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ABSTRACT
The PPSZ algorithm, due to Paturi, Pudlak, Saks and Zane, is cur-

rently the fastest known algorithm for the k-SAT problem, for every

k > 3. For 3-SAT, a tiny improvement over PPSZ was obtained by

Hertli. We introduce a biased version of the PPSZ algorithm using

which we obtain an improvement over PPSZ for every k ≥ 3. For

k = 3 we also improve on Herli’s result and get a much more no-

ticeable improvement over PPSZ, though still relatively small. In

particular, for Unique 3-SAT, we improve the current bound from

1.308
n
to 1.307

n
.
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1 INTRODUCTION
Satisfiability of Boolean formulas (usually known as SAT), is one of

the core problems of Computer Science. Given a Boolean formula,

the task is to decide whether there is an assignment of Boolean val-

ues, 0 (false) or 1 (true), to the variables of the formula under which

the formula evaluates to 1 (true). The Boolean formula is commonly

given in Conjunctive Normal Form (CNF), i.e., as a conjunction of

disjunctions of literals. Each disjunction is called a clause. A literal
is a variable or its negation. A formula in which each clause con-

tains at most k literals is a k-CNF formula. The problem of deciding

whether a k-CNF formula is satisfiable is called k-SAT.
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Cook [2] and Karp [7] have shown that 3-SAT is NP-complete. In

contrast, 2-SAT can be solved in linear time. Many problems have

been shown to be NP-complete using reductions from 3-SAT, which

is thus viewed as one of the canonical NP-complete problems.

As the size of a k-CNF formula over n variables is at mostO(nk ),
the running time of the trivial algorithm which enumerates over all

possible assignments is O∗(2n ), where O∗(f (n)) = O(f (n)·nℓ), for
some ℓ. The best known algorithms for solving k-SAT still have ex-

ponential running times inn. Let ck ∈ [1, 2] be the smallest constant

for which k-SAT can be solved in (ck + o(1))
n
time. Much effort

was put into obtaining improved upper bounds on ck , especially
for 3-SAT, which has become a benchmark problem for exponential

time algorithms.

A famous conjecture, called the Exponential Time Hypothesis
(ETH, see [6]), is that 3-SAT cannot be solved in sub-exponential

time, i.e., that c3 > 1. A stronger conjecture, known as the Strong
Exponential Time Hypothesis (SETH), which is also popular, claims

essentially that limk→∞ ck = 2. Both conjectures are yet to be

proved or disproved.

The first non-trivial upper bound on ck , for any k ≥ 3, was ob-

tained by Monien and Speckenmeyer [8]. They used a deterministic

branching algorithm to show that c3 ≤ 1.619 and ck ≤ 2
1−Θ(2−k )

.

Improved deterministic algorithms were then obtained, culminating

with the bound c3 ≤ 1.476 obtained by Rodošek [13].

Further improved upper bounds were then obtained using ran-

domized algorithms. Paturi, Pudlak and Zane [10] described an

extremely simple and elegant randomized algorithm, now known

as the PPZ algorithm, that established that ck ≤ 2
1− 1

k . While not

improving the bound for 3-SAT, the improvement for large values

of k was enourmous. Shortly afterwards, with the help of Saks,

Paturi et al. [9] obtained an improved version of the PPZ algorithm,

now known as the PPSZ algorithm, that showed that c3 ≤ 1.364

and ck ≤ 2
1−(1−o(1)) π

2

6

1

k . They also showed that their 3-SAT algo-

rithm runs in 1.308
n
time, if the formula has a unique satisfying

assignment (this restricted problem is called Unique 3-SAT).

Schöning [16] presented a very simple randomized algorithm,

based on a simple random walk, running in time (4/3)n for 3-SAT,

slightly faster than the bound obtained by PPSZ without relying

on the uniqueness assumption. Hertli [3] extended the analysis of

PPSZ to show that the bound obtained by PPSZ under the unique-

ness assumption also holds for the general case, i.e., c3 ≤ 1.308.

Hertli [4] also showed that the PPSZ exponent for Unique 3-SAT
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can be improved by about 10
−24

, i.e., by a tiny bit. Hertli’s improve-

ment uses an algorithm by Wahlström [17] that is faster than PPSZ

on short formulas, i.e., formulas with a relatively small number

of clauses. Qin and Watanabe [12] push the ideas of Herli a tiny

bit further and reduce the exponent by about 10
−19

. Hertli’s [4]

improvement over PPSZ works only for k = 3. Hertli mentions

explicitly the problem of “breaking the PPSZ barrier” for k > 3.

Scheder and Steinberger [15] simplified Hertli’s analysis [3] of

the non-unique case, and also showed that small improvements

over the PPSZ algorithm for the unique case imply small(er) im-

provements also for the non-unique case.

For Unique k-SAT, PPSZ was derandomized by Rolf [14]. For

general k-SAT no such result is known but the best known de-

terministic algorithms are still based on derandomizations of the

algorithms mentioned above. All the algorithms presented in this

paper can be easily derandomized.

1.1 Our Contribution - A Biased Version of
PPSZ

We propose a biased version of the PPSZ algorithm using which

noticeably better bounds can be obtained for k-SAT, for every
k ≥ 3. Analyzing the new algorithm is challenging and we are

only making the first steps in this direction. However, the non-

optimal analysis that we currently have already allows us to obtain

a non-infinitesimal improvement for Unique 3-SAT, and the first

improvement over PPSZ for every k > 3, answering Herli’s [4] open

problem. For Unique 3-SATwe reduce the running time from 1.308
n

to 1.307
n
.
1
We believe that our current analysis only scratches the

surface and that our ideas can lead to much larger improvements.

At a high level, the PPSZ algorithm can be described as follows.

Go over the variables of the input formula in random order. For

each variable try to ‘infer’ its value from the values of the variables

already set. If this does not succeed, guess the value of the vari-
able. If a satisfying assignment is not found, repeat. The original

PPSZ algorithm [9] uses bounded resolution to try to infer values

of variables. Hertli [3] noticed that the current analysis of PPSZ

also works when the bounded resolution is replaced by weaker

bounded implication, i.e., an implication by a small subset of the

clauses. Scheder and Steinberger [15] refer to the method used to

infer values of variables as the heuristic used. In any case, if the

heuristic fails to infer the value of a variable, the PPSZ algorithm

guesses the value of this variable by flipping an unbiased coin.

Introducing bias: Even if the heuristic failed to determine the

value of the variable, there might be cases in which one of the values

is more likely than the other value. This variable should then be

guessed with a bias. If the bias is correct, this increases the success
probability of the algorithm. We show that exploitable biases must
occur, in significant amounts, in every input formula.

The remaining question then is how to identify situations in

which bias should be used. As we are aiming for an exponential

time algorithm, we can afford to spend sub-exponential time on

enumerating where the bias is, and what its magnitude.

The biased-PPSZ algorithm that we propose is a meta-algorithm,

parameterized by a partition of the variables into types. Types may

1
With a slight “tongue in cheek”. The base of the exponent of PPSZ is 1.30703 . . ..
Our current base is 1.30699 . . ..

be defined in a fairly general manner. The only requirement is

that there are not too many of them, and that when a variable is

reached during a run of the algorithm, its type can be determined

in sub-exponential time. (The type of a variable usually depends on

the random permutation chosen.) The algorithm enumerates, up to

some precision, the bias to be used for guessing variables of each

type, if they have to be guessed.

To obtain our results, we use a concrete instantiation of the above

algorithm with a fairly simple collection of types. To simplify the

analysis of the algorithm we currently need to use a preliminary

step of choosing a maximal collection D of disjoint clauses. A max-

imal set of disjoint clauses, and bias, were used by Hofmeister et

al. [5], in a different context, to obtain a smarter initialization for

Schöning’s random walk algorithm [16].

Variables that do not appear in any clause of D belong to a

default type. Variables of this type are not guessed with a bias. The

type of a variable x that does appear in a clause C ∈ D depends

on the values of the literals in C that are already known when x is

inspected, and on the (approximate) position ofx in the permutation.

The set D of disjoint clauses serves as a scaffolding that simplifies

the analysis of the algorithm by removing many dependencies. We

believe that further improved results can be obtained without using

such a scaffolding, but the analysis becomes more challenging.

1.2 Our Concrete Results
We use concrete instantiations of the biased-PPSZ algorithm to

obtain three concrete results:

• An improved algorithm for k-SAT for every k ≥ 3. For k > 3,

this is the first improvement over PPSZ, answering an open

problem of Hertli [4]. The aim here is just to show that an

improvement can be obtained for everyk ≥ 3, demonstrating

the power of our techniques. The improvement we obtain is

for Unique k-SAT. By [15], this implies some improvement

also for k-SAT.
• An 1.307

n
algorithm for Unique 3-SAT. The aim here is to

show that noticeable improvements can be obtained even

using our current analysis, which is probably far from being

optimal. This improves over the 1.308
n
running time of the

PPSZ algorithm.

