) = $1 (where $1 is a letter that will never appear in the other sequence, so this is

equivalent to defining this sequence to be the empty string). On the other hand, we unconditionally
define RG

u→v
0 (b) = e, because b is irrelevant for the current layer. In the symmetric case when x(i)

is from X2, set RG
u→v
0 (b) = e if (u, v) is an edge marked with the value assigned by b to x(i).

Otherwise, set RG
u→v
0 (b) = $2, a symbol that does not appear in the other sequence. We set

w(e) = w($1) = w($2) = 1.
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Inductive step for k > 0. Now, let u be in layer i and v be in layer j = i + 2k. We define
h = i+j

2 to be the layer in the middle between i and j and note that h − i = j − h = 2k−1. For
each node y = (h, z) for z ∈ [W ] in layer h we will add a gadget that enables the path from u to v
to pass through this node y. We do this by recursively adding the two gadgets RGu→y

k−1 and RG
y→v
k−1 .

Layer k introduces W + 3 letters fk, gk,#k and zk for each z ∈ [W ].

RG
u→v
k (a) = f2W

k






⋃

z∈[W ]

gk (zk [RG
u→(h,z)
k−1 (a)] zk [RG

(h,z)→v
k−1 (a)] zk )

︸ ︷︷ ︸

The Core Gadget

gk




 f2W

k #
4W (W−1)
k

The letter #k will not appear in the other sequence and is completely unnecessary - we include it
to make sure that both sequences have equal length and simplify the exposition. The padding of
fk and gk is different in the other sequence, representing the partial assignments b to X2.

RG
u→v
k (b) =

⋃

x∈[W ]




 fk g2Wk (zk [RG

u→(h,z)
k−1 (b)] zk [RG

(h,z)→v
k−1 (b)] zk )

︸ ︷︷ ︸

The Core Gadget

g2Wk fk




 .

The weights of the letters for layers k > 0. Our weights will guarantee that w(fk) =
w(gk) = w(#k). Assume that the total weight of any gadget RG

u→v
k−1 (a) or RG

u→v
k−1 (b) is exactly

some value Zk−1. Then, the total weight of a gadget RG
u→v
k (a) or RG

u→v
k (b) is fixed to Zk =

W · ((2W + 2) · w(fk) + 3w(zk) + 2Zk−1), no matter what u, v, a, b are.
Let z represent a number in [W ]. We define the remaining weights as:

w(zk) = 2Zk−1, w(fk) = w(gk) = w(#k) = 9Zk−1

Note that w(fk) is larger than the total weight of the “core gadget” which is 3w(zk)+2Zk−1 = 8Zk−1.
This implies that Zk = Zk−1 ·W (9(4W + 2) + 8) = [W (36W + 26)]k ≤ W 8k assuming W ≥ 2. For
the base case we have Z0 = w(e) = 1.

The LCS between two gadgets. We will compute the LCS by induction on k = 0 . . . log2 T .
Let Yk denote the LCS in the case that v is reachable from u, and let Xk denote the LCS in the
complementary case. We will show that Yk = f(k,W ) ≤ WO(k) and Xk ≤ Yk − 1.

In the base case, note that the LCS of RG
u→v
0 (a) and RG

u→v
0 (b) is 1 if the edge u → v is

consistent with the assignment a⊙ b while the LCS is 0 otherwise. Therefore, Y1 = 1 and X1 = 0.
Assume correctness for k − 1 and we will show it for k. We will first prove two claims.

Claim 1. In an optimum WLCS, all letters fk in RG
u→v
k (b) are matched to fks in RG

u→v
k (a).

Claim 2. In an optimum WLCS, all letters gk in RG
u→v
k (a) are matched to gks in RG

u→v
k (b).

We begin by proving Claim 1. Suppose that some number of fks in RG
u→v
k (b) are not matched.

Without loss of generality the first and last fk are both matched. All other letters fk appear in
pairs one after the other. If one of the fk is unmatched, then so is the other. This is because if the
other was matched, it’s matched either to the left or the right sequence of 2W fk in RG

u→v
k (a), and

since there are exactly 2W letters fk in RG
u→v
k (b), then one could also match the second fk from
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the pair and thus increasing the weight of the subsequence. Hence, we can assume that y pairs of
fk are unmatched for some y.

Now, if y pairs are unmatched, then at most y+1 core gadgets from RG
u→v
k (b) can be matched

to RG
u→v
k (a). The potential gain in weight over the case when all fks in RG

u→v
k (b) and all gks in

RG
u→v
k (a) are matched is due to matching core gadgets:

(y + 1)8Zk−1 − 2y · 9Zk−1 = (8− 10y)Zk−1 < 0,

whenever y ≥ 1. Thus, all fk letters in RG
u→v
k (b) are matched, and we’ve shown Claim 1.

Now we prove Claim 2. Since all fk in RG
u→v
k (b) are matched, there’s a single inner gadget

g2Wk (zk [RG
u→(h,z)
k−1 (b)] zk [RG

(h,z)→v
k−1 (b)] zk ) g2Wk

for some z that can be matched for some z′ to

∪z′∈[W ](gk (z′k [RG
u→(h,z′)
k−1 (a)] z′k [RG

(h,z′)→v
k−1 (a)] z′k ) gk).

Similar to the above, if some gk from the second term is not matched, then there’s a pair that
is not matched. If y pairs are not matched, then the only potential gain is if y+1 core gadgets get
matched. The net gain is then again

(y + 1)8Zk−1 − 2y · 9Zk−1 = (8− 10y)Zk−1 < 0,

for any y > 0. Thus, all gks are matched, and this proves Claim 2.

Now, due to the above two claims, two core gadgets (zk [RG
u→(h,z)
k−1 (b)] zk [RG

(h,z)→v
k−1 (b)] zk ) and

(z′k [RG
u→(h,z′)
k−1 (a)] z′k [RG

(h,z′)→v
k−1 (a)] z′k ) are aligned in some way by the optimum subsequence. If

z 6= z′, then we lose 6Zk−1, potentially gaining only 2Zk−1 from matching the reachability gadgets
for k−1. This is a net loss, so we can assume that the optimum WLCS matches core gadgets for the
same z. Now, the outer zk will be matched since they don’t interfere with the rest. If the middle
zk are not matched, then we lose 2Zk−1. We can gain at most 2Zk−1 − 1 since the only way to

gain 2Zk−1 is if both RG
u→(h,z)
k−1 (b) and RG

(h,z)→v
k−1 (b) are completely matched to their counterparts.

However, then zk would have the opportunity to be matched as well. Thus, we again have a net

loss, so that z = z′ and all three zk are matched. This means that RG
u→(h,z)
k−1 (b) is aligned with

RG
u→(h,z)
k−1 (a) and RG

(h,z)→v
k−1 (b) is aligned with RG

(h,z)→v
k−1 (a) in some way.

This means that the LCS will be equal to 4w ·w(fk)+3w(zk) plus the LCS of RG
u→(h,z)
k−1 (a) and

RG
u→(h,z)
k−1 (b) plus the LCS of RG

(h,z)→v
k−1 (a) and RG

(h,z)→v
k−1 (b).

Here we use the key observation that u can reach v if and only if there is a node (h, z) for some
z ∈ [W ] in the layer h that is between the layers of u and v such that both u can reach (h, z) and
(h, z) can reach v. This implies that: The latter two contributions, by our inductive hypothesis, are
2 ·Yk−1 if there is a path (because we are free to pick the correct z ∈ [W ]), and at most Yk−1+Xk−1

if there isn’t one (no matter what z we pick, this will be the contribution). We get:

Yk = 4W · w(fk) + 3w(zk) + 2Yk−1 = 36W · Zk−1 + 6Zk−1 + 2Yk−1 = 6(6W + 1)Zk−1 + 2Yk−1.

and:
Xk ≤ 4W · w(fk) + 3w(zk) + Yk−1 +Xk−1 ≤ Yk − (Yk−1 −Xk−1) ≤ Yk − 1,

which proves the inductive step.
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The final vector gadgets. Assume that the branching program has a fixed start node ustart =
(1, 1) in the first layer and a single fixed “accept” node uacc = (T, 1) in the last layer. The branching
program P accepts on input a ⊙ b if and only if the path induced by the assignment a ⊙ b that
starts at ustart reaches uacc. We will map each vector a ∈ A in the first list to the vector gadget
V G′(a) = RG

ustart→uacc
k (a) where k = log2 T which we assume without loss of generality is an integer,

and we map each vector b ∈ B in the second list to the vector gadget V G′(b) = RG
ustart→uacc
k (b).

