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Abstract
We study the complexity of approximately solving packing
linear programs. In the Real RAM model, it is known how

to solve packing LPs with N non-zeros in time Õ(N/ε). We
investigate whether the ε dependence in the running time
can be improved.

Our first main result relates the difficulty of this prob-
lem to hardness assumptions for solving dense linear equa-
tions. We show that, in the Real RAM model, unless linear
equations in matrices n × n with condition number O(n10)

can be solved to ε accuracy faster than Õ(n2.01 log(1/ε)), no
algorithm (1−ε)-approximately solves a O(n)×O(n) packing

LPs (where N = O(n2)) in time Õ(n2ε−0.0003). It would
be surprising to solve linear equations in the Real RAM
model this fast, as we currently cannot solve them faster

than Õ(nω), where ω denotes the exponent in the running
time for matrix multiplication in the Real RAM model (and
equivalently matrix inversion). The current best bound on
this exponent is roughly ω ≤ 2.372. Note, however, that a
fast solver for linear equations does not directly imply faster
matrix multiplication. But, our reduction shows that if fast
and accurate packing LP solvers exist, then either linear
equations can be solved much faster than matrix multipli-
cation or the matrix multiplication constant is very close to
2.

Instantiating the same reduction with different param-
eters, we show that unless linear equations in matrices with
condition number O(n1.5) can be solved to ε accuracy faster

than Õ(n2.372 log(1/ε)), no algorithm (1− ε)-approximately

solves packing LPs in time Õ(n2ε−0.067). Thus smaller im-
provements in the exponent for ε in the running time of
Packing LP solvers also imply improvements in the current
state-of-the-art for solving linear equations.

Our second main result relates the difficulty of
approximately solving packing linear programs to hard-
ness assumptions for solving sparse linear equations: In
the Real RAM model, unless well-conditioned sparse
systems of linear equations can be solved faster than

Õ((no. non-zeros of matrix)
√

condition number of matrix),
no algorithm (1− ε)-approximately solves packing LPs with

N non-zeros in time Õ(Nε−0.165). This running time of

Õ((no. non-zeros of matrix)
√

condition number of matrix)
is obtained by the classical Conjugate Gradient algorithm
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by a standard analysis. Our reduction implies that
if sufficiently good packing LP solvers exist, then this
long-standing best-known bound on the running time for
solving well-conditioned systems of linear equations is
sub-optimal1. While we prove results in the Real RAM
model, our condition number assumptions ensure that our
results can be translated to fixed point arithmetic with
(logn)O(1) bits per number.

1 Introduction

Packing and covering linear programs (LPs) are LPs
formulated with non-negative coefficients, constants and
variables. Formally, a packing LP in its generic form can
be written as

max
x≥0
{c>x : Ax ≤ b},(1.1)

where c ∈ Rn≥0, b ∈ Rm≥0 and A ∈ Rm×n≥0 . With the
same matrix and vectors A, b, c, a covering LP can be
written as

min
y≥0
{b>y : A>y ≥ c}.

Packing LPs and covering LPs are dual to each other,
and thus they have the same optimal value. In gen-
eral, taken non-negative A, b, c as input, a packing
/ covering LP solver returns both a packing LP so-
lution and a covering LP solution as a primal-dual
pair [LN93, KY14, AZO15b]. Thus packing LPs and
covering LPs are usually considered equivalent from al-
gorithm design or hardness perspectives. In this work
we will focus on packing LPs. We remark that by a
slightly modification of our reduction, the same lower
bounds hold for covering LPs as well.2

A packing LP is always feasible and has optimum
at least 0 because of the all 0 solution. Let OPT denote

1This bound is the best known for solving sparse linear
equations when only a bound on the condition number is known.

In other regimes, better results are known.
2We note that packing and covering LPs are also called positive

LPs in the literature, although the usage of positive LPs is also

used to refer to the more general class of LPs where both packing

(i.e. ≤) constraints and covering (i.e. ≥) constraints appear
simultaneously.

279
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



the optimal value of a packing LP of the form (1.1).
Given an error parameter ε > 0, we say x is a (1 − ε)-
approximate solution to this packing LP iff Ax ≤ b and
c>x ≥ (1− ε)OPT.

Throughout this paper, we are interested in nearly-
linear time solvers for (1 − ε)-approximately solving
packing LPs in the Real RAM model3 (see [PS85] for an
introduction to the Real RAM model). Specifically, the

run time is Õ(N/εc), where N is the number of non-
zeros of the input and c > 0 is an absolute constant.
We use Õ(·) to hide poly log(N/ε) factors. Although
algorithms for solving general LPs, such as interior point
method and ellipsoid method, can be applied to packing
LPs with a poly log(1/ε) dependence on the run time,
these methods usually have large dependence on input
size and thus are not suitable for large-scale instances.

Small dependency on 1/ε is meaningful in two as-
pects. First, the dependence on 1/ε is a natural measure
of the efficiency of iterative methods, where a 1/εc de-
pendence indicates that to get one more bit of accuracy,
the algorithm needs to do 2c times more work. Sec-
ond, as packing and covering LPs are often used as sub-
routines in algorithm design (e.g., bipartite matching,
set cover [LN93], scheduling [PST95], multicommodity
flow [GK07, Mad10, AHK12], etc.), the dependence on
1/ε determines the complexity of the overall algorithm.
Sometimes, ε is chosen to get the best trade-off among
multiple parts of the overall algorithm. One example
is bipartite matching [Wan17]. Given a bipartite graph
with n vertices and m edges, computing its maximum
matching can be formulated as a packing LP with O(m)
non-zeros. Suppose one can (1− ε)-approximately solve
this packing LP in time O(m/εc) for some constant c.
To turn this approximate solution to a maximum match-
ing, one needs to compute O(εn) augmenting paths in
time O(m·εn). Setting ε = n−1/(1+c), the total run time
is O(mnc/(1+c)). Faster approximate solvers for packing
LPs would imply better run time for this algorithm.

Designing nearly linear time approximate solvers
for packing and covering LPs was initiated by the
seminal work of Luby and Nisan [LN93], which pro-

posed an algorithm with run time Õ(N/ε4). The run
time dependence on 1/ε was then improved by subse-
quent works including [You01, You14, KY14, AZO15b,
AZO15a, WRM16, MRWZ16, CQ18], etc. The best
known sequential algorithm has expected run time
Õ(N/ε) [AZO15a, WRM16].

Therefore, a natural question is: Can we design a

3Although we prove results in the Real RAM model, our

condition number assumptions ensure that our results can be

translated to fixed point arithmetic with (logn)O(1) bits per
number.

(1−ε)-approximate solver for packing LPs with run time

Õ(N/εo(1))? In this paper, we give a negative answer,
conditioned on that linear equations cannot be solved
fast.

Solving linear equations is important in numerical
linear algebra, and is a central tool in computer science,
statistics, economics, physics, and engineering. It is
used as a subroutine of interior point method when
applied to solving a general LP. Using interior point
method, solving a polynomially well-conditioned LP can
be reduced to solving Õ(

√
rank(A)) linear equations

of the same size as the input [LS14], where A is
the LP coefficient matrix. Improvements in linear
equation solvers would directly imply improvements for
LP solvers in some regimes, and hence would imply
improvements for a large class of convex optimization
problems.

Our results. We give a conditional lower bound,
by relating solving a packing LP to solving a system of
linear equations Ax = b. Specially, given an n × n
matrix A with full rank, an n-dimensional column
vector b, an error parameter ε ≥ 0, the goal is to
compute a vector x such that ‖Ax − b‖2 ≤ ε ‖b‖2.

We introduce (several variants of) the Linear Equa-
tion Time Hypothesis LTH: Firstly, LTH2.372

1.5 is the
assumption that an arbitrary linear equation instance
Ax = b, where A is an n×nmatrix with condition num-
ber of A>A at most O(n2·1.5) cannot be solved to error

ε ≤ n−15 faster than time Õ(n2.372) in the Real RAM
model4 LTH2.372

1.5 is a major open question in numerical
linear algebra and scientific computing since falsifying
it implies we can solve linear equations faster than cur-
rent best known bounds on matrix multiplication. The
exponent ω is defined as the number s.t. matrix multi-
plication can be computed in time bounded by O(nω)
in the Real RAM model, and the current best bound is
ω ≤ 2.372 . . . Again, in the Real RAM model, is known
that one can exactly solve Ax = b by simply invert-
ing A and then multiplying A−1b. We show that in
the Real RAM model no algorithm can solve Packing
LPs with N non-zero entries in time Õ(N/ε0.067) unless
LTH2.372

1.5 is false.
More generally, we define LTHγ

k as the assumption
that an arbitrary linear equation instance Ax = b,
where A is an n × n matrix with condition number of
A>A at most O(n2k), cannot be solved in time Õ(nγ) in

4Note that in the Real RAM model, using matrix

multiplication-based matrix inversion, one can in fact solve a non-

singular linear equation exactly in time Õ(nω). However, even in
fixed point arithmetic, given our assumptions about A and the de-

sired accuracy of the solution, the linear equation can be solved to

the desired accuracy in Õ(nω) arithmetric operations on numbers
with (logn)O(1) bits each [DDH07].
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the Real RAM model. We show that in the Real RAM
model, no algorithm can solve Packing LPs with N
non-zero entries in time Õ(N/εα) unless LTH2+α+3αk

k is
false. By instantiating our result for different parameter
values, we can state our first main result informally as

Theorem 1.1. [Informal Statement] In the Real RAM
model,

• unless linear equations in matrices with condi-
tion number O(n10) can be solved to ε accu-

racy faster than Õ(n2.01 log(1/ε)), no algorithm
(1 − ε)-approximately solves packing LPs in time

Õ(Nε−0.0003).