• An 1.305
n
algorithm for Unique NAE-3-SAT. (In NAE-3-SAT,

each clause is required to contain a literal that evaluates to 0,

and a literal that evaluates to 1. Equivalently, NAE-3-SAT is

a sub-problem of 3-SAT in which clauses appear in pairs. For

every clause x ∨y ∨ z there is also a clause x̄ ∨ ȳ ∨ z̄.) As far
as we know, no improved algorithm was known for NAE-3-

SAT before. NAE-3-SAT provides a simple “play ground” for

explaining how bias arises, how it can be exploited, and what

are the difficulties encountered in the analysis of algorithms

that use bias.

1.3 Comparison with Herli’s Improvement
Hertli [4] improved on PPSZ for 3-SAT, but not for k-SAT, for k > 3.

His improvement over PPSZ is tiny (10
−24

). Hertli’s improvement is

obtained using a collection of nice ideas. The analysis of PPSZ relies

crucially on critical clauses. The uniqueness assumption implies that

each variable has at least one critical clause. Herti [4] observes that
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if many variables have more than one critical clause, then the PPSZ

algorithm, without any change, is already faster. He then shows that

a formula in which essentially all variables have only one critical

clause is either short, i.e., has a small number of clauses, or has some

other properties that can be exploited. To deal with short formulae,

Hertli uses an algorithm of Wahlström [17]. Hertli [4] also uses

bias in some settings, but in a way different than ours.

While Hertli [4] shows that the PPSZ algorithm, or at least its

current analysis, is not optimal for k = 3, he does so in a fairly

ad-hoc manner, and his result does not seem to extend to k > 3. It is

also not clear how to use his ideas to obtain substantially improved

algorithms. (Qin and Watanabe [12] tried to push Herli’s ideas to

the limit and only obtained a 10
−19

improvement.)

We view the introduction of the biased-PPSZ algorithm as a new

conceptual idea that could lead to much more significant improve-

ments. Our current analysis of the biased-PPSZ algorithm relies,

among other things, on strengthening some of the observations

that are also used by Hertli [4].

1.4 Organization of the Paper
The rest of the paper is organized as follows. In Section 2 we review

the PPZ and PPSZ algorithms and introduce our biased-PPSZ algo-

rithm. The PPZ and PPSZ algorithms are presented in Sections 2.1

and 2.2. The generic version of the biased-PPSZ algorithm is pre-

sented in Section 2.3 and the concrete version analyzed in this

paper is presented in Section 2.4. In Section 3 we briefly review

the analysis of the PPSZ algorithm. In Section 4 we show how the

high level analysis of PPSZ can be extended into an analysis of

biased-PPSZ, for any system of types. The challenge is to show that

the concrete system of types suggested in Section 2.4 does indeed

yield improved results. In Section 5 we present a simple analysis of

the biased-PPSZ algorithm for Unique NAE-3-SAT. This provides

a simple setting in which our ideas can be explained without too

many complications. In Section 6, we consider cases in which the

analysis of PPSZ can be improved. In Section 7 we show how the

simple analysis for NAE-3-SAT can be extended to a simple analysis

for Unique k-SAT, for every k ≥ 3, obtaining the first improvement

over PPSZ for k > 3. We conclude in Section 8 with some remarks

and open problems.

The tighter analysis for NAE-3-SAT giving a bound of 1.305
n

for Unique NAE-3-SAT, and the 1.307
n
bound for Unique 3-SAT

are deferred to the full version of the paper.

2 THE PPZ, PPSZ AND BIASED-PPSZ
ALGORITHMS

In this section we describe the PPZ [10] and PPSZ [9] algorithms.

Our description of PPSZ follows that of Hertli [3]. We then describe

our biased variant of PPSZ, first as a generic meta algorithm, and

then as a concrete instantiation of it that we analyze in this paper.

2.1 The PPZ Algorithm
The simple idea behind PPZ and PPSZ is the following. Choose a

random permutation of the variables. Go over the variables one

by one in the random order chosen. If the value that should be

assigned to a variable to satisfy the formula can be easily deduced
from the previously assigned values, assuming that these values are

correct, then assign that value to the variable. Otherwise, simply

guess the value of the variable, with equal probabilities to 0 and 1,

and independently of all previous guesses.

The crux of the matter is what is meant by easily deduced. PPZ
uses the following simple idea. Under the assumption that there

is a unique satisfying assignment α , each variable x has a critical
clause Cx , i.e., a clause in which the literal of x is the only literal

assigned the value 1 by α . (If there is no such critical clause, then the
assignment α ′

obtained by flipping the value of x is also a satisfying

assignment.) If the at mostk−1 other variables inCx appear beforex
in the permutation, then the value that should be assigned to x is

easily deduced just by looking at Cx and we say that x is forced.
Otherwise, we say that x is guessed. As the permutation chosen is

random, the probability that x is forced is at least
1

k . (It may be larger

than
1

k as a variable may have more than one critical clause, or a

critical clause of length less than k .) LetG = G(π ) be the number of

guessed variables. The probability that the algorithm succeeds in

finding the satisfying assignment if π was chosen is 2
−G(π )

. Using

Jensen’s inequality we get that the probability that it succeeds with

a random permutation is Eπ [2
−G(π )] ≥ 2

−Eπ [G(π )] ≥ 2
−(1− 1

k )n . By

repeating this process 2
(1− 1

k )n times, we get a constant probability

of success. For k = 3, the expected running time, on a satisfiable

instance is at most 2
2n/3 < 1.588

n
.

2.2 The PPSZ Algorithm
The PPSZ algorithm takes this idea further. For x to be forced, the

other variables in Cx do not have to appear before x in the permu-

tation. It is enough, for example, that they are forced by the values

already assigned. In [9] the authors use bounded resolution to try

to deduce the correct value of x , given the already chosen values.

Hertli [3] uses a weaker approach that seems to yield the same re-

sult. It simply enumerates over all collections of D = D(n) clauses,
where D is a parameter, and checks whether there is such a collec-

tion such that in all its satisfying assignments, x gets the same value.

If such a collection is found, then x is assigned the corresponding

value. Otherwise, x is guessed, with equal probabilities. (If both

values of x are implied, the iteration can be aborted.) The parameter

D = D(n) is chosen such that the test takes sub-exponential time.

We let PD (x) be a procedure that implements the above process,

i.e., checks whether the value of x is implied by some collection

of D clauses. We assume that PD (x) returns either 0 or 1, if this is
an implied value for x , or ? if the value of x is not implied.

Thus, an iteration of the PPSZ algorithm is:

• Pick a random permutation π of the variables.

• For each variable x , according to the order in π :
– If PD (x) , ?, assign the value PD (x) to x .
– Otherwise, assign to x a random value, with equal proba-

bilities.

We do enough iterations of the algorithm until we either find a

satisfying assignment or choose to declare that no satisfying assign-

ment exists. The challenge, then, is to lower bound the probability

that such an iteration finds a satisfying assignment. The parameter

D = D(n) is chosen such that each iteration takes sub-exponential

time.
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2.3 The Biased-PPSZ Algorithm
PPSZ tries to deduce the value of a variable from all values set so

far. If this fails, it ‘gives up’ and guesses the value of this variable

using an unbiased coin. This seems a bit wasteful. Even if the value

of a variable cannot be logically determined, there might be a way

to infer what is more likely to be the value of this variable, and

guess with a bias towards this value.

In an attempt to implement this idea, we partition the variables

to be guessed into disjoint types. We let T be the set of types. We

require that |T | = o(n). We assume that if we reach a variable in a

run of PPSZ and need to guess its value, then we can determine its

type in sub-exponential time.

The goal is to construct a set of types T , that may depend on

the input formula, such that the values of guessed variables of each

type are not distributed uniformly. For example, if we somehow

know that 60% of the guessed variables in some type T ∈ T should

be set to 1, we should clearly guess the value of such variables with

a biased coin, having a probability 0.6 for 1.

At first sight it may not be clear why types that exhibit such

bias should exist. We show below, however, that fairly simple types

that do exhibit some bias could be defined. We also believe that our

current ideas only scratch the surface.

A type is useful even if we do not know the bias it induces, as

we can enumerate (or guess) its bias, up to some precision. More

specifically, we choose some value e(n) = o(n), and try all biases of

the form i/e(n), for i = 1, . . . , e(n) − 1. (We never guess with a bias

of 0 or 1.) An iteration of the generic biased-PPSZ algorithm is thus:

• Pick a random order π for the variables.