We define the constant Y = Yk, for k = log2 T .
By the discussion above we have that the LCS of V G′(a) and V G′(b) is equal to Y if our

branching program P accepts on input a⊙ b, and the LCS is at most Y − 1 otherwise. Moreover,
we have that the total length of these gadgets can be upper bounded by W 8 log2 T = T 8 logW .

We finish the proof of the theorem by applying Lemma 1 from the beginning of the section.

3.1 Reduction to k-LCS

A nice property of the reduction for LCS in Theorem 3 is that it can be extended to a reduction
to K-LCS, we give a detailed sketch of the proof below.

Theorem 4. Given a branching program of length T , width W and n inputs, one can produce for
any K ≥ 2, in time 2n/KKO(K)TO(logW ) an instance of K-LCS of alphabet size O((K+W ) log T ),
where the sequences have length 2n/KKO(K)TO(logW ).

As with LCS, we begin with a Lemma from prior work [7] that allows us to select a K-tuple of
partial assignments that together form an accepting input to the branching program.

Lemma 2 (ABV’15). Let F be a function that takes {0, 1}n to {0, 1}. Suppose that given any
α ∈ {0, 1}n/k, one can construct k gadget sequences Gi(α) for i ∈ [k] of length at most D, such
that for an integer Y , for all α1, α2, . . . , αk ∈ {0, 1}n/k,

• if F (⊙k
i=1αi) = 1, then LCS({G1(α1), . . . , Gk(αk)}) = Y , and

• if F (⊙k
i=1αi) = 0, then LCS({G1(α1), . . . , Gk(αk)}) ≤ Y − 1.

Then, one can construct k sequences A1, . . . , Ak each of length ≤ 2n/kkO(k)DO(1) such that for an
integer E,

• LCS({A1, . . . , Ak}) = E if there exist α1, α2, . . . , αk ∈ {0, 1}n/k such that F (⊙k
i=1αi) = 1,

and

• LCS({A1, . . . , Ak}) ≤ E − 1 otherwise.

Armed with this Lemma, it suffices to extend our reachability gadget construction for checking
consistency of K partial assignments. We will be able to do this without increasing the total weight
of the gadgets. Just as with the LCS proof, we work with weighted K-LCS, which from [7] we
know how to reduce back down to K-LCS where the length of the sequences is the total weight.
We provide a sketch.

We will reduce to K-LCS where K ≥ 2 is any integer. We split the input variables x1, . . . , xn
to the branching program P in K sets, Xi = {x(i−1)n/K+1, . . . , xin/K} for i ∈ [K].

The reachability gadget for the i-th partial assignment αi (to the variables in Xi) and the ith
sequence will be denoted by RG

u→v
i,k (αi).
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Base Case: k = 0. Let u and v be two nodes lying in adjacent layers, i.e. u is in some layer i
and v is in layer i+ 1. We describe the reachability gadget RGu→v

j,0 (αj). For each j we will have a
symbol $j that does not appear in any sequence other than the jth. We also have a letter e that
can appear in any sequence.

Fix j. As before, we check whether the layer i corresponds to an input variable x(i) from Xj .
Assume first that x(i) is from Xj . Let η ∈ {0, 1} be the boolean value that αj assigns to x(i).
Then check whether (u, v) is an edge in P and whether it is marked with η. If both conditions
hold, we define RG

u→v
j,0 (αj) = e and otherwise we define RG

u→v
j,0 (αj) = $j . If x(i) is not from Xj ,

we set RGu→v
j,0 (αj) = e. We set w(e) = w($j) = 1 for all j ∈ [K].

Inductive step for k > 0. Now, let u be in layer i and v be in layer i + 2k. We define

h = i+(i+2k)
2 = i+2k−1 to be the layer in the middle between i and i+2k. For each node y = (h, z)

for z ∈ [W ] in layer h we will add a gadget that enables the path from u to v to pass through this
node y.

Layer k introduces W +K + 1 letters fk, gk,#j,k and zk for each z ∈ [W ].
Let j ≤ K − 1. We define

RG
u→v
j,k (αj) = f2W

k






⋃

z∈[W ]

gk (zk [RG
u→(h,z)
j,k−1 (αj)] zk [RG

(h,z)→v
j,k−1 (αj)] zk )

︸ ︷︷ ︸

The Core Gadget

gk




 f2W

k #
4W (W−1)
j,k

The letter #j,k will not appear in the other sequences and is completely unnecessary - we include
it to make sure that both sequences have equal length and simplify the exposition. The padding
of fk and gk is different in the Kth sequence, representing the partial assignments to Xk.

RG
u→v
K,k (αK) =

⋃

x∈[W ]




 fk g2Wk (zk [RG

u→(h,z)
K,k−1 (αK)] zk [RG

(h,z)→v
K,k−1 (αK)] zk )

︸ ︷︷ ︸

The Core Gadget

g2Wk fk




 .

As before, assume that the total weight of any gadget RGu→v
j,k−1(αj) is exactly some value Zk−1,

and that we set w(fk) = w(gk) = w(#j,k) for all j. Then, the total weight of a gadget RGu→v
j,k (αj)

is fixed to Zk = W · ((2W + 2) · w(fk) + 3w(zk) + 2Zk−1), no matter what u, v, αj are.
As before, pick w(fk) = w(gk) = w(#j,k) = 9Zk−1 and w(zk) = 2Zk−1 for all z ∈ [W ]. The total

weight of the “core gadget” is again 3w(zk)+2Zk−1 = 8Zk−1, and . Zk = Zk−1 ·W (9(4W+2)+8) =
[W (36W + 26)]k ≤ W 8k assuming W ≥ 2. For the base case we have Z0 = w(e) = 1.

As before, if any fk from RG
u→v
K,k (αK) is not matched, then again a pair of adjacent ones isn’t

matched. If y pairs are not matched, then at most y + 1 inner gadgets are, and the net gain is
negative as before. Hence, in an optimum alignment, all fk from RG

u→v
K,k (αK) are matched. This

selects some z so that

g2Wk (zk [RG
u→(h,z)
K,k−1 (b)] zk [RG

(h,z)→v
K,k−1 (b)] zk ) g2Wk

is aligned with the inner gadgets

∪zj∈[W ](gk (zjk [RG
u→(h,zj)
j,k−1 (a)] zjk [RG

(h,zj)→v
k−1 (a)] zjk ) gk),
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for the rest of the sequences j ≤ K − 1. Now, as before, all gk letters from each of the inner
gadgets above must be matched, as otherwise we would lose too much weight. Hence the alignment
is between

{zjk [RG
u→(h,zj)
j,k−1 (a)] zjk [RG

(h,zj)→v
k−1 (a)] zjk}j∈[K],

for potentially different zjs. Because all gks are matched, we must have zj = zi for all i, j < K,
but potentially it could be that z1 6= zK . However, as w(zk) is large, again, the alignment needs
to be for the same z, and all three zks in the core gadgets must be matched. This completes the
proof sketch.

4 Sequence Problems with Alignment Gadgets

Bringmann and Künnemann [22] introduced a framework for showing SETH lower bounds for
problems that compute a similarity measure of two sequences of, e.g., bits, symbols, or points. They
showed that any sequence-problem that implements so-called alignment gadgets cannot be solved in
truly subquadratic time under SETH. We show that alignment gadgets are actually much stronger.
So strong, in fact, that they can simulate nondeterministic branching programs. It follows that
Edit-Distance, Longest Common Subsequence (LCS), Dynamic Time Warping Distance, and every
other problem that implements alignment gadgets can solve SAT on nondeterministic branching
programs. This proves our main result, Theorem 2. We start here with a sketch of the proof, and
then provide the details in Section 5.

