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Abstract

The 3SUM conjecture has proven to be a valuable tool for proving conditional lower bounds
on dynamic data structures and graph problems. This line of work was initiated by Pǎtraşcu
(STOC 2010) who reduced 3SUM to an offline SetDisjointness problem. However, the reduction
introduced by Pǎtraşcu suffers from several inefficiencies, making it difficult to obtain tight
conditional lower bounds from the 3SUM conjecture.

In this paper we address many of the deficiencies of Pǎtraşcu’s framework. We give new and
efficient reductions from 3SUM to offline SetDisjointness and offline SetIntersection (the reporting
version of SetDisjointness) which leads to polynomially higher lower bounds on several problems.
Using our reductions, we are able to show the essential optimality of several algorithms, assuming
the 3SUM conjecture.

• Chiba and Nishizeki’s O(mα)-time algorithm (SICOMP 1985) for enumerating all triangles
in a graph with arboricity/degeneracy α is essentially optimal, for any α.

• Bjørklund, Pagh, Williams, and Zwick’s algorithm (ICALP 2014) for listing t triangles is
essentially optimal (assuming the matrix multiplication exponent is ω = 2).

• Any static data structure for SetDisjointness that answers queries in constant time must
spend Ω(N2−o(1)) time in preprocessing, where N is the size of the set system.

These statements were unattainable via Pǎtraşcu’s reductions.
We also introduce several new reductions from 3SUM to pattern matching problems and

dynamic graph problems. Of particular interest are new conditional lower bounds for dynamic
versions of Maximum Cardinality Matching, which introduce a new technique for obtaining
amortized lower bounds.

1 Introduction

Data structure lower bounds come in two varieties: conditional and unconditional. The strongest
unconditional lower bounds (in the cell probe model) are either poly-logarithmic [32, 26] or on ex-
treme tradeoffs between sub-logarithmic update time and large query time; see [34]. Pǎtraşcu [35]
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proposed an approach for proving polynomial conditional lower bounds (CLBs) based on the conjec-
tured hardness of the 3SUM problem, via a new intermediate problem he called Convolution3SUM.
The integer versions of the 3SUM and Convolution3SUM problems are defined as follows. Given a
set A ⊂ Z, the 3SUM problem is to decide if there is a triple (a, b, c) ∈ A3 of distinct elements such
that a+ b = c. The Convolution3SUM problem is, given a vector A ∈ Zn, to decide if there is a pair
(i, j) ∈ [n]2 for which A(i) +A(j) = A(i+ j). Here [n] = {0, 1, . . . , n− 1} is the first n naturals.

It was originally conjectured [16] that 3SUM required Ω(n2) time. However, there are now
known to be O(n2/ polylog(n)) 3SUM algorithms for both integer [5] and real [22] inputs. The
modern 3SUM Conjecture [35] is that the time complexity of the problem is Ω(n2−o(1)), even in
expectation.

3SUM and Set Disjointness. Pǎtraşcu [35] gave a reduction from 3SUM to Convolution3SUM
showing that the 3SUM conjecture implies that Convolution3SUM also requires Ω(n2−o(1)) time.

Theorem 1.1 (Pǎtraşcu [35]). Define T3S(n) and TC3S(n) to be the randomized (Las Vegas) com-
plexities of 3SUM and Convolution3SUM on instances of size n. For any parameter k, T3S(n) =
O(n2/k + (k3 + k2 log n) · TC3S(n/k)).

Pǎtraşcu then reduced Convolution3SUM to the offline SetDisjointness problem where we are given
a set C of elements, two families A and B of subsets of C, and q pairs of subsets (S, S′) ∈ A×B,
and we are interested in determining for each of the q pairs whether they are disjoint or not. The
following two Theorems summarize the reductions by Pǎtraşcu (the second Theorem is implicit in
Section 2.3 of [35]).

Theorem 1.2 (Pǎtraşcu [35]). Let g(n) be such that Convolution3SUM requires Ω( n2

g(n)) expected

time. For any
√
n · g(n) � nε � n/g(n) let A be an algorithm for the offline SetDisjointness

problem where |C| = n, |A| = |B| = Θ(n1/2+ε), each set in A ∪ B has at most O(n1−ε) elements
from C, each element in C appears in

√
n sets from A and

√
n sets from B, and q = Θ(n1+ε).

Then A requires Ω( n2

g(n)) expected time.

Theorem 1.3 (Pǎtraşcu [35]). Let g(n) be such that Convolution3SUM requires Ω( n2

g(n)) expected

time. For any
√
n · g(n) � nε � n/g(n) let A be an algorithm for the offline SetDisjointness

problem where |C| = Θ(n2−2ε), |A| = |B| = Θ(n1/2+ε log n), each set in A∪B has at most O(n1−ε)
elements from C, each element in C appears in Θ(n2ε−1/2) sets from A and Θ(n2ε−1/2) sets from

B, and q = Θ(n1+ε log n). Then A requires Ω( n2

g(n)) expected time.

The 3SUM conjecture posits that g(n) = no(1), implying that 1/2 < ε < 1. Using this case, Pǎtraşcu
provided CLBs for triangle enumeration, set-disjointness, and various other dynamic graph and data
structure problems. Pǎtraşcu’s results led to a surge of research on CLBs that assume the 3SUM
conjecture. Vassilevska-Williams and Williams [39] showed that finding a triangle of zero weight
in a weighted graph requires cubic time. Abboud, Vassilevska-Williams, and Weimann [2] proved
that the Local Alignment problem, which is of great importance in computational biology, cannot
be solved in truly sub-quadratic time. Amir, Chan, Lewenstein, and Lewenstein [4] proved that for
the Jumbled Indexing problem on a text with n integers (from a large enough alphabet), either the
preprocessing time needs to be truly quadratic or the query time needs to be truly linear. Abboud
and Vassilevska Williams [1] showed several CLBs conditioned on popular conjectures of hardness.
In particular, they showed, conditioned on the 3SUM conjecture, that data structure versions of
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(s, t)-reachability, Strong Connectivity, Subgraph Connectivity, Bipartite Perfect Matching, and
variations of a problem known as Pagh’s problem all require non-trivial polynomial preprocessing,
query, or update time. Recently, Abboud, Vassilevska Williams, and Yu [3] used a different approach
for reducing 3SUM to various dynamic graph problems.

We emphasize that the results in [4] and [39] implicitly make use of Theorem 1.1 by directly
reducing from Convolution3SUM (rather than 3SUM) to the target problem, and the results in [1]
make use of Theorem 1.2.

Limitations of Pǎtraşcu’s Reductions. Pǎtraşcu’s reductions suffer from four limitations

• The first limitation is that the number of SetDisjointness queries is rather large (at least
ω(n3/2)) making it impossible to get any ω(n1/2) lower bound per query.

• The second limitation is that the size N of the set systems in the offline SetDisjointness
problem are also rather large (N = Ω(n3/2)) so it is impossible to get lower bounds that are
Ω(N4/3) as a function of N .

• The third limitation is that the sets in the offline SetDisjointness instances are very sparse. In
Pǎtraşcu’s framework all sets have size at most O(

√
|C|), so it is not clear how to get CLBs

for the dense case of many graph problems.

• Finally, Pǎtraşcu’s reduction from 3SUM to offline SetDisjointness is only meaningful if the
true complexity of 3SUM is ω(n13/7).1

Regarding the first two limitations: we would like to have much more control over the size of
the set system and the number of queries. The third limitation seems intrinsic to any reduction
to SetDisjointness where the sets are essentially random, since, by the birthday paradox, random
ω(
√
|C|)-size sets will almost surely intersect, giving no useful information per query. The fourth

limitation gets at the issue of robustness: how valuable are reductions from 3SUM if the 3SUM
conjecture turns out to be false (but not by much)? The possibility of a truly subquadratic 3SUM
algorithm seemed remote a few years ago but given recent developments [38, 22, 8] is not so
absurd. Chan and Lewenstein [8] showed numerous special cases of 3SUM can be solved in truly
subquadratic time.

1.1 New Results: A More Versatile Lower Bound Framework

We overcome the limitations of Pǎtraşcu’s framework by giving efficient reductions directly from
3SUM to SetDisjointness and from 3SUM to SetIntersection (which we define shortly). By avoiding
Convolution3SUM as an intermediate problem, our reduction gives non-trivial lower bounds if the
true complexity of 3SUM is just Ω(n3/2+Ω(1)).

For clarity’s sake, we present our new framework in terms of a new constant γ instead of the
constant ε of Theorem 1.2. Notice that in Pǎtraşcu’s frameworks 1/2 < ε < 1 while here 0 < γ < 1.
The first theorem reduces 3SUM to offline SetDisjointness and is proven in Section 2.

1To see this, note that Theorem 1.2 is only applicable if g(n) = O(n1/3), i.e., Convolution3SUM requires Ω(n5/3)
time. It is consistent with Theorem 1.1 that Convolution3SUM can be solved in O(n5/3) time while 3SUM can be
solved in O(n13/7) time. Furthermore, even if 3SUM were proved to be Ω(n5/3) unconditionally, this would imply no
superlinear lower bound on Convolution3SUM (via Theorem 1.1) or to any of the problems that Convolution3SUM is
reduced to.
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Reductions to Set Disjointness/Intersection

Reduction |A|, |B| |C| q Remarks

Conv3SUM → SetDisjointness n1/2+ε n n1+ε
√
ng(n)� nε � n/g(n)

Conv3SUM → SetDisjointness n1/2+ε log n n2−2ε n1+ε log n

3SUM → SetDisjointness n log n n2−2γ n1+γ log n 0 < γ < 1 and δ > 0

3SUM → SetIntersection n
1
2

(1+δ+γ) n1+δ−γ n1+γ Total output size: O(n2−δ)

Figure 1: The first two reductions from Convolution3SUM are from Pǎtraşcu [35]. The third and
fourth reductions from 3SUM are new.

