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Abstract

We prove an 
(ndr=2e) lower bound for the following problem: For some �xed linear

equation in r variables, given a set of n real numbers, do any r of them satisfy the

equation? Our lower bound holds in a restricted linear decision tree model, in which

each decision is based on the sign of an arbitrary a�ne combination of r or fewer

inputs. In this model, out lower bound is as large as possible. Previously, this lower

bound was known only for even r, and only for one special case. We also apply reduction

arguments to achieve new lower bounds on a number of higher-dimensional geometric

decision problems.

Our lower bounds follow from a relatively simple adversary argument. We use a

theorem of Tarski to show that if we can construct a hard input containing in�nitesimals,

then for every decision tree algorithm, there exists a corresponding set of real numbers

which is hard for that algorithm. Furthermore, we argue that it su�ces to �nd a single

input with a large number of \collapsible tuples", even if that input is highly degenerate,

i.e., there are several subsets that satisfy the equation.

�Portions of this research were done at the NSF Regional Geometry Institute at Smith College, Northampton,

MA, July 1993. This research was partially supported by NSF Presidential Young Investigator grant CCR-9058440.

An extended abstract of this paper appears in Proc. 6th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages

388{395, 1995.
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1 Introduction

Many computational decision problems, particularly in computational geometry, can be reduced

to questions of the following form: For some �xed multivariate polynomial �, given a set of n real

numbers, is any subset in the zero-set of �? In this paper, we develop general techniques for proving

lower bounds on the complexity of deciding problems of this type. In particular, we examine linear

satis�ability problems, in which the polynomial � is linear. Any r-variable linear satis�ability

problem can be decided in O(n(r+1)=2) time when r is odd, or O(nr=2 log n) time when r is even.

The algorithms that achieve these time bounds are extraordinarily simple; even so, these are the

best known upper bounds.

We consider these problems under two models of computation, both restrictions of the linear

decision tree model. In the direct query model, each decision is based on the sign of an assignment

to � by r of the input variables. In the r-linear decision tree model, each decision is based on the

sign of an arbitrary a�ne combination of at most r input variables. We show that in these models,

any algorithm that decides an r-variable linear satis�ability problem must perform 
(ndr=2e) direct

queries in the worst case. This matches known upper bounds when r is odd, and is within a

logarithmic factor when r is even. Moreover, results of Fredman [16] establish the existence of

nonuniform algorithms whose running times match our lower bounds exactly.

Our lower bounds are based on a relatively straightforward adversary argument. Our approach

is to derive, for each algorithm in a given class, an input con�guration with a large number of

"collapsible tuples". If an algorithm does not perform a direct query for every collapsible tuple, our

adversary creates a new \collapsed" con�guration, so that the algorithm cannot distinguish between

the original con�guration and the collapsed one, even though the two con�gurations should produce

di�erent answers.

We derive these adversary con�gurations by applying two new tricks. First, we allow our

adversary con�gurations to contain formal in�nitesimals, instead of just real numbers. Tarski's

Transfer Principle implies that for any algorithm, if there is a hard con�guration with in�nitesimals,

then a corresponding real con�guration exists with the same properties. Previously, Dietzfelbinger

and Maass [7, 6] used a similar technique to prove lower bounds, using \inaccessible" numbers, or

numbers having \di�erent orders of magnitude". Unlike their technique, using in�nitesimals makes

it possible, and indeed su�cient, to derive a single adversary con�guration for any problem, rather

than explicitly constructing a di�erent con�guration for every algorithm.

Second, we allow our adversary con�gurations to be degenerate. That is, both the original

con�guration and the collapsed con�guration contain tuples in the zero-set of �. We show that

such a con�guration can always be perturbed into general position, so that the new con�guration

has just as many collapsible tuples as the original. This idea was used earlier by Erickson and

Seidel [15] to derive lower bounds on some geometric degeneracy problems.

