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Abstract—Edit distance is a measure of similarity of two
strings based on the minimum number of character insertions,
deletions, and substitutions required to transform one string
into the other. The edit distance can be computed exactly using
a dynamic programming algorithm that runs in quadratic
time. Andoni, Krauthgamer and Onak (2010) gave a nearly
linear time algorithm that approximates edit distance within
approximation factor poly(log n).

In this paper, we provide an algorithm with running time
˜O(n2−2/7) that approximates the edit distance within a con-
stant factor.

Keywords-Edit distance; Approximation algorithm; Sub-
quadratic time algorithm; Randomized algorithm;

I. INTRODUCTION

Exact computation of edit distance. The edit distance (aka

Levenshtein distance) [1] between strings x, y, denoted by

dedit(x, y), is the minimum number of character insertions,

deletions, and substitutions needed to convert x into y. It is
a widely used distance measure between strings that finds

applications in fields such as computational biology, pattern

recognition, text processing, and information retrieval. The

problems of efficiently computing dedit(x, y), and of con-

structing an optimal alignment (sequence of operations that

converts x to y), are of significant interest.

Edit distance can be evaluated exactly in quadratic time

via dynamic programming (Wagner and Fischer [2]). Landau

et al. [3] gave an algorithm that finds an optimal alignment

in time O(n+ dedit(x, y)
2), improving on a previous O(n ·

dedit(x, y)) algorithm of Ukkonen [4]. Masek and Paterson

[5] obtained the first (slightly) sub-quadratic O(n2/ log n)
time algorithm, and the current asymptotically fastest algo-

rithm (Grabowski [6]) runs in time O(n2 log logn/ log2 n).

The research leading to these results has received funding from the Eu-
ropean Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC Grant Agreement no. 616787.
Supported in part by Simons Foundation under award 332622

Backurs and Indyk [7] showed that a truly sub-quadratic
algorithm (O(n2−δ) for some δ > 0) would imply a

2(1−γ)n time algorithm for CNF-satisfiabilty, contradicting

the Strong Exponential Time Hypothesis (SETH). Abboud et

al. [8] showed that even shaving an arbitrarily large polylog

factor from n2 would have the plausible, but apparently

hard-to-prove, consequence that NEXP does not have non-

uniform NC1 circuits. For further “barrier” results, see [9],

[10].
Approximation algorithms. There is a long line of work on

approximating edit distance. The exact O(n+k2) time algo-

rithm (where k is the edit distance of the input) of Landau et
al. [3] yields a linear time

√
n-factor approximation. This ap-

proximation factor was improved, first to n3/7 [11], then to

n1/3+o(1) [12] and later to 2
˜O(
√
logn) [13], all with slightly

superlinear runtime. Batu et al. [14] provided an O(n1−α)-
approximation algorithm with runtime O(nmax{α

2 ,2α−1}).
The strongest result of this type is the (log n)O(1/ε) factor

approximation (for every ε > 0) with running time n1+ε

of Andoni et al. [15]. Abboud and Backurs [16] showed

that a truly sub-quadratic deterministic time 1 + o(1)-factor
approximation algorithm for edit distance would imply new

circuit lower bounds.
Independent of our work, Boroujeni et al. [17] obtained

a truly sub-quadratic quantum algorithm that provides a

constant factor approximation. Their latest results [18] are

a (3+ ε) factor with runtime Õ(n2−4/21/εO(1)) and a faster

Õ(n1.708)-time with a larger constant factor approximation.
Andoni and Nguyen [19] found a randomized algorithm

that approximates Ulam distance of two permutations of

{1, . . . , n} (edit distance with only insertions and deletions)

within a (large) constant factor in time Õ(
√
n+n/k), where

k is the Ulam distance of the input; this was improved by

Naumovitz et al. [20] to a (1+ ε)-factor approximation (for

any ε > 0) with similar runtime.
Our results. We present the first truly sub-quadratic time
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classical algorithm that approximates edit distance within a

constant factor.

Theorem 1. There is a randomized algorithm ED-UB that
on input strings x, y of length n over any alphabet Σ outputs
an upper bound on dedit(x, y) in time Õ(n12/7) that, with
probability at least 1 − n−5, is at most a fixed constant
multiple of dedit(x, y).

If the output is U , then the algorithm has implicitly found

an alignment of cost at most U . The algorithm can be

modified to explicitly output such an alignment.

The approximation factor proved in this preliminary ver-

sion is 1680, can be greatly improved by tweaking parame-

ters. We believe, but have not proved, that with sufficient

care the algorithm can be modified (with no significant

increase in runtime) to get (3 + ε) approximation.

Theorem 1 follows from:

Theorem 2. For every θ ∈ [n−1/5, 1], there is a randomized
algorithm GAP-UBθ that on input strings x, y of length n
outputs u = GAP-UBθ(x, y) such that: (1) dedit(x, y) ≤ u
and (2) on any input with dedit(x, y) ≤ θn, u ≤ 840θn with
probability at least 1 − n−7. The runtime of GAP-UBθ is
Õ(n2−2/7θ4/7).

The name GAP-UBθ reflects that this is a "gap algo-

rithm", which distinguishes inputs with dedit(x, y) ≤ θn
(where the output is at most 840θn), and those with

dedit(x, y) > 840θn (where the output is greater than 840θn).
Theorem 1 follows via a routine construction of ED-UB

from GAP-UBθ, presented in Section V. The rest of the

paper is devoted to proving Theorem 2.

The framework of the algorithm. We use a standard two-

dimensional representation of edit distance. Visualize x as

lying on a horizontal axis and y as lying on a vertical axis,

with horizontal coordinate i ∈ {1, . . . , n} corresponding to

xi and vertical component j corresponding to yj . The width
μ(I) of interval I ⊆ {0, 1, . . . , n} is max(I) − min(I) =
|I| − 1. Also, xI denotes the substring of x indexed by

I − {min(I)}. (Note: xmin(I) is not part of xI , e.g., x =
x{0,...,n}. This convention is motivated by Proposition 3.)

We refer to I as an x-interval to indicate that it indexes

a substring of x, and J as a y-interval to indicate that it

indexes a substring of y. A box is a set I × J where I
is a x-interval and J is a y-interval; I × J corresponds to

the substring pair (xI , yJ). I × J is a w-box if μ(I) =
μ(J) = w. We often abbreviate dedit(xI , yJ) by dedit(I, J).
A decomposition of an x-interval I is a sequence I1, . . . , I�
of subintervals with min(I1) = min(I), max(I�) = max(I)
and for j ∈ [�− 1], max(Ij) = min(Ij+1).
Associated to x, y is a directed graph Gx,y with edge costs

called a grid graph with vertex set {0, . . . , n} × {0, . . . , n}
and all edges of the form (i − 1, j) → (i, j) (H-steps),

(i, j − 1)→ (i, j) (V -steps) and (i− 1, j − 1)→ (i, j) (D-

steps). Every H-step or V-step costs 1, and D-steps cost 1 if

xi �= yj and 0 otherwise. There is a 1-1 correspondence that

maps a path from (0, 0) to (n, n) to an alignment from x to

y, i.e. a set of character deletions, insertions and substitutions
that changes x to y, where an H-step (i − 1, j) → (i, j)
means "delete xi", a V-step (i, j−1)→ (i, j) means "insert

yj between xi and xi+1" and a D-step (i−1, j−1)→ (i, j)
means replace xi by yj , unless they are already equal. We

have:

Proposition 3. The cost of an alignment, cost(τ), is the sum
of edge costs of its associated path τ , and dedit(x, y) is equal
to cost(Gx,y), the min cost of an alignment path from (0, 0)
to (n, n).

For I, J ⊆ {0, . . . , n}, Gx,y(I × J) ∼= GxI ,yJ
is the grid

graph induced on I×J , and dedit(I, J) = cost(Gx,y(I×J)).