Theorem 1.4. Let f(n) be such that 3SUM requires expected time Ω( n2

f(n)). For any constant

0 < γ < 1 let A be an algorithm for offline SetDisjointness where |C| = Θ(n2−2γ), |A| = |B| =
Θ(n log n), each set in A∪B has at most O(n1−γ) elements from C, and q = Θ(n1+γ log n). Then

A requires Ω( n2

f(n)) expected time.

We also consider the offline SetIntersection problem where the input is the same as in SetDisjointness,
except that we need to enumerate all elements in the q intersections. We prove the following theorem
in Section 2. Note that in this case we allow γ = 0.

Theorem 1.5. Let f(n) be such that 3SUM requires expected time Ω( n2

f(n)). For any constants

0 ≤ γ < 1 and δ > 0, let A be an algorithm for offline SetIntersection where |C| = Θ(n1+δ−γ),
|A| = |B| = Θ(

√
n1+δ+γ), each set in A ∪ B has at most O(n1−γ) elements from C, q = Θ(n1+γ),

and the total size of the set intersections of these q pairs is O(n2−δ) in expectation. Then A requires

Ω( n2

f(n)) expected time.

These theorems eliminate the need to use Convolution3SUM as a stepping stone (Theorem 1.1)
when proving lower bounds via SetDisjointness/SetIntersection. Nonetheless, the Convolution3SUM
problem is still useful and its exact relationship to the 3SUM problem an interesting open question.
The more constrained structure of Convolution3SUM makes it easier to use in some CLBs; see [4,
39]. We are also able to prove (in Appendix A) that the randomized complexities of 3SUM and
Convolution3SUM differ by at most a logarithmic factor.

Theorem 1.6. Define T3S(n) and TC3S(n) to be the randomized (Las Vegas) complexities of 3SUM
and Convolution3SUM on instances of size n. Then T3S(n) = O(log n · TC3S(n)).

1.2 Techniques and Implications

Our new framework borrows liberally from the techniques of Pǎtraşcu’s framework, particularly the
use of almost linear hash functions. However, in order to obtain our improvements we assemble the
building blocks in a new and simpler way. The implications of our new framework are significant.
To start off, since q can be made arbitrarily close to n (by having γ approach 0), it is now possible
to obtain much higher CLBs for the query time of SetDisjointness. Similarly, since the size of the
offline SetDisjointness can be made small (by having γ approach 0), it is now possible to obtain
higher CLBs in terms of the size of the offline SetDisjointness instance.

3



Finally, as is illustrated in Section 3, using the new framework it is now possible to obtain CLBs
for graph problems which apply to all edge densities. Such reductions make use of Theorem 1.5. In
particular, this implies that using clever techniques, such as fast matrix multiplication, cannot lead
to faster algorithms for the dense case of such problems, such as enumerating all of the triangles in
a dense graph.

To illustrate the advantages of the new framework, we briefly show how we are able to obtain
higher CLBs for the fundamental problem of online SetDisjointness, and then continue in the body
of this paper to describe new and better CLBs for many old and new problems. A corresponding
discussion on CLBs for the online SetIntersection problem is given in Appendix B.

A Higher Lower Bound for Online SetDisjointness. It is obvious that online SetDisjointness
solves offline SetDisjointness. We phrase the CLBs in terms of N : the sum of set sizes. Define tp to
be the preprocessing time of an online SetDisjointness structure and tq its query time.

Using Pǎtraşcu’s reduction from Convolution3SUM to SetDisjointness we have N = Θ(n1.5),
there are Θ(n1+ε) = Θ(N (2+2ε)/3) queries that need to be answered. Thus we obtain the following

lower bound tradeoff: tp + N (2+2ε)/3tq = Ω
(

N4/3

g(N2/3)

)
. The 3SUM conjecture implies g(x) = xo(1).

If, for example, we only allow linear preprocessing, letting ε tend to 1/2 gives a query lower bound

of Ω(N
1
3
−o(1)). If we demand constant time queries, we obtain a lower bound of Ω(N

4
3
−o(1)) on the

preprocessing time. We show next how our new framework provides better tradeoffs.

Theorem 1.7. Assume the 3SUM conjecture. For any 0 < γ < 1, any data structure for SetDis-
jointness has

tp +N
1+γ
2−γ tq = Ω

(
N

2
2−γ−o(1)

)
.

Proof. Using Theorem 1.4, we have N = Θ(n2−γ log n), and the number of queries to answer is

Θ(n1+γ log n) = Θ̃(N
1+γ
2−γ ). By the 3SUM conjecture answering these queries takes time Ω(n2−o(1)) =

Ω(N
2

2−γ−o(1)
).

Theorem 1.7 implies, for example, that if we only allow linear preprocessing time, then by
making γ tend to zero the query time must be Ω(N

1
2
−o(1)). This CLB is comparable with the

data structure of Cohen and Porat [11] where tp = O(N
√
N) and tq = O(

√
N) (see also [25]).

Furthermore, if we only allow constant query time, then by making γ tend to 1 the preprocessing
time must be Ω(N2−o(1)), matching that of the trivial preprocessing algorithm that computes all
answers in advance.

1.3 Triangle Enumeration

In the triangle enumeration problem one wishes to enumerate all triangles in a graph G with n
vertices and m edges. Itai and Rodeh [20] were the first to obtain a O(m1.5) time algorithm for
listing all triangles in a graph. This was improved by Chiba and Nishizeki [10] who provided an
algorithm that lists all triangles in O(mα) time where α = α(G) is the arboricity2 of G, which is
always at most O(

√
m).

2The arboricity of an undirected graph G = (V,E) is defined as α(G) = maxU⊆V : |U|≥2

⌈
|E(U)|
|U|−1

⌉
where E(U) is

the set of edges induced by U . The arboricity is also the minimum number of forests that E can be partitioned into
[29, 30].
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Triangle Enumeration Bounds
Authors Time Bound Remarks

Itai & Rodeh O(m3/2)

Chiba & Nishizeki O(mα) α = arboricity

Pǎtraşcu Ω(m4/3−o(1)) t ≈ m = n1.5+o(1) triangles

O(m
2ω
ω+1 +m

3(ω−1)
ω+1 t

3−ω
ω+1 )

O(nω + n
3(ω−1)
5−ω t

2(3−ω)
5−ω )

Bjørklund, Pagh,
O(m4/3+o(1) + t · ( m

t2/3
)) Assuming ω = 2

Williams & Zwick O(n2+o(1) + t · ( n
t1/3

)) Assuming ω = 2

Ω(t · ( m
t2/3

)1−o(1)) Assuming QES Conjecture

Ω(t · ( n
t2/3

)1−o(1)) Assuming QES Conjecture

Kopelowitz, Pettie & Porat O(m+mα log logn
logn + t) Randomized, w.h.p.

Ω(mα1−o(1)) every arboricity α

new Ω(min{m3/2−o(1), t · ( m
t2/3

)1−o(1)}) Assuming 3SUM Conjecture

Ω(min{n3−o(1), t · ( n
t1/3

)1−o(1)}) Assuming 3SUM Conjecture

Figure 2: The Bjørklund et al. [6] lower bounds assume the QES Conjecture, which states that
the brute force algorithm for solving quadratic equations over finite fields is essentially optimal.

An interesting question regarding the runtime of such algorithms is whether the O(mα) runtime
stems solely from the size of the output (the number of triangles), or if there is something intrinsic
to the triangle enumeration problem that demands such effort. Recently in [25], we were able
to asymptotically break the Ω(mα) bound by showing that enumerating t triangles takes O(m +
mα/ logn

log logn + t) expected time in the RAM model. While this shows a poly-log improvement over
Chiba and Nishizeki’s algorithm, the question of whether a polynomial improvement (in either m
or α) is obtainable still remains.

Pǎtraşcu showed that conditioned on the 3SUM conjecture, there exists a graph with t = O(m)
triangles, for which listing all triangles must take Ω(m4/3−o(1)) time. A careful examination of
Pǎtraşcu’s proof shows that the arboricity of this graph is indeed roughly m1/3, implying the
essential optimality of Chiba and Nishizeki’s algorithm and of [25], at least for one particular
arboricity. However, Pǎtraşcu’s CLB does not extend to any α � m1/3. This left open the
possibility of clever algorithms that dramatically improve the Ω(mα) bound on dense graphs.

Using our new framework we prove an Ω(mα1−o(1)) CLB for triangle enumeration, for all arboric-
ities 1� α� m1/2. We emphasize that the number of triangles in these instances is polynomially
smaller than mα, implying that the hardness is not due to the time required to report the output.
Thus, the Chiba-Nishizeki algorithm and the algorithm in [25] are essentially optimal for the entire
spectrum of arboricities. The proof of Theorem 1.8 is given in Section 3.

Theorem 1.8. Assume the 3SUM conjecture. For any constants 0 < x ≤ 1 and 0 < y ≤ 1 such
that x ≤ 2y, there exists a graph with n vertices, m edges, and arboricity α = Θ(nx) = Θ(my) with
t = O(mα1−Ω(1)) triangles, such that listing all triangles requires Ω(mα1−o(1)) expected time.

For a comparison between the known upper and conditional lower bounds, see Figure 2.

Output-sensitive triangle enumeration algorithms. Another approach for enumerating tri-
angles considers output-sensitive algorithms for triangle enumeration. A recent algorithm of Bjørklund,
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Pagh, Williams, and Zwick [6] shows that if the matrix multiplication exponent is ω = 2, then list-
ing only t triangles takes Õ(min{n2 + nt2/3,m4/3 +mt1/3}) time. Notice that this runtime can be
expressed as paying either n

t1/3
or m

t2/3
time per triangle.

We prove that, assuming the 3SUM conjecture and assuming ω = 2, this per triangle cost is
essentially optimal, for any graph with arboricity at least m1/3. This lower bound is obtained by
considering the extreme case of listing all triangles in the graph, which by Theorem 1.8 requires
Ω(mα1−o(1)) expected time, combined with controlling the number of triangles in the graph so that
t = α3. Such a result seems to be unobtainable using Pǎtraşcu’s framework, since the corresponding
graphs in his framework have arboricity at most m1/3. Thus we are able to prove the following.