• unless linear equations in matrices with condi-
tion number O(n1.5) can be solved to ε accu-

racy faster than Õ(n2.372 log(1/ε)), no algorithm
(1 − ε)-approximately solves packing LPs in time

Õ(Nε−0.067).

An arguably even more important question in nu-
merical linear algebra and scientific computing is how
quickly sparse linear systems can be solved. We de-
fine SLTHγ

k as the assumption that an arbitrary linear

equation instance A>Ax = A>b cannot be solved to
high accuracy faster than time Õ(nnz(A)γ), when A is
an m × n matrix s.t. A>A has condition number n2k

Conjugate Gradient 5 rules out SLTH1+k
k , but falsify-

ing SLTH1+0.99k
k would give the first improvement over

Conjugate Gradient for this problem since 1952 [HS52].
We show that no algorithm can solve packing

LPs with N non-zero entries in time Õ(N/εα) unless
SLTH1+1.5α+3αk

k is false. This has interesting conse-
quences for sparse matrices, e.g. nnz(A) ≈ n log n with
small condition number, e.g. at most n1.5. Both Conju-
gate Gradient and matrix-inversion by matrix multipli-
cation (even with ω = 2) are consistent with SLTH1.99

1.5 ,
and no algorithm can solve Packing LPs with N non-
zero entries in time Õ(N/ε0.165) unless SLTH1.99

1.5 is
false. We can summarize this second main result in-
formally as

Theorem 1.2. [Informal Statement] In the Real RAM
model, unless linear equations A>Ax = A>b
can be solved to high accuracy faster than time

Õ(nnz(A)

√
condition number of A>A) when A>A has

condition number Θ(n3), then no algorithm (1 − ε)-

approximately solves packing LPs in time Õ(Nε−0.165).

5To understand the condition number dependence, see

Section 3 Running time of Conjugate Gradient scales like√
condition number of A>A, which by our definition of condition

number becomes scaling like condition number of A. .

Under the assumptions of the informal the-
orem statement, the Conjugate Gradient al-
gorithm has a worst case running time of

Õ(nnz(A)
√

condition number of A>A), so the in-
formal theorem also tells us that Conjugate Gradient
is suboptimal in this regime if sufficiently good packing
LP solvers exist.

While we prove results in the Real RAM model,
our condition number assumptions ensure that our
results can be translated to fixed point arithmetic
with (log n)O(1) bits per number under appropriate
assumptions (see Remark 3.1).

Instead of exploring consequences of having access
to a packing LP solver with N non-zero entries in time
Õ(N/εα) for small constant α, we could also look at

consequences of having a Õ(N log(1/ε)) solver. Using
our reductions, one can then show that general LPs,
with polynomially bounded condition numbers and bit
complexity, can be solved in Õ(N log(1/ε)) time (see
Appendix D).

Our reduction. We will first reduce a linear sys-
tem instance to a linear program instance with non-
negative variables, by standard techniques. Given
A ∈ Rn×n and b ∈ Rn, solving minx∈Rn ‖Ax − b‖2
is equivalent to solving the two equations: A>z =
A>b,Ax = z , where x ∈ Rn, z ∈ Rn are variables.
Note these two linear equations are always feasible. Let
x+,x−, z+, z− ∈ Rn≥0. We replace x by x+ − x− and

replace z by z+ − z−, and write an equality constraint
as two inequality constraints:

A>(z+ − z−) ≤ A>b

−A>(z+ − z−) ≤ −A>b

A(x+ − x−)− (z+ − z−) ≤ 0

−A(x+ − x−) + (z+ − z−) ≤ 0

For notation simplicity, we will write the above linear
inequalities in its matrix form: Cy ≤ p, where y ∈ R4n

≥0
contains non-negative variables. Wlog, we can scale
C ,p so that all entries of C are between -1 and 1, and
‖p‖2 = 1.

The key of our reduction is to reduce the linear pro-
gram Cy ≤ p with non-negative variables to a pack-
ing LP which has both non-negative variables and non-
negative coefficients. We will convert entries of C ,p
to non-negative entries by a bounding box constraint.
Specifically, we introduce a new non-negative variable
y0 ∈ R≥0, and a new constraint

1>y + y0 = U,(1.2)

where 1 is the all-one vector, and U is a sufficiently large
number so that the linear program Cy ≤ p,1>y ≤ U
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is feasible. One can use binary search to find a value
U ≥ 1 which satisfies the above conditions and is upper
bounded by poly(n, κ), where κ is the condition number
of A. We then add the equality (1.2) to each row of
Cy ≤ p, and we get

(C + 11>)y + y01 ≤ p + U1.

Since the entries of C ,p are between -1 and 1, the
above inequality has non-negative coefficients. Finally,
we turn the equality constraint (1.2) to an inequality
constraint and set the objective to maximizing 1>y+y0:

max 1>y + y0

s.t. (C + 11>)y + y01 ≤ p + U1

1>y + y0 ≤ U
y0 ≥ 0,y ≥ 0

(1.3)

The above LP has size O(n) and the reduction can be
implemented in time O(n). In addition, its optimal
value is U and its optimal solution y is a feasible
solution to the linear system Cy = p.

Suppose we are given a (1−ε)-approximate solution
y of the packing LP (1.3). We can turn it to an
approximate solution of minx ‖Ax − b‖2 with error
ε′ = poly(ε, n, κ). This already implies that if one can
solve a packing LP with error ε in time O(n2 log(1/ε)),
then one can solve a linear system with error ε′ in time
O(n2 log(nκ/ε′)), which falsifies the hypothesis LTH2

10.
We further improve the error dependence between

the linear system instance and the packing LP instance,
by by using iterative refinement for linear equations.
Specifically, one could solve a system of linear equa-
tions with error ε′, by iteratively solving a sequence of
O(log(1/ε′)) linear systems with error 0.1. To compute
an approximate solution of minx ‖Ax − b‖2 with error
ε′, instead of solving one packing LP with a small error,
we will solve O(log(1/ε′)) packing LPs with a relatively
larger error independent of ε′. By a careful calculation,
we prove Theorem 1.1.

We prove Theorem 1.2 by slightly modifying the
above reduction to preserve the sparsity of C : for each
row of Cy ≤ p, we add a bounding box constraint
containing only the variables with non-zero coefficients
in this row.

Discussion of our reduction. One should take a
moment to reflect on the elements of our construction.
Linear equation solvers allow for “accuracy amplifica-
tion” via iterative refinement. This turns a constant er-
ror algorithm into a high accuracy algorithm, provided
one is careful to adopt the right notion of error6. This

6This well-known phenomenon is discussed in Appendix B.
Note a subtle point: because the crude linear equation solver we

in turn allows us to get a type of hardness amplification
when reducing systems of linear equations to packing
LPs. The most important aspect of our approach is
that we are able to turn crude packing LP solvers into
crude linear equation solvers of the form that allow of
this “accuracy amplification”, and hence we are able to
derive surprisingly strong consequences from the exis-
tence of packing LP solvers with running time scaling
as poly(1/ε).

This should be contrasted with other approaches to
hardness amplification in fine-grained complexity, such
as the Distributed PCP framework of [ARW17], which
was used for showing hardness of approximation for
subquadratic time algorithms for problems including
finding a maximum inner product pair among a set of
vectors. It is not clear how to apply this in a setting
where algorithms with highly subquadratic running
times in the input size are known to exist. We hope
that our approach of showing hardness using a reduction
from constant error linear equation solving will prove
fruitful for other questions in fine-grained hardness of
approximation.

1.1 Previous Works Previous works on packing
and covering LPs can be divided into width-dependent
solvers and width-independent solvers. In this context,
width is the product of OPT and the largest entry in
A. The dependence of width usually comes from multi-
plicative weights update (e.g., see [PST95, AHK12]). In
general, width-dependent solvers can be very slow when
the width is large.

The line of width-independent nearly linear time
solvers for packing and covering LPs was initiated by
the seminal work of Luby and Nisan [LN93], which gave

a Õ(N/ε4) time algorithm for a packing or covering
LP with N non-zeros. Their algorithm can be made
parallel with Õ(1/ε4) time and Õ(N/ε4) total work.
Subsequent work along this line of research mostly focus
on getting better dependence on 1/ε (for example, refer
to [You01, You14, KY14, AZO15b, AZO15a, WRM16,
MRWZ16, CQ18], etc). Currently, the fastest parallel

algorithm for packing and covering LPs runs in Õ(1/ε2)

time and Õ(N/ε2) work ([AZO15b, MRWZ16]). The
fastest sequential algorithm has expected running time
Õ(N/ε) and with at least a constant probability solves
a packing or covering LP with multiplicative error ε

build from a packing LP solver is not guaranteed to act as a linear

operator, we make sure it achieves multiplicative error strictly

less than 1 to before we use it for iterative refinement. This is in
contrast to the more common preconditioning of linear systems

by linear operators which allows for “accuracy amplification” even

when the preconditioning, corresponding to our crude solver, has
much higher error.
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([AZO15a, WRM16]).
From the complexity perspective, the main focuses

of previous works are on fast parallel solvers. Trevisan
and Xhafa [TX98] showed that, exactly solving packing
LPs is P-complete, that is, there is no fast parallel
exact solvers for packing LP unless P = NC. However,
their result does not rule out any fast algorithms for
approximately solving packing LPs. Both exact and
approximate solvers for general LPs were proved to be
P-complete [DLR79, Ser91, Meg92].