The natural high-level idea of GAP-UBθ appears (ex-

plicitly or implicitly) in previous work. The algorithm has

two phases. First, the covering phase identifies a set R of

certified boxes which are pairs (I × J, κ), where κ is an

upper bound on the normalized edit distance Δedit(xI , yJ) =
dedit(xI , yJ)/μ(I). (Δedit(I, J) is more convenient than

dedit(I, J) for the covering phase.) Second, the min-cost path
phase, takes input R and uses a straightforward customized

variant of dynamic programming to find an upper bound

U(R) on dedit(x, y) in time quasilinear in |R|. The central

issue is to ensure that the covering phase outputs R that

is sufficiently informative so that U(R) ≤ c · dedit(x, y) for

constant c, while running in sub-quadratic time.

Simplifying assumptions. The input strings x, y have equal

length n. (It is easy to reduce to this case: pad the shorter

string to the length of the longer using a new symbol.

The edit distance of the new pair is between the original

edit distance and twice the original edit distance. This

factor 2 increase in approximation factor can be avoided

by generalizing our algorithm to the case |x| �= |y|, but we
won’t do this here.) We assume n is a power of 2 (by padding

both strings with a new symbol, which leaves edit distance

unchanged). We assume that θ is a (negative) integral power

of 2. The algorithm involves integer parameters w1, w2, d,
all of which are chosen to be powers of 2.

Organization of the paper. Section II is a detailed overview

of the covering phase algorithm and its analysis. Section III

presents the pseudo-code and analysis for the covering

phase. Section IV presents the min-cost path phase algo-

rithm. Section V summarizes the full algorithm and dis-

cusses improvements in runtime via recursion.

II. COVERING ALGORITHM: DETAILED OVERVIEW

We give a detailed overview of the covering phase and

its time analysis and proof of correctness, ignoring minor

technical details. The pseudo-code in Section III corresponds

to the overview, with technical differences mainly to improve

runtime. We will illustrate the sub-quadratic time analysis
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with the sample input parameter θ = n−1/50 and algorithm

parameters w1 = n1/10, w2 = n3/10 and d = n1/5.
The covering phase outputs a setR of certified boxes. The

goal is that R includes an adequate approximating sequence
for some min-cost path τ in Gx,y , which is a sequence σ of

certified boxes (I1× J1, κ1), . . . , (I�× J�, κ�) that satisfies:

1) I1, . . . , I� is a decomposition of {0, . . . , n}.
2) Ii × Ji is an adequate cover of τi, where τi = τIi

denotes the minimal subpath of τ whose projection to

the x-axis is Ii, and adequate cover means that the

(vertical) distance from the start vertex (resp. final

vertex) of τi and the lower left (resp. upper right)

corner of Ii × Ji, is at most a constant multiple of

cost(τi) + θ.
3) The sequence σ is adequately bounded, i.e.,∑

i μ(Ii)κi ≤ c(cost(τ) + θn), for a constant c.

This is a slight oversimplification of Definition 3 of (k, ζ)-
approximation of τ by a sequence of certified boxes.
The intuition for the second condition is that τi is "almost"

a path between the lower left and upper right corners of Ii×
Ji. Now τi might have a vertical extent J ′ that is much larger

than its horizontal extent Ii, in which case it is impossible to

place a square Ii × Ji with corners close to both endpoints

of τi. But in that case, τi has a very high cost (at least

|μ(J ′)−μ(Ii)|. The closeness required is adjusted based on

cost(τi), with relaxed requirements if cost(τi) is large.
The output of the min-cost path phase should satisfy

the requirements of GAP-UBθ. Lemma 17 shows that if

the min-cost path phase receives R that contains a (k, θ)-
approximating sequence to some min-cost path τ , then it

will output an upper bound to dedit(x, y) that is at most

k′(dedit(x, y) + θn) for some k′. So that on input x, y with

dedit(x, y) ≤ θn, the output is at most 2k′θn, satisfying

the requirements of GAP-UBθ. This formalizes the intuition

that an adequate approximating sequence captures enough

information to deduce a good bound on cost(τ).
Once and for all, we fix a min-cost path τ . Our task for

the covering phase is that, with high probability, R includes

an adequate approximating sequence for τ .
A τ -match for an x-interval I is a y-interval J such that

I ×J is an adequate cover of τI . It is easy to show (Propo-

sition 7) that this implies dedit(I, J) ≤ (cost(τI) + θμ(I)).
A box I × J is said to be τ -compatible if J is a τ -match

for I and a box sequence is τ -compatible if every box is

τ -compatible. A τ -compatible certified box sequence whose

distance upper bounds are (on average) within a constant

factor of the actual cost, satisfies the requirements for an

adequate approximating sequence. Our cover algorithm will

ensure that R contains such a sequence.
A natural decomposition is Iw1 , with all parts of width

w1 (think of w1 as a power of 2 that is roughly n1/10) so

� = n/w1 and Ij = {(j − 1)w1, · · · , (j)w1}. The naïve

approach to building R is to include certified boxes for

enough choices of J to guarantee a τ -match for each Ij .

An interval of width w1 is δ-aligned if its upper and lower

endpoints are both multiples of δw1 (which we require to be

an integral power of 2). We restrict attention to x-intervals in
Iw1

, called x-candidates and θ-aligned y-intervals of width
w1 called y-candidates. It can be shown (see Proposition 8)

that an x-interval I always has a τ -match J that is θ-aligned.
(In this overview we will fix δ to θ; the actual algorithm

has O(log n) iterations during which the value of δ varies,

giving improvements in runtime that are unimportant in this

overview.) For each x-candidate I , designate one such τ -
match as the canonical τ -match, Jτ (I) for I , and I×Jτ (I)
is the canonical τ -compatible box for I .

In the exhaustive approach, for each (x-candidate, y-
candidate)-pair (I, J), its edit distance is computed in time

O(w2
1), and the certified box (I×J,Δedit(I, J)) is included.

There are n
w1

n
θw1

boxes, so the time for all edit distance

computations is O(n
2

θ ), which is worse than quadratic. (The

factor 1
θ can be avoided by standard techniques, but this is

not significant to the quest for a sub-quadratic algorithm, so

we defer this until the next section.) Note that |R| is n2

θ(w1)2

(which is n1.82 for our sample parameters) so at least the

min-cost path phase (which runs in time quasi-linear in R)

is truly sub-quadratic.

Two natural goals that will improve the runtime are: (1)

Reduce the amortized time per box needed to certify boxes

significantly below (w1)
2 and (2) Reduce the total number

of certified boxes created significantly below n2

θ(w1)2
. Nei-

ther goal is always achievable, and our covering algorithm

combines them. In independent work [17], [18], versions

of these two goals are combined, where the second goal

is accomplished via Grover search, thus yielding a constant

factor sub-quadratic time quantum approximation algorithm.

Reducing amortized time for certifying boxes: the
dense case algorithm. We aim to reduce the amortized

time per certified box to be much smaller than (w1)
2. We

divide our search for certified boxes into iterations i ∈
{0, . . . , log n}. For iteration i, with εi = 2−i, our goal is that

for all candidate pairs I, J with Δedit(I, J) ≤ εi, we include
the certified box (I × J, cεi) for a fixed constant c. If we

succeed, then for each Ij and its canonical τ -match Jτ (Ij),
and for the largest index i for which Δedit(Ij , J

τ (Ij)) ≤ εi,
iteration i will certify (Ij × Jτ (Ij), κj) with κj ≤ cεi ≤
2cΔedit(Ij , J

τ (Ij)), as needed.

For a string z of size w1, let H(z, ρ) be the set of x-
candidates I with Δedit(z, xI) ≤ ρ and V(z, ρ) be the set of

y-candidates J with Δedit(z, yJ) ≤ ρ. In iteration i, for each
x-candidate I , we will specify a set Qi(I) of y-candidates
that includes V(xI , εi) and is contained in V(xI , 5εi). The
set of certified boxes (I × J, 5εi) for all x-candidates I and

J ∈ Qi(I) satisfies the goal of iteration i.

Iteration i proceeds in rounds. In each round we select an

x-candidate I , called the pivot, for which Qi(I) has not yet
been specified. Compute Δedit(xI , yJ) for all y-candidates
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J and Δedit(xI , xI′) for all x-candidates I
′; these determine

H(xI , ρ) and V(xI , ρ) for any ρ. For all I ′ ∈ H(xI , 2εi),
set Qi(I

′) = V(xI , 3εi). By the triangle inequality, for

each I ′ ∈ H(xI , 2εi), V(xI , 3εi) includes V(xI′ , εi) and is

contained in V(xI′ , 5εi) so we can certify all the boxes with

upper bound 5εi. Mark intervals in H(xI , 2εi) as fulfilled
and proceed to the next round, choosing a new pivot from

among the unfulfilled x-candidates.