A similarity measure δ is a function that measures the similarity, e.g., Edit-Distance or LCS, of
two given sequences A and B. Suppose |A| ≥ |B|. A structured alignment maps B to a consecutive
subsequence A′ of A, and the cost of the alignment is δ(A′, B). Note that the alignment does
not correspond to, e.g., a common subsequence. Instead the alignment restricts the similarity
measure to only work with A′ and B. An alignment gadget is a gadget that takes two collections
of sequences and combines each collection into a single sequence such that the minimum cost of a
structured alignment closely approximates (within an additive constant) the similarity measure of
the two constructed sequences. An alignment gadget can thus be interpreted as a way of forcing the
similarity measure to respect the structure of the two collections of sequences. Alignment gadgets
are then combined recursively in order to obtain a reduction. We next sketch how this is done for
branching programs.

Let P be a given branching program on n boolean inputs, and let F be the corresponding
function. To prove a reduction from BP-SAT to a sequence-problem with alignment gadgets we
again go through the satisfying pair problem on branching programs (see Section 2). Let therefore
X1 = {x1, . . . , xn/2} and X2 = {xn/2+1, . . . , xn} be the first and last half of the inputs to the

branching program, respectively. We must decide whether there exist a, b ∈ {0, 1}n/2 such that
F (a⊙ b) = 1, where a⊙ b is the concatenation of a and b.

Our reduction uses alignment gadgets to construct for each a ∈ {0, 1}n/2 a sequence G(a),
and for each b ∈ {0, 1}n/2 another sequence G(b). These sequences are constructed such that
their similarity measure is δ(G(a), G(b)) = Y , for some integer Y , if F (a ⊙ b) = 1; and such that
δ(G(a), G(b)) ≥ Y + ρ otherwise, where ρ > 0 is the same for all a and b. In previous reductions
from OV the construction of G(a) and G(b) was nearly trivial, but as in Section 3 it is now the
main challenge when proving our reduction.

Once we have constructed G(a) and G(b) for all a, b ∈ {0, 1}n/2, we combine them into two
sequences that will be the output of the reduction. This step is almost identical to a corresponding
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step in the reduction by Backurs and Indyk [16] from orthogonal vectors to Edit-Distance, and later
by Abboud et al. [7] to LCS, and by Bringmann and Künnemann [22] to sequence-problems with
alignment gadgets. If there exist ai, bj ∈ {0, 1}n/2 with F (ai ⊙ bj) = 1, then the goal is to make
the structured alignment match G(ai) and G(bj). It is therefore tempting to apply the alignment
gadget to A = (G(a1), . . . , G(aN ), G(a1), . . . , G(aN )) and B = (G(b1), . . . , G(bN )), where N = 2n/2,
since we can then freely map B to a consecutive subsequence of A such that G(bj) maps to G(ai).
The contribution to the similarity measure from this pair would then be Y , but unfortunately we
have no control over the rest of the sequence. To finish the proof we therefore need one more idea:
the normalized vector gadget. We put a dummy sequence next to every subsequence in A, such that
sequences in B always have the option of mapping to dummy sequences, thereby contributing Y +ρ
to the similarity measure. (The alignment gadgets framework allows gadgets of different types that
are implicitly padded to some specified length. This is used to handle the technicality that, e.g.,
the length of subsequences in B no longer correctly match those in A.) We finally get that if F
evaluates to 1 for a pair of inputs then δ(A,B) ≤ N(Y +ρ)−ρ, and otherwise δ(A,B) = N(Y +ρ).
This completes the reduction.

Simulating branching programs with alignment gadgets. To construct G(a) and G(b) we
essentially implement the proof of Savitch’s theorem with alignment gadgets. The construction is
almost the same as the one given in Section 3. We again note that the input is fixed at this point,
and that we must implement G(a) and G(b) independently. Let P be the given branching program
of length T and width W , and assume for simplicity that T = 2t + 1 for some t ≥ 0. Since a
and b are fixed, G(a) and G(b) represent the corresponding subsets of edges of P , and the goal is
to decide if there is a directed path from ustart to uacc in the resulting graph. Such a path must
go through some node in layer 2t−1 + 1, and if we can guess which node then we can split P into
two branching programs of half the size and evaluate each part recursively. We use an alignment
gadget to implement this decomposition, and we use the similarity measure to make the correct
guess. The construction is thus recursive, and it works as follows.

At the k-th level of the recursion we are given two nodes u ∈ Li and v ∈ Lj with j − i = 2k,
and we want to decide if there is a directed path from u to v. We denote the sequence constructed
in this case for a by RG

k,u→v
X (a) and for b by RG

k,u→v
Y (b). In particular G(a) = RG

t,ustart→uacc
X (a)

and G(b) = RG
t,ustart→uacc
Y (b). (Note that the notation differs slightly from the notation used in

Section 3. The parameters X and Y are used to determine the types of the sequences, and thereby
their implicit length, but we ignore that aspect here.) For k = 0, u and v are in neighboring layers,
and they are connected if and only if there is an edge from u to v. Whether this is the case depends
on the variable x(i) = xf(i), which either belongs to a or b. The sequence with no control over the
edge is assigned a 1, and the other sequence is assigned 1 if the edge is present and 0 otherwise.
The contribution to the similarity measure is thus 0 if the edge is present and 1 otherwise. (Such
unit sequences are called coordinate values in the framework, and it requires a proof to show that
the problem in question supports them. Bringmann and Künnemann [22] provided the relevant
proofs for our purposes.)

For k > 0, we use an alignment gadget to pick the node that the path from u to v passes
through. Let ℓ = (i + j)/2. Ideally we would like to apply the alignment gadget to sequences of
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the form

A =
⋃

z∈Lℓ

(RGk−1,u→z
X (a),RGk−1,z→v

X (a))

B =
⋃

z∈Lℓ

(RGk−1,u→z
Y (b),RGk−1,z→v

Y (b))

and then let the alignment match (RGk−1,u→z
X (a),RGk−1,z→v

X (a)) and (RGk−1,u→z
Y (b),RGk−1,z→v

Y (b))
for some z ∈ Lℓ. There are, however, two obstacles that we must overcome to make this work.
First, the alignment may overlap sequences in undesired ways. In Section 3 we inserted special
symbols of large weight between the recursively defined sequences, such that these symbols had to
be matched correctly. We now introduce index gadgets that serve a similar function. Second, and
more importantly, we must rule out that a different z is picked for A and B. In Section 3 this issue
was handled by encapsulating the sequences with other, longer, trivial sequences (heavy symbols)
to get the right behavior. We again use index gadgets to get this effect. (We also use an OR gadget
that is composed of two alignment gadgets to put things together.)

Recall that W is the width. Although it may look like a sequence constructed at level k is
O(W ) times longer than a sequence constructed at level k − 1, the extensive padding actually
causes a blowup of a factor O(W 2). The final sequences G(a) and G(b) therefore have length
WO(logT ). Correctness of the reduction follows from the fact that the similarity measure is lower
for sequences that correspond to connected vertices. We have therefore arrived at the following
technical theorem, which implies Theorem 2. The conditions for the theorem were proved by
Bringmann and Künnemann [22] for, e.g., Edit-Distance, LCS, and Dynamic Time Warping.

Theorem 5. Let δ be a similarity measure over sequences in I admitting an alignment gadget of
size f(n) = cn and coordinate values, and consider the problem of computing δ(x, y) for sequences
x, y ∈ I of length N . SAT of nondeterministic Branching Programs over n variables of width W and
length T can be reduced to an instance of this problem on sequences where N = O(n ·T log2(12W

2c3) ·
c2 · log2W ) = TO(logW ) · n.