Theorem 1.9. Assume the 3SUM conjecture. Then any algorithm for listing t triangles whose
runtime is expressed in terms of the number of edges m must take Ω(min{m3/2−o(1), t ·( m

t2/3
)1−o(1)})

expected time. If its runtime is expressed in terms of the number of vertices n it must take
Ω(min{n3−o(1), t · ( n

t1/3
)1−o(1)}) expected time.

In particular, Theorem 1.9 implies that if we do not spend Ω(m3/2) time for listing just t triangles
(which is enough time to report all triangles), then the time per triangle must be Ω(( m

t2/3
)1−o(1)).

1.4 New Lower Bounds

We prove polynomial CLBs, conditioned on the 3SUM conjecture, for data structure versions of the
following problems: Document Retrieval problems, Maximum Cardinality Matching in bipartite
graphs (improving known CLBs [1]), d-failure Connectivity Oracles, and Distance Oracles for Col-
ors. The new CLB for Maximum Cardinality Matching is of particular interest since it introduces
new techniques for obtaining amortized lower bounds, and so we describe it in more detail; See
Section 4 and Appendix G. The rest of the CLBs are in the Appendix.

Maximum Cardinality Matching. In the Dynamic Maximum Cardinality Matching problem
we are interested in maintaining a dynamic graph G = (V,E), with n = |V | and m = |E|, to
support maximum cardinality matching (MCM) queries, which report the size of the current MCM.
When both insertions and deletions are supported we say that G is fully dynamic, while if only
insertions are supported we say that G is incremental. The trivial algorithm for updating an MCM
takes O(m) time by finding an augmenting path. Sankowski [36] gave a fully dynamic algorithm
with an amortized time bound of O(n1.495) based on fast matrix multiplication. In the bipartite
vertex-addition model, where vertices on one side of the graph arrive online with all of their edges,
Bosek, Leniowski, Sankowski, and Zych [7] recently showed how to maintain a maximum cardinality
matching whose total update time is O(m

√
n) time.

Abboud and Vassilevska-Williams [1] showed that, based on the 3SUM conjecture, in a fully
dynamic graph and any 1/6 ≤ α ≤ 1/3, either the preprocesing time is Ω(m4/3−o(1)), the amortized
update time is Ω(mα−o(1)), or the amortized query time is Ω(m2/3−α−o(1)). In our setting we will
require the size of the MCM to be reported after each update, and so the CLB of [1] implies
that if the preprocessing time tp is O(m4/3−Ω(1)) then the update time tu is Ω(m1/3−o(1)). Using
Theorem 1.4 we are able to prove the following in Appendix G:

Theorem 1.10. Assume the 3SUM conjecture. For any 0 < γ < 1 and any fully dynamic MCM
algorithm, even if the preprocessing phase is given an MCM of the initial graph,

tp +m
1+γ
2−γ tu = Ω(m

2
2−γ−o(1)

).
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Moreover, the same bound holds even for the class of approximate MCM algorithms that report the
size of some matching without length-7 augmenting paths.

By having γ approach 0 the implication of Theorem 1.10 is that if we require tp = O(m) then the
update time must be Ω(m1/2−o(1)). This slightly improves on the results of Abboud and Vassilevska-
Williams [1].3 Guaranteeing the absence of short augmenting paths is one way to achieve a provably
good approximation to the MCM; see [31].

The incremental case. In this setting we consider an initially empty graph G and so there is no
preprocessing phase. Abboud and Vassilevska-Williams [1] show that their lower bounds for fully
dynamic MCM extend to incremental MCM, but only for worst case time bounds. They mention
the difficulty in obtaining amortized lower bounds for the incremental case using their approach,
as they simulate deletions by rolling the structure back after each insertion to its state prior to the
insertion. The worst-case lower bounds of Abboud and Vassilevska-Williams [1] can be phrased in
terms of n̂, the number of vertices when an operation takes place. Either the update or query is
Ω(n̂1/2−o(1)). We show in Appendix G that if we allow the graph to grow with each query, it is
straightforward to obtain an amortized expected Ω(n̂1/3−o(1)) lower bound.

We focus on improving the amortized lower bound for incremental MCM in terms of n̂, using
Theorem 1.4. Our strategy to answer SetDisjointness queries using an incremental dynamic MCM
algorithm. The construction has the property that queries can be simulated by two vertex insertions
and two edge insertions. There are two ways to undo these four insertions, (i) rolling back the state
of the data structure to its original state, or (ii) inserting two more vertices and two more edges.
By dynamically choosing which of (i) or (ii) to employ we can control the total number of vertices
that end up in the graph and get better lower bounds as a function of n̂.

Theorem 1.11 is proved in Section 4.

Theorem 1.11. Assume the 3SUM conjecture. Any algorithm for incremental MCM has amortized
expected update time of Ω(n̂

√
2−1−o(1)) = Ω(n̂0.414−o(1)) where n̂ is the number of vertices in the

graph following the update.

2 The Improved Framework - Theorems 1.4 and 1.5

Let H be a family of hash functions from [u] → [m]. H is called linear if for any h ∈ H and
any x, x′ ∈ [u], we have h(x) + h(x′) = h(x + x′) (modm). H is called balanced if for any set
S = {x1, . . . , xn} ⊂ [u], and for any i ∈ [m] we have |{x ∈ S : h(x) = i}| ≤ 3n

m . For the proofs
of our new framework we will be assuming the existence of pair-wise independent families of hash
functions that are magically linear and balanced. In reality there will be minor violations of linearity
and balancedness: h(x) + h(x′) may differ from h(x+ x′) by a constant, and some hash values will
receive more than 3n/m elements. In Appendix C we exhibit almost linear, almost balanced hash
functions and sketch the modifications to the reduction needed to accommodate them.

Combined proof of Theorem 1.4 and Theorem 1.5. Since the proofs of both theorems follow a sim-
ilar path we describe them together. To simplify the exposition we consider the variant of 3SUM
where we are looking for three elements x, y, z such that x− y = z. Let R = nγ . Let Q = (5n/R)2

for Theorem 1.4 and let Q = (n1+δ/R) for Theorem 1.5. Without loss of generality we assume that

3They [1] also get CLBs on approximate MCM algorithms that eliminate short augmenting paths, but from
different conjectures concerning the complexity of triangle detection and combinatorial BMM.
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√
Q is an integer. Finally, we assume that the input is drawn from an integer universe U ⊆ [2w],

where w = Ω(log n) is the machine’s word length.
We pick a random hash function h1 : U → [R] from a family that is linear and balanced. Using

h we create R buckets B1, · · · ,BR such that Bi = {x : h1(x) = i}. Since h1 is balanced, each bucket
contains at most 3n/R elements. This bucketing is similar to Pǎtraşcu’s reduction [35].

Next, we pick a random hash function h2 : U → [Q] where h2 is chosen from a pair-wise
independent and linear family. For each bucket Bi we create 2

√
Q shifted sets as follows: for each

0 ≤ j <
√
Q let B↑i,j = {h2(x) + j ·

√
Q (modQ) |x ∈ Bi} and B↓i,j = {h2(x)− j (modQ) |x ∈ Bi}.

Next, for each z ∈ A we want to determine if there exist x and y in A such that x− y = z. To
do this we utilize the linearity of h1 and h2, which implies that h1(x)− h1(y) = h1(z) (modR) and
h2(x)− h2(y) = h2(z) (modQ). Thus, if x ∈ Bi then y must be in Bi−h1(z)(modR). To this end, for
each i ∈ [R] we would like to intersect Bi with Bi−h1(z)(modR) + z in order to find candidate pairs

of x and y. Denote by h↑2(z) = bh2(z)√
Q
c and h↓2(z) = h2(z)(mod

√
Q). Due to the linearity of h2, the

intersection of the sets Bi and Bi−h1(z)(modnγ) + z is determined precisely by the intersection of the

sets B↑
i,h↑2(z)

and B↓
i−h1(z)(modR),h↓2(z)

. If the two sets are disjoint then there is no candidate pair.

If the sets are not disjoint, then it is possible that this is due to a 3SUM a solution, but we may
have false positives. Notice that the number of set pairs whose intersection we need to examine is
O(nR) since once we pick z (n choices) and i (R choices) the rest is implicit.

Set z and let k = h2(z). Since h2 is pair-wise independent and linear then for any pair x, y ∈ U
where x 6= y we have that if x − y 6= z then Pr[h2(x) − k = h2(y)] = Pr[h2(x − y) = h2(z)] = 1

Q .
This is where the proofs of the two theorems deviate.

Details for Theorem 1.4. Since each bucket contains at most 3n/R elements, the probability
of a false positive due to two buckets Bi and Bj is Pr[h2(Bi)− k ∩ h2(Bj)] ≤ (3n

R )2 1
Q = 9

25 . In order
to reduce the probability of a false positive to be polynomially small, we repeat the process with
O(log n) different choices of h2 functions (but using the same h1). This blows up the number of
sets by a factor of O(log n), but not the universe. If the sets intersect under all O(log n) choices of
h2 then we can spend O(n/R) time to find x and y within buckets Bi and Bj , which is either part
of a 3SUM witness (and the algorithm halts), or a false positive, which only occurs with probability
1/poly(n).

Details for Theorem 1.5. We bound the expected output size from all of the intersections.
Since each pair of buckets imply at most (3n

R )2 pairs of elements, the expected size of their inter-

section is E[|h2(Bi)−k∩h2(Bj)|] = (3n
R )2 1

Q = O(n
1−δ

R ). Thus, the expected size of the output of all

of the O(nR) intersections is O(nR n
Rnδ

) = O(n2−δ). For each pair in an intersection we can verify
in constant time if together with the current z they form a 3SUM witness.

Final details. To summarize, for SetDisjointness (SetIntersection)we create a total ofO(R
√
Q log n)

sets (O(R
√
Q) sets). These sets can be partitioned into two families A and B where all of the ↑-type

sets are in A and all of the ↓-type sets are in B. All of the intersections we are interested in are
between a set from A and a set from B. The universe C of the elements in the sets is of size O(Q).
The number of queries is O(nR log n) = O(n1+γ log n) (O(nR) = O(n1+γ)).
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3 Enumerating Triangles

Following Pǎtraşcu [35] we express a SetIntersection instance as a tripartite graph in which triangles
are in one-to-one correspondence with the elements output by SetIntersection queries.