The �rst lower bound of this type is due to Fredman [16], who demonstrated an 
(n2) lower

bound on the number of simple comparisons required to sort any set of the form X + Y . This

result was generalized by Dietzfelbinger [6], who derived an 
(nr=2) lower bound on the depth of

any comparison tree algorithm that determines, given a set of n reals, whether any two subsets of

size r=2 have the same sum. In our terminology, he proves a lower bound for the speci�c r-variable

linear satis�ability problem with

� =

r=2X
i=1

xi �

r=2X
i=1

xi+r=2

in the direct query model, for all even r. Dietzfelbinger claims that his lower bound holds in the
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r-linear decision tree model as well. More recent techniques of Erickson and Seidel [15] can be

used to prove an 
(n2) lower bound for many 3-variable linear satis�ability problems in the direct

query model, but there are still a number of such problems for which these techniques appear to be

inadequate. With these few exceptions, the only lower bounds known for any problem of this type

are 
(n logn) in the linear decision tree model [8, 2], in the algebraic decision tree model [20, 23],

and in the algebraic computation tree model [1, 22, 23].

We also derive new lower bounds for some geometric degeneracy problems, essentially by re-

ducing them to linear satis�ability problems. Our higher-dimensional lower bounds hold in what

we call the projected r-linear decision tree model, for some constant r determined by the problem.

In this model, each decision is based on a polynomial that can be written as an a�ne combination

of r or fewer of the (say) x1-coordinates of the input points, with coe�cients that are arbitrary

functions of the other coordinates.

Our lower bounds should be compared with the following result of Meyer auf der Heide [18]: For

any �xed n, there exists a linear decision tree of depth O(n4 log n) that decides the n-dimensional

knapsack problem. This nonuniform algorithm can be adapted to solve any of the linear satis�ability

problems we consider, in the same amount of time [7]. Thus, there is no hope of proving lower

bounds bigger than 
(n4 logn) for any of these problems in the linear decision tree model. We

reiterate that our lower bounds apply only to linear decision trees where the number of terms in

any query is bounded by a constant.

In Section 2, we provide some background information. In Section 3, we prove our new lower

bound for linear satis�ability problems. We describe our higher-dimensional results in Section 4.

Finally, in Section 5, we o�er our conclusions and suggest directions for further research.

2 Background and Overview

An algebraic decision tree is a ternary tree in which each interior node v in the tree is labeled

with a multivariate query polynomial qv 2 IR[t1; : : : ; tn] and its branches labeled �1, 0, and +1.

Each leaf is labelled with some value | for our purposes, these values are all either \true" or

\false". Computation with such a tree works as follows. Given an input X 2 IRn, the sign of

qv(X) is computed, where v is the root of the tree, and the computation proceeds recursively in

the appropriate subtree. When a leaf is reached, its label is returned as the algorithm's output.

(Compare [20].) A linear decision tree is an algebraic decision tree, each of whose query polynomials

is linear. An r-linear decision tree is a linear decision tree, each of whose query polynomials has at

most r terms. We refer to the space IRn of possible inputs as con�guration space, and its individual

points as con�gurations.

A formally real �eld is a �eld in which there are no nontrivial solutions to the equation
P

i
a
2
i
= 0.

Formally real �elds are also known as ordered �elds, since the elements of any formally real �eld

can be given a strict linear ordering. A real closed �eld is an ordered �eld, no proper algebraic

extension of which is also an ordered �eld. The real closure fK of an ordered �eld K is the smallest

real closed �eld that contains it. We refer the interested reader to [3] or [19] for further details and

more formal de�nitions, and to [4, 5] for previous algorithmic applications of real closed �elds.

An elementary formula1 is a �nite quanti�ed boolean formula, each of whose clauses is a mul-

tivariate polynomial inequality with real coe�cients. An elementary formula holds in an ordered

�eld K if and only if the formula has no free variables, and the formula is true if we interpret each

1More formally, this is called a formula in the �rst-order language of ordered �elds with parameters in IR [3].



Lower Bounds for Linear Satis�ability Problems 3

variable as an element of K and addition and multiplication as �eld operations in K.

The following principle was originally proven by Tarski [21], in a slightly di�erent form.

The Transfer Principle: Let fK and fK 0 be two real closed �elds. An elementary formula holds

in fK if and only if it holds in fK0.

In particular, this implies that if an elementary formula holds in any real closed �eld fK, then

it also holds in IR.