4.1 Definitions

We start by defining the building blocks from which we will implement our reduction. We will prove
a generic reduction from BP SAT to a generic problem of computing a similarity measure δ of two
sequences, for any δ that has a certain property. This property will be the ability to implement
alignment gadgets which we define below. The advantage of this generic proof over a direct proof
is that we can reduce the amount of case-analysis that is required in the proofs: many steps in
the reduction will require similar functionalities, and this framework allows us to only prove this
functionality once. We will borrow the notation of [22] and reintroduce their alignment gadgets.

Let δ : I × I → N0 be a similarity measure for a pair of inputs from I. As a running example
it is convenient to think of I as being all binary sequences of length n and let δ be the Edit
Distance between two sequences. For a sequence x ∈ I we define its type to be a tuple encoding
its length and the sum of its entries, i.e. type(x) := (|x|,∑i x[i]). For example, if x is a binary
sequence, its type encodes its length |x| and the number of ones in x. For a type t ∈ N×N0 we let
It := {x ∈ I | type(x) = t} be the set of all inputs of type t. We remark that the exact definition
of type will not be crucial to the framework and for different measures it might be convenient to
use a different definition.
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Alignments Let n ≥ m. A (partial) alignment is a set A = {(i1, j1), . . . , (ik, jk)} with 0 ≤ k ≤ m
such that 1 ≤ i1 < . . . < ik ≤ n and 1 ≤ j1 < . . . < jk ≤ m. We say that a pair (i, j) ∈ A are
aligned. Let An,m be the set of all partial alignments with respect to n,m. A partial alignment of
the form {(∆+1, 1), . . . , (∆+m,m)} for some 0 ≤ ∆ ≤ n−m will be called a structured alignment,
and we will denote the set of all such alignments by Sn,m ⊆ An,m.

Consider any sequences x1, . . . , xn ∈ I and y1, . . . , ym ∈ I. Let Q = max
i,j

δ(xi, yj) be the

maximum distance between a pair of sequences under our measure δ. We define the cost of an
alignment A ∈ An,m (with respect to our sequences) by

cost(A) :=
∑

(i,j)∈A
δ(xi, yj) + (m− |A|) ·Q

so that any j ∈ [m] that is not aligned in A will incur the maximal cost Q.

Alignment Gadget Intuitively, an alignment gadget is a way to combine sequences x1, . . . , xn ∈
I into one sequenceX = GA(x1, . . . , xn), and at the same time, to combine sequences y1, . . . , ym ∈ I
into one sequence Y = GA(y1, . . . , yn), so that: δ(X,Y ) is essentially equal to δ(A) for the optimal
structured alignment A ∈ Sn,m with respect to our sequences. We will be interested in showing and
deriving consequences of the existence of efficient implementations of such gadgets for a similarity
measure δ. The formal definition introduces additional technicalities which simplify the proofs of
existence of these gadgets considerably.

Definition 2 (Alignment Gadgets). The similarity measure δ admits an alignment gadget of size
f(n), if the following conditions hold: Given instances x1, . . . , xn ∈ IτX , y1, . . . , ym ∈ IτY with m ≤
n and types τX = (ℓX , sX), τY = (ℓY , sY ), we can construct new instances x = GA

m,τY
X (x1, . . . , xn)

and y = GA
n,τX
Y (y1, . . . , ym) and C ∈ Z such that:

• min
A∈An,m

cost(A) ≤ δ(x, y) −C ≤ minA∈Sn,m cost(A).

• type(x) and type(y) only depend on n,m, τX , and τY .

• |x|, |y| ≤ f(n) · (ℓX + ℓY ).

• This construction runs in O(n(ℓX + ℓY )) time.

The second ingredient that is required in order to implement a reduction from SAT problems to
computing similarity measures are coordinate values which are atomic sequences of constant length
that we will combine in various ways with the alignment gadgets.

Definition 3 (Coordinate Values). The similarity measure δ admits coordinate values if there are
instances 1X ,0X ,1Y ,0Y ∈ I such that:

δ(1X ,1Y ) > δ(0X ,1Y ) = δ(1X ,0Y ) = δ(0X ,0Y )

and type(1X) = type(0X) and type(1Y ) = type(0Y ).
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4.2 OR Gadgets

In our reduction from BP SAT, it will be convenient to work with an OR gadget, besides an
alignment gadget. Next, we define this gadget and then prove that any similarity measure δ that
can implement alignment gadgets will also be able to implement OR gadgets (with some loss of
efficiency).

Definition 4 (OR Gadgets). The similarity measure δ admits OR gadgets of size f(n), if the
following conditions hold: Given instances x1, . . . , xn ∈ IτX , y1, . . . , yn ∈ IτY and types τX =
(ℓX , sX), τY = (ℓY , sY ), we can construct new instances

x = OR
τY
X (x1, . . . , xn)

y = OR
τX
Y (y1, . . . , yn)

and C ∈ Z such that:

• δ(x, y) = C +mini,j∈[n] δ(xi, yj)

• type(x) and type(y) only depend on n, τX , and τY .

• |x|, |y| ≤ f(n) · (ℓX + ℓY ).

• This construction runs in O(n(ℓX + ℓY )) time.

By combining two alignment gadgets in a careful way, we obtain an OR gadget. Note that there
is a quadratic blow up in the size of the gadgets in the following lemma. For this reason, we will
only use OR gadgets when working with a small number of sequences.

Lemma 3. Any similarity measure δ that admits alignment gadgets of size f(n) = c ·n, also admits
OR gadgets of size f ′(n) = c2n2.

Proof. Given instances x1, . . . , xn ∈ IτX , y1, . . . , yn ∈ IτY and types τX = (ℓX , sX), τY = (ℓY , sY ),
we will construct OR gadgets as follows. First, construct x′ := GA

τY ,1
X (x1, . . . , xn) and for all j ∈ [n]

construct y′j := GA
τX ,n
Y (yj). Let t

′
X = type(x′) and t′Y = type(y′j) (and note that it is independent

of j). Then, our final gadgets are x := GA
t′Y ,n
X (x′) and y := GA

t′X ,1
Y (y′1, . . . , y

′
n).

First, note that type(x) and type(y) only depend on n, τX and τY . Then, let us bound the
lengths of x, y. We know that |x′|, |y′j | ≤ c ·n · (ℓX + ℓY ), and therefore |x|, |y| ≤ c ·n · (|x′|+ |y′j|) ≤
c2 · n2 · (ℓX + ℓY ).

Finally, we prove the correctness. By definition of alignment gadgets, for all j ∈ [n] we have
δ(x′, y′j) = C +mini∈[n] δ(xi, yj), for some fixed integer C. Moreover, for some integer C ′, we have
that δ(x, y) = C ′ +minj∈[n] δ(x

′, y′j) which is equal to C ′ + C +minj∈[n]mini∈[n] δ(xi, yj).

4.3 Similarity Measures with Alignment Gadgets

In their paper, Bringmann and Künnemann construct alignment gadgets for a few fundamental
similarity measures. Combining these gadgets with our main theorem implies significantly stronger
lower bounds for computing these measures. We list these measures and the corresponding sizes of
alignments gadgets below.
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Edit Distance. The Edit Distance between two sequences x, y is the minimum number of
insertions, deletions, and substitutions that is required to transform one sequence to the other.
The most basic case is when the sequences are binary, that is the set of instances I is the set of
binary sequences {0, 1}n.

Lemma 4 ([22]). There is a constant c ≤ 103 such that Edit Distance similarity measure over
binary sequences admits an alignment gadget of size f(n) ≤ c · n.

It is likely that smaller alignment gadgets can be obtain if the alphabet size is larger.

Longest Common Subsequence. In Section 3 we showed a direct reduction from BP-SAT to
LCS. We will use the alignment gadgets framework in order to obtain the same reduction but to
sequences over binary inputs. That is, the surprising expressibility of LCS that is exhibited by our
proofs is already present when we only have two distinct letters to match.