Proof. (of Theorem 1.8) The SetIntersection instance of Theorem 1.5 is interpreted as a graph G
on vertex set A ∪ B ∪ C. Each element in C has edges to the sets in A and B that contain it,
and the edges between A and B correspond to the SetIntersection queries. So, |C| = Θ(n1+δ−γ),
|A| = |B| = Θ(

√
n1+δ−γ), there are Θ(n1+γ) edges between A and B, and at most O(n1−γ) edges

between each vertex in A ∪ B and elements in C. Thus the total number of edges between A ∪ B
and C is at most O(n

√
n1+δ−γ). The expected number of triangles due to false positives in this

graph is O(n2−δ).
We prove that enumerating all triangles essentially requires Ω(Mα) time for any feasible com-

bination of N (the number of vertices), M (the number of edges), and α. By feasible we mean that
α = Θ(Mx) = Θ(Ny), y ≤ 2x. We assume that each vertex has a degree of at least 2 (since it is
easy to filter out other vertices) and then x ≤ y. Notice that proving a lower bound for α = Θ(Nx)
implies a lower bound for Θ(Nx′) for any constant x′ < x since one can add singleton vertices.

For our lower bound proof it suffices to consider the case where n1+γ ≥ n
√
n1+δ−γ , and so

γ ≥ 1/3 + δ/3. Furthermore, this implies that |A| = |B| > |C|. Thus, N = Θ(
√
n1+δ+γ) and

M = Θ(n1+γ). Our aim is to show that α is at most O(n1−γ), since for each edge we must spend
at least Ω(n1−γ) time (assuming the 3SUM conjecture), and so if α ≤ O(n1−γ) we conclude that
the total runtime is at least Ω(Mα). However, this may not be the case in G, so we devise a
triangle-preserving reduction to a new graph G′ with N ′ vertices and M ′ = O(M) edges such that
there is an injective function between triangles in the original graph and triangles in G′. To bound
the arboricity α′ of G′ we show that there exists an orientation of G′ with max out-degree O(n1−γ).
It is well known that the maximum out-degree in any orientation must be at least Ω(α) (see [24]).

Denote by E(u, V ) the set of edges between a vertex u and a set of vertices V . Consider a
vertex a ∈ A. Since |E(a,C)| = O(n1−γ), if |E(a,B)| = O(n1−γ) then we orient all of the edges
of a to leave a. However, it is possible that E(a,B) is too large. To deal with this, we create

d |E(a,B)|
n1−γ e copies of a. The neighbors of a in B are arbitrarily partitioned into d |E(a,B)|

n1−γ e sets of size
at most O(n1−γ), and the ith copy of a has as its neighbors the ith set in the partition. All of the
edges touching copies of a are oriented outwards from those copies. Furthermore, each copy of a
has outgoing edges towards the O(n1−γ) neighbors of a in C. Thus, the out-degree of each copy of
a is at most O(n1−γ). By orienting all of the edges between B and C to leave B, the out-degree of
any vertex in this orientation is at most O(n1−γ), and so the arboricity of this new graph is at most
α′ = O(n1−γ). It is straghtforward to see that this new graph G′ is a triangle-perserving graph of
G. The number of edges of this graph is M ′ = Θ(M) since we only increase the number of edges
by adding new edges between copies and C, but each such edge can be charged to an edge between
A and B in the initial graph. Also, since there are Θ(n1+γ) edges between A and B, the number of
copies that are created is at most O(n1+γ/(n1−γ)) = O(n2γ). Hence, the number of vertices in the
new graph is N ′ = N +n2γ . Finally, since γ ≥ 1/3 + δ/3 we have 1+δ+γ

2 ≤ 2γ and so N ′ = O(n2γ).
To summarize, we have obtained a graph with M ′ = Θ(n1+γ) edges, N ′ = O(n2γ) vertices,

and α′ = O(n1−γ). Thus, enumerating all of the triangles in O(M ′(α′)1−Ω(1)) = O(n2−Ω(1)) time
will contradict the 3SUM conjecture. We will now show that this lower bound holds for the entire
spectrum of possible polynomial dependencies of α′ on N ′ and M ′.
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(A) (B)

Figure 3: An illustration of the graph before the set intersection query a ∩ b = ∅?. There is a
unique perfect matching before the query: matched edges are drawn thick and unmatched ones thin.
Dashed edges are inserted in the course of the query. (A) For the worst case bound we insert edges
(x, a′′), (y, b′′), check if the size of the MCM has increased (implying a∩b 6= ∅), then delete them. (B)
For the amortized bound we insert new vertices xa,b, x

′
a,b, ya,b, y

′
a,b insert edges (xa,b, a

′′), (ya,b, b
′′),

then check whether the size of the MCM has increased, then insert edges (x′a,b, xa,b), (y
′
a,b, ya,b).

Depending on the actual time of these operations, we either do nothing or roll back all edge and
vertex insertions.

Recall that we always have M ′ ≤ N ′α′. Since we can always increase the number of vertices,
it is enough to prove that the lower bound holds for all combinations of M ′ = N ′α′. This is
exactly the case here, since M ′ = n1+γ = n2γn1−γ = N ′α′. Furthermore, we capture the entire
spectrum of polynomial dependencies of α′ in terms of M ′ and N ′. To see this for M ′ notice that

α′ = M
′ 1−γ
1+γ = M ′x. As γ admits values between 1/3 and 1 (exclusive), x admits values between 1/2

and 0 (exclusive). Similarly, α′ = N
′ 1−γ

2γ = N ′y, so y admits values between 0 and 1 (exclusive).

4 Maximum Cardinality Matching - Theorem 1.11

In this section n denotes the size of the 3SUM instance and N and M denote the number of vertices
and edges in the graph on which we compute maximum cardinality matchings.

Due to space considerations we provide here a proof of Theorem 1.11. The discussion of the
other results is in Appendix G.

In amortized analysis we are want to bound the total cost of a sequence S = (σ1, · · ·σk) of
k operations. A function f assigns valid amortized costs if

∑k
i=1 f(σi) is an upper bound on

the empirical cost
∑k

i=1 cost(σi). We prove that if Ni is the number of vertices after σi, then∑k
i=1 cost(σi) is Ω(

∑k
i=1N

√
2−1−o(1)

i ), that is, any amortization function f that is a function of the

current number of vertices N̂ has f(N̂) = Ω(N̂
√

2−1−o(1)).
Consider the following instance of the incremental MCM problem which is created from an

instance of the offline SetDisjointness problem. For each c ∈ C we create two vertices cA and cB
with an edge between them. We say that cA and cB are copies of c. For each a ∈ A (b ∈ B) we
create two vertices a′ and a′′ (b′ and b′′) with an edge between them, and for each c ∈ a (c ∈ b)there
is an edge between a′ and cA (b′ and cB). We say that a′ and a′′ (b′ and b′′) are copies of a (b). We
also add 2 additional vertices, x and y.

The initialization of this graph is implemented by inserting all of the edges one at a time using

10



the incremental MCM algorithm. This initial graph has Θ(n+ n2−2γ) vertices and Θ(n2−γ) edges.
Notice that this initial graph (without the extra 2 vertices) has a unique perfect matching with
the edges between copies. To implement a SetDisjointness query between a and b we add edges
(x, a′′) and (y, b′′). See Figure 3(A). Now, a and b are disjoint iff there is no augmenting path after
adding the two edge (details in Appendix G). Thus an increase in the MCM implies that a∩ b 6= ∅.
In order to facilitate additional SetDisjointness queries we undo the effect of adding (x, a′′), (y, b′′),
using one of the following two approaches.

Rollback. One approach is to delete the two edges that are added. An incremental data structure
can always support deletions of the last element that was inserted by keeping track of the memory
modifications that took place during the last insertions, and reversing them in the same time bound.
Notice that this approach does not blend well with amortized time bounds since we have no a priori
bound on the maximum time per operation.

Creating Perfect Matchings. The second approach is to add another two edges per SetDis-
jointness query for a total of 4 edges, and create four separate dummy vertices xa,b, x

′
a,b, yb,a, and

y′b,a associate with each SetDisjointness query on a ∈ A and b ∈ B. For the SetDisjointness query we
add edges (xa,b, a

′′) and (yb,a, b
′′) to the graph and as before the MCM increases iff the sets a and

b intersect. See Figure 3(B). Then, we add edges (xa,b, x
′
a,b) and (yb,a, y

′
b,a) which guarantee that

the resulting graph has a perfect matching that is comprised of the perfect matching of the graph
prior to the insertion of the 4 edges together with edges (xa,b, x

′
a,b) and (yb,a, y

′
b,a). The MCM has

increased by 2 after the insertion of the 4 edges, regardless of whether the sets intersect or not. The
downside of this approach is that the number of vertices grows with the number of SetDisjointness
queries, leading to weaker lower bounds in terms of the number of vertices.

Combining the Two. Assume that the amortized cost of each edge or vertex insertion is N̂α for
some constant α > 0, where N̂ is the number of vertices in the graph when the insertion takes place.
To answer a SetDisjointness query we first add the four vertices and four edges, thereby creating
a perfect matching. If the insertion time of these vertices and edges is less than 9N̂α (within N̂α

of the budget for 8 insertions) then we rollback the insertion. Otherwise, we leave the four edges
and continue to the next SetDisjointness query. Intuitively, our goal with this combined method is
to guarantee that the graph does not grow by too much, while maintaining the amortized cost (to
obtain a higher lower-bound). SetDisjointness queries for which we perform a rollback cost O(N̂α)
time each. By assumption the subsequence of remaining operations (those inserts used to set up
the initial graph and subsequent inserts not rolled back) has amortized cost O(N̂α).