For any ordered �eld K, we let K(") denote the ordered �eld of rational functions in " with

coe�cients in K, where " is positive but less than every positive element of K. In this case, we

say that " is in�nitesimal in K. We use towers of such �eld extensions. In such an extension, the

order of the in�nitesimals is speci�ed by the description of the �eld. For example, in the ordered

�eld IR(�; �; "), � is in�nitesimal in the reals, � is in�nitesimal in IR(�), and " is in�nitesimal in

IR(�; �). In�nitesimals have been used extensively in perturbation techniques [11, 14, 24] and in

algorithms dealing with real semi-algebraic sets [4, 5].

3 The Main Theorem

In this section, we prove the following theorem.

Theorem 1. Any r-linear decision tree that decides an r-variable linear satis�ability problem must

have depth 
(ndr=2e).

3.1 The Adversary Con�guration

Throughout this section, let � denote a �xed linear expression in r variables. We say that an

r-tuple is degenerate if in the zero-set of �, and that a con�guration X is degenerate if it contains

any degenerate r-tuples. For any con�guration X , we call an r-tuple of elements of X collapsible

if the following properties are satis�ed.

(1) The tuple is nondegenerate.

(2) There exists another collapsed con�guration X̂ , such that the corresponding tuple in X̂ is

degenerate, but the sign of every other linear combination of r or fewer elements is the same

for both con�gurations.

In other words, the only way for an r-linear decision tree to distinguish between X and X̂ is to

perform a direct query on the tuple.

To prove a lower bound, it su�ces to prove the existence of a nondegenerate input con�guration

with lots of collapsible tuples. If an r-linear decision tree algorithm does not perform a direct query

for each collapsible tuple, given this con�guration as input, then an adversary can collapse one of

the tuples. The algorithm would be unable to distinguish between the original con�guration and

the collapsed con�guration, even though one is degenerate and the other is not. Thus, the number

of collapsible tuples is a lower bound on the running time of the algorithm.

Unfortunately, this approach seems to be doomed from the start. For any two sets of real

numbers X and X̂, there are an in�nite number of query polynomials that are positive at X and

negative at X̂ . It follows that real con�gurations cannot have any collapsible tuples. Moreover, for
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any set of real numbers X , there is an algorithm which requires only jX j queries to decide whether

X satis�es any �xed linear satis�ability problem. Thus, it is impossible to �nd a single adversary

set of real numbers that is hard for every algorithm.

To get around this problem, we introduce the use of in�nitesimals. That is, we allow our

adversary's con�guration to contain elements of an ordered �eld of the form K = IR("1; : : : ; "m),

instead of the reals. Since the �eld K is ordered, and since any real polynomial can be thought of

as a function from K to K, it is reasonable to talk about the behavior of any algebraic decision

tree given such a con�guration as input.

Allowing the adversary to use in�nitesimals allows us to construct a con�guration with several

collapsible tuples, even though such con�gurations are impossible if we restrict ourselves to the

reals. Our construction relies on a special matrix M satisfying the following lemma.

Lemma 2. There exists an r � br=2c matrix M satisfying the following two conditions.

(1) There are 
(ndr=2e) vectors v 2 f1; 2; : : : ; ngr such that M>
v = 0.

(2) Every set of br=2c rows of M forms a nonsingular matrix.

Proof: LetM = (mij) be the r�br=2c integer matrix whose �rst dr=2e rows form a Vandermonde

matrix with mij = i
j�1, and whose last br=2c rows form a negative identity matrix. We claim that

this matrix satis�es conditions (1) and (2).

We construct a vector v = (v1; v2; : : : ; vd) 2 f1; 2; : : : ; ngr such that M>
v = 0 as follows. Let

mmax denote the largest element in M ; that is, mmax = dr=2ebr=2c. Fix the �rst dr=2e coordinates

of v arbitrarily in the range

1 � vi �
n

dr=2emmax

:

Now assign the following values to the remaining br=2c coordinates:

vj =

dr=2eX
i=1

mi;j�dr=2evi:

Since each mij is a positive integer, the vj are all positive integers in the range dr=2e � vj � n. We

easily verify that M>
v = 0. There are�

n

dr=2emmax

�dr=2e
�

n
dr=2e

dr=2edr=2e
2
= 
(ndr=2e):

di�erent ways to choose the vector v. Thus, M satis�es condition (1).