Exactly solvers for the worst cases of many com-
binatorial problems, geometric problems can be slow.
Itai [Ita78] showed that LPs are polynomially equiv-
alent to the following problems: Linear equalities
with / without bounded coefficients, Homologous flow,
and 2-commodity flow problem. Later, Dobkin and
Reiss [DR80] gave more LP-complete problems in com-
putational geometry, such as determining intersection of
hyperplanes, finding extreme point, and so on. Allowing
some error usually significantly improves running time.

When solving general LPs in the Real RAM model,
different results are optimal in different regimes. All
known polynomial time algorithms require bounds on
bit complexity of the input. By [CLS19], if ω ≤ 2 + 1/6
(and another condition on the so-called dual expo-
nent is satisfied), then polynomially well-conditioned

LPs can be solved in Õ(n2+1/6) time using matrix
inverse maintenance-based techniques, and using cur-
rently known matrix multiplication time, they get a
bound of Õ(n2.372...), matching the current bounds on
ω. Solving a polynomially well-conditioned LP can be
reduced to solving Õ(

√
rank(A)) linear equations of the

same size as the input [LS14], where A is the LP coef-
ficient matrix.

Fine-grained complexity [WW10] has motivated the
study of conditional lower bounds related to matrix mul-
tiplication, and linear equation solving. For example,
[MNS+17] showed that, fast algorithms for high accu-
racy spectrum approximation problems, such as loga-
rithm of matrix determinant, trace of matrix inverse,
and trace of matrix exponential, would imply triangle
detection algorithms for general graphs running in faster
than the state of art matrix multiplication time. In ad-
dition, [KZ17] proved that, if one can solve some struc-
tured linear equations fast, then one can solve general
linear equations fast.

1.2 Organization of the Remaining Paper In
Section 2, we give some notations and discuss approxi-
mately solving linear equations. In Section 3, we for-
mally define Linear Equation Time Hypotheses, and
state our main results for lower bounds of packing LPs.
In Section 4, we prove the main results.

2 Preliminaries

2.1 Notations We use ‖·‖2 to denote the Euclidean
norm on vectors and the spectral norm on matrices.
When M is an n × n positive semidefinite matrix, we

define the M -norm on a vector x ∈ Rn by ‖x‖M
def
=√

x>M x . Let nnz(A) denote the number of non-zero
entries in a matrix A. We define ‖A‖max = maxi,j |Aij |.

Given a matrix A ∈ Rm×n and a vector c ∈ Rm
for some m,n, we call the tuple (A, c) a linear sys-
tem. Given matrix A ∈ Rm×n, let im(A) denote the

image of A, and let Π A
def
= A(AA>)†A>, i.e. the

orthogonal projection onto im(A). Note that Π A =
Π>A and Π A = Π 2

A. We define the maximum sin-
gular value σmax(A) in the usual way as σmax(A) =

maxx∈Rn,x 6=0

√
x>A>Ax

x>x
. We define the minimum sin-

gular value as σmin(A) = minx∈Rn,x 6=0

√
x>A>Ax

x>x
.

We define the condition number of A as κ(A) =
σmax(A)
σmin(A) .

2.2 Approximately Solving A Linear Equation
In this section we formally define the notions of ap-
proximate solutions to linear systems that we work
with throughout this paper. Suppose A ∈ Rm×n with
m ≥ n and rank(A) = n. In general, the linear equation
Ax = b may not have a solution. A reasonable gener-
alization of solving the linear equation is then to solve
the problem

(2.4) arg min
x∈Rn

‖Ax − b‖22

Definining a useful notion of an approximate solution
to the above optimization problem requires some care.
We use the following definition. [Linear Equation Ap-
proximation Problem, lea] Given linear system (A, b),
where A ∈ Rm×n, and b ∈ Rm, and given a scalar
0 ≤ ε ≤ 1, we refer to the lea problem for the triple
(A, b, ε) as the problem of finding x ∈ Rn s.t.

‖Ax −Π Ab‖22 ≤ ε ‖Π Ab‖22 ,

and we say that such an x is a solution to the lea
instance (A, b, ε).

This definition of lea is widely used in the literature
on solving systems of linear equations. When b is in the
image of A, this definition is equivalent to obtaining a
solution that is within a 1 + ε multiplicative factor of
the optimum value of Problem (2.4), but these notions
are not equivalent when b is not contained in the image
of A. In Appendix A, we give more background on
this notion of approximately solving linear equations for
readers unfamiliar with the subject. Below, we state an
important fact from this appendix, which should give
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the reader an impression of why the lea definition is
natural. In particular, the definition is equivalent to
several other convenient notions of error.

Fact 2.1. The vector x being a solution to lea(A, b, ε)
is equivalent to

‖x − x∗‖2AT A ≤ ε ‖x
∗‖2AT A = ε

∥∥∥A>b
∥∥∥2
(AT A)

−1

Our notion of lea is useful to work with because
an algorithm with this guarantee can self-amplify its
accuracy

Lemma 2.1. If we have a solver for lea(A, b, 0.1) that
works for arbitrary b, then we can obtain a solver for
lea(A, b, ε) by iterating it O(log(1/ε)) times.

This Lemma is well-known, but for completeness we
prove it in Appendix B.

3 Linear Equation Hardness Assumptions and
Consequences

In this section we cover the state of the art for solving
systems of linear equations, and define natural hardness
assumptions for solving systems of linear equations. We
then state our main results on reductions from linear
equation problems to solving Packing LPs and derive
some important consequences.

Linear Equations in the Real RAM model.
Since [Str69], it has been known that the inverse a
square, full rank, n × n matrix A can be computed
using Õ(nω) time in the Real RAM model where ω
is the matrix multiplication constant : the exponent
of the fastest algorithm for multiplying two n × n
matrices, again in the Real RAM model. Currently
the best known upper bound on the exponent is ω <
2.372... [LG14]. In general, to output the product of
two n × n matrices requires specifying n2 entries of
the output, so ω ≥ 2. It is, however, known that
matrix multiplication requires n2 log n operations in an
arithmetic circuit model [Raz02].

In the Real RAM model, it is also known that if
one can compute the inverse of a square n × n matrix
in time O(nc), then one can compute the product of

two square n × n matrices in Õ(nc) time [Mat]. Thus,
up to logarithmic factors, running times for matrix
multiplication and matrix inversion must be the same
in in this model.

In the Real RAM model, in the general case, given
a matrix A ∈ Rn×n and a vector b ∈ Rn, the fastest
known algorithm for solving a system of linear equations
Ax = b, i.e. finding x that satisfies the equation
is based on simply computing A−1 and applying this
matrix to b to get x = A−1b. Consequently, the best

known running time in this model for solving general
linear equations is Õ(nω). However, it is not known
whether a faster algorithm could exist, and this is a
major open question in numerical linear algebra and
scientific computing, and resolving it would have wide
impact across theoretical computer science.

Linear Equations in fixed point arithmetic.
In fixed point arithmetic, when we operate on integer
inputs, an (A, b, ε) instance of lea can be solved in

Õ(nω) arithmetic operations on numbers represented
with (log((‖A‖+ ‖b‖)/ε) logn)O(1) bits each, if the in-
put matrix has nO(1) condition number [DDH07]. A
crucial point is that the polynomially bounded condi-
tion number ensures that the output and intermediate
calculations can be approximately represented using few
bits.

Linear Equations in Real RAM with polyno-
mially conditioned inputs. Our analysis is based on
inputs with polynomially bounded condition numbers,
but we assume the Real RAM model of computation for
simplicity.

Remark 3.1. Because we study lea(A, b, ε) instances
with polynomially bounded condition numbers, and be-
cause we rely on simple, numerically stable reductions
it would be straightforward to extend our analysis to the
fixed point arithmetic model assuming integer inputs and
(‖A‖+ ‖b‖)/ε = poly(n). Then using logO(1) n bits per
number for our computations should suffice.

The current, long-standing, state of the art for solv-
ing linear equations in both the Real RAM model and
in fixed point arithmetic on inputs with polynomially
bounded condition number motivates our Linear Equa-
tion Time Hypothesis, which formalizes the hypothesis
that even moderately well-conditioned linear equations
cannot be solved quickly. We state a parameterized fam-
ily of hypotheses, and then discuss the significance of the
hypotheses for different parameter values.

Definition 3.1. (Linear Equation Time Hypoth-
esis: LTHγ

k) In the Real RAM model, in the worst case,
when A is a full rank n × n matrix and has condition
number most κ(A) ≤ nk, the problem lea(A, b, ε) with

ε = n−10k cannot be solved in Õ(nγ) time.