Next we bound the number of vertices at the end of the process, denoted by N . After the
graph setup there is O(n2−γ(n+ n2−2γ)α) credit for performing expensive insertions later. For our
proof we will focus on γ ≤ 1/2 and so the amount of credit becomes O(n2−γnα). Each expensive
SetDisjointness query uses up at least N̂α of that credit, and so the total credit used during all of
the expensive insertions is at least Ω(

∑N
i=0(n + i)α) = Ω(N1+α). Since we can never be in credit

debt, we have that n2−γnα ≥ Ω(N1+α) and so N ≤ O(n
2−γ+α
1+α ).

The number of cheaper insertions that we rolled back is O(n1+γ). Each one of these costs at
most Nα. So the total time of the entire sequence of operations which solves 3SUM is O(n1+γNα+

N1+α) ≤ O(n1+γ+
(2−γ+α)α

1+α +n2−γ+α). Given the 3SUM conjecture this runtime cannot beO(n2−Ω(1)),

so up to a o(1) term we must have 2 ≤ max{1 + γ+ (2−γ+α)α
1+α , 2− γ+α}. The two terms are equal

when γ = 1
2+α and then 2 ≤ 2 − γ + α implying that α ≥ γ = 1

2+α . Thus, α must be at least√
2− 1 > 0.414.
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A Proof of Theorem 1.6

Definition A.1. (Universality and Linearity) Let H be a family of hash functions from [u]→
[m].

1. H is called c-universal if for any distinct x, x′ ∈ [u],

Pr
h∈H

(h(x) = h(x′)) ≤ c

m
.

2. H is called almost linear if for any h ∈ H and any x, x′ ∈ [u],

h(x) + h(x′) ∈ h(x+ x′) + {−1, 0} (modm).

In our application any O(1)-universal almost linear hash function suffices.

Theorem A.1. (Dietzfelbinger, Hagerup, Katajainen, and Penttonen 1997 [13]) Let u and m be
powers of two, with m < u. The family Hu,m is 2-universal and almost linear, where

Hu,m = {ha : [u]→ [m] | a ∈ [u] is an odd integer}
and ha(x) = (axmodu) div (u/m).

Because the modular arithmetic and division are by powers of two, the hash functions of Theo-
rem A.1 are very easy to implement using standard multiplication and shifts. If u = 2w, where
w is the number of bits per word, and m = 2s, the function is written in C as (a*x) >> (w-s).
Dietzfelbinger et al. [13] proved that it is 2-universal. It is clearly almost linear.

A.1 Hashing and Coding Preliminaries

The reduction in the next section makes use of any constant rate, constant relative distance binary
code. The expander codes of Sipser and Spielman [37] are sufficient for our application.

Theorem A.2. (See Sipser and Spielman [37]) There is a constant ε > 0 such that for any
sufficiently large δ > δ(ε), there is a binary code C : {0, 1}N → {0, 1}δN such that for any x, y ∈
{0, 1}N , the Hamming distance between C(x) and C(y) is at least ε · δN . Moreover, C(x) can be
computed in O(δN) time.

A.2 The Reduction

Let [u]\{0} = [2w]\{0} be the universe. It is convenient to assume that 0 is excluded from A, but
this is without loss of generality since all witnesses involving 0 can be enumerated in O(n log n)
time by sorting A. Choose L hash functions (hi)i∈[L] independently from Hu,m, where m = 2dlogne

is the least power of two larger than n. Ideally a hash function will map A injectively into the
buckets [m], or at least put a constant load on each bucket, but this cannot be guaranteed. Some
buckets will be overloaded and the items in them discarded.

Definition A.2. (Overloaded Buckets, Discarded Elements) For each i ∈ [L] and j ∈ [m]
define

bucketi(j) = {x ∈ A | hi(x) = j}
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to be the set of elements hashed by hi to the jth bucket. The truncation of this bucket is defined as

bucket?i (j) =

{
bucketi(j) if |bucketi(j)| ≤ T , and
∅ otherwise,

where T = O(1) is a constant threshold to be determined. If bucket?i (j) = ∅ we say that the
elements of bucketi(j) were discarded by hi. An element is called bad if it is discarded by a
4/T -fraction of the hash functions.

Lemma A.3. The probability that an element is bad is at most exp
(
− 2L

3T

)
.

Proof. Since each hi is 2-universal, the expected number of other elements in x’s bucket is, by
linearity of expectation, at most 2(n − 1)/m < 2. By Markov’s inequality the probability that x
is discarded by hi is less than 2/T . Let X be the number of hash functions that discard x, so
E(X) < 2L/T . By definition x is bad if X > 4L/T > 2 · E(X). Since the hash functions were
chosen independently, by a Chernoff bound, Pr(x is bad) < exp

(
− 2L

3T

)
.

We will set T = O(1) and L = Θ(log n) to be sufficiently large so that the probability that
no elements are bad is 1 − 1/poly(n). We proceed under the assumption that there are no bad
elements.

Lemma A.4. Suppose there are no bad elements with respect to (hi)i∈[L]. For any three a, b, c ∈ A,

there are more than
(
1− 12

T

)
L indices i ∈ [L] such that hi discards none of {a, b, c}.

Proof. Each of a, b, c is discarded by less than 4L/T hash functions, so none are discarded by at
least L− 12L/T hash functions.

Let δ > 1, ε > 0 be the parameters of Theorem A.2, where N = dlog ne and L = δN . We assign
each x ∈ A an L-bit codeword Cx such that any two Cx, Cy disagree in at least εL positions.

We will make 8TL calls to an Convolution3SUM algorithm on vectors {A`}`∈[L]×{−1,0}×{0,1}×[2T ],
each of length 14m = O(n). For reasons that will become clear we index the calls by tuples
` = (i, α, β, γ) ∈ [L]×{−1, 0}×{0, 1}× [2T ]. The first coordinate i of ` identifies the hash function.
The second coordinate α indicates that we are looking for witnesses a, b, a + b ∈ A for which
hi(a)+hi(b) = hi(a+b)+α (modm). A natural way to define A` creates multiple copies of elements
but can lead to a situation where there are false positives: we may have A`(p) +A`(q) = A`(p+ q)
and yet this is not a witness for the original 3SUM instance because A`(p) = A`(q).

4 In each call to
Convolution3SUM we look for witnesses where each element can play the role of either “p” or “q”
in the example above, but not both; all elements will be eligible to play the role of “p + q.” The
parity of Cx(i) xor β tells us which roles x is allowed to play, where β is the third coordinate of `.
The fourth coordinate γ of ` effects a cyclic shift of the order of elements within a bucket.

Each vector A` is partitioned into 2m contiguous blocks, each of length 7T . Many of the locations
of A` are filled with a dummy value∞, which is some sufficiently large number that cannot be part
of any witness, say 2 max(A) + 1. The elements of the jth bucket each appear three times in A`,
twice in the first half and once in the second.

4This minor bug appears in Pǎtraşcu’s reduction from 3SUM to Convolution3SUM.
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Figure 4: Block j in A` occupies positions j(7T ) through (j + 1)(7T ) − 1. In the first half of
A`, a block is partitioned into five intervals. The first interval covers positions 0 through T − 1
and is always filled with a dummy value ∞. The second and third intervals run, respectively,
from positions T through 2T − 1 and positions 2T through 3T − 1. They contain those elements
x ∈ bucket?i (j − α) for which Cx(i) xor β is, respectively, 0 and 1. The fourth interval runs
from positions 3T through 5T − 1 and contains all members of bucket?i (j − α), cyclically shifted
by γ. The last interval, from positions 5T through 7T − 1, is always filled with dummies. The
composition of a block j in the second half of A` is similar, except that the second and third
intervals (positions T through 3T − 1) contain only dummies, and the fourth interval contains all
members of bucket?i ((j − α) modm).

Order the elements of bucket?i (j) arbitrarily as (x(i, j, k))k∈[T ], where x(i, j, k) does not exist
if k ≥ |bucket?i (j)|. Define the vector A(i,α,β,γ) as follows.

A(i,α,β,γ)(j(7T ) + t)

=


x(i, j, k) when t = T + k, k ∈ [T ], and Cx(i,j,k)(i) xor β = 0,

x(i, j, k) when t = 2T + k, k ∈ [T ], and Cx(i,j,k)(i) xor β = 1,

x(i, (j − α) modm, k) when t = 3T + ((k + γ) mod 2T ) and k ∈ [T ],
∞ in all other cases.

The last case applies when j, k, or t is out of range or if the given element, say x(i, j, k), does not
exist because |bucket?i (j)| ≤ k. See Figure 4.

Lemma A.5. (No False Negatives) Suppose a, b, a + b ∈ A is a witness to the 3SUM instance
A. For some ` = (i, α, β, γ), this is also a witness in the Convolution3SUM instance A`.

Proof. Set the threshold T = 12/ε = O(1). By Lemma A.4 there are more than L(1 − 12/T ) =
L(1 − ε) indices i ∈ [L] such that none of {a, b, a + b} are discarded by hi. Moreover, by the
properties of the error correcting code (Theorem A.2) there are at least εL indices i for which
Ca(i) 6= Cb(i), which implies that both criteria are satisfied for at least one i. Fix any such i.

Let ja = hi(a), jb = hi(b), and ja+b = hi(a + b) be the bucket indices of a, b, and a + b. Let
ka, kb, ka+b be their positions in those buckets, that is, a = x(i, ja, ka) and b = x(i, jb, kb), and
a+ b = x(i, ja+b, ka+b). Without loss of generality ja ≤ jb. Let β = Ca(i), so Ca(i) xor β = 0 and
Cb(i) xor β = 1. Let α ∈ {−1, 0} be such that hi(a) + hi(b) ≡ hi(a+ b) + α (modm).

In the vector A(i,α,β,γ),

• a is at position ja(7T ) + T + ka, because Ca(i) xor β = 0,

• b is at position jb(7T ) + 2T + kb, because Cb(i) xor β = 1,

• and since ja+b ≡ ja+jb−α (modm), a+b is at position (ja+jb)(7T )+3T+((ka+b+γ) mod 2T ).