Let M 0 be a matrix consisting of br=2c arbitrary rows of M . Using elementary row and column

operations, we can write

M
0 = W

 
V 0

0 �I

!
;

where W is a matrix with determinant �1, V is a square minor of a Vandermonde matrix, and

I is an identity matrix. Since W , V 0, and I are all nonsingular, so is M
0. Thus, M satis�es

condition (2). 2

Lemma 3. There exists a con�gurationX 2 K
n with 
(ndr=2e) collapsible tuples, for some ordered

�eld K.
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Proof: We explicitly construct a con�guration X 2 IR(�1; : : : ;�r�1; �1; : : : ; �br=2c; "1; : : : ; "r) that

satis�es the lemma. We assume without loss of generality that n is a multiple of r.

Write � =
P

r

i=1 aiti with real coe�cients ai and formal variables ti. Let the matrix M = (mij)

be given by the previous lemma. Our con�guration X is the union of r smaller sets Xi, each

containing n=r elements xij de�ned as follows.

xij =
1

ai

0@(�1)i(�i�1 +�i) +

br=2cX
k=1

mik�kj

1A+ "ij
2

For notational convenience, we de�ne �0 = �d = 0.

For example, in the simplest nontrivial case r = 3, our con�guration X lies in the �eld

IR(�1;�2; �1; "1; "2; "3). If we take M = (1; 1;�1)>, then X contains the following elements:

x1j =
1
a1
(��1 + �1j) + "1j

2 [1 � j � n=3]

x2j =
1
a2
( �1 +�2 + �1j) + "2j

2 [1 � j � n=3]

x3j =
1
a3
( ��2 + �1j) + "3j

2 [1 � j � n=3]

We claim that any tuple (x1p1 ; : : : ; xrpr) satisfying the equation M
>(p1; : : : ; pr) = 0 is collapsi-

ble. By condition (1), there are 
((n=r)dr=2e) = 
(ndr=2e) such tuples. The adversary collapses the

tuple by replacing X with X̂, with elements x̂ij = xij + "i(p
2
i
� 2jpi). So, for example, when r = 3,

we have X̂ = X̂1 [ X̂2 [ X̂3, where

x̂1j =
1
a1
(��1 + �1j) + "1(j � p1)

2 [1 � j � n=3]

x̂2j =
1
a2
( �1 + �2 + �1j) + "2(j � p2)

2 [1 � j � n=3]

x̂3j =
1
a3
( ��2 + �1j) + "3(j � p3)

2 [1 � j � n=3]

We easily con�rm that the collapsed tuple is degenerate. It remains to show that no other r-linear

query expression changes sign.

Consider the query expression Q =
P

r

i=1Qi, where for each i,

Qi = ai

n=rX
j=1

�ijxij ;

and at most r of the coe�cients �ij are not zero. We refer to xij as a query variable if its coe�cient

�ij is not zero. We de�ne Ai and Ji as follows.

Ai =

n=rX
j=1

�ij Ji =

n=rX
j=1

�ijj

Rewrite Q as a linear combination of the in�nitesimals:

Q =
r�1X
i=1

Di�i +

br=2cX
i=1

di�i +
rX

i=1

ei"i

From the de�nitions above, we haveDi = (�1)i(Ai �Ai+1) for all i. If we let Q̂ be the corresponding

query expression for the collapsed con�guration X̂ , we can write

Q̂ =
r�1X
i=1

Di�i +

br=2cX
i=1

di�i +
rX

i=1

êi"i;
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where êi = ei � 2piAi + p
2
i
Ji for all i.

To prove the lemma, it su�ces to consider only queries for which Di = 0 and di = 0 for all i.

Note that in this case, all the Ai's are equal. There are three cases to consider.

Case 1. Suppose no subset Xi contains exactly one of the query variables. (This includes the

case where all query variables belong to the same subset.) Then at most br=2c of the Qi's are

not identically zero. It follows that Ai = 0 for all i. The vector J of nontrivial Ji's must satisfy

the matrix equation (M 0)>J = 0, where M 0 is a square minor of the matrix M . By condition (2)

above, M 0 is nonsingular, so the Ji's must be zero. It follows that êi = ei for all i, which implies

that Q = Q̂.