Lemma 5 ([22]). There is a constant c ≤ 103 such that Longest Common Subsequence similarity
measure over binary sequences admits an alignment gadget of size f(n) ≤ c · n.

Dynamic Time Warping Distance. The DTWD over curves in various metric spaces is
of great practical interest. We are able to show lower bounds even in the special case of one-
dimensional curves. Let x, y ∈ Z

n be two sequences of n integers. The DTWD δDTWD(x, y) of the
two curves is the minimum cost of a joint traversal of both curves. A traversal of two curves is
a process that places a marker at the beginning of each curve and during each step one or both
markers are moved forward one point, until the end of both curves is reached. Each step aligns
two points, one from each curve. The cost of a traversal is the sum of distances between all aligned
points. In our case, the distance is simply the absolute value of the difference between the aligned
integers.

Lemma 6 ([22]). There is a constant c ≤ 10 such that Dynamic Time Warping Distance similarity
measure over one dimensional curves admits an alignment gadget of size f(n) ≤ c · n.

5 The Full Reduction

We are now ready to prove our main theorem, from which Theorem 2 follows, by the Lemmas in
the previous section.

Theorem 6 (Main). Let δ be a similarity measure over sequences in I admitting an alignment
gadget of size f(n) = cn and coordinate values, and consider the problem of computing δ(x, y) for
sequences x, y ∈ I of length N . SAT of nondeterministic Branching Programs over n variables
of width W and length T can be reduced to an instance of this problem on sequences where N =
O(n · T log2(12W

2c3) · c2 · log2 W ) = TO(logW ) · n.

Proof. Let δ be a similarity measure that admits alignment gadgets and coordinate values. We will
construct several other gadgets with certain properties from these primitives. Given an instance of
SAT on BPs of on n variables width W and length T we will construct and combine our gadgets
in a certain way into two sequences x, y such that δ(x, y) will determine whether our instance is
“yes” or “no”.
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Let A and B both be the set of all binary vectors of length n/2. The goal of the reduction is
to find a pair a ∈ A, b ∈ B such that our given branching program is satisfied by the assignment in
which the first half of the variables are assigned according to a while the second half are assigned
according to b.

We will use the parameters w := log2 W , and t = log2 T , and assume the these are integers.

Reachability gadgets. The main component in our reduction are recursive constructions of two
kinds of reachability gadgets RGX(a) and RGY (b), with the following very useful property. For every
pair of vectors a ∈ A, b ∈ B and pair of nodes in the branching program u ∈ Li from layer i and
v ∈ Lj from layer j, such that j − i = 2k−1 is a power of two, we have that:

• the δ-distance between the two sequences RG
k,u→v
X (a) and RG

k,u→v
Y (b) is equal to a certain

fixed value ρk that depends only on k if the path of the branching starting at u and induced
by the assignment (a, b) reaches v, and the δ-distance is greater than ρk otherwise.

• the total length of these gadgets can be upper bounded by ℓk ≤ O(W 2c3)k.

We will now show how to construct such gadgets and prove that they satisfy the above proper-
ties. Then, we will use these gadgets in order to check whether a pair (a, b) makes the accept node
uacc reachable from the start node ustart.

Base Case: k = 1. We start by defining the gadgets RG
1,u→v for the case that k = 1 and our

two vertices u, v are in consecutive layers i and i + 1 for some i ∈ [s]. To do this, we consider
the variable xj that the layer i in our branching program is labelled with, and check whether that
variable appears in the vectors in A or in B – that is, we check whether j ≤ d/2 or j > d/2 where
d is the number of variables in our branching program.

In the first case, the vector a is “responsible” for verifying the consistency of the edge u → v,
and we define the gadgets as follows: we set

RG
1,u→v
X (a) := EGX(0) := GA

2w+2,τY
X (0X , . . . ,0X ,1X ,0X)

if the edge u → v is labelled with the boolean value η ∈ {0, 1} which is the same as the boolean
value that a assigns to the variable xj, and otherwise we set

RG
1,u→v
X (a) = EGX(1) := GA

2w+2,τY
X (1X , . . . ,1X ,1X ,0X).

Note that inconsistency can either be caused by the edge not existing in the branching program,
or by the vector assigning a different value to the corresponding variable. On the other hand, since
the vector b is not “responsible” for the edge u → v, we unconditionally set

RG
1,u→v
Y (b) := EGY (1) := GA

2w+2,τX
Y (1Y , . . . ,1Y ,0Y ,1Y ).

The reason for defining these gadgets as a concatenation of 2w + 2 value gadgets instead of one is
purely technical: we want to ensure that these gadgets have the same type as our “index gadgets”
which we will define shortly. Also, the last two coordinates are supposed to distinguish between
our “reachability gadgets” and our “index gadgets”, so that matching an index gadget with a
reachability gadget will incur a loss due to these coordinates.

20



In the second case, the vector b is “responsible” for verifying the consistency of the edge u → v,
and we define the gadgets in a symmetric way: The gadget RG1,u→v

X (a) will be unconditionally set
to EGX(1). While we set

RG
1,u→v
Y (b) := EGY (0) := GA

2w+2,τX
Y (0Y , . . . ,0Y ,0Y ,1Y )

if the edge u → v is labelled with the boolean value η ∈ {0, 1} which is the same as the boolean
value that b assigns to the variable xj, and otherwise we set it to EGX(1).

Let τ1X := type(EGX(0)) = type(EGX (1)) = (ℓ1X , s1X) and τ1Y := type(EGY (0)) = type(EGY (1)) =
(ℓ1Y , s

1
Y ). Let L0 = (ℓ1X + ℓ1Y ) and note that L0 ≤ c · (2w + 2) ·D where D is some constant that

upper bounds the lengths of our coordinate values, and therefore L0 = O(cw).
Let ρT := δ(0X ,0Y ) = δ(0X ,1Y ) = δ(1X ,0Y ) and ρF := δ(1X ,1Y ), and by definition we

have ρF ≥ ρT + 1. By definition of alignment gadgets there is a constant C1 ∈ Z such that
δ(EGX (0), EGY (0)) = δ(EGX (1), EGY (0)) = δ(EGX (0), EGY (1)) = C1 + (2w + 2)ρT =: ρ1 while
δ(EGX (1), EGY (1)) = C1 + 2wρF + 2ρT is larger than ρ1. Combining these formulas with the
definitions of our gadgets proves the following claim.

Claim 3. For any two vectors a ∈ A, b ∈ B and two nodes u, v in the branching program, the
δ-distance between the two gadgets RG

1,u→v
X (a) and RG

1,u→v
Y (b) is equal to ρ1 if there is an edge

from u to v in the branching program induced by the assignment (a, b), and the δ-distance is larger
otherwise.

Level 1 index gadgets. For a boolean value b ∈ {0, 1} we let CVX(b), CVY (b) be 0X ,0Y respec-
tively if b = 0 and 1X ,1Y otherwise. Recall that w = log2W , and for each number z ∈ [W ] we let
z̄ = (z1, . . . , zw) ∈ {0, 1}w be the binary representation of z, and define the level 1 index gadgets
as follows.

IG
1
X(z) := GA

2w+2,τY
X (CVX(z1), . . . , CVX(zw), CVX(¬z1), . . . , CVX(¬zw),0X ,1X)

IG
1
Y (z) := GA

2w+2,τX
Y (CVY (¬z1), . . . , CVY (¬zw), CVY (z1), . . . , CVY (zw),1Y ,0Y )

Observe that by definition of our alignment gadgets, the sequence IG
1
X(z) will have the same type

type(IG1
X(z)) = τ1X for all z ∈ [W ], and similarly type(IG1

Y (z)) = τ1Y for all z ∈ [W ], which are
the same types we had in the level-1 reachability gadgets. This definition allows us to prove the
following property.

Claim 4. For any z, z′ ∈ [W ], the distance δ(IG1
X(z), IG1

Y (z
′)) is equal to ρ1 if z = z′ and it is

larger otherwise.