• For every choice of values βT ∈ 1

e(n) {1, 2, . . . , e(n) − 1} for

T ∈ T , do:

– Go over the variables according to π , and for each variable:
∗ If PD (x) , ?, assign the value PD (x) to x .
∗ Otherwise:

· Identify the type T of x .
· Guess the value of x with probability βT for 1.

We choose e(n) as a monotonically increasing function such that

|T | log e(n) ∈ o(n) and e(n) ∈ ω(1). Thus, the enumeration takes

sub-exponential time. Note that for any choice of T , the proposed

algorithm is at least as good as PPSZ, as if we let βT =
1

2
, for every

T ∈ T , we simply run regular PPSZ.

2.4 Biased-PPSZ with Types Based on a
Maximal Set of Disjoint Clauses

We next describe a concrete instantiation of the generic algorithm

for k-SAT. The algorithm starts by constructing a maximal setD of

disjoint clauses taken from the input formula. (Clauses are disjoint

if they do not share variables.) Such a maximal set can be easily

constructed greedily. (As we pointed out, we believe that using such

a set of disjoint clauses is not the optimal thing to do. But, the set of

disjoint clauses serves as a scaffolding that simplifies the analysis

of the algorithm by removing many of the dependencies involved.)

We note that if D is small enough, we can get an improved algo-

rithm by enumerating over the values of all the variables appearing

inD. We are then left with a (k −1)-SAT formula that can be solved

much more efficiently than a k-SAT formula. For k = 3 we are left

with a 2-SAT formula that can be solved in polynomial time. We

may thus assume that D is relatively large, so a significant fraction

of the variables of the formula appear in the clauses of D.

The idea of using a maximal set of disjoint clauses appears, in

a different context, in Hofmeister et al. [5] where it is used, along

with bias, to obtain a smarter initialization for Schöning’s random

walk algorithm [16].

As a ‘warm up’, we begin by discussing the NAE-3-SAT sub-

problem of 3-SAT in which identifying types that yield significant

bias is especially easy. A 3-SAT formula φ is a NAE-3-SAT formula

if the clauses in φ appear in pairs, for every clause x ∨ y ∨ z there
is also a clause x̄ ∨ ȳ ∨ z̄. The weight of a clause is defined to be

the number of literals in it that evaluate to 1 under the unique

satisfying assignment. (To get a unique satisfying assignment for a

NAE-3-SAT formula, we assume that the first variable is set to 0.) In

a NAE-3-SAT formula, all clauses are of weight 1 or 2. (In a 3-SAT

formula, clauses can also be of weight 3.) Thus, if the variables of

a clause appear in random order, then with a probability of
2

3
, the

value of the second literal is different from the value of the first

literal. Thus, if we have to guess the value of the second variable in

a clause, when the value of the first variable is already known, it

seems to be a good idea to guess it with a bias towards the opposite

value of the first literal.

This suggests, as a first attempt, a very simple type system T =

{T⊥,T0,T1}, where x ∈ Ta , for a = 0, 1, if x appears in a disjoint

clause Cx ∈ D and when x has to be guessed, the value of exactly

one of the other literals in Cx is known, and has the value ā, if x
is unnegated in Cx , or a, if x is negated. The type T⊥ contains all

the remaining variables. Note that the type of a variable depends

on the permutation π . Type Ta , for a = 0, 1, contains variables that

are to be guessed with a bias towards a, while type T⊥ contains

variables that are to be guessed without bias. (We will shortly refine

this type system.)

A problem we face while trying to rigorously analyze the pro-

posed algorithm for NAE-3-SAT is that while it is true that the

second literal to appear in a clause has a probability of
2

3
of having

a different value than the first, it is not clear that this also holds

conditioned on the second literal being guessed. Can the adversary
find a formula in which this conditional probability is much smaller

than
2

3
, possibly even

1

2
, in which case we loose all the advantage

we are hoping to gain?

With a slight refinement of these types, the only way the adver-

sary can do this is by increasing substantially the forcing proba-

bilities, to levels beyond that promised by the analysis of PPSZ, in

which case we gain even without using biased guesses.

The refinement needed takes into account the position, or the

time, of a variable x in the permutation π . As we shall see in Sec-

tion 3, it is convenient to assume that the permutation π used

by the algorithm is obtained by drawing for each variable x an

independent uniformly distributed variable σ (x) from [0, 1]. The

permutation π is then obtained by sorting these times.

A variable appearing at time p, where p is small, has a small

probability of being forced. (The formal proof of this intuitive state-

ment is given in Section 3.) Thus, if such a variable is the second to

appear in one of the disjoint clauses, and is guessed, we still expect

the probability that its literal has value different from the first literal
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to be close to
2

3
. As p grows, this probability might become smaller.

We thus refine the types by taking into account the time in which

each variable arrives. For some parameter b(n), we let Ta,i be the

set of variables x belonging toTa such that σ (x) ∈
[

i
b(n) ,

i+1

b(n)

)
, for

i = 0, 1, . . . ,b(n) − 1. The type T⊥ remains unchanged. Variables

of Ta,i will still be guessed with a bias towards a, but the bias will
decrease with i . In Section 5 we show, by focusing on small values

of p, that this gives some improvement for NAE-3-SAT. A refined

analysis for NAE-3-SAT, that gives a much larger improvement for

NAE-3-SAT is given in the full version of the paper.

With the insight gained from NAE-3-SAT, we now propose a

concrete type system for a k-SAT formulas. We again rely on a

maximal collection D of disjoint clauses of the input formula φ.
The type of variable x of φ that appears in a clauseCx ∈ D depends

on three factors:

(1) prefix – the sequence of values already known in Cx .
(2) structure – the set of clauses in φ containing only the vari-

ables appearing in Cx .
(3) time – A discretized version of σ (x), i.e., ⌊σ (x)b(n)⌋.

In NAE-3-SAT we only considered prefixes of size 1. In k-SAT we

consider prefixes of all sizes, i.e., 0, 1, . . . ,k − 1. We next explain the

concept of structure. We consider, for concreteness, the case k = 3.

We may assume, without loss of generality, that all the variables

in the clauses of D appear unnegated. Thus, the clause Cx is of

the form x ∨ y ∨ z for some y, z. It is possible that φ contains other

clauses on the same three variables x,y, z. (In NAE-3-SAT, this is

always the case.) If, for example, φ contains the clauses x ∨ y ∨ z,
x ∨ ȳ ∨ z and x̄ ∨ ȳ ∨ z, and no other clauses on x,y, z, we say

that the structure of x is {000, 010, 110}. (As we are allowed to

swap y and z, the structures {000, 010, 110} and {000, 001, 101} are

considered the same.) As an illustration, note that if the structure

of x is {000, 011, 101, 110}, then the four clauses on x,y, z imply

the linear equation x ⊕ y ⊕ z = 1. If x has this structure, and has

a prefix of length 2, then x is forced. It is, of course, possible that

all variables appearing in disjoint clauses would have the trivial

structure {000}.

We still have a separate type T⊥ for all the variables that do not

appear in the disjoint clauses.

The concrete algorithm, with a proper choice of the parameter

0 < γ < 1, is then:

(1) Greedily build a maximal set D of disjoint k-clauses of the
input formula φ.

(2) If |D| ≤ γn

(a) Enumerate over the (2k − 1) |D |
possible assignments to

the variables appearing in D.

(b) For each assignment (recursively) solve the (k − 1)-SAT

instance left after assigning the values to the variables

of D.

(3) If |D| > γn
(a) Define T based on the prefix, structure and time of each

variable, as defined above.

(b) Run the biased-PPSZ algorithm with T .

We analyze this algorithm in Section 5.

3 ANALYSIS OF PPSZ
In this section we review the analysis of the PPSZ algorithm. The

results in this section are not new, but essential for understanding

the analyses of various versions of the biased-PPSZ algorithm. Our

presentation is influenced by that of Hertli [3]. For concreteness,

we focus on the case k = 3. The analysis extends easily to k > 3.

(See [3, 9] for the details.)

A critical clause of a variable x is a clause in which the literal

of x is the only literal in the clause that gets the value 1 under the

unique satisfying assignment. The following lemma generalizes the

claim that each variable has a critical clause.

Lemma 3.1. Let φ be a k-SAT formula with a unique satisfying
assignmentα . For a subset S ⊂ V of variables, letαS be the assignment
defined by αS (x) = α(x), for every x ∈ S , and αS (x) = α(x), for every
x ∈ V \S . (In other words, αS is obtained from α by flipping the value
of the variables in S .) For every S , ∅, there exists a clause in the
formula in which all the variables in the clause whose literals are
assigned the value 1 by α are from S , and all variables in the clause
whose literals are assigned the value 0 byα are fromV \S . In particular,
this clause must contain a literal of a variable from S .