Case 2. Suppose some subset Xk contains exactly one query variable xkj and some other

subset Xl contains none. Then Ak = �kj and Al = 0. Since all the Ai are equal, it follows that

�kj = 0. This contradicts the assumption that xkj is a query variable. Thus, this case never

happens.

Case 3. Finally, suppose each query variable comes from a di�erent subset. Recall that all

the Ai are equal. Since we are only interested in the sign of the query, we can conclude without

loss of generality that Ai = �ij = 1 for each query variable xij . Thus, each of the ei's is positive,

which implies that Q is positive. Furthermore, unless the query variables are exactly xipi for all i,

each of the êi's is also positive, which means Q̂ is also positive.

This completes the proof of Lemma 3. 2

3.2 Moving Back to the Reals

Intuitively, the use of in�ntesimals in our adversary con�guration makes it unsable for proving lower

bounds. After all, the algorithms we consider are only required to behave correctly when they are

given real input. Therefore, we must somehow get rid of the in�ntesimals before applying our

adversary argument. Since we know that no single real adversary con�guration exists, we instead

derive a di�erent adversary con�guration for each algorithm.

Fix an r-linear decision tree A, and let QA denote the set of query polynomials used by A. (We

assume, without loss of generality, that QA includes all �(nr) direct queries, since otherwise the

algorithm cannot correctly detect all possible degenerate tuples.) For any input con�guration X ,

we call an r-tuple of elements in X relatively collapsible if the following properties are satis�ed.

(1) The tuple is nondegenerate.

(2) There exists another collapsed con�guration X̂ , such that the corresponding tuple in X̂ is

degenerate, but the sign of every other polynomial in QA is the same for both con�gurations.

Clearly, any collapsible tuple is also relatively collapsible. To prove a lower bound, it su�ces

to prove, for each r-linear decision tree A, the existence of a corresponding nondegenerate input

con�guration with lots of relatively collapsible tuples.

Lemma 4. For any r-linear decision tree A, there exists a real con�guration XA 2 IRn with


(ndr=2e) relatively collapsible tuples.

Proof: Fix A, and let QA denote the set of query polynomials used by A. Each of the collapsible

tuples in X is also relatively collapsible. Each relatively collapsible tuple Y in X corresponds to a

polynomial �Y , such that �Y (X) = �(Y ). Call the set of these polynomials �.
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It follows directly from the de�nitions that the following elementary formula holds in K.

9X

^
�
Y
2�

�
�Y (X) 6= 0 ^ 9X̂

�
�Y (X̂) = 0 ^

^
q2Q

A
nf�

Y
g

sgn q(X) = sgn q(X̂)

��

This is just a convenient shorthand for the actual formula. Each reference to �Y (X) or q(X)

should be expanded into an explicit polynomial in X , and the equation sgn a = sgn b into the

boolean formula ((ab > 0) _ (a = 0 ^ b = 0)). Since the sets � and QA are �nite, the expanded

formula is also �nite and therefore elementary.

Since K is a subset of its real closure fK, and the formula is only existentially quanti�ed, the

formula holds in fK. Thus, by the Transfer Principle, it also holds in IR. The lemma follows

immediately. 2

With a little more care, we can show that the real con�gurations are derived by replacing the

in�nitesimals by su�ciently small and su�ciently well-separated real values.

3.3 Removing Degeneracies

One �nal problem remains. The adversary con�gurations we construct (and by implication, the

real con�gurations we get by invoking the previous lemma) are degenerate, which makes them

unsuitable for proving lower bounds. In simple cases, we can construct nondegenerate adversary

con�gurations, but this becomes considerably more di�cult as we consider larger values of r. Thus,

instead of giving an explicit construction, we show that one can perturb the existing degenerate

con�gurations into general position. This technique was previously used by Erickson and Seidel [15]

to prove lower bounds on some geometric degeneracy problems.

Lemma 5. For any r-linear decision tree A, there exists a nondegenerate real con�guration X
�
A
2

IRn with 
(ndr=2e) relatively collapsible tuples.