Note that the particular exponent for the bound on
ε is not important. Also note that in general, solving
linear equations requires reading the whole input, so the
running time must be at least Ω(n2). Hence, LTHγ

k is
true for γ < 2, at least for k = Ω(1).

For sparse linear equations in matrices with
bounded condition number, a different class of algo-
rithms give a better running time. The best known
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general result in this case is based on using Conju-
gate Gradient Descent (or Chebyshev Iterations, or
an accelerated first order method such as Nesterov’s
algorithm) [Saa03], and these solve lea(A, b, ε) in
time7 nnz(A)κ(A) log(1/ε) in the Real RAM model,
or if we adapt a different formulation of the lea
for positive definite matrices, the time would be
nnz(A)

√
κ(A) log(1/ε), (when appropriately phrased

for A being square and positive definite).
Conjugate gradient can also be shown in the Real

RAM model to converge to an exact solution in n
iterations, giving a running time of order n · nnz(A).
However, this is highly misleading, because achieving
this type of behavior in a floating point arithmetic
model requires about n bits per number, as opposed
to (log((‖A‖ + ‖b‖)/ε) log n)O(1) bits in floating point
arithmetic to achieve the condition number dependent
behavior [MMS18].

For our formulation of lea, no better algo-
rithm than CG is known, and improving on the
nnz(A)κ(A) log(1/ε) running time is a major open prob-
lem. This motivates the following parameterized family
of hardness assumptions.

Definition 3.2. (Sparse Linear Equation Time
Hypothesis: SLTHγ

k) In the Real RAM model, in the
worst case, when A is an m × n matrix with m ≥ n,
rank(A) = n, and κ(A) ≤ (nnz(A))k, lea(A, γ, ε) with

ε = n−10k cannot be solved in time Õ(nnz(A)γ).

Note that Conjugate Gradient shows that SLTH1+k
k

is false. However, there is essentially no evidence against
SLTH1+0.99k

k and falsifying this hardness assumption
would constitute major progress in solving sparse sys-
tems of linear equations. Note that if we instead for-
mulated lea for Positive Definite matrices and with a
different notion of error, Conjugate Gradient would fal-
sify SLTH1+0.5k

k and falsifying SLTH1+0.49k
k would be

the right bar for making progress.
We state our main results for lower bounds of both

dense and sparse packing LP instances in the following.
The statements about running times all refer to the Real
RAM model.

Theorem 3.1. (Dense reduction) If we can (1−ε)-
approximately solve a packing LP of size O(n)×O(n)

in time Õ(nβ/εα), then given a condition number upper
bound KA ≥ κ(A), we can solve lea(A, b, 0.1) for an
n× n matrix in time

Õ(nβ
(
nK3

A

)α
).

7Note that applying CG to A>A gives a condition number
dependence of the form

√
κ(A)2 = κ(A).

Theorem 3.2. (Sparse reduction) If we can (1−ε)-
approximately solve a packing LP that has N non-zeros
in time Õ(N/εα), for any constant α, then given a
condition number upper bound KA ≥ κ(A), we can solve
lea(A, b, 0.1) for an m× n matrix A in time

Õ
(

nnz(A)
(
m3/2K3

A

)α)
.

Remark 3.2. One could replace lea(A, b, 0.1) in The-
orem 3.1 and 3.2 by lea(A, b, ε′) for any ε′ =
1/poly(n). According to Lemma 2.1, the run times of
solving lea(A, b, ε′) and lea(A, b, 0.1) only differ by

O(log n), which will be hidden in Õ(·).

By connecting these two theorems with our Linear
Equation Time Hypotheses defined as above, we get the
following corollaries.

Corollary 3.1. If we can (1− ε)-approximately solve
a packing LP of size n × n in time O(nβ/εα), then for

any constant k > 0, then LTHβ+α+3αk
k is false.

Proof. By Theorem 3.1, we get an algorithm for
lea(A, b, 0.1) with KA = nk , which by Theorem 2.1,
we can turn into an algorithm for lea(A, b, ε) with
ε = n−10k using log(1/ε) = O(k log n) iterations of the
lea(A, b, 0.1) solver with different b. Altogether, the

running time is Õ(k log n · nβ
(
nK3

A

)α
), which for any

constant k is
Õ
(
nβ+α+3kα

)
.

This falsifies LTHβ+α+3αk
k .

Restricting our attention to matrices A with condi-
tion number of A>A at most O(n10), we can state our
central corollary of this as:

Theorem 3.3. [Informal Statement] In the Real RAM
model,

• unless linear equations in matrices with condi-
tion number O(n10) can be solved to ε accu-

racy faster than Õ(n2.01 log(1/ε)), no algorithm
(1 − ε)-approximately solves packing LPs in time

Õ(Nε−0.0003).

• unless linear equations in matrices with condi-
tion number O(n1.5) can be solved to ε accu-

racy faster than Õ(n2.372 log(1/ε)), no algorithm
(1 − ε)-approximately solves packing LPs in time

Õ(Nε−0.067).

Proof. From our O(Nε−0.0003) time packing LP solver,
by Theorem 3.1 and Lemma 2.1, noting that N ≤ n2

and 2 + 0.0003 · (3 · 10 + 1)) ≤ 2.01 immediately
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get our Õ(n2.01 log(1/ε)) solver for lea(A, b, ε) with
KA = O(n10). The second statement follows similarly
by checking the appropriate parameters.

Corollary 3.2. If we can (1− ε)-approximately solve

a packing LP that has N non-zeros in time Õ(N/εα),
then SLTH1+1.5α+3kα

k is false.

Proof. The proof is similar to that of Corollary 3.1, but
it uses the reduction from Theorem 3.2 instead, and that
given our assumptions on A,

nnz(A)
(
m3/2K3

A

)α
≤
(
nnz(A)1+1.5α+3kα

)

This has interesting consequences for sparse matri-
ces, e.g. nnz(A) ≈ n log n with small condition num-
ber, e.g. at most n1.5. Both Conjugate Gradient and
matrix-inversion by matrix multiplication (even with
ω = 2) are consistent with SLTH1.99

1.5 , and no algorithm
can solve Packing LPs with N non-zero entries in time
Õ(N/ε−0.165) unless SLTH1.99

1.5 is false. We can summa-
rize this consequence as

Theorem 3.4. [Informal Statement] In the Real RAM
model, unless linear equations A>Ax = A>b
can be solved to high accuracy faster than time

Õ(nnz(A)

√
condition number of A>A) when A>A has

condition number Θ(n3), then no algorithm (1 − ε)-

approximately solves packing LPs in time Õ(Nε−0.165).

Proof. Similar to the proof of our first main theorem, we
combine Lemma 2.1 and Corollary 3.2, and note that for
α = 0.165 and k = 1.5, we have 1+1.5α+3kα ≤ 1.99, so
a packing LP solver with the stated parameters would
outperform Conjugate Gradient.

Remark 3.3. Suppose that there is likely to be very
large gap between κ(A) and a known upper bound
KA. Then we might want to get reductions that de-
pend on κ(A) instead of KA. We can essentially do
this, and reduce the dependence on KA to logarith-
mic. For example, in the proof of Theorem 3.1, we
constructed a solver for lea(A, b, ε) with running time

Õ(nβ
(
nK3

A

)α
log(1/ε)). and we can turn this into a

solver with running time Õ(nβ
(
nκ(A)3

)α
log(KA/ε)).

The same type of improvement can be obtained in the
sparse case. We explain these modified reductions in
Appendix C.

4 Reduction

In this section we discuss how to reduce solving linear
systems to solving packing LPs. We introduce two

reductions from linear equation problems to packing
LP problems. Using the two reductions, we will prove
Theorems 3.1 and 3.2 later in this section.

Normalization. Given a linear equation approxi-
mation problem instance lea(A, b, ε) as defined in Def-
inition 2.2, where A ∈ Rm×n, b ∈ Rm, 0 ≤ ε ≤ 1. We
will assume that m ≥ n, σmin(A) > 0, and κ(A) ≤ KA

for some known KA. Furthermore, we will assume
A>b 6= 0, otherwise x = 0 is a solution to lea(A, b, ε),
in which case lea(A, b, ε) is solved in time O(mn).

We denote p
def
= ATb, and WLOG we assume A, b

are normalized so that

‖A‖max
def
= max

i,j
|Ai,j | = 1, ‖p‖2 = 1.

This normalization can be done in nnz(A) time, and
given any ε-approximate solution to the normalized
linear system, we can scale the solution to get an
ε-approximate solution to the original linear system.
Moreover, the condition number κ(A) is not changed
by the normalization. Furthermore, as ‖A‖max = 1,
we must have σmax(A) ≥ 1, which gives the following
claim.

Claim 4.1. σ−1min(A) ≤ κ(A).

We will present two reductions from linear systems
to packing LPs. Both reductions use the same high-
level idea, but one reduction always constructs a packing
LP that is dense, while the other preserves the sparsity
of the given linear system instance. Formally, given
a linear system Ax = b, where A ∈ Rm×n with
m ≥ n and A has nnz(A) non-zeros and κ(A) ≤ KA

for some known KA = poly(n); and a scalar parameter
U which we will discuss shortly, we have a function
PLPdense(A, b, U) that constructs a dense packing LP
of size O(m)×O(m), and a function PLPsparse(A, b, U)
that constructs a packing LP of size O(m)×O(m) and
O(nnz(A)) non-zeros.