The number of certified boxes produced in a round

is |H(xI , 2εi)| × |V(xI , 3εi)|. If this is much larger than

O( n
θw1

), the number of edit distance computations, then we

have significantly reduced amortized time per certified box.

(For example, in the trivial case i = 0, every candidate

box will be certified in a single round.) But in worst case,

there are n
w1

rounds each requiring Ω(nw1

θ ) time, for an

unacceptable total time Θ(n2/θ).

Here is a situation where the number of rounds is much

less than n
w1

. Since any two pivots are necessarily greater

than 2εi apart, the sets V(xI , εi) for distinct pivots are

disjoint. Now for some parameter d (think of d = n1/5)

an x-candidate is d-dense for εi if |V(xI , εi)| ≥ d, i.e., xI

is εi-close in edit distance to at least d y-candidates; it is d-
sparse otherwise. If we manage to select a d-dense pivot I in

each round, then the number of rounds is O( n
w1dθ

) and the

overall time will be Θ( n2

dθ2 ). For the sample parameters this

is Θ(n1.84). But there’s no reason to expect that we’ll only

choose dense pivots; indeed there need not be any dense

pivot.

Let’s modify the process a bit. When choosing potential

pivot I , first test whether or not it is (approximately) d-
dense. This can be done with high probability, by randomly

sampling Θ̃( n
θw1d

) y-candidates and finding the fraction of

the sample that are within εi of xI . If this fraction is less

than θw1d
2n then I is declared sparse and abandoned as a

pivot; otherwise I is declared dense, and used as a pivot.

With high probability, all d-dense intervals that are tested are

declared dense, and all tested intervals that are not d/4-dense
are declared sparse, so we assume this is the case. Then

all pivots are processed (as above) in time O( n2

dθ2 ) (under

sample parameters: O(n1.84)). We pay Õ( n
w1dθ

)(w1)
2 to test

each potential pivot (at most n
w1

of them) so the overall time

to test potential pivots is Õ(n
2

dθ ) (with sample parameters:

Õ(n1.82)).

Each iteration i (with different εi) splits x-candidates into
two sets, Si of intervals that are declared sparse, and all of

the rest for which we have found the desired set Qi(I). With

high probability every interval in Si is indeed d-sparse, but
a sparse interval need not belong to Si, since it may belong

to H(xI , 2εi) for some selected pivot I .

For every x-candidate I �∈ Si we have met the goal for the

iteration. If Si is very small for all iterations, then the set of

certified boxes will suffice for the min-cost path algorithm

to output a good approximation.

But if Si is not small, another approach is needed.

Reducing the number of candidates explored: the di-
agonal extension algorithm. For each x-candidate I , al-
though it suffices to certify the single box (I, Jτ (I)) with

a good upper bound, since τ is unknown, the exhaustive

and dense case approaches both include certified boxes for

all y-candidates J . The potential savings in the dense case

approach comes from certifying many boxes simultaneously

using a relatively small number of edit distance computa-

tions.

Here’s another approach: for each x-candidate I try

to quickly identify a relatively small subset Y(I) of y-
candidates that is guaranteed to include Jτ (I). If we suc-

ceed, then the number of boxes we certify is significantly

reduced, and even paying quadratic time per certified box,

we will have a sub-quadratic algorithm.

We need the notion of diagonal extension of a box. The

main diagonal of box I × J , is the segment joining the

lower left and upper right corners. The square box I ′×J ′ is
a diagonal extension of a square subbox I × J if the main

diagonal of I × J is a subsegment of the main diagonal of

I ′ × J ′. (see Definition 2.) Given square box I × J and

I ′ ⊂ I the diagonal extension of I × J with respect to I ′

is the unique diagonal extension of I × J having x-interval
I ′. The key observation (Proposition 9) is: if I × J is an

adequate cover of τI then any diagonal extension I ′ × J ′ is
an adequate cover of τI′ .

Now let w1, w2 be two numbers with w1|w2 and w2|n.
(Think of w1 = n1/10 and w2 = n3/10.) We use the

decomposition Iw2 of {0, . . . , n} into intervals of width w2.

The set of y-candidates consists θ-aligned vertical intervals

of width w2 and has size n
θw2

. To identify a small set of

potential matches for I ′ ∈ Iw2 , we will identify a set (of size

much smaller than n
w2

) of w1-boxes B(I ′) having x-interval
in Iw1

(I ′) (the decomposition of I ′ into width w1 intervals).

For each box in B(I ′) we determine the diagonal extension

I ′ × J ′ with respect to I ′, compute κ = Δedit(I
′, J ′) and

certify (I ′ × J ′, κ). Our hope is that B(I ′) includes a τ -
compatible w1-box I ′′×Jτ (I ′′), then the observation above

implies that its diagonal extension provides an adequate

cover for τI′ .

Here’s how to build B(I ′): Randomly select a polylog(n)
size set H(I ′) of w1-intervals from Iw1

(I ′). For each I ′′ ∈
H(I ′) compute Δedit(I

′′, J ′′) for each y-candidate J ′′, and
let J (I ′′) consist of the d candidates J ′′ with smallest edit

distance to I ′′. Here d is a parameter; think of d = n1/5 as

before. B(I ′) consists of all I ′′×J ′′ where I ′′ ∈ H(I ′) and
J ′′ ∈ J (I ′′).
To bound runtime: Each I ′ ∈ Iw2

requires Õ( n
θw1

) width-

w1 Δedit() computations, taking time Õ(nw1

θ ). Diagonal

extension step requires Õ(d) width-w2 Δedit() computations,

for time Õ(dw2
2). Summing over n

w2
choices for I ′ gives

time Õ(n2 w1

θw2
+ndw2) (with sample parameters: Õ(n1.82)).
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Why should B(I ′) include a box that is an adequate

approximation to τI′? The intuition behind the choice of

B(I ′) is that an adequate cover for τI′ should typically be

among the cheapest boxes of the form I ′×J ′, and if I ′×J ′

is cheap then for a randomly chosen w1-subinterval I
′′, we

should also have I ′′ × Jτ (I ′′) is among the cheapest boxes

for I ′′.
Clearly this intuition is faulty: I ′ may have many inex-

pensive matches J ′ such that I ′ × J ′ is far from τI′ , which
may all be much cheaper than the match we are looking for.

In this bad situation, there are many y-intervals J ′ such that

Δedit(I
′, J ′) is smaller than the match we are looking, and

this is reminiscent of the good situation for the dense case

algorithm, where we hope that I ′ has lots of close matches.

This suggests combining the two approaches, and leads to

our full covering algorithm.

The full covering algorithm. This is now easy to describe.

The parameters w1, w2, d are as above. We iterate over

i ∈ {0, . . . , log n} with εi = 2−i. In iteration i, we first

run the dense case algorithm, and let Si be the set of

intervals declared sparse. Then run the diagonal extension

algorithm described earlier (with small modifications): For

each w2-interval I ′, select H(I ′) = Hi(I
′) to consist of

θ(log2 n) independent random selections from Si. For each
I ′′ ∈ Hi(I

′), find the set of vertical candidates J ′′ for

which Δedit(I
′′, J ′′) ≤ εi. Since I ′′ is (almost certainly)

d-sparse, the number of such J ′′ is at most d. Proceeding
as in the diagonal extension algorithm, we produce a set

Pi(I
′) of Õ(d) certified w2-boxes with x-interval I

′. LetRD

(resp. RE) be the set of all certified boxes produced by the

dense case iterations, resp. diagonal extension iterations. The

output is R = RD ∪RE . (See Figure 1 for an illustration

of the output R.)

The runtime is the sum of the runtimes of the dense case

and diagonal extension algorithms, as analyzed above. Later,

we will give a more precise runtime analysis for the pseudo-

code.

To finish this extended overview, we sketch the argument

that R satisfies the covering phase requirements.