Proof: As before, let QA denote the set of query polynomials used by A. The set QA induces a

�nite hyperplane arrangement in the con�guration space IRn. For notational convenience, we color

each hyperplane \red" if it corresponds to a direct query, and \green" otherwise. Each con�guration

corresponds to a point in some cell C in this arrangement, and each collapsible tuple corresponds

to a boundary facet of C that is uniquely spanned by a red hyperplane.

Let C be any cell in the arrangement, and let C0 be any cell in the boundary of C. Then any

hyperplane that uniquely spans a boundary facet of C0 also uniquely spans a boundary facets of

C. Since the cell containing X has k red boundary facets, it follows by induction that there is a

full-dimensional cell with k red boundary facets.2 We can choose X�
A
anywhere in this cell. 2

This completes the proof of Theorem 1.

3.4 Nonuniform Upper Bounds

Our lower bound matches known upper bounds when r is odd, but is a logarithmic factor away

when r is even and greater than 2. We use the following result of Fredman [16] to show that our

lower bounds cannot be improved in this case.

2This conclusion is stronger than the lemma requires. It su�ces that some cell, contained in only green hyperplanes,

has k red boundary facets.
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Lemma 6 (Fredman [16]). Let � be a subset of the n! orderings of f1; : : : ; ng for some �xed n.

There exists a comparison tree of depth at most log2(j�j)+2n that sorts any sequence of n numbers

with order type in �.

Theorem 7. Let � be an r-variable linear satis�ability problem with n inputs, for some �xed n

and r > 2. Then there exists an r-linear decision tree with depth O(ndr=2e) that decides �.

Proof: It su�ces to consider the case when r is even, since for any odd r there is a simple

uniform algorithm with running time O(n(r+1)=2). Suppose we are trying to satisfy the equationP
r

i=1 aiti = 0 for some �xed coe�cients ai 2 IR. Given a con�guration X = (x1; : : : ; xn) 2 IRn, we

(implicitly) construct sets Y and Z of n
r=2

real numbers each, as follows:

Y =

8<:
r=2X
i=1

aiyi

����� fy1; : : : ; yr=2g � fx1; : : : ; xng

9=;

Z =

8<:
r=2X
i=1

�ai+r=2zi

����� fz1; : : : ; zr=2g � fx1; : : : ; xng

9=;
Then X is degenerate if and only if the sets Y and Z share an element. We can detect this condition

by sorting Y [ Z using Fredman's \comparison" tree, which is really a r-linear decision tree.

Every pair of elements of Y [ Z induces a hyperplane in the con�guration space IRn. There

is a one-to-one correspondence between the cells in the resulting hyperplane arrangement and the

possible orderings of Y [ Z . Since an arrangement of N hyperplanes in IRD has at most O(ND)

cells [9], there are at most O((2n
r=2

)2n) = O((2n)rn) possible orderings. It follows that the depth

of Fredman's decision tree is at most 4n
r=2

+ O(rn logn) = O(nr=2). 2

Of course, this result does not imply the existence of a single O(ndr=2e)-time algorithm that

works for all values of n. Closing the logarithmic gap between these upper and lower bounds, even

for the special case of sorting X + Y , is a long-standing and very di�cult open problem.

4 Higher-Dimensional Problems

In this section, we extend the results of the previous section to geometric degeneracy problems in

higher dimensions.

We say that a multivariate polynomial which maps a tuple of points in IRd to the reals is

r-linear in the xi-coordinate if it can be expressed as a linear combination of the xi-coordinates

of r of its arguments, with coe�cients that are polynomials in the remaining coordinates. Let

� : (IRd)s ! IR be a �xed polynomial that is r-linear in some coordinate. The associated projected

r-linear satis�ability problem asks, given a set of n points in IRd, whether any s-tuple of these points

is in the zero-set of �. (Note that s = r in most natural applications, but s > r is certainly possible.)

If all of the query polynomials in an algebraic decision tree are r-linear in some coordinate, we call

it a projected r-linear decision tree.

For example, the a�ne degeneracy problem asks, given a set of n points in IRd, whether any

d+ 1 of them are on the same hyperplane [15]. This is equivalent to asking whether any d+ 1
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points satisfy the polynomial equation����������
1 p01 p02 � � � p0d

1 p11 p12 � � � p1d

...