Thus, for γ = (ka+kb−ka+b) mod 2T , the triple (a, b, a+b) forms a witness for the Convolution3SUM
vector A`.
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Lemma A.6. (No False Positives) If (a, b, a+b) is a witness in some Convolution3SUM instance
A`, it is also a witness in the original 3SUM instance A.

Proof. None of {a, b, a + b} can be the dummy ∞ in A`, so they must all be members of A. The
only way it cannot be an witness for 3SUM is if b = a, that is, (a, a, 2a) is not a triple of distinct
numbers. If a is not discarded, it appears at exactly three positions in A`. Regardless of the bit
Ca(i), a appears at both

A`((ja + α)(7T ) + 3T + ((ka + γ) mod 2T ))

and A`((m+ ja + α)(7T ) + 3T + ((ka + γ) mod 2T )),

for some ka ∈ [T ] and γ ∈ [2T ].

Depending on the parity of Cx(i) xor β, a also appears at either

A`(ja(7T ) + T + ka)

or A`(ja(7T ) + 2T + ka).

For (a, a, 2a) to be a Convolution3SUM witness we would need 2a to appear either at

A`
(
(2ja + α)(7T ) + 4T + ka + ((ka + γ) mod 2T )

)
or A`

(
(2ja + α)(7T ) + 5T + ka + ((ka + γ) mod 2T )

)
.

However, in both of those positions A` is ∞ by definition. See Figure 4.

A.3 Conclusions

We have shown that the randomized (Las Vegas) complexities of 3SUM and Convolution3SUM are
equivalent up to a logarithmic factor. Since hashing plays such an essential role in the reduction, it
would be surprising if our construction could be efficiently derandomized, or if it could be generalized
to show that 3SUM and Convolution3SUM over the reals are essentially equivalent.

The O(log n)-factor gap in Theorem 1.6 stems from our solution to two technical difficulties, (i)
ensuring that all triples appear in lightly loaded buckets with respect to a large fraction of the hash
functions, and (ii) ensuring that no non-3SUM witnesses (a, a, 2a) occur as witnesses in any Con-
volution3SUM instance. We leave it as an open problem to show that 3SUM and Convolution3SUM
are asymptotically equivalent, without the O(log n)-factor gap.

B The Reporting Version of Set Intersection

Theorem B.1. Assume the 3SUM conjecture. For any 0 ≤ γ < 1, δ > 0, any data structure
for SetIntersection with expected preprocessing time tp, amortized expected query time tq, and the
amortized expected time to report an element in the output is tr has

tp +N
2(1+γ)
3+δ−γ tq +N

2(2−δ)
3+δ−γ tr = Ω

(
N

4
3+δ−γ−o(1)

)
.

Notice that, if we only allow linear preprocessing time and a constant reporting time, then by
making γ and δ arbitrarily small we obtain a query time lower bound of Ω(N

2
3
−o(1)). In this case

the expected size of output during each query is O(N
2
3
−Ω(1)).
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Proof. We use the same reduction as the one in the proof of Theorem 1.7. Using Theorem 1.5, we

have N = Θ(n1−γ
√
n1+δ−γ) = Θ(n

3+δ−γ
2 ), the number of queries is Θ(n1+γ) = Θ(N

2(1+γ)
3+δ−γ ), and

the total size of the output is Θ(n2−δ) = Θ(N
2(2−δ)
3+δ−γ ). Thus, we obtain the following lower bound

tradeoff:

tp +N
2(1+γ)
3+δ−γ tq +N

2(2−δ)
3+δ−γ tr = Ω(n2−o(1)) = Ω

(
N

4
3+δ−γ−o(1)

)
.

C Almost Linear and Almost Balanced Hashing

We will now describe how to overcome the assumption that there exist pair-wise independent
hash functions that are magically linear and balanced. In this section we use a more general
definition of almost linear than the one used in Section A or by Baran et al. [5] and Pǎtraşcu [35].
Whereas Section A required any O(1)-universal almost linear hash family, here we require a pairwise
independent (and exactly 1-universal) almost linear hash family. The hash family [13] proposed
by Baran et al. [5] and Pǎtraşcu [35] is almost linear (under Section A’s definition) but it is only
known to be 2-universal [13, Lem. 2.4] and is definitely not pairwise independent. This issue was
also noted in [21].

A family H of hash functions from [u] → [m] is called almost linear if for any h ∈ H and any
x, x′ ∈ [u], either h(x)+h(x′) = h(x+x′)+ch (modm), or h(x)+h(x′) = h(x+x′)+ch+1 (modm),
where ch is some integer that depends only on h. Given a hash function h ∈ H we say that a value
i ∈ m is heavy for set S = {x1, . . . , xn} ⊂ [u] if |{x ∈ S : h(x) = i}| > 3n

m . H is called almost
balanced if for any set S = {x1, . . . , xn} ⊂ [u], the expected number of elements from S that are
hashed to heavy values is O(m).

We will show that there exists a family H of pairwise independent hash functions that is almost
linear and almost balanced, which is suitable for use in the reductions of Theorems 1.4 and 1.5.
Each step in the proofs of Theorems 1.4 and 1.5 that used linearity can be replaced by two parallel
steps making use of the almost linearity of H. The reduction algorithm must consider both options
h(x) + h(x′) = h(x + x′) + ch (modm), and h(x) + h(x′) = h(x + x′) + ch + 1 (modm). This
bifurcation of the possible cases only blows up the running time by a factor of four: whereas before
we assumed h1 and h2 were perfectly linear, we now have to entertain two options for h1 hash
values and two options for h2 hash values.

The balance assumption is overcome by directly verifying all of the elements that are assigned
a heavy value to see if they are part of a solution for 3SUM. This takes O(n) time per element.
Since the expected number of such elements in is O(nγ) the total time spent on such elements is
O(n1+γ) which is the same as the number of intersections in the reductions, and so we can ignore
this cost in our analysis. For the rest of the elements (those that are not assigned to heavy values)
we proceed as in the proofs of Theorem 1.4 and 1.5.

The Hash Family. Baran et. al. [5] showed that any 1-universal family of hash functions is
almost balanced; see [21] for an additional proof. Rather than use the family of [13], we use one
analyzed by Dietzfelbinger [12].

Theorem C.1. ([12, Theorem 3]) The family Hu,m,r defined below is pairwise independent and
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hence 1-universal whenever r = km for some k ≥ u/2, and u,m, and r are all powers of 2.

Hu,m,r = {ha,b : [u]→ [m] | a ∈ [r] is an odd integer and b ∈ [r]}
and ha,b(x) = (ax+ bmod r) div (r/m)

Since Hu,m,r is 1-universal it is also almost balanced [5, 21]. We need to also prove that it is almost
linear.

Lemma C.2. The family Hu,m,r is almost linear, with cha,b = (b− 1 mod r) div (r/m).

Proof. Consider two elements x, x′ ∈ [u]. Consider the function g(x) = ga,b(x) = ax+bmod r. Then
g(x)+g(x′) mod r = a(x+x′)+2bmod r = g(x+x′)+ bmod r. Cutting off the least significant bits
in the computation by considering h = ha,b instead of ga,b can only affect a missing carry in the
computation, and so either (h(x)+h(x′) modm) = (h(x+x′)+bmodm) or (h(x)+h(x′) modm) =
(h(x + x′) + b − 1 modm). Hence by setting ch = b − 1 modm we have that Hu,m,r is almost
linear.

D d-Failure Connectivity

In the d-Failure Connectivity Oracle problem we wish to preprocess an undirected graph G = (V,E)
and some integer parameter d > 0 in order to support: (1) updates to G in which a set F of up to
d vertices are deleted and (2) connectivity queries in which we determine whether a given s and t
are in the same connected component of the graph induced by V (G)\F .

In Duan and Pettie’s [14] d-failure connectivity structure the preprocessing and deletion times
are O(mn1/c poly(log(n)) and O(d2c+4 poly(log n)), where c ≥ 1 is an integer parameter. The query
time is O(d), independent of c.

Theorem D.1. Assume the 3SUM conjecture. For any 1/2 ≤ γ < 1 suppose there is a d-failure

connectivity structure for d
2−γ
2−2γ -edge, d

1
2−2γ -vertex graphs with expected preprocessing time tp, amor-

tized expected deletion time td, and amortized expected query time tq. Then,

tp + d
1

2−2γ · td + d
1+γ
2−2γ · tq = Ω(d

1
1−γ−o(1)

).

This lower bound shows that with preprocessing and deletion times similar to [14], the time to
answer a connectivity query must be Ω(

√
d/f(n)), where the complexity of 3SUM is O(n2/f(n)).

In particular, if f is polylogarithmic, then the query time must be Ω̃(
√
d). The connectivity oracles

of [33, 14, 23] answer queries in O(log log n) time after d edge deletions, independent of d. Our
lower bound precludes such a Õ(1) query time for d vertex deletions.

Proof. We reduce the SetDisjointness problem to the d-failure connectivity as follows. We make use
of Theorem 1.4 and set d = O(n2−2γ) = |C|. Construct a tripartite graph G = (V,E) on vertices
V = A ∪B ∪ C and edges

E = {(a, c) | c ∈ a} ∪ {(b, c) | c ∈ b}

We now need to answer n1+γ = O(d
1+γ
2−2γ ) SetDisjointness queries using a black-box data structure

for d-failure connectivity on G. For each a ∈ A separately we perform up to d deletions and then
answer all SI queries involving a using connectivity queries. To do this we delete all vertices in C
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that correspond to elements not in a and let G[a] be the resulting graph. Notice that in G[a], a
is only connected to sets in A ∪ B that intersect a. We can therefore answer any SetDisjointness
query “a ∩ b = ∅?” by asking one connectivity query in G[a].

Observe thatG is anM -edge, N -vertex graph whereN = |A|+|B|+|C| = O(n log n) = Õ(d
1

2−2γ )

and M = O(n2−γ) = O(d
2−γ
2−2γ ). Thus, tp + (n log n) · td + n1+γ · tq = Ω(n2−o(1)). Substituting

n = Ω(d
1

2−2γ ) completes the proof.