Claim 4. Let I ′ be an interval in the w2-decomposition.
Either (1) the output of the dense case algorithm includes a
sequence of certified w1-boxes that adequately approximates
the subpath τI′ , or (2) with high probability the output of
the sparse case algorithm includes a single w2-box that
adequately approximates τI′ .

(This claim is formalized in Claim 14.) Stitching together

the subpaths for all I ′ implies that R will contain a certified

box sequence that adequately approximates τ .

To prove the claim, we establish a sufficient condition for

each of the two conclusion and show that if the sufficient

condition for the second conclusion fails, then the sufficient

condition for the first holds.

J

I w2 w1

Figure 1. Illustration of the Covering Algorithm: Green boxes are low
cost boxes in dense w1-strips, while the pink ones are in sparse w1-strips.
The blue line corresponds to the path τ that we are trying to cover. In each
w2-strip, τ is covered by either a collection of many w1-boxes or it is
covered by a diagonal extension of a low cost w1-box. The various boxes
might overlap vertically which is not shown in the picture.

Let I ′ denote the w1-decomposition Iw1(I
′) of I ′. Every

interval I ′′ ∈ I ′ has a θ-aligned τ -match Jτ (I ′′). It will
be shown (see Proposition 8), that Δedit(I

′′, Jτ (I ′′)) ≤
2 cost(τI′′ )

μ(I′′) + θ. Let u(I ′′) denote this upper bound. Con-

sider the first alternative in the claim. During the dense

case iteration i = 0, every interval is declared dense,

and (I ′′ × Jτ (I ′′), 5) is in RD for all I ′′. To get an

adequate approximation, we try to show that later iterations

provide much better upper bounds on these boxes, i.e.,

(I ′′ × Jτ (I ′′), γ(I ′′)) ∈ RD for a small enough value of

γ(I ′′). By definition of adequate approximation, it is enough

that
∑

I′′∈I′ γ(I
′′) ≤ c

∑
I′′∈I′ u(I

′′), for some c. Let t(I ′′)
be the last (largest) iteration for which εt(I′′) ≥ u(I ′′) and

I ′′ �∈ St(I′′) (which is well defined since S0 = ∅). Let

b(I ′′) = εt(I′′). Since b(I ′′) ≥ u(I ′′) ≥ Δedit(I
′′, Jτ (I ′′)),

the box (I ′′ × Jτ (I ′′), 5b(I ′′)) is certified. The collection

{(I ′′ × Jτ (I ′′), 5b(I ′′))} is a sequence of certified boxes

that satisfies the first two conditions for an adequate ap-

proximation of τ . The third condition will follow if:∑
I′′∈I′

5b(I ′′) ≤ c
∑

I′′∈I′
u(I ′′) (1)

so this is sufficient to imply the first condition of the claim.

Next consider what we need for the second alternative

to hold. Let Si(I ′) be the set of intervals declared sparse

in iteration i. An interval I ′′ ∈ Si(I ′) is a winner (for

iteration i) if Δedit(I
′′, Jτ (I ′′)) ≤ εi, and Wi(I

′) is the

set of winners. In iteration i of the diagonal extension
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algorithm, we sample θ(log2 n) elements of Si(I ′). If for

at least one iteration i our sample includes a winner I ′′ then
the second condition of the claim will hold: I ′′ × Jτ (I ′′)
is extended diagonally to a w2-box, and by the diagonal

extension property, the extension is an adequate cover of

τI′ , which we will certify with its exact edit distance.

Thus for the second alternative to fail with nonnegligible

probability:

For all i, |Wi(I
′)| < |Si(I ′)−Wi(I

′)|, (2)

We argue that if (2) holds, then the success condition (1)

holds. Multiply (2) by εi and sum on i to get:

∑
I′′∈I′

∑
i:I′′∈Wi(I′)

εi <
∑

I′′∈I′

∑
i:I′′∈Si(I′)−Wi(I′)

εi. (3)

For I ′′ ∈ Iw1(I
′), consider the iterations i for which

I ′′ ∈ Wi(I
′) and those for which I ′′ ∈ Si(I ′) − Wi(I

′).
First of all if εi ≥ u(I ′′) and I ′′ ∈ Si(I ′) then since

Δedit(I
′′, Jτ (I ′′)) ≤ u(I ′′) ≤ εi we conclude I ′′ ∈ Wi(I

′).
So I ′′ ∈ Si(I ′) − Wi(I

′) implies that εi < u(I ′′), so the

inner sum of the right side of (3) is at most 2u(I ′′) (by

summing a geometric series).

Furthermore, for i with u(I ′′) ≤ εi < b(I ′′), I ′′ ∈ Si by
the choice of t(I ′′). Either b(I ′′)/2 ≤ u(I ′′) or u(I ′′) <
b(I ′′)/2. The latter implies I ′′ ∈ Wt(I′′)+1(I

′), and then

b(I ′′)/2 is upper bounded by the inner sum on the left of

(3). Therefore:

∑
I′′

b(I ′′) ≤
∑
I′′

⎛⎝2u(I ′′) +
∑

i:I′′∈Wi(I′)

2εi

⎞⎠
<

∑
I′′

⎛⎝2u(I ′′) + 2
∑

i:I′′∈Si(I′)−Wi(I′)

εi

⎞⎠
≤ 6

∑
I′′

u(I ′′),

as required for (1).

This completes the overview of the covering algorithm.

III. COVERING ALGORITHM:PSEUDO-CODE AND

ANALYSIS

The pseudo-code consists of CoveringAlgorithm which

calls procedures DenseStripRemoval (the dense case al-

gorithm) and SparseStripExtensionSampling (the diagonal

extension algorithm). These are abbreviated, respectively by

CA, DSR and SSES. The technical differences between the

pseudo-code and the informal description, are mainly to

improve runtime analysis.

A. Pseudo-code

The parameters of CA are as described in the overview:

x, y are input strings of length n, θ comes from GAP-UBθ,

w1 < w2 < n and d < n are integral powers of 2, as are the

auxiliary input parameters. The output is a set R of certified

boxes. The algorithm uses global constants c0 ≥ 0 and c1 ≥
120, where the former one is needed for Proposition 11.

We use a subroutine SMALL-ED which takes strings

z1, z2 of length w and parameter κ and outputs ∞ if

Δedit(z1, z2) > κ and otherwise outputs Δedit(z1, z2). The
algorithm of [4] implements SMALL-ED in time O(κw2).

One technical difference from the overview, is that the

pseudo-code saves time by restricting the search for certified

boxes to a portion of the grid close to the main diagonal.

Recall that GAP-UBθ has two requirements, that the output

upper bounds dedit(x, y) (which will be guaranteed by the

requirement that R contains no falsely certified boxes), and

that if dedit(x, y) ≤ θn, the output is at most cθn for some

constant c. We therefore design our algorithm assuming

dedit(x, y) ≤ θn, in which case every min-cost Gx,y-path

τ consists entirely of points within θ
2n steps from the main

diagonal, i.e. |i − j| ≤ θ
2n. So we restrict our search for

certified boxes as follows: set m = 1
4θn, and consider the

n
m overlapping equally spaced boxes of width 8m = 2θn
lying along the main diagonal. Together these boxes cover

all points within θn of the main diagonal.

The algorithm of the overview is executed separately on

each of these n/m boxes. Within each of these executions,

we iterate over i ∈ {0, . . . , log 1
θ} (rather than {0, . . . , log n}

as in the overview). In each iteration we apply the dense

case algorithm and the diagonal extension algorithm as in

the overview. The output is the union over all n/m boxes

and all iterations, of the boxes produced.

In the procedures DSR and SSES, the input G is an

induced grid graph corresponding to a box IG × JG, as

described in the "framework" part of Section I. The proce-

dure DSR on input G, sets T to be the w1-decomposition

of IG (the x-candidates) and B to be the set of εi
8 -aligned

y-candidates. As in the overview, the dense case algorithm

produces a set of certified boxes (called R1 in the pseudo-

code) and a set S of intervals declared sparse. SSES is

invoked if S �= ∅ and iterates over all x-intervals I ′ in

the decomposition Iw2
(IG). The algorithm skips I ′ if S

contains no subset of I ′, and otherwise selects a sample H
of θ(log2 n) subintervals of I ′ from S. For each sample

interval I ′′ it finds the vertical candidates J ′′ for which

Δedit(I
′′, J ′′) ≤ εi, does a diagonal extension to I ′ and

certifies each box with an exact edit distance computation.