1 pd1 pd2 � � � pdd

����������
= 0:

This determinant is d+ 1-linear in every coordinate, since for all j, we can rewrite it as a linear com-

bination of the pij 's. Thus, the a�ne degeneracy problem is a projected d+ 1-linear satis�ability

problem.

Let � : (IRd)s ! IR be a �xed polynomial that is r-linear in some coordinate, and let X be

a con�guration of n points in IRd. We easily generalize the de�nitions of degeneracy, collapsible

tuples, and relatively collapsible tuples to con�gurations of points in higher dimensions. The sign

of an s-tuple Y of points in X is just the sign of �(Y ). Given a projected r-linear decision tree A

with query polynomials QA, we say that a s-tuple Y of points in X is relatively reversible if the

following conditions hold.

(1) The tuple is not degenerate.

(2) One can smoothly deform X into another con�guration X̂, changing the sign of the tuple,

but not changing the sign of any other query polynomial in QA at any time.

Clearly, any relatively reversible tuple is also relatively collapsible. The converse is not true in

general, but is true in the special case where both � and all the polynomials in QA are actually

linear in all their arguments, as in the previous section.

We will use the following generalization of Lemma 5.

Lemma 8. Suppose there exists a con�guration X 2 IRdn with k relatively reversible tuples. Then

there also exists a nondegenerate con�guration X
�
2 IRdn with k relatively reversible tuples.

Proof: The set QA of query polynomials induces a set of algebraic surfaces in the con�guration

space IRdn. Color each surface red if it induced by a potential assignment to �, and green otherwise.

These surfaces de�ne a cellular decomposition. We say that a surface � nicely bounds a cell C in

this decomposition if there is a continuous path from a point strictly inside C to a point strictly

outside C that is either entirely contained in or disjoint from every surface except �.

Let C be any cell, and let C0 be a cell in the boundary of C. Then any surface that nicely

bounds C0 also nicely bounds C. Since the cell containing X is nicely bounded by k red surfaces,

it follows by induction that there is a full-dimensional cell that is nicely bounded by at least k

surfaces. We can take X� to be any point in this cell. 2

Theorem 9. Any projected r-linear decision tree that decides a projected r-linear satis�ability

problem has depth 
(ndr=2e).

Proof: Let � : (IRd)s ! IR be a �xed polynomial that is r-linear in some coordinate, and let A be

a �xed projected r-linear decision tree with query variables QA that decides the corresponding pro-

jected linear satis�ability problem, given a set of n points in IRd. The previous lemma implies that

to prove the lower bound, it su�ces to prove the existence of a (possibly degenerate) con�guration

with 
(ndr=2e) relatively reversible tuples. For the sake of readability, we will explicitly consider
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only the particular case s = r; our proof requires only minor modi�cations to handle the general

case.

We start by constructing a con�guration X 2 (Kd)n containing 
(ndr=2e) collapsible tuples,

where K is an extension of the reals by in�nitesimals. The set X is the union of r smaller subsets

X1 [ � � � [Xr. Each subset contains n=r elements on some real vertical line; that is, every point in

a subset has the same set of 1st through (d� 1)th coordinates, all of which are real numbers.

An r-tuple (p1; : : : ; pr), where pi 2 Xi for each i, is degenerate if and only if the xd-coordinates

of the pi's satisfy the linear equation
rX

i=1

aipid = 0;

where the (real) coe�cients ai are determined by the positions of the vertical lines. The particular

choice of coordinate values for each subset is not important, except that none of the ai's should be

zero. It is always possible to choose appropriate values, since the set of \bad" coordinate values

form an algebraic variety of codimension 1 in IR(d�1)r.

We �ll in the x1-coordinates of the points with the elements of the adversary con�guration

for the corresponding linear satis�ability problem, as described in the proof of Lemma 3. This

gives us an adversary con�guration X for the present problem consisting of n points in K
d, where

K = IR(�1; : : : ;�r�1, �1; : : : ; �br=2c, "1; : : : ; "r).

This derived con�guration inherits all 
(ndr=2e) collapsible tuples from the original con�gura-

tion. To collapse any such r-tuple, it su�ces to change only the xd-coordinates of the points in X ,

as described in the proof of Lemma 3. Unfortunately, since our query expressions are in general

not linear, we do not get the lower bound immediately.