Proof. As αS , α , the formula is not satisfied by the assign-

ment αS . Thus, there must exist a clause which is satisfied by α
but not by αS . As all literals in this clause are assigned the value 0

by αS , it follows that all variables whose literals are assigned 1 by α
belong to S , and all variables whose literals are assigned 0 by α
must belong to V \ S . �

To continue with the analysis, we think of the random permu-

tation π as the permutation defined by picking an independent

uniform random time σ (x) ∈ [0, 1] for each variable x , and sorting

the variables according to these values.

Conditioning on σ (x) = p (for some p ∈ [0, 1]), our current goal

is to lower bound the probability that x is forced in an iteration of

the PPSZ algorithm. (A variable is forced if we can deduce its value

from some subset of D clauses.) We denote such a lower bound

that holds for every variable by q(p) = q(3)(p). (We are considering

here 3-SAT formulas. As mentioned, the analysis can be extended

to k ≥ 3. Thus, a lower bound on the probability of each variable

being forced, without conditioning on σ (x), is
∫

1

0
q(p)dp. As each

variable x has a critical clauseCx , it follows that q(p) ≥ p2
, as p2

is

the probability that the other variables inCx appear before x in the

permutation. (This is basically the analysis of the PPZ algorithm

which essentially uses D = 1.) However, it is clear that this bound

is far from being tight when D > 1. Intuitively, we would want to

claim that q(p) ≥ (p + (1−p)q(p))2, as we ‘interpret’ p + (1−p)q(p)
as the probability that a given variable other than x in Cx either

appears before x , or is forced at time p. (This is intuition, not a

rigorous claim.) This would imply that q(p) ≥ (
p

1−p )
2
for 0 ≤ p ≤ 1

2
,

and q(p) = 1 for p > 1

2
. The problem with this naïve argument is

the dependency between the events. However, as shown in [3, 9],

this claim is true, up to lower order terms, as we shall also show

below. As our main purpose here is to present the ideas behind

the PPSZ algorithm and its analysis in a simple manner, we ignore

these lower order terms. (For the completely rigorous analysis, see
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[3, 9].) Thus, the probability of each variable being forced is at least

µ :=

∫
1

0

q(p)dp =

∫ 1

2

0

(
p

1 − p

)
2

dp +
1

2

= 2 − 2 ln 2 ≈ 0.6137 .

This gives us the following theorem,

Theorem 3.2 ([9]). The success probability of an iteration of PPSZ
on a uniquely satisfied 3-SAT formula is at least 2

−(1−µ+o(1))n ≥

1.308
−n .

Proof. Denote by G = G(π ) the number of variables that have

to be guessed in an iteration of PPSZ with a permutation π , as-
suming that the value of each guessed variable is guessed cor-

rectly according to the satisfying assignment. The success proba-

bility of such iteration is exactly 2
−G(π )

. Using Jensen’s inequal-

ity and the linearity of expectation, as we did before, we have

Eπ [2
−G(π )] ≥ 2

Eπ [−G(π )] ≥ 2
−(1−µ+o(1))n

. �

To justify the claim q(p) ≥ (p + (1 − p)q(p))2 (up to lower order

terms), PPSZ [9] define for each variable x in φ a tree Tx called a

critical clause tree of x .

Definition 3.3 (Critical clause trees [9]). A critical clause tree Tx
of a variable x in φ is defined as a binary tree generated by the

following process. Every node in the tree has both a variable and a

clause of φ corresponding to it.

• Begin with a root node r corresponding to the variable x .
(Its corresponding clause is yet to be assigned.)

• As long as there exists a leafv of the tree without an assigned

clause, do:

– Let S be the set of variables on the path from r to v , in-
cluding r and v .

– Let C be a clause of φ not satisfied by the assignment αS .
– Assign C to v and extend the tree by adding to v children

corresponding to the variables ofV (C)\S , if such variables
exist, where V (C) are the variables appearing in C .

It is clear from the above definition that two nodes labeled by

the same variable cannot appear on the same path from the root of

the tree. Note also that if V (C) ⊆ S , where C is the clause chosen

at v , then v remains a leaf of Tx . It follows that Tx is always finite.

Theorem 3.4 ([9]). Let φ be a 3-SAT formula with a unique satis-
fying assignment. Let x be a variable and let Tx be a critical clause
tree for x . Let S be a subset of variables and let R be the set of clauses
corresponding to nodes of Tx reachable from the root after all nodes
labeled by variables of S have been removed from the tree. If the
values of all the variables of S are fixed to their values in the unique
assignment, then the correct value of x is implied by the clauses of R.

Proof. Let α be the unique satisfying assignment of φ. Let φR
denote the subformula of φ composed only of the clauses of R. We

prove that φR has no satisfying assignment α ′
in which α ′(x) ,

α(x), while α ′(y) = α(y), for every y ∈ S . Assume, by contradiction

that there is such α ′
.

Suppose that r = v0,v1, . . . ,vk is a path in Tx and let xi be the
variable corresponding to vi . We claim that if α ′(xi ) , α(xi ), for
i = 0, 1, . . . ,k , then either α ′

is not a satisfying assignment of φR ,
orvk must have a childvk+1

inTx , labeled by a variable xk+1
, such

that α ′(xk+1
) , α(xk+1

), i.e., the path can be extended. Indeed, letC

be the clause corresponding tovk . By the definition of critical clause
trees, C is not satisfied by the assignment α ′′

in which α ′′(xi ) ,
α(xi ), for i = 0, 1, . . . ,k , while α ′′(y) = α(y) for all other variables.
Note that α ′

and α ′′
agree on x0, x1, . . . , xk . If all the variables

appearing in C are from {x0, x1, . . . , xk }, we get that α
′
does not

satisfy C , and hence is not a satisfying assignment of φR . If C
contains other variables, then to satisfy C , the assignment α ′

must

differ from α ′′
, and hence from α , in at least one of these variables.

The node corresponding to this variable is the required child vk+1

of vk .
The root itself is such a path. We iteratively extend this path

until we either conclude that α ′
does not satisfy φR , or until we

reach a node whose corresponding variable is from S , in which case

we again reach a contradiction, as we assumed that α ′(y) = α(y)
for every y ∈ S . �

We now present a probabilistic model in which the relation

q(p) ≥ (p + (1 − p)q(p))2 is rigourous.

Lemma 3.5. Let T be an infinite binary tree in which each node
is labeled by a variable. Each variable is assigned an independent
and uniformly distributed random number from [0, 1]. For a certain
0 < p < 1, all nodes, other than the root, whose variables are assigned
values less than p, and all their descendents, are removed from the
tree. Let q(p) be the probability that the remaining tree is finite. Then,
q(p) ≥ (p + (1 − p)q(p))2, and as a consequence q(p) ≥

( p
1−p

)
2, for

0 ≤ p ≤ 1

2
, and q(p) = 1, for 1

2
≤ p ≤ 1. These inequalities are tight

if and only if all the variables labeling the nodes are distinct.

Proof. Assume, at first, that all the variables are distinct. We

then have q(p) = (p + (1−p)q(p))2, as the remaining tree is finite if

and only if each child of the root is either cut off, with probability p,
or is not cut off, but has finite remaining subtree, which happens

with probability (1−p)q(p). Note that all events are now completely

independent.

We next remove the assumption that all the variables are distinct.

Let Iv be the event that the variable of a node v is assigned a value

less than p, and that v is thus removed from the tree. The event of

having a finite remaining tree is monotone in the events {Iv }. Thus,
by the FKG inequality (see, e.g., Alon and Spencer [1]), dependencies

among the events {Iv } only increase the probability of having a

finite remaining tree. (It is not difficult to check that the special

case of the FKG inequality that we are using holds in our case even

though we are considering an infinite number of events.) �

Let qD (p) be the probability that the tree has a D-frontier in the

probabilistic model of Lemma 3.5, i.e., that the remaining tree is

of size at most D. By definition, qD (p) → q(p), as D tends to ∞.

In other words, |qD (p) − q(p)| converges to zero as D → ∞. We

note that |qD (p) − q(p)| is defined independently of any specific

instance formula or input size. In particular, if D = D(n) = ωn (1) is
any increasing function of n, then qD (p) = q(p) − on (1).

We now get back to critical clause trees.

Theorem 3.6. Let Tx be a critical clause tree of some variable x .
Then, the probability that Tx has a D-frontier at time p is at least
qD (p). Thus, if D = D(n) = ωn (1), this probability is q(p) − on (1).
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Proof. The probabilistic model considered here is very similar

to the one considered in Lemma 3.5. The only differences are thatTx
is a finite tree and that some of its nodesmay only have a single child.

This clearly increases the probability of having a D-frontier. �

Corollary 3.7. The probability of each variable to be forced is
at least µ − on (1), where µ := 2 − 2 ln 2 ≈ 0.6137056, assuming
D = ωn (1).