There are a few parameter changes from the overview

that provide some improvement in the time analysis: During

each iteration i, rather than take our vertical candidates to

be from a θ-aligned grid, we can afford a coarser grid that is

εi/8-aligned. Also, the local parameter d in DSR and SSES
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is set to d/εi during iteration i.
There is one counterintuitive quirk in SSES: each certi-

fied box is replicated O(log n) times with higher distance

bounds. This is permissible (increasing the distance bound

cannot decertify a box), but seems silly (why add the same

box with a higher distance bound?). This is just a convenient

technical device to ensure that the second phase min-cost

path algorithm gives a good approximation.

Algorithm 1 CA(x, y, n, w1, w2, d, θ)
CoveringAlgorithm

Input: Strings x, y of length n, w1, w2, d ∈ [n], w1 < w2 <
θn/4, and θ ∈ [0, 1]. n,w1, w2, θ are powers of 2.

Output: A set R of certified boxes in G.

1: Initialization: G = Gx,y , RD = RE = ∅.
2: Let m = θn

4
3: for k = 0, . . . , 4

θ do
4: Let I = J = {km, km+ 1, . . . , (k + 8)m}.
5: for i = �log 1/θ�, . . . , 0 do
6: Set εi = 2−i.

7: Invoke DSR(G(I × J), n, w1,
d
εi
, εi

8 , εi) to get S
and R1.

8: if S �= ∅ then
9: Invoke SSES(G(I × J),S, n, w1, w2,

d
εi
,

εi
8 , εi, θ) to get R2.

10: else
11: R2 = ∅.
12: end if
13: Add items from R1 to RD and from R2 to RE .

14: end for
15: end for
16: Output R = RD ∪RE .

For the analysis we must prove that R contains an "ade-

quate approximation" of some min-cost alignment path τ . To
state this precisely, we start with definitions and observations

that formalize intuitive notions from the overview.

Cost and normalized cost. The cost of a path τ , cost(τ),
from (u1, u2) to (v1, v2) in a grid-graph (see Section I),

is the sum of the edge costs, and the normalized cost is

ncost(τ) = cost(τ)
v1−u1

. cost(G(I × J)) (or simply cost(I × J)),
the cost of subgraph G(I×J), is the min-cost of a path from

the lower left to the upper right corner. The normalized cost
is ncost(I × J) = 1

μ(I)cost(I × J).
We note the following simple fact without proof:

Proposition 5. For I, J, J ′ ⊆ {0, . . . , n}, |dedit(xI , yJ) −
dedit(xI , yJ ′)| ≤ |JΔJ ′|, where Δ denotes symmetric differ-
ence.

Projections and subpaths. The horizontal projection of a

path τ = (i1, j1), . . . , (i�, j�) is the set of {i1, . . . , i�}. We

say that τ crosses box I × J if the vertices of τ belong

to I × J and its horizontal projection is I . If the horizontal

Algorithm 2 DSR(G,n,w, d, δ, ε)
DenseStripRemoval

Input: G = Gx,y(IG × JG) for some IG, JG ⊆
{0, 1, . . . , n}, w, d ∈ [n], the endpoints of IG and JG
are multiples of w and δ, ε ∈ [0, 1].

Output: Set S which is a subset of the w-decomposition of

IG and a set R of δ-aligned certified w-boxes all with

distance bound 5εi.

1: Initialization: S = R = ∅. T = Iw(IG).
2: B, the set of y-candidates, is the set of width w δ-aligned

subintervals of JG (having endpoints a multiple of δw.)
3: while T is non-empty do
4: Pick I ∈ T
5: Sample c0|B| 1d log n intervals J ∈ B uniformly at

random and for each test if Δedit(xI , yJ) ≤ ε.
6: if for at most c0

2 log n sampled J’s,
SMALL-ED(xI , yJ , ε) <∞ then

7: S = S ∪{I}; T = T −{I}. (I is declared sparse)
8: else
9: (I is declared dense and used as a pivot)

10: Compute:

11: Y = {J ∈ B; SMALL-ED(xI , yJ , 3ε) <∞}.
12: X = {I ′ ∈ T ; SMALL-ED(xI , xI′ , 2ε) <∞}.
13: Add (I ′, J ′, 5ε) to R for all pairs (I ′, J ′) ∈ X ×Y .
14: T = T − X .

15: end if
16: end while
17: Output S and R.

projection of τ contains I ′, τI′ denotes the (unique) minimal

subpath of τ whose projection is I ′.

Proposition 6. Let τ be a path with horizontal projection
I , and let I1, . . . , I� be a decomposition of I . Then the τIj
are edge-disjoint and so:

cost(τ) ≥
�∑

i=1

cost(τIi)

ncost(τ) ≥
�∑

i=1

μ(Ii)

μ(I)
ncost(τIi).

Definition 1. (1− δ)-cover. Let τ be a path with horizontal
projection I and let I ′ × J ′ be a (not necessarily square)
box with I ′ ⊆ I . For δ ∈ [0, 1] the box I ′ × J ′ (1 − δ)-
covers τ if the initial, resp. final, vertex of the subpath τI′
is within δμ(I ′) vertical units of (min(I ′),min(J ′)), resp.
(max(I ′),max(J ′)).

Proposition 7. Let I ′×J ′ be a (not necessarily square) box
that (1− δ)-covers path τ .

1) ncost(I ′ × J ′) ≤ ncost(τI′) + 2δ.
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Algorithm 3 SSES(G,S, n, w1, w2, d, δ, ε, θ)
SparseStripExtensionSampling

Input: G = Gx,y(IG, JG) with IG, JG ⊆ {0, 1, . . . , n},
w1, w2, d, n are powers of 2, with w1, w2, d < n and

w1 < w2. Endpoints of IG and JG are multiples of w2,

S is a subset of the w1-decomposition of IG and δ, ε, θ
are non-positive integral powers of 2.

Output: A set R of certified w2-boxes in G.

1: Initialization: R = ∅.
2: B, the set of y-candidates, is the set of width w δ-aligned

subintervals of JG (endpoints are multiples of δw.)
3: for I ′ ∈ Iw2(IG) do
4: if S includes a subset of I ′ then
5: Select c1 log

2 n intervals I ∈ S independently and

uniformly at random from Iw1
(I ′) ∩ S , to obtain

H.

6: for each I ∈ H and each J ∈ B do
7: if SMALL-ED(xI , yJ , ε) <∞ then
8: Let J ′ be such that I ′ × J ′ is the diagonal

extension of I × J in I ′ × JG.
9: Let p = SMALL-ED(xI′ , yJ′ , 3ε)

10: if p <∞ then
11: For k = 0, . . . , log n, add (I ′, J ′, p + θ +

2−k) to R.

12: end if
13: end if
14: end for
15: end if
16: end for
17: Output R.

2) If J ′′ is any vertical interval, then I ′ × J ′′ (1 − δ −
|J ′ΔJ ′′|/μ(I ′)) covers τ .

The routine proof is in the full version.

δ-aligned boxes A y-interval J of width w is δ-aligned for

δ ∈ (0, 1) if its endpoints are multiples of δw (which we

require to be an integer). The easy proof of the following is

in the full version:

Proposition 8. Let τ be a path that crosses I ×J . Suppose
that I ′ ⊆ I has width w, and μ(J) ≥ w.

1) There is an interval J1 with μ(J1) = μ(I ′) so
that ncost(I ′ × J1) ≤ 2ncost(τI′) and I ′ × J1

(1− ncost(τI′))-covers τ .
2) There is a δ-aligned interval J ′ ⊆ J of width w so

that ncost(I ′ × J ′) ≤ 2ncost(τI′) + δ and I ′ × J ′

(1− ncost(τI′)− δ)-covers τ.

(J1, J ′ are “τ -matches” for I ′, in the sense of the overview.)

Definition 2. 1) The main diagonal of a box is the seg-
ment joining the lower left and upper right corners.