In both the dense reduction and sparse reduction,
we first rewrite solving the linear system as finding a
feasible solution to a LP which we denote by LP(A, b)

as follows. Recall p
def
= ATb, and solving Ax = b

can be rewritten as ATAx = p, which in turn can be
written as finding x ∈ Rn, z ∈ Rm such that

AT z = p

Ax = z
(4.5)

Note that even when Ax = b does not have an exact
solution, the linear system (4.5) always has an exact
solution, and we can bound the norm of the exact
solution.
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Claim 4.2. There exists x∗, z ∗ satisfying the linear
system (4.5), and

‖z ∗‖1 ≤
√
m ‖ΠAb‖2 , ‖x∗‖1 ≤

√
nσ−1min(A) ‖ΠAb‖2 ,

moreover, we know

‖ΠAb‖2 ∈
[
σ−1max(A) ‖p‖2 , σ

−1
min(A) ‖p‖2

]
.

Proof. Consider the solution where z ∗ = ΠAb =
A(ATA)−1p and x∗ = (ATA)−1ATb. It is straight-
forward to check z ∗,x∗ satisfy (4.5). Moreover,

‖z ∗‖1 ≤
√
m ‖z ∗‖2 =

√
m ‖ΠAb‖2 ,

and

‖x∗‖1 ≤
√
n ‖x∗‖2 ≤

√
nσ−1min(A) ‖ΠAb‖2

where the last inequality follows from Ax∗ = ΠAb.
Consider the SVD of A =

∑
i σiu iv

>
i . Then

‖ΠAb‖22 =
∑
i(u
>
i b)2 and ‖p‖22 =

∥∥∥A>b
∥∥∥2
2

=∑
i σ

2
i (u>i b)2. Thus,

σ−1max(A) ≤
‖ΠAb‖2
‖p‖2

≤ σ−1min(A).

In both of our reductions PLPdense(A, b, U) and
PLPsparse(A, b, U), the parameter U is supposed to be a
tight upper-bound of ‖z ∗‖1 + ‖x∗‖1. Claim 4.2 implies
that it suffices to pick U = 2K2

A

√
m.

From the linear system (4.5), we construct a feasi-
bility linear program LP(A, b) as follows. We want all
variables to be non-negative, and we can do this in a
fairly standard way by creating two non-negative vari-
ables per x i and z i:

x j = x
(+)
j − x

(−)
j(4.6)

z i = z
(+)
i − z

(−)
i(4.7)

Let x (+), x (−), z (+), and z (−) be vectors whose entries

are x
(+)
j , x

(−)
j , z

(+)
i , z

(−)
i respectively. LP(A, b) is the

feasibility LP of finding a solution satisfying

AT z (+) −AT z (−) ≤ p

−AT z (+) + AT z (−) ≤ −p

Ax (+) −Ax (−) − (z (+) − z (−)) ≤ 0

−
(

Ax (+) −Ax (−)
)

+
(

z (+) − z (−)
)
≤ 0

x (+),x (−), z (+), z (−) ≥ 0

The two reductions PLPdense(A, b, U) and
PLPsparse(A, b, U) proceed differently to write
LP(A, b) into packing LPs, and we present the
remaining steps of the two reduction and the analysis
in the rest of the section.

4.1 PLPdense(A, b, U) To turn LP(A, b) into a
packing LP, we add one non-negative slack variable
s ≥ 0, and denote

αsum
def
= s+

∑
1≤j≤n

(
x
(+)
j + x

(−)
j

)
+
∑

1≤i≤m

(
z
(+)
i + z

(−)
i

)
.

Note αsum is merely a short-hand for the sum of all the
variables instead of a new variable. For each existing
constraint of LP(A, b) except the positivity constraints
on single variables, we add αsum and U to the LHS and
RHS of the constraint respectively, and we also add

(4.8) αsum ≤ U

as an additional constraint. This completes the con-
struction of PLPdense(A, b, U)’s constraints, and if writ-
ten explicitly are Equation (4.9).

The objective of PLPdense(A, b, U) is to maximize
αsum, that is

max s+
∑

1≤j≤n

(
x
(+)
j + x

(−)
j

)
+

∑
1≤i≤m

(
z
(+)
i + z

(−)
i

)
.

Lemma 4.1. Given U = 2K2
A

√
m > 1 is an upper

bound of the `1 norm of some solution of the linear
system (4.5), PLPdense(A, b, U) is a packing LP of size
O(m) × O(m), and PLPdense(A, b, U) has optimum at
U .

Proof. The size of PLPdense(A, b, U) is obvious. For it
to be a packing LP, we need to show

1. All variables are non-negative: This holds by con-
struction.

2. All coefficients are non-negative: This is true since
‖A‖max ≤ 1, so by adding 1 to every coefficient, all
coefficients become non-negative.

3. All constants on the RHS of the constraints are
non-negative: This is true since ‖p‖2 = 1, so
‖p‖∞ ≤ 1, and we add U ≥ 1 to the RHS of each
constraint.

4. All coefficients in the objective function are non-
negative: This is true since all coefficients are 1 in
the objective.

If U ≥ ‖x∗‖1 + ‖z ∗‖1 for some x∗ and z ∗ satisfying
the linear system (4.5), consider the following solution
to PLPdense(A, b, U) where we set x (+) and x (−) based
on the signs of x∗

(
x
(+)
i ,x

(−)
i

)
:=

{
(x∗

i, 0) if x∗
i ≥ 0,

(0,−x∗
i) if x∗

i ≤ 0,
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s+
∑

1≤i≤m

(1 + Aij) z
(+)
i + (1−Aij) z

(−)
i +

∑
1≤j′≤n

x
(+)
j′ + x

(−)
j′ ≤ pj + U ∀1≤j≤n

s+
∑

1≤i≤m

(1−Aij) z
(+)
i + (1 + Aij) z

(−)
i +

∑
1≤j′≤n

x
(+)
j′ + x

(−)
j′ ≤ −pj + U ∀1≤j≤n

s+
∑

1≤j≤n

(1 + Aij) x
(+)
j + (1−Aij) x

(−)
j + 2z

(−)
i +

∑
1≤i′≤n,i′ 6=i

z
(+)
i′ + z

(−)
i′ ≤ U ∀1≤i≤m

s+
∑

1≤j≤n

(1−Aij) x
(+)
j + (1 + Aij) x

(−)
j + 2z

(+)
i +

∑
1≤i′≤n,i′ 6=i

z
(+)
i′ + z

(−)
i′ ≤ U ∀1≤i≤m

s+
∑

1≤j≤n

(
x
(+)
j + x

(−)
j

)
+

∑
1≤i≤m

(
z
(+)
i + z

(−)
i

)
≤ U

s,x (+),x (−), z (+), z (−) ≥ 0

(4.9)

and similarly for z (+) and z (−):(
z
(+)
i , z

(−)
i

)
:=

{
(z ∗

i, 0) if z ∗
i ≥ 0,

(0,−z ∗
i) if z ∗

i ≤ 0,

For the added slack variable s, as U ≥ ‖x∗‖1 + ‖z ∗‖1,
we can set

s
def
= U − ‖x∗‖1 + ‖z ∗‖1

= U−

 ∑
1≤j≤n

(
x
(+)
j + x

(−)
j

)
+

∑
1≤i≤m

(
z
(+)
i + z

(−)
i

) .

It is straightforward to see this solution is feasible, and
gives objective value U , which must be the optimal due
to the constraint (4.8).

In the following lemma, we translate the error bound be-
tween the original linear system and PLPdense(A, b, U).

Lemma 4.2. Given A ∈ Rm×n, b ∈ Rm, 0 ≤ ε′ ≤ 1,
where m ≥ n, and A>b 6= 0, and κ(A) is upper bounded
by some known number KA. Let

U
def
= 2K2

A

√
m, ε

def
=

ε′

2KA
√
mU

Suppose x (+),x (−), z (+), z (−), s is a feasible solution
of PLPdense(A, b, U) with objective value at least
(1− ε)U , then x = x (+) − x (−) is a solution to
lea(A, b, ε′), that is,

‖Ax −ΠAb‖2 ≤ ε
′ ‖ΠAb‖2 .

Proof. By Claim 4.2, U is an upper bound of the `1
norm of some solution of the linear system (4.5), that
is, U satisfies the condition of Lemma 4.1. By Claim 4.2,

‖ΠAb‖2 ≥
1

σmax(A)
(4.10)

Let x = x (+) − x (−), z = z (+) − z (−). We want
to bound the error in Ax = z ,AT z = p. Consider the
i-th equality constraint in the linear system: Aix =
z i, we have a corresponding pair of constraints in
PLPdense(A, b, U)

αsum −
(

z
(+)
i − z

(−)
i

)
+
∑

1≤j≤n

Aij

(
x
(+)
j − x

(−)
j

)
≤ U

αsum +
(

z
(+)
i − z

(−)
i

)
−
∑

1≤j≤n

Aij

(
x
(+)
j − x

(−)
j

)
≤ U

Since we have a feasible solution, we know from the
above two constraints that

|Aix − z i| ≤ U − αsum.