Proof. A variable is forced if and only if when we reach it in

the permutation there is already a frontier of size ≤ D in its critical

clause tree. This probability tends to µ =
∫

1

0
q(p)dp = 2 − 2 ln 2 as

D → ∞. �

As shown in [9], similar analysis works for general k-SAT. There,
instead of binary trees we consider (k − 1)-ary critical clause trees.

We denote by q(k )(p) the probability of such an infinite (k − 1)-

ary tree to have a finite frontier at time p, in a similar way to the

definition of q(p) = q(3)(p). We let Sk = 1 −
∫

1

0
q(k )(p)dp. The

running time of PPSZ for k-SAT formulas is 2
(Sk+o(1))n by a very

similar analysis. In the full version of the paper we show that

pk−1 ≤ q(k)(p) ≤

(
p

1−p

)k−1

, which is a rough estimation that

suffices for our purpose of providing a slightly improved bound for

k-SAT.

4 HIGH LEVEL ANALYSIS OF BIASED-PPSZ
The analysis of PPSZ extends naturally to the generic biased-PPSZ

algorithm as follows. Let βT be the bias used for type T . For every
permutation π of the variables and each type T ∈ T , let GT (π )

be the number of guessed variables of type T . Also, let G
(0)

T (π )

and G
(1)

T (π ) be the number of guessed variables of type T that

are 0 and 1, respectively, in the unique satisfying assignment. Thus,

GT (π ) = G
(0)

T (π ) +G
(1)

T (π ). The probability that a single run of the

algorithm finds the unique satisfying assignment is:

Eπ

[ ∏
T ∈T

β
G (1)

T (π )
T (1 − βT )

G (0)

T (π )

]
≥

∏
T ∈T

β
Eπ [G

(1)

T (π )]
T (1 − βT )

Eπ [G
(0)

T (π )]

= 2

(∑
T ∈T Eπ [G

(1)

T (π )] log(βT )+Eπ [G
(0)

T (π )] log(1−βT )
)
,

where we used Jensen’s inequality, and the log’s are base 2.

Define GT = Eπ [GT (π )] and β∗T = Eπ [G
(1)

T (π )]/GT . We can

then rewrite the lower bound for the success probability as:

2

( ∑
T ∈T

GT ·
(
β∗T log(βT ) + (1 − β∗T ) log (1 − βT )

))
Note that the function f (x) = β∗T log(x) + (1 − β∗T ) log(1 − x) is
maximized at x = β∗T . The best choice of βT for the algorithm is

therefore βT = β∗T . Since β∗T is unknown, we approximate it by

enumerating over many values of βT . This ensures that for some

choice of βT , where βT , 0, 1, we have |β∗T − βT | ≤
1

e(n) and thus:

β∗T log(βT ) + (1 − β∗T ) log (1 − βT )

≥ β∗T log(β∗T ) + (1 − β∗T ) log(1 − β∗T ) −O( 1

e(n) )

= −H (β∗T ) −O( 1

e(n) ) ,

where H (x) = −x logx − (1 − x) log(1 − x) is the binary entropy

function. We thus get that:∑
T ∈T

GT · (β∗T log(βT ) + (1 − β∗T ) log (1 − βT ))

≥ −
∑
T ∈T

GT ·

(
H (β∗T ) +O(

1

e(n) )
)

≥ −
∑
T ∈T

GT · H (β∗T ) − o(n) ,

where the second inequality uses the fact that e(n) ∈ ω(1) and∑
T ∈T GT ≤ n. These are summarized by the following lemma.

Lemma 4.1. For some choice of βT ∈ 1

e(n) {1, 2, . . . , e(n)−1} for all
T ∈ T , each run of the generic algorithm finds the unique satisfying
assignment with probability at least 2

−(
∑
T ∈T GT ·H (β ∗

T ))−o(n).

The PPSZ algorithm is essentially the biased-PPSZ algorithm

with only one typeT , where βT =
1

2
, i.e., no bias is used. In this case

G = GT = Eπ [GT (π )] is exactly the expected number of guessed

variables.

To show that the biased-PPSZ improves on the standard PPSZ

algorithm we need to define a type system for which we can show

a gap between β∗T and 1/2 for a significant fraction of the guessed

variables.

5 SIMPLE ANALYSIS FOR NAE-3-SAT
Consider the following simple and naïve algorithm. Construct a

maximal set D of disjoint clauses. For simplicity assume that all

variables in the clauses of D are unnegated. We let V (D) be the

set of variables that appear in the clauses of D. Also, recall that

we assume that the formula has a unique satisfying assignment

denoted by α .
Let t be a threshold to be chosen later. The algorithm is identical

to PPSZ, except that if a variable x ∈ V (D), i.e., a variable (whose

positive literal is) contained in a clause Cx ∈ D, appears before

time t , is the second variable to appear fromCx , and it is not forced,
then assign probability 2/3 to the value that gives it a value different

from the value of the variable already known inCx , and probability
1/3 to the other value.

For a permutation π , let G(π ) be the total number of variables

guessed in π , with or without bias, let G+(π ) be the number of

variables guessed with a correct
2

3
:

1

3
bias, and let G−(π ) be the

number of variables guessed with an incorrect such bias. For brevity,

we sometimes omit π and write G instead of G(π ). The success

probability of the algorithm is

Eπ

[(
2

3

)G+ (
1

3

)G− (
1

2

)G−G+−G− ]
= Eπ

[(
4

3

)G+ (
2

3

)G− (
1

2

)G ]
= Eπ

[(
1

2

)G−(lg 4

3
)G++(lg 3

2
)G− ]

≥

(
1

2

)Eπ [G−(lg 4

3
)G++(lg 3

2
)G−]

,
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where the last inequality follows from Jensen’s inequality.

For a fixed variable x ∈ V (D), let дk (p), for k = 1, 2, 3, be the

probability that x is the k-th variable to arrive in its clause, and

that it is guessed, given that σ (x) = p. Note that this is the actual
probability for the specific variable x . For brevity we omit x from

the notation, but these values are usually different for different

variables. Also let д(p) be the probability that x is guessed, given

that σ (x) = p. Clearly,

д(p) = д1(p) + д2(p) + д3(p) .

We know that д(p) ≤ д̄(p), where д̄(p) = 1 −

(
p

1−p

)
2

. For small

values of p we have д̄(p) ≃ 1 − p2 − . . . Furthermore, let д+
2
(p) be

the probability that x is the second variable to appear in its clause,

that the value of x differs from the value of the variable in Cx that

already appeared, and that x is guessed, given that σ (x) = p. Let
д−

2
(p) be the analogous probability when the value of x is required

to be equal to the variable of Cx that already appeared. Note that

д+
2
(p) and д−

2
(p) are the probabilities that x is guessed with the

correct, respectively incorrect, bias, given that σ (x) = p. Clearly
д2(p) = д

+
2
(p) + д−

2
(p).

The contribution of a variable x ∈ V (D) to

Eπ
[
G − (lg 4

3
)G+ + (lg 3

2
)G−

]
is∫ t

0

(
д(p) − (lg 4

3
)д+

2
(p) + (lg 3

2
)д−

2
(p)

)
dp +

∫
1

t
д(p)dp .

We concentrate on the first integral, as the second one is identical

to the integral appearing in the standard analysis of PPSZ. We let

γ x (p) = д(p) − (lg 4

3
)д+

2
(p) + (lg 3

2
)д−

2
(p) .

Our goal is to boundγ x (p) = γ (p), showing that it is smaller than

д(p), for 0 ≤ p ≤ t , thus getting an improvement over PPSZ. Recall

that all these values are defined for a specific variable x ∈ V (D).

Let x ∈ V (D) and let y, z be the other variables appearing in Cx .
We distinguish between two cases. The first is that α(x) , α(y) =
α(z), i.e., x is the distinct variable in its clause. The second is that

α(x) = α(y) , α(z), i.e., x is the non-distinct variable in its clause.

(We assume, without loss of generality that σ (x) , σ (z).
Assume at first that α(x) , α(y) = α(z). In this case д+

2
(p) =

д2(p) and д
−
2
(p) = 0. Our goal is to upper bound

γ1(p) = д(p) − (lg 4

3
)д2(p) ,

where we let γ1(p) = γ x (p) where x is the distinct variable in its

clause. The “danger” is that д2(p) may be tiny, or even 0, in which

case we do not get a chance to guess with the correct bias, and do

not seem to win over PPSZ. We show that this can only happen if

д(p) < д̄(p), in which case we also win.