2) For a square box I ′×J ′, and I ′ ⊆ I , the true diagonal

extension of I ′×J ′ to I is the square box I× Ĵ whose
main diagonal contains the main diagonal of I ′ × J ′.

3) For a w-box I ′ × J ′ contained in strip I × J , the
adjusted diagonal extension of I ′ × J ′ within I × J
is the box I × J ′′ obtained from the true diagonal
extension of I ′ × J ′ to I by the minimal vertical shift
so that it is a subset of I × J . (The adjusted diagonal
extension is the true diagonal extension if the true
diagonal extension is contained in I×J; otherwise it’s
lower edge is min(J) or its upper edge is max(J).)

Proposition 9. Suppose path τ crosses I × J and
ncost(τI) ≤ ε. Let w = μ(I). Let I ′ × J ′ be a w′-box that
(1 − δ)-covers τI′ . Then the adjusted diagonal extension
I×J ′′ of I ′×J ′ within I×J (1− (ε+ δw′

w ))-covers τ and
satisfies ncost(I × J ′′) ≤ 3ε+ 2δw′

w .

The straightforward proof appears in the full version.

(k, ζ)-approximation of a path. This formalizes the notion

of adequate approximation of a path by a certified box

sequence.

Definition 3. Let G be a grid graph on I × J . Let ζ, ε ∈
[0, 1]. Let τ be a path that crosses G. A sequence of certified
boxes σ = {(I1 × J1, ε1), (I2 × J2, ε2), . . . , (I� × J�, ε�)}
(k, ζ)-approximates τ provided that:
1) I1, . . . , I� is a decomposition of I .
2) For each i ∈ [�], Ii × Ji (1− εi)-covers τ .
3)

∑
i∈[�] εiμ(Ii) ≤ (k · ncost(τ) + ζ)μ(I).

Proposition 10. Suppose path τ crosses I × J and
I1, . . . , Im is a decomposition of I , and for i ∈ [m], σi is
a certified box sequence that (k, ζ)-approximates τIi . Then
σ1, . . . , σm (k, ζ)-approximates τ .

The routine proof appears in the full version

(d, δ, ε)-dense and -sparse. Fix a box I × J . An interval

I ′ ⊆ I of width w is (d, δ, ε)-sparse (wrt I × J) for integer
d and ε, δ ∈ (0, 1] if there are at most d δ-aligned w-boxes
in I ′×J of ncost at most ε, and is (d, δ, ε)-dense otherwise.

The sets Si and Si(I ′). For fixed k in the outer loop of

CA, the set S created in iteration i of CA is denoted by Si.
For any interval I ′, Si(I ′) is the set of subintervals of I ′

belonging to Si.
Successful Sampling. The algorithm uses random sampling

in two places, in the i loop inside CA and within the

conditional on S containing a set from Iw1(I
′) in SSES.

We now specify what we need from the random sampling.

Definition 4. A run of the algorithm has successful sam-

pling provided that for every k ∈ {0, . . . , 4/θ} and i ∈
{0, . . . , log 1

θ )} in the nested CA loops:
• For every w1 interval I with endpoints a multiple of

w1, if I is ( d
εi
, εi
8 , εi)-dense interval (in terms of global

parameters), DSR does not assign I to S and if I is
( d
4εi

, εi
8 , εi)-sparse, DSR places I in S.
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• On all calls to SSES, for every w2 interval I with
endpoints a multiple of w2, if |Wi(I)| has size at least
|Si(I)−Wi(I)|/32 then the sampleH selected contains
an element of Wi(I). (Here Si(I) and Wi(I) are that
defined in the proof of Claim 14, whose definitions don’t
depend on the randomness used to select H.)

The proof of the following (via standard tail bounds)

appears in the full version:

Proposition 11. For large enough n, a run of CA has
successful sampling with probability at least 1− n−7

We assume that coins are fixed in a way that gives

successful sampling.

B. Properties of the covering algorithm

The main property of CA to be proved is:

Theorem 12. Let x, y be strings of length n, 1/n ≤ θ ≤
1 be a real. Let w1, w2, d satisfy w1 ≤ θw2, w2 ≤ θn

4

and 1 ≤ d ≤ θn
w1

. Assume n,w1, w2, d, θ are powers of
2. Let R be the set of weighted boxes obtained by running
CA(x, y, n, w1, w2, d, θ) with c1 > 120. Then (1) Every (I×
J, ε) ∈ R is correctly certified, i.e., Δedit(xI , yJ) ≤ ε, and
(2) In a run that satisfies successful sampling, for every path
τ from the source to the sink in G = Gx,y of cost at most
θ there is a subset of R that (45, 15θ)-approximates τ .

Proof: All boxes output are correctly certified: Each

box in RE comes from SSES which only certifies boxes

with atleast their exact edit distance. For (I × J, ε) ∈ RD,

there must be an I ′ such that Δedit(xI′ , yJ) ≤ 3
5 · ε and

Δedit(xI′ , xI) ≤ 2
5 · ε and so Δedit(xI , yJ) ≤ ε.

It remains to establish (2). Fix a source-sink path τ of

normalized cost κ. By Proposition 10 it is enough to show

that for each I ′ ∈ Iw2 , R contains a box sequence that

(45, 15θ)-approximates τI′ . So we fix I ′ ∈ Iw2
.

The main loop (on k) of CA processes G in overlapping

boxes. Since ncost(τ) ≤ θ, one of these boxes, which we’ll

call I×J , must contain τI′ . (See the full version for a proof.)
We note:

Claim 13. Let i ∈ {0, . . . , log 1/θ}. Suppose I ′′ ∈ Iw1
(I)

and J ′′ ⊆ J is εi/8-aligned. If I ′′ �∈ Si and cost(I ′′×J ′′) ≤
εi then (I ′′ × J ′′, 5εi) ∈ RD.

Proof: If I ′′ �∈ Si then in the call to DSR(G(I ×
J), n, w1, d/εi, εi/8, εi) there is an iteration of the main

loop,where the selected interval Ĩ from T is declared dense

and Δedit(xĨ , xI′′) ≤ 2εi. Since Δedit(xI′′ , yJ′′) ≤ εi,
Δedit(xĨ , yJ′′) ≤ 3εi and so I ′′ ∈ X and J ′′ ∈ Y . Thus,
DSR certifies (I ′′ × J ′′, 5εi), which is added to RD.

The theorem follows from:

Claim 14. For an interval I ′ ∈ Iw2 , assuming successful
sampling RE or RD contains a (45, 15θ)-approximation of
τI′ .

The proof is similar to that of Claim 4, with adjustments

for some technicalities.

Proof: Let τ ′ = τI′ and κ = ncost(τ ′). Let I ′ =
Iw1(I

′). For I ′′ ∈ I ′, let κI′′ = ncost(τI′′). By Proposition

8, for all I ′′ ∈ I ′ and εi ≥ κI′′ there is an εi/8-aligned
vertical interval Jτ

i (I
′′), such that ncost(I ′′ × Jτ

i (I
′′)) ≤

2κI′′ + εi/8 and I ′′ × Jτ
i (I

′′) (1− κI′′ − εi/8)-covers τI′ .
Let s(I ′′) be the largest integer such that εs(I′′) ≥ 3κI′′+

κ + θ. Let t(I ′′) ≤ s(I ′′) be the largest integer such that

I ′′ �∈ St(I′′). (Since θn/w1 ≥ d, S0 = ∅, so t(I ′′) is well-

defined.) Let a(I ′′) = εs(I′′) (this plays a similar role to

u(I ′′) in Section II) and b(I ′′) = εt(I′′).
For all εi ∈ [a(I ′′), b(I ′′)], ncost(I ′′ × Jτ

i (I
′′)) ≤

εi and I ′′ × Jτ
i (I

′′) (1 − εi)-covers τ ′. By the defini-

tion of b(I ′′) and Claim 13, RD contains the certified

box (I ′′ × Jτ
t(I′′)(I

′′), 5bI′′). So RD contains a (45, 15θ)-
approximation of τ ′ provided that:∑

I′′∈I′
5b(I ′′) ≤ 45

8

∑
I′′∈I′

a(I ′′) (4)

since a(I ′′) ≤ 2(3κI′′ + κ+ θ).
Next we determine a sufficient condition that RE contain

a box sequence (consisting of a single box) that (5, 4θ)-
approximates τ ′. Let Si(I ′) = Si ∩ I ′. Interval I ′′ ∈ Si(I ′)
is a winner for iteration i if εi ≥ a(I ′′). This set of

winners is denoted byWi(I
′). It suffices that during iteration

i, the set of c1 log
2 n samples taken in SSES includes a

winner I ′′; then since Δedit(I
′′, Jτ

i (I
′′)) ≤ εi, the (adjusted)

diagonal extension I ′ × J̃ of I ′′ × Jτ
i (I

′′) will be certified.