The same argument holds for any linear constraint
(AT )jz = pj , so we have

‖Ax − z‖∞ ,
∥∥∥AT z − p

∥∥∥
∞
≤ U − αsum,

and by the approximation guarantee the RHS is at most
ε · U .

Now we bound the error of the solution x in terms
of the linear system

‖Ax −ΠAb‖2
≤‖Ax −ΠAz‖2 + ‖ΠAz −ΠAb‖2
≤‖Ax − z‖2 + σ−1min(A)

∥∥∥AT z −ATb
∥∥∥
2

≤
√
m ‖Ax − z‖∞ +

√
nσ−1min(A)

∥∥∥AT z −ATb
∥∥∥
∞

≤εκ(A)(
√
m+

√
n)U.

(4.11)

In the second inequality, we have ‖Ax −ΠAz‖2 ≤
‖Ax − z‖2 because Ax is in the span of columns of
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A, so projecting z to the column span of A makes the
distance to Ax smaller. Also in the second inequality,
we use

‖ΠAz −ΠAb‖2
=
∥∥∥A(ATA)−1AT (z − b)

∥∥∥
=

√
(z − b)TA(ATA)−1ATA(ATA)−1AT (z − b)

=

√
(z − b)TA(ATA)−1AT (z − b)

≤σ−1min(A)
∥∥∥AT z −ATb

∥∥∥
2
.

The last inequality is due to Claim 4.1. Plugging
Equation (4.10) into Equation (4.11):

‖Ax −ΠAb‖2 ≤ εκ(A)(
√
m+

√
n)U · ‖ΠAb‖2

≤ 2εKA

√
mU · ‖ΠAb‖2 .

By the setting of ε, we have ‖Ax −ΠAb‖2 ≤ ε′ ‖ΠAb‖.

Proof. [Proof of Theorem 3.1] Given an arbitrary
linear equation approximation problem instance
lea(A, b, 0.1) where A ∈ Rn×n, b ∈ Rn and
κ(A) ≤ KA for some known KA. We first check
whether A>b = 0. If A>b = 0, then x = 0 is a
solution to lea(A, b, 0.1). Otherwise, we will construct
PLPdense(A, b, U) with U = K2

A

√
n and solve it up to

multiplicative error ε = 1
100KA

√
nU

. By Lemma 4.2, we

will get a solution to lea(A, b, 0.1).
Suppose we can solve the packing LP

PLPdense(A, b, U), whose size is O(n) × O(n), up

to multiplicative error ε in time Õ(nβ/εα), then we can

solve the lea(A, b, 0.1) in time Õ(nβ(K3
An)α).

4.2 PLPsparse(A, b, U) The sparsity preserving re-
duction follows the same approach as the dense reduc-
tion. However, instead of adding the same αsum and U
to the LHS and RHS of every inequality of LP(A, b)
to make the coefficients non-negative, we will pin-point
only the non-zero coefficients to preserve sparsity. We
construct PLPsparse(A, b, U) starting from LP(A, b) as
follows.

For each j ∈ [1, n], look at the pair of constraints in
LP(A, b) corresponding to the j-th row of AT z = p in
the linear system (4.5):

(AT )jz
(+) − (AT )jz

(−) ≤ pj

−(AT )jz
(+) + (AT )jz

(−) ≤ −pj

We add a non-negative slack variable s
(p)
j that serves as

the slack for both of these constraints. Furthermore, we

denote

α
(p)
j

def
= s

(p)
j +

∑
i:Aij 6=0

z
(+)
i + z

(−)
i ,

and again note α
(p)
j is merely a shorthand rather than

a new variable. We add α
(p)
j and U to the LHS and

RHS respectively of both the constraints above. Since
‖A‖max ≤ 1, all the coefficients in these constraints be-
come non-negative. We then add to PLPsparse(A, b, U)
a new inequality

α
(p)
j ≤ U.

Similarly, for each i ∈ [1,m], we consider the pair of
constraints corresponding to the i-th row in Ax = z

Aix
(+) −Aix

(−) − (z
(+)
i − z

(−)
i ) ≤ 0

−
(

Aix
(+) −Aix

(−)
)

+
(

z
(+)
i − z

(−)
i

)
≤ 0

We add a non-negative slack variable s
(0)
i for both of

these constraints, and denote

α
(0)
i := s

(0)
i + z

(+)
i + z

(−)
i +

∑
1≤j≤n:Aij 6=0

x
(+)
j + x

(−)
j .

We add α
(0)
i and U to the LHS and RHS of the pair of

constraints, and add α
(0)
i ≤ U as a new constraint.

We can write the constraints of PLPsparse(A, b, U)
explicitly as Equation (4.12).

Finally, the objective of PLPsparse(A, b, U) is to

maximize
∑

1≤j≤n α
(p)
j +

∑
1≤i≤m α

(0)
i .

Lemma 4.3. Given U = 2K2
A

√
m > 1 is an upper

bound of the `1 norm of some solution of the linear
system (4.5), PLPsparse(A, b, U) constructs a packing
LP with O(nnz(A)) non-zeros and PLPsparse(A, b, U)
has optimal value (m+ n)U .

The proof is a straightforward but tedious adaptation
of the proof of Lemma 4.1, so we omit it.

Now we translate the error bound between the
original linear system and PLPsparse(A, b, U).

Lemma 4.4. Given A ∈ Rm×n, b ∈ Rm, 0 ≤ ε′ ≤ 1,
where m ≥ n, A>b 6= 0 and κ(A) ≤ KA for some
known number KA. Let

U
def
= 2K2

A

√
m, ε

def
=

ε′

2KAmU
.

Suppose x (+),x (−), z (+), z (−), s(p), s(0) is a feasible so-
lution to PLPsparse(A, b, U) with objective value at least
(1− ε) · (m+ n)U . Then, x = x (+)−x (−) is a solution
to lea(A, b, ε′), that is,

‖Ax −ΠAb‖2 ≤ ε
′ ‖ΠAb‖2 .
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s
(p)
j +

∑
1≤i≤m:Aij 6=0

(1 + Aij) z
(+)
i + (1−Aij) z

(−)
i ≤ pj + U ∀1≤j≤n

s
(p)
j +

∑
1≤i≤m:Aij 6=0

(1−Aij) z
(+)
i + (1 + Aij) z

(−)
i ≤ −pj + U ∀1≤j≤n

s
(p)
j +

∑
1≤i≤m:Aij 6=0

z
(+)
i + z

(−)
i ≤ U ∀1≤j≤n

2z
(−)
i + s

(0)
i +

∑
1≤j≤n:Aij 6=0

(1 + Aij) x
(+)
j + (1−Aij) x

(−)
j ≤ U ∀1≤i≤m

2z
(+)
i + s

(0)
i +

∑
1≤j≤n:Aij 6=0

(1−Aij) x
(+)
j + (1 + Aij) x

(−)
j ≤ U ∀1≤i≤m

z
(+)
i + z

(−)
i + s

(0)
i +

∑
1≤j≤n:Aij 6=0

x
(+)
j + x

(−)
j ≤ U ∀1≤i≤m

x (+),x (−), z (+), z (−), s(p), s(0) ≥ 0

(4.12)

Proof. Note U is an upper bound of the `1 norm of some
solution of the linear system (4.5), and thus U satisfies
the condition of Lemma 4.3. Besides, ‖ΠAb‖2 ≥

1
σmax(A) .

Given the (1 − ε)-approx optimal solution to
PLPsparse(A, b, U), we consider the following solution
to the linear system

x := x (+) − x (−)

z := z (+) − z (−)

We want to bound the error in Ax = z ,AT z = p.
Consider the i-th equality constraint in the linear

system Aix = z i, we have a corresponding pair of
constraints in PLPsparse(A, b, U):

α
(0)
i + Aix

(+) −Aix
(−) − (z

(+)
i − z

(−)
i ) ≤ U

α
(0)
i −

(
Aix

(+) −Aix
(−)
)

+
(

z
(+)
i − z

(−)
i

)
≤ U

which subtracting away α
(0)
i and U from the LHS and

RHS respectively gives

|(Ax )i − z i| ≤ U − α(0)
i .

The same argument holds for any pair of linear con-
straints corresponding to (AT z )j = pj , and in total we
have

‖Ax − z‖1 +
∥∥∥AT z − p

∥∥∥
1

≤ (m+ n)U −
∑
j

α
(p)
j −

∑
i

α
(0)
i

≤ ε (m+ n)U.

Now we bound the error of the solution x in terms
of lea

‖Ax −ΠAb‖2 ≤ ‖Ax −ΠAz‖2 + ‖ΠAz −ΠAb‖2
≤ ‖Ax − z‖2 + σ−1min(A)

∥∥∥AT z −ATb
∥∥∥
2

≤ ‖Ax − z‖1 + σ−1min(A)
∥∥∥AT z −ATb

∥∥∥
1

≤ εσ−1min(A)(m+ n)U

≤ εσ−1min(A)(m+ n)U · ‖ΠAb‖2
≤ 2εKAmU ‖ΠAb‖2 .