Recall that д(p) = д1(p)+д2(p)+д3(p). Note that д1(p) ≤ (1−p)2

andд3(p) ≤ p2
, as these are the probabilities that x appears first and

third, respectively, given that σ (x) = p, without requiring that x is

guessed. Thus,

д2(p) ≥ д(p) − (1 − p)2 − p2 = д(p) − (1 − 2p(1 − p)) ,

and hence

γ1(p) ≤ д(p) − (lg 4

3
)(д(p) − (1 − 2p(1 − p)))

≤ д̄(p) − (lg 4

3
)(д̄(p) − (1 − 2p(1 − p)))

The last inequality follows from the fact that the coefficient of д(p)
in the first expression is 1 − lg

4

3
= lg

3

2
> 0, i.e., the expression

is increasing with д(p), and from the fact that д(p) ≤ д̄(p). We

immediately see that γ1(p) ≤ д̄(p) when 1− 2p(1−p) ≤ д̄(p), which
holds for 0 ≤ p < 0.41025.

Consider now the case α(x) = α(y) , α(z). Our goal is to bound

γ2(p) = д(p) − (lg 4

3
)д+

2
(p) + (lg 3

2
)д−

2
(p) ,

whereγ2(p) = γ
x (p)when x is the non-distinct variable in its clause.

Recall that д(p) = д1(p)+д
+
2
(p)+д−

2
(p)+д3(p). As д1(p) ≤ (1−p)2,

д−
2
(p) ≤ p(1 − p) and д3(p) ≤ p2

, we get that

д+
2
(p) ≥ д(p) − (1 − p)2 − p(1 − p) − p2 = д(p) − (1 − p(1 − p)) .

Hence,

γ2(p) = д(p) − (lg 4

3
)д+

2
(p) + (lg 3

2
)д−

2
(p)

≤ д(p) − (lg 4

3
)(д(p) − (1 − p(1 − p))) + (lg 3

2
)p(1 − p) .

≤ д̄(p) − (lg 4

3
)(д̄(p) − (1 − p(1 − p))) + (lg 3

2
)p(1 − p) ,

where the last inequality follows as in the previous case. Unfor-

tunarely, this time it is not true that γ2(p) ≤ д̄(p).
Let x,y, z be the variables appearing in a clause ofD, and assume

thatx is the distinct variable. Letγx ,y,z (p) =
1

3
(γ x (p)+γy (p)+γz (p)).

By the two bounds above, we get that

γx ,y,z (p) ≤ 1

3
γ1(p) +

2

3
γ2(p)

= 1

3

(
д̄(p) − (lg 4

3
)(д̄(p) − (1 − 2p(1 − p)))

)
+ 2

3

(
д̄(p) − (lg 4

3
)(д̄(p) − (1 − p(1 − p))) + (lg 3

2
)p(1 − p)

)
= д̄(p) − (lg 4

3
)

(
д̄(p) −

(
1 − 4

3

(
1 − 1

2

lg
3

2

lg
4

3

)
p(1 − p)

))
= д̄(p) − (lg 4

3
) (д̄(p) − (1 − η p(1 − p))) ,

where η = 4

3

(
1 − 1

2

lg
3

2

lg
4

3

)
= 0.393719 . . . The important thing is

that η > 0, so that д̄(p) ≥ 1−ηp(1−p) for small enough values of p.
We let t be the largest p for which the inequality holds. It turns out

that t = 0.2009 . . ., i.e., the inequality holds even for values of p
that are not that small.

The gain over PPSZ for the average of x,y, z, for a given p, is:

δ = (lg 4

3
)

∫ t

0

(д̄(p) − (1 − ηp(1 − p)))dp ≃ 0.00129151

Let 3|D| = cn, i.e., c is the fraction of variables that appear in D.

The gain in the exponent over PPSZ is then cδ . If 6
cn/3 < 1.305

n
,

then we can enumerate over all the variables of D and solve the

remaining 2-SAT instance in polynomial time. Thus, wemay assume

that c ≥ 0.445712, and then cδ ≥ 0.00057.

6 CASES IN WHICH PPSZ BEHAVES BETTER
We begin by describing a few cases in which the PPSZ algorithm,

without any changes, behaves better than promised by the standard

analysis. These observations are used in the analysis of the biased-

PPSZ algorithm presented in Section 7. We again focus on the case

k = 3, but all the results extend easily to k > 3. Omitted proofs

appear in the full verison of the paper.

The first scenario in which we prove that PPSZ behaves bet-

ter is when there are many variables with more than one critical
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clause. This is fairly intuitive, as since a variable with more than

one critical clause is more likely to be forced. The easiest way of

seeing it is the following. Suppose that x has two critical clauses,

one containing literals of variables y1, z1 and the other literals of

variables y2, z2. Note that y1, z1,y2, z2 are not necessarily distinct,

but |{y1, z1,y2, z2}| ≥ 3. The probability of x to be forced at time p
is at least

Pr(y1,z1 appear before x or y2,z2 appear before x)

= Pr(y1,z1 appear before x) + Pr(y2,z2 appear before x)

− Pr(y1,z1,y2,z2 appear before x)

≥ 2p2 − p3

which is larger than q(p) = (
p

1−p )
2
when p is small enough. A

similar observation was made in [4]. The following lemm gives a

stronger bound.

Lemma 6.1. Let x be a variable with more than one critical clause,
then Pr (x is forced | σ (x) = p) ≥

2−p
1−p · p2 − p3. In particular, the

probability that x is forced is at least µ + ε1 for ε1 > 0.0035.

The proof of Lemma 6.1, which appears in the full version of the

paper, looks more deeply into the structure of the critical clause

tree of x and its relation to the second critical clause of x .
A second case we study is a case in which variables have critical

clauses that are related in the sense that y appears in a critical

clause of x and vice versa. In that case, we show that we also gain

in the forcing probability of at least one of the variables x and y.
Intuitively, either x has a second critical clause and then Lemma 6.1

is applicable, or every critical clause tree of x contains y as a child

of the root, as it appears in its unique critical clause. Assuming

that y does not have a second critical clause as well, we show that

the child of the root corresponding to y in any critical clause tree

of x must have at most one child.

Lemma 6.2. Let x,y, z1, z2 be variables such that x has a critical
clause containing literals of y and z1, and y has a critical clause
containing literals of x and z2. Then, either x or y has a probability
of at least µ + ε2 to be forced, for ε2 > 0.0035.

Lemma 6.2 is used in the rest of the paper in order to restrict the

dependance between the events of different variables being forced.

7 ANALYSIS FOR k-SAT
The goal of this section is to give a simple proof that the algorithm

of Section 2.4 gives a small improvement for Unique k-SAT, for
every k ≥ 3. Using the results of [15], this implies an improvement

over PPSZ for k-SAT, for every k ≥ 3, also without the uniqueness

assumption. The focus is on making the proof as simple as possible,

so no attempt is made to optimize constants. Our goal, is therefore,

to prove the following theorem. Recall that Sk = 1−
∫

1

0
q(k )(p)dp is

an upper on the probability that a variable is guessed by the PPSZ

algorithm.

Theorem 7.1. For every k ≥ 3 there exists εk > 0 such that
biased-PPSZ solves Unique k-SAT instances in time 2

(Sk−εk )n .

In Section 5 we presented a simple proof that biased-PPSZ is

faster than PPSZ on NAE-3-SAT instances. Let us review the prop-

erties of NAE-3-SAT formulas that made the analysis there work.

For i, j ∈ {0, 1}, denote by pi j the probability that if we uniformly

draw a clause C from D, then the values of the literals of the first

two variables of C to appear, in the order of arrival, are i and j. Let
Kt := (3t2 − 2t3)|D|. In expectation we have pi jKt clauses from D

such that at least two of their variables appear before time t and
have ordered literal values i and j. The number of forced variables

that appear before time t , according to the standard analysis, is

o(Kt ) as t → 0. Thus, for a small enough t , we expect to have

about pi jKt clauses fromD such that at least two of their variables

appear before time t , have ordered literal values i and j, and these
two variables are guessed. If this is the case, we should guess the

values of the first two variables in clauses ofD that contain at least

two variables appearing before time t , according to the distribu-

tion (p00,p01,p10,p11). The probability of being correct in all these

guesses is about

p
p00Kt
00

p
p01Kt
01

p
p10Kt
10

p
p11Kt
11

= 2
−H (p00,p01,p10,p11)Kt ,

whereH stands for the entropy of the distribution. IfH (p00,p01,p10,

p11) < 2, the same type of analysis yields an improvement over

PPSZ also for such a 3-SAT formula.

For general k , we can use the same intuitive argument: the prob-

ability that a variable that appears before time t is forced, according

to the standard analysis, is Θ(tk−1). Thus, the probability that a

variable appears before time t and is forced is Θ(tk ). On the other

hand, the probability that at least k − 1 out of the k variables of a

clause appear before time t is Θ(tk−1). Thus, if we expect a bias on

the first k − 1 literals of clauses from D, then for a small enough t
we get an improvement using biased guesses, as the number of

forced variables is too small to interfere.