By Proposition 9, I ′ × J̃ has normalized cost at most

3κ+2εiw1/w2 ≤ 3κ+2θ ≤ 3εi and it (1− (κ+ θ))-covers
τ ′. If κ = 0 then (I ′ × J̃ , ncost(I ′ × J̃) + θ+2− logn) is in
RE by the behavior of SSES and it (5, 4θ)-approximates τ ′.
Otherwise κ ≥ 1/n; so set k = �log 1/κ�. Thus, k ≤ log n
and 2−k ∈ [κ, 2κ). Then (I ′ × J̃ , ncost(I ′ × J̃) + θ + 2−k)
is in RE and it (5, 4θ)-approximates τ ′.
Under successful sampling if |Wi(I

′)| ≥ 1
32 |Si(I ′) −

Wi(I
′)|, at least one interval from Wi(I

′) will be included

in our c1 log
2 n samples during SSES and RE will contain a

(5, 4θ)-approximation of τ ′ as above. So suppose this fails:

For all i, |Wi(I
′)| < 1

32
|Si(I ′)−Wi(I

′)|. (5)

We show that this implies (4). Multiplying (5) by εi and

summing on i yields:∑
I′′∈I′

∑
i:I′′∈Wi(I′)

εi <
1

32

∑
I′′∈I′

∑
i:I′′∈Si(I′)−Wi(I′)

εi. (6)

I ′′ ∈ Si(I ′) − Wi(I
′) implies εi < a(I ′′). Summing the

geometric series: ∑
i:I′′∈Si(I′)−Wi(I′)

εi ≤ 2a(I ′′). (7)
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Either a(I ′′) = b(I ′′) or a(I ′′) < b(I ′′). If the latter, then

I ′′ ∈ Wi(I
′) for εi = b(I ′′)/2. So:∑

I′′∈I′
b(I ′′) ≤

∑
I′′

(
a(I ′′) +

∑
i:I′′∈Wi(I′)

2εi

)
<

∑
I′′

(
a(I ′′) +

1

16

∑
i:I′′∈Si(I′)−Wi(I′)

εi

)
≤ 9

8

∑
I′′∈I′

a(I ′′)

which implies Equation 4. (The second inequality follows

from (6) and the last inequality from (7).)

C. Time complexity of CA

We write t(w, ε) for the time of SMALL-ED(z1, z2, ε)
on strings of length w. We assume t(w, ε) ≥ w, and that for

k ≥ 1, there is a constant c(k) such that for all ε ∈ [0, 1] and
all w > 1, t(w, kε) ≤ c(k) · t(w, ε) + c(k). As mentioned

earlier, by [4], we can use t(w, ε) = O(w2ε).

Theorem 15. Let n be a sufficiently large power of 2 and
θ ∈ [1/n, 1] be a power of 2. Let x, y be strings of length
n. Let log n ≤ w1 ≤ w2 ≤ θn/4, 1 ≤ d ≤ n be powers of
2, where w1|w2 and w2|n, and w1/w2 ≤ θ. The size of the
set R output by CA is O(( n

w1
)2 log2 n) and in any run that

satisfies successful sampling, CA runs in time:

O

(
|R|+

∑
k=log 1/θ,...,0

ε=2−k

(θn2 log n

dεw2
1

· t(w1, ε)+

θn2 log2 n

w1w2ε
· t(w1, ε) +

nd log2 n

w2ε
· t(w2, ε)

))
.

Proof: To bound |R| note that for each choice of k, i
in the outer and inner loops of CA, the set of candidate

boxes of width w1 has size O( θnw1

θn
w1εi

). This upper bounds
the number of boxes certified by DSR. The call to SSES

constructs at most one diagonal extension for each such

candidate box, and each diagonal extension gives rise to at

most O(log n) certified boxes. Thus, for each (k, i) there are

O( θ
2n2 logn
(w1)2εi

) certified boxes. Summing the geometric series

over i, noting that min(εi) = θ, and summing over O(1/θ)
values of k gives the required bound on |R|.

The steps in the algorithm that actually construct certified

boxes (13 of DSR, 11 of SSES, 13 of CA) cost O(1) per

box giving the first term in the time bound.

We next bound the other contributions to runtime. The

outer loop of CA has 4
θ +1 iterations on k’s. The inner loop

has 1 + log 1
θ iterations on i. Each iteration invokes DSR

and SSES on I × J with I and J of width at most 4θn.
We bound the time of a call to DSR. To distinguish

between local variables of DSR and global variables of CA,

we denote local input variables as Ĝ, n̂, ŵ, d̂, δ̂, ε̂. For B

and T as in DSR, |B| ≤ μ(IĜ)

δ̂ŵ
. since μ(IĜ) = μ(JĜ).

The main while loop of DSR repeatedly picks intervals

I ∈ T and samples c0|B| log n̂

d̂
≤ c0μ(IĜ) log n̂

d̂δ̂ŵ
vertical

intervals J and tests whether Δedit(xI , yJ) ≤ ε̂. Each such

test takes time t(ŵ, ε̂). This is done at most once for each

of the μ(IĜ)/ŵ horizontal candidates for a total time of

O(
μ(IĜ)2 log n̂

ŵ2δ̂d̂
)t(ŵ, ε̂). We next bound the cost of processing

a pivot I . This requires testing Δedit(xI , yJ) ≤ 3ε̂ for

J ∈ B and Δedit(xI , xI′) ≤ 2ε̂ for I ′ ∈ T . Each test

costs O(t(ŵ, ε̂)) (by our assumption on t(·, ·)), and since

|T | ≤ |B| = μ(IĜ)

ŵδ̂
, I is processed in time O(

μ(IĜ)

ŵδ̂
t(ŵ, ε̂)).

This is multiplied by the number of intervals declared dense,

which we now upper bound. If I is declared dense then

at the end of processing I , X is removed from T . This
ensures Δedit(I, I

′) > 2ε for any two intervals I, I ′ declared
dense. By the triangle inequality the sets B(I) = {J ∈
B; Δedit(xI , yJ) ≤ ε} are disjoint for different pivots. By

successful sampling, for each pivot I , |B(I)| ≥ d̂
4 , and

thus at most |B|/(d̂/4) =
4μ(IĜ)

d̂δ̂ŵ
intervals are declared

dense, so all intervals declared dense are processed in time

O(
μ(IĜ)2

ŵ2d̂δ̂2
)t(ŵ, ε̂).

The time for dense/sparse classification of intervals

and for processing intervals declared dense is at most

O(
μ(IĜ)2 log n̂

ŵ2d̂δ̂2
)t(ŵ, ε̂). During iteration i of the inner loop

of CA, the local variables of DSR are set as n̂ = n,
μ(IĜ) ≤ 4θn, ŵ = w1, d̂ = d/εi, δ̂ = εi/8. Substituting

these parameters yields time O( θ
2n2 logn
(w1)2dεi

)t(w1, εi). Multi-

plying by the O(1/θ) iterations on k gives the first summand

of the theorem.

Next we turn to SSES. The local input variables

n,w1, w2,S, θ are set to their global values so we denote

them without ˆ . The other local input variables are de-

noted as Ĝ, d̂, δ̂, ε̂. The local variable B has size
μ(IĜ)

δ̂w1
.