Proof. First, assume that z = z′ and consider the alignment A = {(1, 1), . . . , (2w + 2, 2w +
2)}. In this alignment, CVX(η) is always aligned with CVY (¬η) and therefore the total cost is
δ(IG1

X(z), IG1
Y (z

′)) ≤ C1 + (2w + 2) · ρT = ρ1, which is also the minimum possible distance when
aligning these sequences. Next, assume that z 6= z′ and note that in the alignment A as defined
above there must be an aligned pair (i, i) in which the two aligned sequences are 1X and 1Y , which
implies that δ(A) ≥ ρF +(2w+1)ρT > 8ρT . Also notice that any alignment except for A will leave
some indices unaligned and will therefore cost at least ρF + (2w + 1)ρT as well. Therefore, in this
case δ(IG1

X(z), IG1
Y (z

′)) ≥ C1 + (2w + 1) · ρT + ρF > ρ1.
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Finally, we show that due to the last two coordinates, the distance between an index gadget
and a reachability gadget is large.

Claim 5. For any z ∈ [W ], and any two vectors a ∈ A, b ∈ B and two nodes u, v in the branching
program, we have that δ(IG1

X(z),RG1,u→v
Y (b)) and δ(RG1,u→v

X (a), IG1
Y (z)) are both larger than ρ1.

Proof. The cost of any alignment other than A = {(1, 1), . . . , (2w + 2, 2w + 2)} is at least ρF +
(2w + 1)ρT since it leaves some indices unaligned. The cost of A is also at least ρF + (2w + 1)ρT
since one of the last two pairs ((2w+1), (2w+1)) or ((2w+2), (2w+2)) will align 1X and 1Y , by
our construction. Therefore, the δ-distance is at least C1 + (2w + 1) · ρT + ρF > ρ1.

This proves the base case for the following lemma, which is our main construction.

Lemma 7 (Reachability gadgets). For all integers k ≥ 1, the following statement is true: For any
vectors a ∈ A, b ∈ B, integer z, z′ ∈ [W ], nodes u, v ∈ V , we can construct gadgets:

RG
k−1,u→v
X (a) ∈ IτkX

RG
k−1,u→v
Y (b) ∈ IτkY
IG

k−1
X (z) ∈ IτkX

IG
k−1
Y (z′) ∈ IτkY

such that for some value ρk:

• δ(RGk,u→v
X (a),RGk,u→v

Y (b)) is equal to ρk if there is a path of length 2k−1 from u to v in the
branching program induced by the assignment (a, b), and is larger otherwise.

• δ(IGk
X(z), IGk

Y (z
′)) is equal to ρk if z = z′ and is larger otherwise.

• δ(IGk
X(z),RGk,u→v

Y (b)), and δ(RGk,u→v
X (a), IGk

Y (z
′)) are larger than ρk.

• τkX = (ℓkX , skX) and τkY = (ℓkY , s
k
Y ) only depend on k.

• The construction can be computed in O(ℓX + ℓY ) time.

• The length of these gadgets can be upper bounded by ℓkX , ℓkY ≤ (12W 2c3)k · L0.

Proof. To prove the lemma, it remains to show the inductive step. Fix any k > 1 and from now
on, assume that the statement of the lemma is true for k − 1, and we will show that it is also true
for k.

22



The k > 1 Case. Let u = (i, iz) ∈ [T ]× [W ] be a node on layer i and let v = (j, jz) ∈ [T ]× [W ]
be a node on layer j. Assume that j − i = 2k−1 and we are at level k ∈ [log2 T ] of the recursive
construction. We define h = i+j

2 to be the layer in the middle between i and j and note that
h − i = j − h = 2k−2. For each node w = (h, z) for z ∈ [W ] in layer h we will add a gadget that
enables the path from u to v to pass through this node w. We do this by recursively adding the
two gadgets RGk−1,u→w and RG

k−1,w→v.
To do this formally, we will combine an alignment gadget with an OR gadget.
We start by defining path gadgets, which will be used to determine whether there is a path from

u to v through a specific node w = (h, z). For all vectors a ∈ A, b ∈ B and all numbers z ∈ [W ],
we define:

PG
k,u→v
X (a, z) := GA

3,τk−1
Y

X

(

RG
k−1,u→(h,z)
X (a),RG

k−1,(h,z)→v
X (a), IGk−1

X (z)
)

PG
k,u→v
Y (b, z) := GA

3,τk−1
X

Y

(

RG
k−1,u→(h,z)
Y (b),RG

k−1,(h,z)→v
Y (b), IGk−1

Y (z)
)

and note that the types τ
(1),k
X := type(PGk,u→v

X (a, z)) = (ℓ
(1),k
X , s

(1),k
X ) and τ

(1),k
Y := type(PGk,u→v

Y (b, z)) =

(ℓ
(1),k
Y , s

(1),k
Y ) depend only k, and that ℓ

(1),k
X , ℓ

(1),k
Y ≤ c · 3 · (ℓk−1

X + ℓk−1
Y ) ≤ 3c · 2 · (12W 2c3)k−1 · L0.

Claim 6. There is a constant C
(1)
k ∈ Z such that for all vectors a ∈ A, b ∈ B and integers z, z′ ∈ [W ]

we have that
δ(PGk,u→v

X (a, z),PGk,u→v
Y (b, z′)) = C

(1)
k + 3 · ρk−1

if z = z′ and there is a path from u to v through (h, z) in the branching program induced by (a, b),
and the δ-distance is larger otherwise.

Proof. First, observe that the minimal cost of any alignment A ∈ A3,3 is 3 · ρk−1, regardless of
a, b, z, z′. Next, observe that any alignment other than A = {(1, 1), (2, 2), (3, 3)} will have cost at
least 3 ·ρk−1+1. This follows from the definition of the cost of an alignment, because when aligning
an index gadget to a reachability gadget we incur a cost of at least ρk−1 + 1, and therefore leaving
any index unaligned will incur at least this cost. Finally, we focus on the alignment A and compute
its cost.

We argue that cost(A) = 3ρk−1 if a, b, z, z′ satisfy the statement in the claim, and cost(A) is
larger otherwise. If z 6= z′ then the pair (3, 3) incurs a cost of ρk−1+1 and we are done. Otherwise,
z = z′, and we have that

cost(A) = ρk−1 + δ(RG
k−1,u→(h,z)
X (a),RG

k−1,u→(h,z)
Y (b)) + δ(RG

k−1,(h,z)→v
X (a),RG

k−1,(h,z)→v
Y (b)).

By our inductive hypothesis, the last two summands are equal to ρk−1 if u can reach (h, z) and
(h, z) can reach v in the branching program induced by (a, b), while at least one of them is larger
otherwise. Therefore, cost(A) = 3 · ρk−1 if there is a path from u to v through (h, z) in the
branching program induced by (a, b) and is larger otherwise. By definition of alignment gadget,

there is a constant C
(1)
k such that the statement of the claim holds.

We are now ready to define our reachability gadgets, using OR gadgets. Recall that by Lemma 3,
any measure that admits alignment gadgets of size cn also admits OR gadgets of size c2n2.

RG
k,u→v
X (a) := OR

W,τ
(1),k
Y

X

(

PG
k,u→v
X (a, 1), . . . ,PGk,u→v

X (a,W )
)
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RG
k,u→v
Y (b) := OR

W,τ
(1),k
X

Y

(

PG
k,u→v
Y (b, 1), . . . ,PGk,u→v

Y (b,W )
)

Note that the types τkX := type(RGk,u→v
X (a)) = (ℓkX , skX) and τkY := type(RGk,u→v

Y (b)) = (ℓkY , s
k
Y )

depend only k, and that

ℓkX , ℓkY ≤ c2 ·W 2 · (ℓ(1),kX + ℓ
(1),k
Y ) ≤ c2W 2 · (2 · 6c · (12W 2c3)k−1 · L0) = (12W 2c3)k · L0.