More precisely, for a given input formula φ and a set of disjoint

clauses D, let av, for every v ∈ {0, 1}k−1
, be the probability that

if we choose a random clause from D and randomly permute the

order of its literals, then the values assigned to the first k −1 literals

of the clause by the unique satisfying assignment of φ are those

of v. We are now ready to prove the following theorem.

Theorem 7.2. For every k and ε > 0, there exists δ > 0 such that
if H ({av}v∈{0,1}k−1 ) ≤ (k − 1) − ε , then biased-PPSZ runs in time

2
Skn−δ |D | .

Proof. Let t = t(ε,k) be a parameter to be chosen later. We

analyze the success probability of the following algorithm (given a

set D of disjoint clauses):

• Enumerate the values of {av}v∈{0,1}k−1 , up to some on (1)

error. (This takes subexponential time.)

– Pick a random time σ (x) for each variable x . Use the times

to define a random permutation π .
– For each clause C ∈ D:

∗ Let x1, x2, . . . , xk the variables in C such that σ (x1) <

σ (x2) < . . . < σ (xk ).
∗ If σ (xk−1

) < t , guess the values of x1, x2, . . . , xk−1
ac-

cording to the distribution {av}v∈{0,1}k−1 .

– Run a standard iteration of PPSZ, from the beginning of π .
Do not guess variables whose values are already assigned.

This algorithm is a restricted version of the algorithm presented

in Section 2.4. Thus, any bound we prove for this algorithm also

holds for the one of Section 2.4.
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For a given σ , let Kv
t (σ ) be the number of clauses in D such that

at least k − 1 of their variables appear before time t with ordered

literal values corresponding to v. Let V <t (σ ) be the number of

variables covered by D that appear before time t . Let G>t (σ ) be
the number of variables covered by D that appear after time t and
are guessed. Let R(σ ) be the number of variables not covered by D

that are guessed. We let Kv
t , V

<t
, G>t

and R be the corresponding

random variables when σ is random.

The success probability of the algorithm, if σ is chosen, is at least

©«
∏

v∈{0,1}k−1

a
Kv
t (σ )

v
ª®¬
(

1

2

)V <t (σ )−(k−1)(
∑

v Kv
t (σ ))+G

>t (σ )+R(σ )

since the probability of fixing correctly the values of each (k − 1)-

tuple of variables counted in Kv
t (σ ) is av, the probability of fixing

correctly the value of any other variable (not necessarily guessed)

appearing before time t (and covered by D) is at least
1

2
, and the

probability of fixing correctly any other guessed variable is
1

2
.

The success probability is lower bounded by the expectation of

this expression over σ . Using Jensen’s inequality we have

E

[(∏
v

a
Kv
t

v

) (
1

2

)V <t−(k−1)(
∑

v Kv
t )+G

>t+R
]

≥ 2
−(E[R]+E[G>t ]+E[V <t ]−(k−1)E[

∑
v Kv

t ]−
∑

v logavE[Kv
t ]) .

Since E[Kv
t ] = avKt , where

Kt =
(
ktk−1(1 − t) + tk

)
|D| =

(
ktk−1 − (k − 1)tk

)
|D| ,

the above can be written as

2

−

(
E[R]+E[G>t ]+E[V <t ]−

(
(k−1)−H ({av }v∈{0,1}k−1

)

)
Kt

)
≥ 2

−(E[R]+E[G>t ]+E[V <t ]−εKt ) .

We also have E[R] ≤ (n − k |D|) · Sk , E[V
<t ] = kt |D| and

E[G>t ] ≤ k |D| ·
∫

1

t (1 − q(k )(p))dp. Substituting these in the above

expression gives

2

−

(
(n−k |D |)Sk+k |D | ·

∫
1

t (1−q
(k )(p))dp+kt |D |−εKt

)
As∫

1

t
(1 − q(k )(p))dp =

∫
1

0

(1 − q(k )(p))dp −

∫ t

0

(1 − q(k )(p))dp

≤ Sk − t + tq(k )(t) ≤ Sk − t + t
( t

1−t
)k−1

we have

(n − k |D|)Sk + k |D| ·

∫
1

t
(1 − q(k )(p))dp + kt |D| − εKt

≤ (n − k |D|)Sk + k |D| ·

(
Sk − t + t

( t

1 − t

)k−1

)
+ kt |D| − ε

(
ktk−1 − (k − 1)tk

)
|D|

= Skn − |D|

(
ε
(
ktk−1 − (k − 1)tk

)
− kt

( t

1 − t

)k−1

)
.

For a small enough choice of t , we have that

δ := ε
(
ktk−1 − (k − 1)tk

)
− kt

( t

1 − t

)k−1

> 0 .

�

We are thus left to deal with the case that H ({av}v∈{0,1}k−1 ) is

very close to k − 1.

For ak-SAT formulaφ with a unique satisfying assignmentα , and
a maximal collectionD of disjoint clauses, letw = (w1,w2, . . . ,wk )

be the fractions of clauses in D of weight 1, 2, . . . ,k , respectively.
(Recall that the weight of a clause is the number of literals in it that

evaluate to 1 under α .) The values av are, of course, functions of w.

By symmetry, av1
= av2

for every v1, v2 of the same weight. Thus,

we let ai = av, for v of weight i , for i = 0, . . . ,k − 1.

Lemma 7.3. a0 =
1

kw1 and ai = 1

(ki )
wi +

1

( ki+1
)
wi+1, 1 ≤< k .

Proof. By definition ai is the probability of obtaining a specific

(k − 1)-vector of weight i , e.g., the vector v = 1
i
0
k−1−i

of i 1’s
followed by k − 1 − i 0’s. If the clause chosen from D is of weight i ,
which happens with probabilitywi , the probability of getting v is

1/
(k
i
)
. If the clause chosen fromD is of weight i+1, which happens

with probabilitywi+1, the probability of getting v is 1/
( k
i+1

)
. If the

clause chosen is not of weight i or i + 1, then v cannot be obtained.

(Note thatw0 = 0, as all clauses are satisfied.) �

If we let a = (a0,a1, . . . ,ak−1
), it follows that a = Mw, where

M =



1

(k
1
)

0 . . . 0

1

(k
1
)

1

(k
2
)

0

...

1

(k
2
)

1

(k
3
)

. . .

...
. . .

. . . 0

0 . . . 1

( k
k−1

)
1

(kk)


.

The matrix M is clearly invertible. If we let a0 = ( 1

2
k−1
, 1

2
k−1
, . . . ,

1

2
k−1

), the vector of probabilities corresponding to the uniform

distribution over {0, 1}k−1
, there is a unique vector w0 such that

a0 = Mw0. It is easy to check that the vector w0 is given by:

(w0)i =

{
1

2
k−1

(k
i
)
, i is odd

0 , i is even

Note that H ({av}) = k − 1 only if a = a0. This happens only if the

weight distribution over the disjoint clauses is w0. A remarkable

property of w0 is that it assigns non-zero probabilities only to

odd weights. (When k = 3, for example, the weight distribution

is (w1,w2,w3) = ( 3

4
, 0, 1

4
), consistent with a NAE-3-SAT instance.)

Thus, we immediately get

Corollary 7.4. For every k and ε > 0, there exists ε ′ > 0, such
that if | |w −w0 | |1 > ε then H ({av}) ≤ (k − 1) − ε ′.

Thus, we are left to prove that we get an improvement whenw is

very close to w0. In this case, the value of the last variable in every

disjoint clause is almost uniquely determined by the values of the

first k − 1 variables of the clause. Thus, if we need to guess the last

variable of a clause we have a probability close to 1 of succeeding.

However, it might be that somehow the last variable of each clause

in D is always forced.
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We next show that in certain cases, a variable appearing in a

disjoint clause is either forced with a probability higher than 1−Sk ,
or has a positive probability of being last in its clause and not forced.

Let F (x) be the event that variable x is forced, and let G(x) be
the event that x is guessed. Let C1(x1;x2, . . . , xk ) be the clause

composed of literals of the variables x1, . . . , xk such that the literal

of x1 evaluates to 1 and the literals of x2, . . . , xk evaluate to 0 under

the unique satisfying assignment of the input formula. The clause

C(x1;x2, . . . , xk ) may or may not appear in the input formula.

Lemma 7.5. There exists a constant ε3 > 0 such that if the clause
C1(x1;x2, . . . , xk ) does not appear in the input formula, then

Pr[F (x1) or (G(x1) and σ (x2), . . . ,σ (xk ) < σ (x1)] ≥ (1 − Sk ) + ε3 .