E Distance Oracles for Colors

Distance Oracles for Colors. Let S be a set of points in some metric with distance function
d(·, ·), where each point p ∈ S has some associated colors C(p) ⊂ [`]. For c ∈ [`] we denote by
P (c) the set of points from S with color c. We generalize d so that the distance between a point p
and a color c is denoted by d(p, c) = minq∈P (c){d(p, q)}. In the (Approximate) Distance Oracles for
Vertex-Labeled Graphs problem [17] [9] we are interested in preprocessing S so that given a query
of a point q and a color c we can return d(q, c) (or some approximation). We further generalize d so
that the distance between two colors c and c′ is denoted by d(c, c′) = minp∈P (C){d(p, C ′)}. In the
Distance Oracle for Colors problem we are interested in preprocessing S so that given two query
colors c and c′ we can return d(c, c′). In the Approximate Distance Oracle for Colors problem we
are interested in preprocessing S and some constant α > 1 so that given two query colors c and c′

we can return some value d̂ such that d(c, c′) ≤ d̂ ≤ αd(c, c′).
For a text T and a pattern P let L(P, T ) be the set of locations in which P occurs in T . A special

case of the Distance Oracle for Colors problem is the Snippets problem in which one is given a text
T of length N to preprocess so that given pattern queries P1, P2, · · · , Pk one can quickly compute
min1≤i≤N{max1≤j≤k{mino∈L(Pi,T ) |o− j|}}. In words, we are interested in the location in the text
which minimizes the distance to maximum distance to any queried pattern . This problem is of
interest for search engines where one is interested in demonstrating the relevance of documents or
webpages to queried patterns. A common method of demonstrating such relevance is by providing
a so called snippet of the document in which the queried patterns appear close to each other.

We show evidence of the hardness of the Distance Oracle for Colors problem and the Approxi-
mate Distance Oracle for Colors problem by focusing on the 1-D case (the snippets).

Theorem E.1. Assume the 3SUM conjecture. Suppose there is a 1-D Distance Oracle for Colors
with constant stretch α ≥ 1 algorithm for an array of size N with expected preprocessing time tp
and amortized expected query time tq. Then for any constant 0 < γ < 1

tp +N
1+γ
2−γ · tq(N) = Ω(N

2
2−γ−o(1)

).

Notice that by making γ as small as possible then if the preprocessing time is linear we obtain
a lower bound tq = Ω(N1/2−o(1)), even in expectation. Furthermore, if the preprocessing time is
truly subquadratic then the query time lower bound can be forced to be a polynomial by making
γ large enough.

Proof. We use Theorem 1.4 and reduce offline SetDisjointness to the Colored Distance problem as
follows. Let A∪B = {S1, · · · , SΘ(n)}. For each Si we define a unique color ci. For an element e ∈ C
let |e| denote the number of subsets containing e and notice that in expectation

∑
e∈C |e| = Θ(n2−γ).

Since each element in C appears in at most O(n) subsets, we partition C into Θ(log n) parts where
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the ith part Pi contains all of the elements e ∈ C such that 2i−1 < |e| ≤ 2i. An array Xi is
constructed from Pi = {e1, · · · e|Pi|} by assigning an interval Ij = [fj , `j ] in Xi to each ej ∈ Pi such
that no two intervals overlap. Every interval Ij contains a list of all of the colors of subsets in A∪B
that contain ej . This implies that |Ij | = |ej | ≤ 2i. Furthermore, for each ej and ej+1 we separate
Ij from Ij+1 with a dummy color d listed 2i + 1 times at locations [`j + 1, fj+1 − 1]. Finally, we
pad each Xi so that its size is N = Θ(n2−γ). This is always possible since

∑
e∈C |e| = Θ(n2−γ).

We can now simulate a SetDisjointness query on subsets (Si, Sj) ∈ A×B by performing a colored
distance query on colors ci and cj in each of the Θ(log n) arrays. There exists a Pi for which the
two points returned from the query are at distance strictly less than 2i + 1 if and only if there is
an element in C that is contained in both Si and Sj . The number of SetDisjointness queries that
need to be decided is t = Θ(n1+γ). For the CLB we restrict our attention to the array on which
the algorithm spends the most time to preprocess and perform all of the queries. This array has
size N = Θ(n2−γ). So the total runtime is at most a O(log n) factor of the time spent on this array.
Thus,

log n(tp + n1+γ · tq) = O(logN(tp +N
1+γ
2−γ · tq))

= Ω(N
2

2−γ−o(1)
)

= Ω(n2−o(1)).

Finally, notice that the lower bound also holds for the approximate case, as for any constant α the
reduction can overcome the α approximation by separating intervals using α2i + 1 listings of d.

F Document Retrieval Problems with Multiple Patterns

Two Patterns Document Retrieval. In the Document Retrieval problem [28] we are interested
in preprocessing a collection of documents X = {D1, · · · , Dk} where N =

∑
D∈X |D|, so that given

a pattern P we can quickly report all of the documents that contain P . Typically, we are interested
in run time that depends on the number of documents that contain P and not in the total number
of occurrences of P in the entire collection of documents. In the Two Patterns Document Retrieval
problem we are given two patterns P1 and P2 during query time, and wish to report all of the
documents that contain both P1 and P2. We consider two versions of the Two Patterns Document
Retrieval problem. In the decision version we are only interested in detecting if there exists a
document that contains both patterns. In the reporting version we are interested in enumerating
all documents that contain both patterns.

All known solutions for the Two Patterns Document Retrieval problem with non trivial pre-
processing use at least Ω(

√
N) time per query [28],[11],[18],[19]. In a recent paper, Larsen, Munro,

Nielsen, and Thankachan [27] show lower bounds for the Two Patterns Document Retrieval prob-
lem conditioned on the hardness of boolean matrix multiplication. We provide some additional
evidence of hardness conditioned on the 3SUM conjecture.

It is straightforward to see that the appropriate versions of the two pattern document retrieval
problem solve the corresponding versions of the intersection problems. In particular, this can be
obtained by creating an alphabet Σ which corresponds to all of the sets in A ∪B. For each c ∈ C
we create a document that contains the characters corresponding to the sets that contain c. The
intersection between a ∈ A and b ∈ B directly corresponds to all the documents that contain both
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a and b. Thus, all of the lower bound tradeoffs for intersection problems are lower bound tradeoffs
for the two pattern document retrieval problem.

Theorem F.1. Assume the 3SUM conjecture. For any 0 < γ < 1, any data structure for the Two
Patterns Document Retrieval problem for a collection of documents X where N =

∑
D∈X |D|, with

expected preprocessing time tp and amortized expected query time tq.

tp +N
1+γ
2−γ tq = Ω

(
N

2
2−γ−o(1)

)
.

Theorem F.2. Assume the 3SUM conjecture. For any 0 ≤ γ < 1, δ > 0, any data structure for the
Two Patterns Document Retrieval algorithm for a collection of documents X where N =

∑
D∈X |D|,

with expected preprocessing time tp, the amortized expected query time tq, and amortized expected
time to report each document in the output tr has

tp +N
2(1+γ)
3+δ−γ tq +N

2(2−δ)
3+δ−γ tr = Ω

(
N

4
3+δ−γ−o(1)

)
.

Forbidden Pattern Document Retrieval. In the Forbidden Pattern Document Retrieval prob-
lem [15] we are also interested in preprocessing the collection of documents but this time given a
query P+ and P− we are interested in reporting all of the documents that contain P+ and do not
contain P−. Here too we consider a decision version and a reporting version.

All known solutions for the Forbidden Pattern Document Retrieval problem with non trivial
preprocessing use at least Ω(

√
N) time per query [15] [19]. In a recent paper, Larsen, Munro,

Nielsen, and Thankachan [27] show lower bounds for the Forbidden Pattern Document Retrieval
problem conditioned on the hardness of boolean matrix multiplication. We provide some additional
evidence of hardness conditioned on the 3SUM conjecture.

Theorem F.3. Assume the 3SUM conjecture. For any 0 < γ < 1, any data structure for the
Forbidden Pattern Document Retrieval algorithm for a collection of documents X where N =∑

D∈X |D|, with expected preprocessing time tp and amortized expected query time tq has

tp +N
1+γ
3−2γ tq = Ω(N

2
3−2γ

−o(1)
).

Proof. Similar to the proof of Theorem F.1 we set Σ = A ∪ B. However this time for each c we
create a document that contains all of the characters corresponding to sets from A that contain c
and sets from B that do not contain c.

Using Theorem 1.4, we have N = Θ(n3−2γ), and the number of queries to answer is Θ(n1+γ) =

Θ(n1+γ) = Θ(N
1+γ
3−2γ ). Thus we obtain the following lower bound tradeoff:

tp +N
1+γ
3−2γ tq = Ω(n2−o(1)) = Ω(N

2
3−2γ

−o(1)
).

Notice that if we only allow linear preprocessing time then by making γ arbitrarily small we
obtain a query time lower bound of Ω(N

1
3
−o(1)).

Theorem F.4. Assume the 3SUM conjecture. For any 0 ≤ γ < 1, δ > 0, any data structure for
the reporting version of the Forbidden Pattern Document Retrieval algorithm for a collection of
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documents X where N =
∑

D∈X |D|, with expected preprocessing time tp, the amortized expected
query time tq, and amortized expected time to report each document in the output tr has

tp +N
1+γ

3
2 (1+δ− γ3 ) tq(N) +N

2−δ
3
2 (1+δ− γ3 ) tr(N) = Ω(N

2
3
2 (1+δ− γ3 )

−o(1)
).

Notice that allowing only linear preprocessing time and a constant reporting time, then by making
γ and δ arbitrarily small we obtain a query time lower bound of Ω(N

2
3
−o(1)). Notice that in this

case the expected output size per query is O(N
2
3
−Ω(1)).