Setting

ε =
ε′

2KAmU
,

we have ‖Ax −ΠAb‖2 ≤ ε′ ‖ΠAb‖2.

Proof. [Proof of Theorem 3.2] The proof is similar to
the proof of Theorem 3.1. If A>b = 0 then x = 0
is a solution to lea(A, b, 0.1). Otherwise we solve
PLPsparse(A, b, U). If we can ε-approximately solve

a packing LP in time Õ(Nε−α), then we can solve

lea(A, b, 0.1) in time Õ(nnz(A)(m3/2K3
A)α).
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A Background on Approximately Solving
Linear Equations

In this Appendix, for completeness, we give some back-
ground on notions of approximately solving systems of
linear equations for readers unfamiliar with the subject.
Our presentation is mostly reproduced from [KZ17] by
a subset of the authors.

Recall our definition
[Linear Equation Approximation Problem, lea]

Given linear system (A, b), where A ∈ Rm×n, and
b ∈ Rm, and given a scalar 0 ≤ ε ≤ 1, we refer to
the lea problem for the triple (A, b, ε) as the problem
of finding x ∈ Rn s.t.

‖Ax −Π Ab‖22 ≤ ε ‖Π Ab‖22 ,

and we say that such an x is a solution to the lea
instance (A, b, ε).

This definition of a lea instance and solution
has several advantages: when im(A) = Rm, we get
Π A = I , and it reduces to the natural condition

‖Ax − b‖22 ≤ ε ‖b‖
2

2, which because im(A) = Rm, can
be satisfied for any ε, and for ε = 0 tells us that Ax = b.

When im(A) does not include all of Rm, the vector
Π Ab is exactly the projection of b onto im(A), and so

a solution can still be obtained for any ε. Further, as
(I − Π A)b is orthogonal to Π Ab and Ax , it follows
that

‖Ax − b‖22 = ‖(I −Π A)b‖22 + ‖Ax −Π Ab‖22 .

Thus, when x is a solution to the lea instance (A, b, ε),

then x also gives an ε2 ‖Π Ab‖22 additive approximation
to

(A.1) min
x∈Rn

‖Ax − b‖22 = ‖(I −Π A)b‖22 .

Similarly, an x which gives an additive ε2 ‖Π Ab‖22
approximation to Problem (A.1) is always a solution
to the lea instance (A, b, ε). These observations prove
the following (well-known) fact:

Fact A.1. Let x ∗ ∈ arg minx∈Rm ‖Ax − b‖22, then for
every x ,

‖Ax − b‖22 ≤ ‖Ax ∗ − b‖22 + ε2 ‖Π Ab‖22

if and only if x is a solution to the lea instance
(A, b, ε).

When the linear system Ax = b does not have a
solution, a natural notion of solution is any minimizer
of Problem (A.1). A simple calculation shows that
this is equivalent to requiring that x is a solution to
the linear system A>Ax = A>b, which always has
a solution even when Ax = b does not. The system
A>Ax = A>b is referred to as the normal equation
associated with Ax = b (see [TB97] ).

Fact A.2. x ∗ ∈ arg minx∈Rn ‖Ax − b‖22, if and only if

A>Ax ∗ = A>b, and this linear system always has a
solution.

This leads to a natural question: Suppose we want
to approximately solve the linear system A>Ax =
A>b. Can we choose our notion of approximation to
be equivalent to that of a solution to the lea instance
(A, b, ε)?

A second natural question is whether we can choose
a notion of distance between a proposed solution x and
an optimal solution x ∗ ∈ arg minx∈Rn ‖Ax − b‖22 s.t.
this distance being small is equivalent to x being a
solution to the lea instance (A, b, ε)? The answer to
both questions is yes, as demonstrated by the following
facts:

Fact A.3. Suppose x ∗ ∈ arg minx∈Rn ‖Ax − b‖22 then

1.
∥∥∥A>Ax −A>b

∥∥∥
(A>A)−1

= ‖Ax −Π Ab‖2 =

‖x − x ∗‖A>A.
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2. The following statements are each equivalent to x
being a solution to the lea instance (A, b, ε):

(a)
∥∥∥A>Ax −A>b

∥∥∥
(A>A)−1

≤ ε
∥∥∥A>b

∥∥∥
(A>A)−1

if and only if x is a solution to the lea
instance (A, b, ε).

(b) ‖x − x ∗‖A>A ≤ ε ‖x ∗‖A>A if and only if x is
a solution to the lea instance (A, b, ε).

(c) ‖x − x ∗‖A>A ≤ ε
∥∥∥A>b

∥∥∥
(A>A)−1

if and only

if x is a solution to the lea instance (A, b, ε).

Fact A.3 explains connection between our Defini-
tion 2.2, and the usual convention for measuring er-
ror in the Laplacian solver literature [ST14]. In this
setting, we consider a Laplacian matrix L, which can
be written as L = A>A ∈ Rn×n, and a vector b s.t.
ΠA>Ab = b. This condition on b is easy to verify in
the case of Laplacians, since for the Laplacian of a con-
nected graph, ΠA>A = I − 1

n11>. Additionally, it is
also equivalent to the condition that there exists c s.t.
b = A>c. For Laplacians it is possible to compute
both A and a vector c s.t. b = A>c in time linear in
nnz(L). For Laplacian solvers, the approximation error
of an approximate solution x is measured by the ε s.t.∥∥∥A>Ax − b

∥∥∥
(A>A)†

≤ ε ‖b‖(A>A)† . By Fact A.3, we

see that this is exactly equivalent to x being a solution
to the lea instance (A, c, ε).

B Iterative Refinement

In this Appendix, we prove the well-known Lemma 2.1
for completeness.

Lemma 2.1. If we have a solver for lea(A, b, 0.1) that
works for arbitrary b, then we can obtain a solver for
lea(A, b, ε) by iterating it O(log(1/ε)) times.

Proof. Consider the linear equation A>Ax = A>b.
Let M = A>A and p = A>b. We basically do iterative
refinement involving the matrix M . Note the desired
solution is x ∗ = M−1p. (See Fact A.3). We start with
defining x (0) = 0 and

x (0) = 0 and b(0) = b and p(0) = A>b

Starting from t = 0, we will run an lea(A, b(t), 0.1)
solver to produce x (t+1) such that∥∥∥x (t+1) −M−1p(t)

∥∥∥
M
≤ 0.1

∥∥∥M−1p(t)
∥∥∥

M
.

We then set

b(t+1) =
(

b(t) −Ax (t+1)
)

and we let p(t+1) = A>b(t+1), which ensures

p(t+1) =
(

p(t) −M x (t+1)
)

By definition we have

M−1p(t+1) = M p(t) − x (t+1),

and thus∥∥∥M−1p(t+1)
∥∥∥

M
≤ 0.1

∥∥∥M−1p(t)
∥∥∥

M
.

For simplicity let’s consider a 2-step version. Feed-
ing in b(1) as input to the solver in turn gives x (2) such
that∥∥∥x (2) −M−1p(1)

∥∥∥
M
≤ 0.1

∥∥∥M−1p(1)
∥∥∥

M

≤ 0.01
∥∥∥M−1p(0)

∥∥∥
M
.

Expanding the LHS gives

x (2) −M−1p(1) = x (2) + x (1) −M−1p,

which means x (1) + x (2) is now a solution with error
0.01. Repeating this gives a 10× smaller error after
each step.

C Improved Dependence on Condition
Number Upper Bounds

In Section 3, we saw how our reductions from linear
equations to packing LPs lead to algorithms to the
lea(A, b, ε) problem. We saw how different running
times for packing LP algorithms would lead to different
running times for the lea(A, b, ε) problem. These al-
gorithms resulting from our reductions depend polyno-
mially on an upper bound KA on the condition number
of A.

When there might be a large gap between κ(A)
and a known upper bound KA, it could be desirable
to get reductions that depend on κ(A) instead of KA.
In this appendix, we describe how to do this, reducing
the dependence on KA to logarithmic. The reduction
is straightforward, but we include it for completeness.
In the proof of Corollary 3.1 we constructed a solver for
lea(A, b, ε) with running time Õ(nβ

(
nK3

A

)α
log(1/ε)),

assuming a packing LP solver with with running time
Õ(nβ/εα). We can turn this into an lea(A, b, ε) solver

with running time Õ(nβ
(
nκ(A)3

)α
log(KA/ε)).

One approach to doing so is to make sure we can
certify approximation quality of the solution when a
sufficiently good one is found. When run with a too-
small (invalid) “bound” on κ(A), the algorithms we
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construct may fail, but they do not take more time
than the previously derived bound. Consequently, if can
check whether a solution is valid, we can then search for
an adequate bound on κ(A) using successive doublings
until the algorithm succeeds.

We assume an convenient normalization of A and
b (see Section 4), namely

1. maxij |Aij | = 1

2.
∥∥∥A>b

∥∥∥
2

= 1

Ultimately, our goal is to find x s.t.