By successful sampling, we assume that on every call,

every interval in S is (d̂, δ̂, ε̂)- sparse. The outer loop

enumerates the μ(IĜ)/w2 intervals I ′ of Iw2(IĜ). We

select H to be c1 log
2 n random subsets from subsets of

I ′ belonging to S . For each I ∈ H and J ∈ B, we call

SMALL-ED(xI , yJ , ε̂), taking time t(w1, ε̂). The total time

of all tests is O(
μ(IĜ)2 log2 n

δ̂w1w2
)t(w1, ε̂). Using d̂ = d/εi,

δ̂ = εi/8 and ε̂ = εi from the ith call to SSES gives

O( θ
2n2 log2 n
εiw1w2

)t(w1, εi). Multiplying by the O(1/θ) iterations
on k gives the second summand in the theorem.

Assuming successful sampling, all intervals in the set S
passed from DSR to SSES are (d̂, δ̂, ε̂)-sparse. Therefore,
for each sampled I , at most d̂ intervals J are within ε̂ of

I . For each of these we do a diagonal extension of I × J
to a w2-box I ′ × J ′, and call SMALL-ED(xI′ , yJ ′ , 3ε̂) at

cost O(t(w2, ε̂)) for each call. The number of such calls

is O(
μ(IĜ)d̂ log2 n

w2
). Using the parameter d̂ = d/εi in the

ith call of the inner iteration of CA, we get a cost of
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O( θnd log2 n
εiw2

)t(w2, εi) and multiplying by the O(1/θ) gives
the third summand in the theorem.

Choosing the parameters to minimize the maximum term

in the time bound, subject to the restrictions of the theorem

and using t(w, ε) = O(εw2) we have:

Corollary 16. For all sufficient large n, and for θ ≥ n−1/5

(both powers of 2) choosing w1, w2, and d to be the
largest powers of two satisfying: w1 ≤ θ−2/7(n)1/7, w2 ≤
θ1/7(n)3/7, and d ≤ θ3/7(n)2/7, with probability at least
1− n−1/7, CA runs in time Õ(n12/7θ4/7), and outputs the
set R of size at most Õ(n12/7θ4/7).

IV. MIN-COST PATHS IN SHORTCUT GRAPHS

We now describe the second phase of our algorithm,

which uses the set R output by CA to upper bound

dedit(x, y). A shortcut graph on vertex set {0, . . . , n} ×
{0, . . . , n} consists of the H and V edges of cost 1, together

with an arbitrary collection of shortcut edges (i, j)→ (i′, j′)
where i < i′ and j < j′, also denoted by eI,J where

I = {i, . . . , i′} and J = {j, . . . , j′}, along with their costs.

A certified graph (for x, y) is a shortcut graph where every

shortcut edge eI,J has cost at least dedit(xI , yJ). The min

cost path from (0, 0) to (n, n) in a certified graph upper

bounds dedit(x, y). The second phase algorithm uses R to

construct a certified graph, and computes the min cost path

to upper bound on dedit(x, y).
A certified box (I × J, κ) corresponds to the eI,J with

cost κμ(I). (In the certified graph we use non-normalized

costs.) However, the certified graph built from R in this

way may not have a path of cost O(dedit(x, y) + θn). We

need a modified conversion of (I × J, κ). If κ ≥ 1/2 we

add no shortcut. Otherwise (I × J, κ) converts to the edge

eI,J′ with cost 3κμ(I) where J ′ is obtained by shrinking J :
min(J ′) = min(J) + � and max(J ′) = max(J ′)− � where

� = �κμ(I)�. By Proposition 5, this is a certified edge. Call

the resulting graph G̃. The following straightforward claim

is proved in the full version:

Lemma 17. Let τ be a path from source to sink in Gx,y . IfR
contains a sequence σ that (k, θ)-approximates τ then there
is a source-sink path τ ′ in G̃ that consists of the shortcuts
corresponding to σ together with some H and V edges with
cost

˜G(τ
′) ≤ 5(k · costGx,y

(τ) + θn).

Computing the min-cost. We present an O(n+m log(mn))
algorithm to find a min cost source-sink path in a shortcut

graph G̃ with m shortcuts. It’s easier to switch to the max-

benefit problem: Let H̃ be the same graph with cost ce of

e = (i, j)→ (i′, j′) replaced by benefit be = (i′− i)+(j′−
j)−ce, (so H and V edges have benefit 0). The min-cost path

of G̃ is 2n minus the max-benefit path of H̃ . To compute the

max-benefit path of H̃ , we use a binary tree data structure

with leaves {1, . . . , n}, where each node v stores a number

bv , and a collection of lists L1,. . . ,Ln, where Li stores pairs

(e, q(e)) where the head of e has x-coordinate i and q(e) is
the max benefit of a path that ends with e.
We proceed in n − 1 rounds. Let the set Ai consist

of all the shortcuts whose tail has x-coordinate i. The

preconditions for round i are: (1) for each leaf j, the

stored value bj is the max benefit path to (i, j) that in-

cludes a shortcut whose head has y-coordinate j (or 0

if there is no such path), (2) for each internal node v,
bv = max{bj : j is a leaf in the subtree of v}. and (3) for

every edge e = (i′, j′) → (i′′, j′′) with i′ < i, the value

q(e) has been computed and (e, q(e)) is in list Li′′ . During

round i, for each shortcut e = (i, j) → (i′, j′) in Ai, q(e)
equals the max of bv + be over tree leaves v with v ≤ j.
This can be computed in O(log n) time as max bv + be,
over {j} union the set of left children of vertices on the

root-to-j path that are not themselves on the path. Add

(e, q(e)) to list Li′ . After processing Ai, update the binary

tree: for each (e, q(e)) ∈ Li+1, let j be the y-coordinate
of the head of e and for all vertices v on the root-to-j
path, replace bv by max(bv, q(e)). The tree then satisfies the

precondition for round i + 1. The output of the algorithm

is bn at the end of round n − 1. It takes O(n) time to set

up the data structure, O(m logm) time to sort the shortcuts,

and O(log n) processing time per shortcut (computing q(e)
and later updating the data structure).

V. SUMMING UP AND SPEEDING UP

To summarize, the algorithm GAP-UBθ runs CoveringAl-

gorithm of Section III, converts the output into a shortcut

graph, and runs the min-cost path algorithm of Section IV.

By Corollary 16, and the quasilinear runtime (in the number

of shortcuts) of the min-cost path algorithm, the algorithm

GAP-UBθ runs in time Õ(n12/7θ4/7). The construction of

the main algorithm ED-UB from GAP-UB is standard:

Proof of Theorem 1 from Theorem 2: Given GAP-UBθ,

we construct ED-UB: Run the aforementioned exact algo-

rithm of [3] with runtime O(n + k2) time on instances

of edit distance k, for O(n + n2−2/5) time. If it termi-

nates then it outputs the exact edit distance. Otherwise, the

failure to terminate implies dedit(x, y) ≥ n4/5. Now run

GAP-UBθj (x, y) for θj = (1/2)j for j = {0, . . . , logn
5 }

and output the minimum of all upper bounds obtained.

Let j be the largest index with θjn ≥ dedit(x, y) (such

an index exists since j = 0 works). The output is at

most 840θjn ≤ 1680dedit(x, y). We run at most O(log n)
iterations, each with runtime Õ(n2−2/7).
Speeding up the algorithm. The runtime of ED-UB is

dominated by the cost of SMALL-ED(z1, z2, ε) on pairs

of strings of length w ∈ {w1, w2}. We use Ukkonen’s algo-

rithm [4] with t(w, ε) = O(w2ε). In the full paper we de-

scribe a revised algorithm ED-UB1, replacing the Ukkonen’s

algorithm with ED-UB. This worsens the approximation

factor (roughly multiplying it by the approximation factor

of ED-UB) but improves runtime. The internal parameters
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w1, w2, d are adjusted to maximize savings. One can iterate

this process any constant number of times to get faster

algorithms with worse (but still constant) approximation

factors. Because of the dependence of the analysis on θ, we
do not get a faster edit distance algorithm for all θ ∈ [0, 1]
but only for θ close to 1. (This may be an artifact of our

analysis rather than an inherent limitation.)

Theorem 18. For ε > 0, there are constants c > 1 and
β ∈ (0, 1) and an algorithm with runtime O(n

1+
√

5
2 +ε) that

on input x, y of length n, outputs u such that dedit(x, y) ≤
u ≤ cdedit(x, y) + n1−β with probability at least 1− 1/n.
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