Proof. Our proof is similar to the proof of Theorem F.3, only this time we use Theorem 1.5.. So we

have N = Θ(n1+δ−γ
√
n1+δ−γ) = Θ(n

3
2

(1+δ− γ
3

)), the number of queries is Θ(n1+γ) = Θ(N
1+γ

3
2 (1+δ− γ3 ) ),

and the total size of the output is Θ(n2−δ) = Θ(N
2−δ

3
2 (1+δ− γ3 ) ). Thus, we obtain the following lower

bound tradeoff:

tp +N
1+γ

3
2 (1+δ− γ3 ) tq(N) +N

2−δ
3
2 (1+δ− γ3 ) tr(N) = Ω(n2−o(1)) = Ω(N

2
3
2 (1+δ− γ3 )

−o(1)
).

G A Full Version of Section 4

Fully Dynamic Maximum Cardinality Matching We consider the task of maintaining the
cardinality of the maximum matching in a fully dynamic graph G(V,E) where edges may be added
or removed from G. To simplify the exposition, we assume that a query is performed after each
update.

Consider the following instance of the fully dynamic MCM problem which is created from an
instance of the offline SetDisjointness problem. For each c ∈ C we create two vertices cA and cB
with an edge between them. We say that cA and cB are copies of c. For each a ∈ A we create two
vertices a′ and a′′ with an edge between them, and for each c ∈ a there is an edge between a′ and
cA. We say that a′ and a′′ are copies of a. For each b ∈ B we create two vertices b′ and b′′ with an
edge between them, and for each c ∈ b there is an edge between b′ and cB. We say that b′ and b′′

are copies of b.
The initialization of this graph is implemented by inserting all of the edges one at a time using

the fully dynamic MCM algorithm. This initial graph has Θ(n + n2−2γ) vertices and Θ(n2−γ)
edges. We also add 2 additional vertices, x and y, that are used during the implementation of the
set intersections. Before we continue in the description of the reduction, it is important to notice
that our initial graph (without the extra 2 vertices) has a unique perfect matching where we match
each pair of vertices that are copies of the same entity. This perfect matching is of course also a
MCM.

As mentioned, we make use of 2 dummy vertices x, y. To implement a SetDisjointness query we
first add an edge from x to a′′ and an edge from y to b′′. See Figure 3(A) (in the Appendix). There
are two cases to consider. In the first case, there exists an element c ∈ a∩ b. In this case before the
addition of the new edges our graph has a path from a′′ to b′′ which is (a′′, a′, cA, cB, b

′, b′′). This
path has 5 edges with 3 of them being in the perfect matching that we assume exists by induction.
Adding the edges (x, a′′) and (y, b′′) creates an augmenting path, and so the MCM has increased
due to the insertion of the two edges. On the other hand, if the SetDisjointness is empty then there
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is no augmenting path in the graph. This is because paths from x to y must have two consecutive
edges that are unmatched.

Thus, the MCM increases due to the insertion of the two edges if and only if the two sets
intersect. In order to facilitate additional SetDisjointness queries we then delete the two edges from
the graph, thereby reverting back to the original graph with the original perfect matching and the
original size of the MCM.

The total number of insertions and deletions performed is n1+γ = n1+γ . If tu(n̂,m) is the
amortized expected update time (either insertion or deletion), then by the 3SUM conjecture and
Theorem 1.4 we have that tu(n+n2−2γ , n2−γ) ·(n1+γ+n2−γ) = Ω(n2−o(1)). Given that Theorem 1.4
holds for any constant 0 < γ < 1 the highest lower bound is obtained by setting γ = 1

2 and so

tu(n̂,m) = Ω(m1/3−o(1)) and tu(n̂,m) = Ω(n̂1/2−o(1)).

G.1 Incremental version

We now consider the task of maintaining the MCM of an incremental graph G(V,E) where edges
and vertices may be added to G. Again, to simplify the exposition, we assume that a query is
performed after each update. The difficulty compared to the fully dynamic case is that we can no
longer remove edges from the graph in order to facilitate additional SetDisjointness queries. We
discuss two techniques for overcoming this difficulty, and then combine the two techniques to obtain
our strongest results.

Rollback. The first technique we discuss is the rollback technique which takes advantage of the
fact that in the fully dynamic reduction we only delete edges right after they were inserted. So an
edge deletion can be simulated by tracking all of the changes made due to the previous insertion,
and then rolling back the data structures used to their previous state prior to the insertion of the
edge. The time of the deletion process is the same as the time of the insertion process. We do
however need to use extra space for tracking the changes made during an insertion, but the amount
of space is sub-linear as we are interested in times that are sub-linear per update.

The downside of this approach is that the lower bound now only holds in the worst-case, and
not for an amortized analysis. We conclude that the rollback technique immediately implies a
tu(n̂,m) = Ω(n1/2−o(1)) worst-case expected time lower bound from the reduction of the fully
dynamic case.

Creating Perfect Matchings. The second technique we consider comes from the following
observation. Consider a SetDisjointness query that we compute using the framework of the fully
dynamic reduction, without the deletion of the edge. The issue we run into if we just ignore
deletions (and do not execute them) we may run into false positives. This happens because an
augmenting path may be created by two edge insertions where each insertion is due to a different
SetDisjointness query.

To overcome this, we guarantee that after each SetDisjointness query is performed the resulting
graph has a perfect matching. This will imply that augmenting paths during a SetDisjointness
query can only be created due to the two edges inserted for that query. The perfect matching is
created by adding another two edges per SetDisjointness query for a total of 4 edges, and creating
four separate dummy vertices xa,b, x

′
a,b, yb,a, and y′b,a for each SetDisjointness query on sets a ∈ A

and b ∈ B. For the SetDisjointness query we add edges (xa,b, a
′′) and (yb,a, b

′′) to the graph and
just like in the fully dynamic case we know that the MCM increases if and only if the sets a and b
intersect. See Figure 3(B). After we decide if the sets intersect or not, we add edges (xa,b, x

′
a,b) and
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(yb,a, y
′
b,a). These two additional edges guarantee that the resulting graph has a perfect matching.

This perfect matching is comprised of the perfect matching of the graph prior to the insertion of
the 4 edges together with edges (xa,b, x

′
a,b) and (yb,a, y

′
b,a). The MCM has also increased by 2 after

the insertion of the 4 edges, regardless of whether the sets intersect or not.
The downside of this method is that the number of vertices increases as we perform more

and more SetDisjointness queries. Furthermore, being that this is an amortized lower bound, it
is difficult to assign part of the cost of the entire sequence to the set up of the graph and the
rest of the cost to the SetDisjointness queries. Since we perform Θ(n1+γ) SetDisjointness queries,
the resulting graph has N = Θ(n1+γ) vertices and M = Θ(n1+γ + n2−γ) edges. The highest lower
bound is obtained by setting γ = 1/2. So, we have that the amortized expected time per insertion is
tu(n̂,m) = Ω(n1/2−o(1)) = Ω(N1/3−o(1)). Thus the exponent in the dependency of the lower-bound
on the number of vertices in the graph goes down from 1/2 to 1/3.

Combining the Two. To obtain our higher amortized lower bound we combine the two ap-
proaches of the rollbacks and creating perfect matchings. In particular, we will always begin by
adding four edges as before, thereby creating a perfect matching. If the time of the insertion of the
four edges is low (to be defined soon) then we will rollback the insertion. Otherwise, we leave the
four edges and continue to the next SetDisjointness query. Intuitively, our goal with this combined
method is to guarantee that the graph does not grow by too much, while maintaining the amortized
cost (to obtain a higher lower-bound).

Before delving into the detailed proof of the lower bound, recall that when we are interested in
the amortized cost of an operation, we are actually interested in the cost of a sequence of operations.
The so called amortized cost of each operation σ can be viewed as a function f(σ) that assigns
each operation a value (which may depend on various parameters), so that the time of a sequence
S = (σ1, · · ·σk) of k operations is always at most

∑k
i=1 f(σi). The lower bound that we prove is that

if ni is the number of vertices in G during the ith operation, then
∑k

i=1 f(σi) ≥ Ω(
∑k

i=1 n
√

2−1
i ) ≥

Ω(
∑k

i=1 n
0.414
i ). In other words, there is no algorithm for incremental MCM in which the amortized

cost of each insertion is O(n̂0.414−Ω(1)) where n̂ is the size of the graph during the insertion.
Now to the lower bound. Assume for contradiction that the amortized cost of each insertion is

n̂α (ignoring constant coefficients) for some constant α > 0, where n̂ is the size of the graph during
that insertion. Recall that we want to prove a lower bound on α. Our threshold for deciding when
to rollback edge insertions is 4n̂α. If the time of an insertion is less than 4n̂α then we rollback;
otherwise we do not. For the time, notice that SetDisjointness queries for which we perform a
rollback will end up costing O(n̂α) ≤ O(Nα) time each. The cost of the edge insertions due to
SetDisjointness queries for which we do not perform rollbacks, together with the edge insertions
performed to setup the graph each cost an amortized O(n̂α).

The next step will be to express N as a function of n, by taking advantage of the fact that after
the setup of the graph, every four edge insertions implementing a SetDisjointness query that remain
in the graph must have time that is expensive in a worst-case sense. Notice that after the graph setup
there is O(n2−γnα) credit for performing expensive insertions later, as the graph has m = Θ(n2−γ)
edges at the start. Each expensive SetDisjointness query uses up at least Ω(n̂α) of that credit, and
so the total credit used during all of the expensive insertions is at least Ω(

∑N
i=i(n+i)α) = Ω(N1+α).

Since we can never be in credit debt, we have that n2−γnα ≥ Ω(N1+α) and so N ≤ O(n
2−γ+α
1+α ).

The number of cheaper insertions that we rolled back is O(n1+γ) = O(n1+γ). Each one of
these costs at most Nα. So the total time of the entire sequence of operations which solves 3SUM
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is O(n1+γNα + N1+α) ≤ O(n1+γ+
(2−γ+α)α

1+α + n2−γ+α). Given the 3SUM conjecture this runtime

cannot be O(n2−Ω(1)) and so we must have that 2 ≤ max{1 + γ + (2−γ+α)α
1+α , 2 − γ + α}. If we set

γ = 1
2+α the two terms are equal, and then 2 ≤ 2 − γ + α implying that α ≥ γ = 1

2+α . Thus, α

must be at least
√

2− 1 > 0.414.
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