Proof. Let C1(x1;y2, . . . ,yk ) be a critical clause of x1 that ap-

pears in the input formula φ. (Such a clause must exist.) As this

clause is different from C1(x1;x2, . . . , xk ), that does not appear in
the formula, we get that |{x2, . . . , xk ,y2, . . . ,yk }| ≥ k . Now

Pr[F (x1) | σ (x1) = p]

≥ Pr[σ (y2), . . . ,σ (yk ) < p | σ (x1) = p]

+ Pr[σ (x2), . . . ,σ (xk ) < p | σ (x1) = p]

· Pr[F (x1) | σ (x2), . . . ,σ (xk ) < p, σ (x1) = p]

− Pr[σ (x2), . . . ,σ (xk ),σ (y2), . . . ,σ (yk ) < p | σ (x1) = p]

≥ pk−1(1 + Pr[F (x1) | σ (x2), . . . ,σ (xk ) < p, σ (x1) = p]) − pk

and

Pr[G(x1) and σ (x2), . . . ,σ (xk ) < σ (x1) | σ (x1) = p]

= pk−1(1 − Pr[F (x1) | σ (x2), . . . ,σ (xk ) < p, σ (x1) = p]) .

Therefore,

Pr[F (x1) | σ (x1) = p] +

Pr[G(x1) and σ (x2), . . . ,σ (xk ) < σ (x1) | σ (x1) = p]

≥ 2pk−1 − pk .

Thus,

Pr[F (x1) or (G(x1) and σ (x2), . . . ,σ (xk ) < σ (x1)]

≥
∫

1

0
max(2pk−1 − pk ,q(k )(p))dp ≥ (1 − Sk ) + ε3 .

for some ε3 > 0. (Recall that pk−1 ≤ q(k )(p) ≤
(

p
1−p

)k−1

and thus

q(k)(p) is strictly smaller than 2pk−1 −pk for a small enough p.) �

We now have:

Theorem 7.6. For every small enough ε > 0, there exists δ > 0,
such that if | |w−w0 | |1 < ε , then biased-PPSZ runs in time 2

Skn−δ |D | .

Proof. LetC be a clause of D. The input formula φ may or may

not contain other clauses on exactly the same variables appearing

inC . We are especially interested in how many of these clauses are

of weight 1, i.e., critical for one of the variables appearing in C .
We consider two cases. Either, (1) for at least half of the clauses

of D there are at least two critical clauses that use the variables

of the clause. Or, (2) for at least half of the clauses of D there is

at most one critical clause using the variables of the clause. (The

bound on δ can be improved by choosing a more balanced partition

into cases.)

Consider case (1) first. Note that two critical clauses on the same

set of variables are related, in the sense of Lemma 6.2. (Lemma 6.2 is

stated for k = 3, but as mentioned, it can be easily extended to any

k ≥ 3.) Thus, there are at least
1

2
|D| variables with a forcing proba-

bility of at least ≥ (1−Sk )+ ε2 for some ε2 > 0. Therefore, standard

PPSZ, and thus also biased-PPSZ, runs in time 2
Skn−ε2 ·

1

2
|D |

.

Consider now case (2). For at least
1

2
|D| of the clauses ofD there

is at most one critical clause using the variables of the clause. Thus,

at least k − 1 of the variables in each one of these
1

2
|D| clauses

satisfies the condition of Lemma 7.5. Let X be the set of variables

that satisfies this condition. Then, |X | ≥ (k − 1) · 1

2
|D|.

Let x1, x2, . . . , xk be the variable appearing in a clause C ∈ D

and suppose that x1 ∈ X . By Lemma 7.5, we get that

Pr[F (x1) or (G(x1) and σ (x2), . . . ,σ (xk ) < σ (x1)] ≥ (1 − Sk ) + ε3 .

Consider a variant of PPSZ that guesses variables without bias,

except for variables that are last to appear in a clause ofD. If such a

variable needs to be guessed, it is given with probability β the value

that would make the weight of the clause odd, and the opposite

value with probability 1−β , for some β > 1

2
to be chosen later. This

is again a restricted version of the algorithm of Section 2.4.

The success probability of the algorithm is E[( 1

2
)RβG (1 − β)B ]

where G is the number of guessed variables that are last in their

clause C ∈ D which is of odd weight, B is the number of guessed

variables that are last in their clauseC ∈ D which is of even weight,

and R is the number of other guessed variable. Jensen’s inequality

shows that the expected success probability is ( 1

2
)E[R]βE[G](1 −

β)E[B]. We have E[B] ≤ ε |D| as there is at most one such variable

in every even weight clause of D and there are at most ε |D| such

clauses. We also have by Lemma 7.5 that E[n−R] ≥ (1−Sk )n+
1

2
(k−

1)|D| · ε2 as every variable of X has probability at least (1−Sk )+ ε2

to be either forced or in one of G and B. As usual, we also have

E[R +G + B] ≤ Skn. These inequalities together give that(
1

2

)E[R]
βE[G](1 − β)E[B]

≥

(
1

2

)Skn− 1

2
(k−1) |D | ·ε3

β
1

2
(k−1) |D | ·ε3−ε |D |(1 − β)ε |D |

=

(
1

2

)Sk
(2β)

1

2
(k−1) |D | ·ε3

(
1 − β

β

)ε |D |

.

For a small enough ε there exists a choice of β for which the above

is ( 1

2
)Skn−δ |D |

for some δ > 0. �

Combining the above theorems immediately implies

Lemma 7.7. For every k there exists ε ′k > 0 such that Biased-PPSZ
solves an instance of Unique k-SAT with |D| disjoint clauses in time
2
Skn−ε ′k |D | .

We are now ready to prove Theorem 7.1.

Proof. Let γ = 1

n |D| be the normalized size ofD. Enumerating

over the values of the variables appearing in D and solving the

remaining (k − 1)-SAT instance using PPSZ (or biased-PPSZ) takes

time (2k − 1)
γn

· 2
Sk−1

n
. By Lemma 7.7, biased-PPSZ solves the

problem in time 2
(Sk−γ ε ′k )n . Thus, if γ is sufficiently small, we get

an improvement over PPSZ by the enumeration. If γ is larger, we
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get an improvement by using biased-PPSZ. The running times of

these two algorithms is the same when γ = γ0, where

γ0 =
Sk − Sk−1

log (2k − 1) + ε ′k
.

The running time of the algorithm, for any γ , is at most 2
(Sk−εk )n

where

εk = γ0ε
′
k =

Sk − Sk−1

log (2k − 1) + ε ′k
ε ′k > 0 .

�

In the full version of this paper, we repeat the above analysis

for k = 3 while paying more attention to the exact constants and

trade-offs. We also perform some other optimizations. The running

time of biased-PPSZ for a specific weight vector w = (w1,w2,w3)

is efficiently computable. We conduct a rigorous computer assisted
search for the worst weight vectorw and rigorously prove an upper

bound on the running time of the algorithm for anyweight vectorw.

We obtain the following concrete upper bound:

Theorem 7.8. Unique 3-SAT can be solved in time O(1.307
n ).

8 CONCLUDING REMARKS AND OPEN
PROBLEMS

The main contribution of this paper is the idea of adding bias into

the PPSZ algorithm. We suggested a concrete way of adding such

a bias and showed that it yields slightly improved algorithms for

k-SAT for every k ≥ 3.

The numerical bound we currently have for Unique 3-SAT is

1.306995
n
. We believe that this can be further improved. For Unique

NAE-3-SAT we get a bound of 1.30452
n
. The best bound that we

can hope to achieve using the concrete algorithms suggested for

NAE-3-SAT and 3-SAT is 1.30331
n
. (This correspond to the simple

and natural case in which the critical clause trees of variables that

appear in the same clause are disjoint.) We believe that this “lower

bound” can be approached, both for NAE-3-SAT and 3-SAT.

Further improvements can possibly be obtained by not using a
set of disjoint clauses. More variables can potentially be guessed

with bias, but the analysis becomes more challenging.

We hope that the improved bounds we obtained for Unique 3-

SAT also apply directly to 3-SAT, using essentially the arguments

of Hertli [3], avoiding the ‘reduction’ of Scheder and Steinberger

[15] and the associated loss that comes with it.

Our bounds improve on the current bound available for the

PPSZ algorithm. It is not known, however, whether these bounds

are tight. The current best lower bound on the running time of the

PPSZ algorithm were obtained by Pudlák et al. [11].

The best k-SAT algorithms, including the ones presented here,

have running times of the form 2
(1−

Θ(1)
k )n

. Obtaining bound of the

form 2
(1−

ω (1)

k )n
, or providing evidence that such bounds cannot

be obtained, would be a major breakthrough. Shedding more light

on this problem is probably more important than improving the

constant in the bound for 3-SAT.
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