Claim 7. There is a constant ρk ∈ Z such that for all vectors a ∈ A, b ∈ B we have that

δ(RGk,u→v
X (a),RGk,u→v

Y (b)) = ρk

there is a path from u to v in the branching program induced by (a, b), and the δ-distance is larger
otherwise.

Proof. By definition of OR gadgets, we know that there is a constant C
(2)
k ∈ Z such that

δ(RGk,u→v
X (a),RGk,u→v

Y (b)) = C
(2)
k + min

z,z′∈[W ]
δ(PGk,u→v

X (a, z),PGk,u→v
X (b, z′)).

By Claim 6, there is a constant C
(1)
k such that minz,z′∈[W ] δ(PG

k,u→v
X (a, z),PGk,u→v

X (b, z′)) ≥ C
(1)
k +

3ρk−1 with equality if and only if for some z ∈ [W ] there is a path from u to v through (h, z) in

the branching program induced by (a, b). Therefore, for ρk := C
(2)
k +C

(1)
k +3ρk−1 the statement of

the claim holds.

To complete the proof of Lemma 7 we need to construct index gadgets. These gadgets have
straightforward functionality, but their definitions are a bit complicated because we must enforce
that the type of these gadgets is exactly the same as the types of the reachability gadgets.

For all z ∈ [W ] we define

IG
(1),k
X (z) := GA

3,τk−1
Y

X (IGk−1
X (z), IGk−1

X (z), IGk−1
X (z))

IG
(1),k
Y (z) := GA

3,τk−1
X

Y (IGk−1
Y (z), IGk−1

Y (z), IGk−1
Y (z))

so that the types are τ
(1),k
X and τ

(1),k
Y . By an argument similar (but simpler) to the one in Claim 6,

we get that for all integers z, z′ ∈ [W ] we have δ(IG
(1),k
X (z), IG

(1),k
X (z′)) = C

(1)
k + 3 · ρk−1 if z = z′

and the δ-distance is larger otherwise. Another straightforward consequence of these definitions is

that for any vectors a ∈ A, b ∈ B and integers z, z′ ∈ [W ] we have that δ(IG
(1),k
X (z),PGk,u→v

Y (b, z′))

and δ(PGk,u→v
X (a, z′), IG(1),k

Y (z)) are larger than C
(1)
k + 3 · ρk−1.

Finally, we define

IG
k
X(z) := OR

W,τ
(1),k
Y

X

(

IG
(1),k
X (z), . . . , IG

(1),k
X (z)

)

IG
k
Y (z) := OR

W,τ
(1),k
X

Y

(

IG
(1),k
Y (z), . . . , IG

(1),k
Y (z)

)

so that the types are τkX and τkY . Again, by an argument similar (but simpler) to the one in
Claim 7, we have that δ(IGk

X(z), IGk
Y (z

′)) = ρk if z = z′ and is larger otherwise. And, moreover,
that δ(IGk

X(z),RGk
Y (b)), δ(RG

k
X(a), IGk

Y (z)) are larger than ρk, for all a, b, z.
To complete the proof of Lemma 7, we remark that this construction takes linear time in its

output, since the runtime is dominated by the constructions of alignment and OR gadgets.
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We now continue with the reduction from BP-SAT to the problem of computing the δ-similarity
of two sequences.

Recall that t = log2 T , and let the start node of the branching program be ustart = (1, 1) and
the only accept node be uacc = (2t, 1). Intuitively, we would like to define vector gadgets of the
form V G(a) = RG

t,ustart→uacc(a) and V G(b) = RG
t,ustart→uacc(b) so that δ(V G(a), V G(b)) will tell

us whether (a, b) is a satisfying pair or not (whether it induces a path from the start node to the
accepting node). However, this does not quite work for the following technical reason: When we
combine all these 2n vector gadgets into two sequences x, y, the score of δ(V G(a′), V G(b′)) of other
pairs a′, b′ will affect the overall score, and could potentially hide the contribution of the satisfying
pair.

To fix this, we “normalize” the vector gadgets so that the distance δ(V G(a′), V G(b′)) of unsatis-
fying pairs is fixed (and is slightly worse than the distance of satisfying pairs). This “normalization”
trick was introduced by Backurs and Indyk in their reduction from OV to Edit-Distance.

We will need the following simple constructions of instances Sk such that the distance between
Sk and any reachability gadget is fixed, and is slightly worse than the score of a “good pair”.

Claim 8. For all k ≥ 1, there are sequences Sk, T k ∈ IτkX such that for all vectors b ∈ B and nodes

u, v we have that δ(Sk,RGk,u→v
Y ) = ρk + (ρF − ρT ) and δ(T k,RGk,u→v

Y ) = ρk.

Proof. Base case, k = 1: we define

S1 := GA
2w+2,τY
X (0X , . . . ,0X ,1X ,1X)

T 1 := GA
2w+2,τY
X (0X , . . . ,0X ,0X ,0X)

which ensures that type(S1) = type(T 1) = τ1X and that δ(S1,RG1,u→v
Y (b)) = C1 + 7ρT + ρF =

ρ1 + (ρF − ρT ), while δ(T 1,RG1,u→v
Y (b)) = ρ1.

Inductive step: assume the statement holds for k − 1 for some sequence Sk−1 ∈ τk−1
X and we

will prove it for k. For all z ∈ [W ], consider the sequences:

S(1),k(z) := GA
3,τk−1

Y
X

(

T k−1, Sk−1, IGk−1
X (z)

)

∈ I
τ
(1),k
X

T (1),k(z) := GA
3,τk−1

Y
X

(

T k−1, T k−1, IGk−1
X (z)

)

∈ I
τ
(1),k
X

and then define:

Sk := OR
W,t

(1),k
Y

X

(

S(1),k(1), . . . , S(1),k(W )
)

∈ IτkX

T k := OR
W,t

(1),k
Y

X

(

T (1),k(1), . . . , T (1),k(W )
)

∈ IτkX
And the claim follows by simple calculations.

We can now define our normalized vector gadgets. For all vectors a ∈ A, b ∈ B we define:

NVGX(a) := GA
1,τ tY
X (St,RGt,ustart→uacc

X (a))
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NVGY (b) := GA
2,τ tX
Y (RGt,ustart→uacc

Y (b))

We denote the types of these gadgets by type(NVGX(a)) =: τ ′X and type(NVGY (b)) =: τ ′Y and
remark that they are independent of a, b. Also, note that the length of these gadgets can be upper
bounded by

c · 2 · (ℓtX + ℓtY ) ≤ 2c · (12W 2c3)t · L0 = O((12W 2c3)log2 T · c log2W ).

Lemma 8 (Vector Gadgets). There is a constant C ∈ Z such that for any two vectors a ∈ A, b ∈ B
we have that:

δ(NVGX(a),NVGY (b)) = C + ρt

if the pair (a, b) satisfies the branching program, and otherwise

δ(NVGX(a),NVGY (b)) = C + ρt + (ρF − ρT ).

Proof. The proof follows from the definition of alignment gadgets and from Lemma 7 and Claim 8.

Let A = {a1, . . . , a2n/2} and B = {b1, . . . , b2n/2} be our sets of vectors. Our final sequences are
defined as follows:

x := GA
2n/2,τ ′Y
X (NVGX(a1), . . . ,NVGX(a2n/2),NVGX(a1), . . . ,NVGX(a2n/2))

y := GA
2·2n/2,τ ′X
Y (NVGY (b1), . . . ,NVGY (b2n/2))

First, we upper bound the length of these sequences:

|x|, |y| ≤ c·2·2n/2 ·O((12W 2c3)log2 T ·c log2 W ) = O((12W 2c3)log2 T ·2n/2 ·c2 log2W ) = TO(logW ) ·2n/2

Finally, the theorem follows from this claim which shows that the answer to our BP-SAT can
be deduced from δ(x, y).

Claim 9. There is a constant C∗ ∈ Z such that

δ(x, y) ≤ C∗ + (2n/2 − 1) · (C + ρt + (ρF − ρT )) + (C + ρt)

if and only if there is a pair a ∈ A, b ∈ B that satisfies the branching program.