We can easily generalize Lemma 4 to prove that there exists a real con�guration XA 2 IRdn with


(ndr=2e) relatively collapsible tuples. Furthermore, by suitably modifying the elementary formula,

we can ensure that the x1- through xd�1-coordinates of the points in XA are the same as those in

the original con�guration X , and that collapsing tuples does not change these coordinates. (Recall

that these coordinates were already real numbers.)

Thus, both the original con�guration XA and any collapsed con�guration X̂A satisfy a set of

(d� 1)n linear constraints, each of which induces an axis-normal hyperplane in the con�guration

space IRdn. The intersection of these hyperplanes is an n-
at S � IRdn. Furthermore, for any

polynomial p that is linear in xd, the intersection of S and the algebraic surface induced by p is an

(n� 1)-
at, which we can think of as a hyperplane in the space S.

Thus, the query polynomials QA induce a �nite hyperplane arrangement in S. It follows easily

that every relatively collapsible r-tuple in X is also relatively reversible. The theorem immediately

follows from Lemma 8 and the usual adversary argument. 2

This theorem immediately implies the following lower bounds.

Corollary 10. In the worst case, 
(nbd=2c+1) steps are required to solve the a�ne degeneracy

problem, in the projected (d+ 1)-linear decision tree model.

The best upper bound for the a�ne degeneracy problem is O(nd), and the algorithms that

achieve this bound follow the direct query model, in which every decision is based on the sign of a

sidedness determinant [12, 13, 10]. Previously, Erickson and Seidel [15] established a lower bound

of 
(nd) in the direct query model, using a version of Lemma 8. While our new lower bounds are

smaller for all d > 2, they hold in a much richer model of computation.
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In the two-dimensional case, Erickson and Seidel proved that the 
(n2) lower bound still holds

if the algorithm is allowed to compare coordinates of points or slopes of lines, in addition to making

sidedness queries. Since comparing slopes of lines is not a projected 3-linear query, our new lower

bound for this problem is incomparable with the bound established in [15].

Corollary 11. In the worst case, given n points in the plane, 
(n2) steps are required to decide

if any pair of connecting lines is parallel, in the projected 4-linear decision tree model.

The best known upper bound for this problem is O(n2 logn), following from the obvious slope-

sorting algorithm. Lemma 6 implies the existence of a quadratic nonuniform algorithm, so our

lower bound cannot be improved.

5 Conclusions and Open Problems

We have developed a new general technique for proving lower bounds in decision tree models of

computation. We show that it su�ces to construct a single input con�guration, possibly degenerate

and possibly containing in�nitesimals, containing lots of collapsible tuples. Using this technique,

we have proven 
(ndr=2e) lower bounds on the depth of any r-linear decision tree that decides an

r-variable linear satis�ability problem. This is the best possible lower bound in this model. We have

also generalized our technique to prove new lower bounds on some geometric degeneracy-detection

problems.

Gajentaan and Overmars [17] describe a large class of so-called \3sum-hard" problems in com-

putational geometry. All such problems can be reduced, in sub-quadratic time, to the following

problem: Given a set of n real numbers, is the average of any two distinct elements also in the set?

In particular, an 
(n2) lower bound on the complexity of average detection in the algebraic decision

tree model would imply similar bounds for a large number of separation, covering, visibility, motion

planning, and other geometric problems. Unfortunately, the model in which our new lower bounds

hold is generally too weak to apply to these more general problems.

An obvious open problem is to improve our lower bounds to stronger models of computation.

Even seemingly small improvements would lead to signi�cant new results. For example, an 
(n2)

lower bound on average detection in the 6-linear decision tree model would immediately imply the

�rst 
(n2) lower bound for the problem of �nding the minimum area triangle among n points in the

plane. Unfortunately, a lower bound even the 4-linear decision tree model seems to be completely

out of reach at present.

Ultimately, we would like to prove a lower bound larger than 
(n logn) for any non-NP-hard

polynomial satis�ability problem, in some general model of computation such as linear decision

trees, algebraic decision trees, or even algebraic computation trees. Linear satis�ability problems,

in particular the problem of average detection, seem to be good candidates for study.

Acknowledgements. The author gratefully acknowledges Raimund Seidel for several helpful

discussions.
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