Proof. If there is no satisfying pair, then the cost of any alignment A ∈ A2n/2,2·2n/2 is equal to 2n/2

summands all of which are at least C+ ρt+(ρF − ρT ), and therefore δ(x, y) ≥ C∗+2n/2 · (C+ ρt+
(ρF − ρT )).

On the other hand, if ai ∈ A, bj ∈ B is a satisfying pair, for some i, j ∈ [2n/2], consider the
structured alignment A = {(∆+1, 1), . . . , (∆+2n/2, 2n/2)} where ∆ := i−j if i ≥ j and ∆ := 2n/2+
i−j otherwise. The cost of A is equal to 2n/2 summands, one of which is δ(NVGX(ai),NVGY (bj)) ≤
(C + ρt), while the others are at most (C + ρt + (ρF − ρT )), which implies that

δ(x, y) ≤ cost(A) ≤ C∗ + (2n/2 − 1) · (C + ρt + (ρF − ρT )) + (C + ρt).
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6 Faster SAT implies Circuit Lower Bounds

A direct corollary of our reduction (Theorem 2) is that faster Edit Distance or LCS implies faster
Branching-Program-SAT.

Corollary 3. If Edit Distance or LCS on two binary sequences of length N can be solved in
O(N2/t(N)) time, then SAT on BPs on n variables of width W and length T can be solved in
(2n · TO(logW ))/t(2n/2 · TO(logW )) time.

Here, we show how we get our corollaries about surprisingly strong circuit lower bounds from
such faster BP-SAT algorithm.

We will apply the following generic results, which follow from the literature:

Theorem 7 ([44]). Suppose there is a satisfiability algorithm for bounded fan-in formulas of size
nk running in O(2n/nk) time, for all constants k > 0. Then NTIME[2O(n)] is not contained in
non-uniform NC

1.

Theorem 7 follows directly from the reference [44].

Theorem 8 ([44, 46]). Let n ≤ S(n) ≤ 2o(n) be time constructible and monotone non-decreasing.
Let C be a class of circuits. Suppose there is an SAT algorithm for n-input circuits which are
arbitrary functions of three O(S(n))-size circuits from C, that runs in O(2n/(n10 · S(n))) time.
Then ENP does not have S(n)-size circuits.

Alternatively, suppose there is an SAT algorithm for n-input circuits which are ANDs of O(S(n))
arbitrary functions of three O(S(n))-size circuits from C, that runs in O(2n/n10) time. Then the
same circuit lower bound holds.

Proof. (Sketch) The argument essentially follows [44], with some minor modifications. First, as-
suming ENP has S(n)-size circuits, it follows that every verifier V for every L ∈ NTIME[2n] has
S(n)-size “witness circuits” which can print the bits of a witness to an arbitrary instance x of L.

Towards a contradiction, we want to simulate every L ∈ NTIME[2n] in nondeterministic time
o(2n); this will contradict the nondeterministic time hierarchy [48]. On an input xof length n, we
begin by reducing x to an instance Cx of the Succinct3SAT problem, in poly(n) time [44]. We have
the property that x ∈ L if and only if the truth table of Cx encodes a satisfiable 3CNF formula of
at most 2n · n4 size.

Now, in ENP, on an input (x, i, j) (where i ≤ n+4 log n and j ≤ n4 are binary integers), we can
(a) construct the circuit Cx, (b) compute a canonical (lexicographically first) witness circuit D of
S(n)-size for the instance Cx, (c) construct (in poly(S(n)) time) an O(S(n))-size circuit D′ which
is UNSAT if and only if D encodes a valid witness to Cx, and (d) evaluate D′(i), and output the
value of the jth gate of D. By assumption, the language L′ of such triples (x, i, j) has S(n)-size
circuits.

The next step of our simulation is to guess the circuit D of the previous paragraph (constructing
the circuit D′ using D and Cx) as well as a circuit E of size O(S(n)) implementing the language L′

of triples, for the case of |x| = n. To verify whether Cx encodes a satisfiable formula, we construct
circuits Fj for all gates j = 1, . . . , O(n4) of D′. The circuit Fj takes an input i ≤ n + 4 log n, and
uses a constant number of AND/OR gates to check that the inputs j1, j2 to the jth gate of D′(i)
match the output, using the information provided by E(x, i, j1), E(x, i, j2), and E(x, i, j) (which
are supposed to print exactly these outputs). That is, each Fj is a function of three copies of
E(x, i, j), each of which have size O(S(n)).
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Therefore each Fj has size O(S(n)), and by assumption we can compute for each Fj whether it
is true on all of its 2n · n4 inputs, in time O(2n/(n5 · S(n))). Over all O(S(n)) different Fj , these
checks cost only O(2n/n5) time in total. If all checks pass (meaning that E(x, i, j) reports the
correct gate value for all (x, i, j), we finally examine whether D′ is true on all of its inputs – this
can be done by calling UNSAT on ¬D′ or on ¬E(x, i, j⋆) where j⋆ is the index of the output gate
of D′. The circuit D′ is true on all of its inputs if and only if the circuit D is a witness for Cx;
hence we accept if and only if all of the above checks pass and D′ is true on all inputs.

Alternatively, suppose there is an SAT algorithm for n-input circuits which are ANDs of O(S(n))
arbitrary functions of three O(S(n))-size circuits from C, that runs in O(2n/n10) time. Then we
can check all of the aforementioned Fj circuits simultaneously, by taking an AND of them. This
AND has fan-in O(S(n)), and the resulting circuit has exactly the form for which we are assumed
to have an efficient SAT algorithm. The rest of the argument is the same.

Boolean formulas (without further restrictions) are trivially closed under the AND and OR as
prescribed in Theorem 8. It is also easy to see that nondeterministic branching programs are closed
under AND and OR: to simulate an OR of several nondeterministic BPs, make a new start node
that connects to all the start nodes of the BPs, without reading a variable. To simulate an AND
of BPs, connect the collection of branching programs in sequence, with the accept node of the
previous branching program connected to the start node of the next branching program.

Consider Corollary 1 from the introduction:

Reminder of Corollary 1 If Edit Distance or LCS on two binary sequences of length N is in
O(N2−ε) time for some ε > 0, then the complexity class ENP does not have:

1. non-uniform 2o(n)-size Boolean formulas,

2. non-uniform o(n)-depth circuits of bounded fan-in, and

3. non-uniform 2o(n
1/2)-size nondeterministic branching programs.

Furthermore, NTIME[2O(n)] is not in non-uniform NC.

We will explain how to obtain the corollary from Theorems 8,7, and our Theorem 2. Items 1 and
2 follow from combining the SAT-to-lower-bounds connection (Theorem 8) with the O(2n−εn/2)-
time algorithm for SAT on 2o(n)-size formulas, implied by Theorem 2. Item 3 follows from applying
the same connection to the O(2n−εn/2)-time algorithm for SAT on nondeterministic branching
programs of 2o(

√
n) size, implied by Theorem 2. Finally, the conclusion “NTIME[2O(n)] is not in

non-uniform NC” follows from combining the O(2n−εn/2)-time algorithm for SAT on o(n)-depth
circuits and Theorem 7.

Even sufficiently large poly(log n) improvements in algorithms for Edit-Distance would establish
strong new lower bounds, as in Corollary 2:

Reminder of Corollary 2 If Edit Distance or LCS on two binary sequences of length N can
be solved in O(n2/ logc n) time for every c > 0, then NTIME[2O(n)] does not have non-uniform
polynomial-size log-depth circuits.

The corollary follows from the fact that the hypothesis implies a BP-SAT algorithm for nc-size
O(1)-width branching programs running in O(2n/nc) time for all constants c > 0 (Theorem 2). By
standard reductions from log-depth circuits to formulas, and Barrington’s reduction from Boolean
formulas to branching programs, we obtain an analogous algorithm for Formula-SAT, which by the
SAT-to-lower-bounds connection (Theorem 7) implies the circuit lower bound.
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