(C.2) ‖Ax −Π Ab‖2 ≤ ε ‖Π Ab‖2

We will show that for any ε′, if we find a solution with

(C.3) ‖Ax −Π Ab‖2 ≤ ε
′ ‖Π Ab‖2

then this implies

(C.4)
∥∥∥A>Ax −A>b

∥∥∥
2
≤ KA

√
mn · ε′

∥∥∥A>b
∥∥∥
2

We can also show that

(C.5)
∥∥∥A>Ax −A>b

∥∥∥
2
≤ ε′′

∥∥∥A>b
∥∥∥
2

implies

(C.6) ‖Ax −Π Ab‖2 ≤ KA

√
mn · ε′′ ‖Π Ab‖2

Equation (C.5) has the advantage of being a linear time
checkable condition.

Now suppose we the run Õ(nβ
(
nB3

)α
log(1/ε′))

time algorithm for lea(A, b, ε′), with ε′ =
ε/(KA

√
mn)2. If the algorithm succeeds, then

Equation (C.3) is satisfied and this implies Equa-
tion (C.4). This latter condition we can check in linear
time, or equivalently, we check that Equation (C.5) is
satisfied with ε′′ = ε/(KA

√
mn). This then implies

Equation (C.6) is satisfied, and hence Equation (C.2),
by our choice of ε′ and ε′′.

Thus, whenever if we accept whenever Equa-
tion (C.5) is satisfied, we only accept sufficiently
accurate solutions. On the other hand, if the
Õ(nβ

(
nB3

)α
log(1/ε′)) time algorithm is run with B

being an upper bound on κ(A), it will produce a so-
lution satisfying (C.3) and hence Equations (C.5) and
(C.2).

Now, finally, we run the Õ(nβ
(
nB3

)α
log(1/ε′))

time algorithm with successive doublings of B and each
time check if Equation (C.5) is satisfied for the output.
This must succeed when B ≥ κ(A), but possibly before,
in which case we just get a correct solution sooner.

The running time will be dominated by the last call
to the algorithm, and on that last call we must have
B < 2κ(A). Based on our choice of ε′, we now get an

overall running time of Õ(nβ
(
nκ(A)3

)α
log(KA/ε)).

All that remains is to establish the implication from
Equation (C.3) to (C.4), and from (C.5) to (C.6). First,
we note that with our normalization of A and b, one
can show 1 ≤ σmax(A) ≤

√
mn. This further implies

that 1/κ(A) ≤ σmin(A). Combining this with Fact A.3,
we get∥∥∥A>Ax −A>b

∥∥∥
2
≤ σmax

∥∥∥A>Ax −A>b
∥∥∥
(A>A)−1

≤
√
mn

∥∥∥A>Ax −A>b
∥∥∥
(A>A)−1

=
√
mn ‖Ax −Π Ab‖2

and∥∥∥A>Ax −A>b
∥∥∥
2
≥ σmin

∥∥∥A>Ax −A>b
∥∥∥
(A>A)−1

≥ 1

κ(A)

∥∥∥A>Ax −A>b
∥∥∥
(A>A)−1

=
1

κ(A)
‖Ax −Π Ab‖2

Also, by Claim 4.2

‖ΠAb‖2 ∈
[

1√
mn

∥∥∥A>b
∥∥∥
2
, κ(A)

∥∥∥A>b
∥∥∥
2

]
Thus, if we assume Equation (C.3), we get∥∥∥A>Ax −A>b

∥∥∥
2
≤
√
mn ‖Ax −Π Ab‖2

≤
√
mnε′ ‖ΠAb‖2 ≤ ε

′κ(A)
√
mn

∥∥∥A>b
∥∥∥
2
,

i.e. we conclude Equation (C.4) holds.
Meanwhile, if we assume Equation (C.5), we get

‖Ax −Π Ab‖2 ≤ κ(A)
∥∥∥A>Ax −A>b

∥∥∥
2

≤ κ(A)ε′′
∥∥∥A>b

∥∥∥
2

≤ ε′′κ(A)
√
mn ‖ΠAb‖2

≤ ε′′KA

√
mn ‖ΠAb‖2

so Equation (C.6) holds.

Of course, we can use similar modifications to
the algorithm to get an new algorithm for the sparse
case of lea(A, b, ε) assuming an Õ(N/εα) time algo-
rithm for packing LPs with N non-zeros. This will
give an algorithm for lea(A, b, ε) with running time

Õ(nnz(A)
(
m3/2κ(A)3

)α
log(KA/ε)).
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D Reducing a General LP Instance to a
Packing LP Instance

In this appendix, we show a reduction from a well-
conditioned LP instance to a packing LP instance, by
slightly modifying our reduction from Section 4. Let
us first introduce some notations and definitions for a
general LP.

Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn. We use
L = (A, b, c) to denote an LP written in the canonical
form:

max c>x

s.t. Ax ≤ b

x ≥ 0

(D.7)

Let OPT(A, b, c) be the optimal value of LP (A, b, c).
Let

‖L‖∞
def
= max{‖A‖max , ‖b‖∞ , ‖c‖∞}.

where ‖A‖max = maxi,j |Aij |.
Renegar [Ren95] introduced the notion of con-

dition numbers to measure the complexity of solv-
ing LPs. Define the primal and dual condition

numbers of a LP L as κP (L)
def
= sup{δ : L +

∆L is primal feasible if ‖∆L‖∞ < δ} and κD(L)
def
=

sup{δ : L + ∆L is dual feasible if ‖∆L‖∞ < δ}. Note
κP and κD are not scaling invariant. Renegar proved
the following lemma.

Lemma D.1. ([Ren95]) Let L = (A, b, c) be an LP in-
stance with primal optimal solution x ∗ and dual optimal
solution y∗. Then

‖x ∗‖1 ≤
max{‖b‖∞ ,−OPT(L)}

κP (L)

‖y∗‖1 ≤
max{‖c‖∞ ,OPT(L)}

κD(L)

We state our theorem in the following.

Theorem D.1. If we can (1 − ε)-approximately solve

a packing LP with N non-zeros in time Õ(N log(1/ε)),
then given a feasible LP instance L = (A, b, c) that
has N non-zeros, and polynomially bounded ‖L‖∞,
optimum and condition numbers, we can compute a
solution x ≥ 0 satisfying

c>x ≥ OPT(A, b, c)− ε′,Ax ≤ b + ε′1(D.8)

in time Õ(N log(1/ε′)).

Proof. Let m be the number of rows of A and n be the
number of columns of A.

Let x ∗ be a primal optimal solution of L and let
y∗ be a dual optimal solution of L. Since L is feasible
and bounded, by the strong duality theorem, x ∗,y∗ is
a feasible solution to the following LP.

c>x = b>y

Ax ≤ b

A>y ≥ c

x ,y ≥ 0

(D.9)

Let U be a real number satisfying U ≥ ‖x ∗‖1 + ‖y∗‖1,
which can be upper bounded by Lemma D.1. One
can use binary search to find U . For simplicity let
K = ‖L‖∞.

Similar to our construction of PLPsparse in Sec-
tion 4.2, we introduce a new variable and a new bound-
ing box constraint for each inequality and set the ob-
jective properly, and we get the packing LP (D.10). We
can check that the packing LP has O(N) non-zeros and

the optimum is (n+m+ 1)U
def
= U ′.

Let x ,y be a (1 − ε)-approximate solution to the
packing LP (D.10). Then

Ax − b ≤ εKU ′1
c −A>y ≤ εKU ′1∣∣∣c>x − b>y

∣∣∣ ≤ εKU ′
From the third inequality above,

c>x ≥ b>y − εKU ′ ≥ b>ỹ∗ − εKU ′(D.11)

where ỹ∗ is an optimal solution of the following per-
turbed dual:

min b>y

s.t. A>y ≥ c − εKU ′1
y ≥ 0

Given L(A, b, c) is dual feasible and bounded, this
perturbed dual linear program is feasible and bounded.
Its dual is the following perturbed version of L(A, b, c):

max c>x − εKU ′1>x

s.t. Ax ≤ b

x ≥ 0

Let x̃ ∗ be an optimal solution of this perturbed
LP. Then by the strong duality theorem and Equa-
tion (D.11),

c>x ≥ c>x̃ ∗ − εKU ′1>x̃ ∗ − εKU ′

≥ c>x ∗ − εKU ′1>x ∗ − εKU ′

≥ c>x ∗ − ε
KU ′max{‖b‖∞ ,−OPT(L)}

κP (L)
− εKU ′
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max
∑

1≤j≤n

θj +
∑

1≤i≤m

ηi + ζ

s.t. Kγ +
∑

1≤j≤n:cj 6=0

(K + cj)x j +
∑

1≤i≤m:bi 6=0

(K − bi)y i ≤ KU

Kγ +
∑

1≤j≤n:cj 6=0

(K − cj)x j +
∑

1≤i≤m:bi 6=0

(K + bi)y i ≤ KU

γ +
∑

1≤j≤n:cj 6=0

x j +
∑

1≤i≤m:bi 6=0

y i ≤ U

Kβi +
∑

1≤j≤n:Aij 6=0

(K + Aij)x j ≤ bi +KU, ∀1 ≤ i ≤ m

βi +
∑

1≤j≤n:Aij 6=0

x j ≤ U,∀1 ≤ i ≤ m

Kαj +
∑

1≤i≤m:Aij 6=0

(K −Aij)y i ≤ −cj +KU, ∀1 ≤ j ≤ n

αj +
∑

1≤i≤m:Aij 6=0

y i ≤ U,∀1 ≤ j ≤ n

γ ≥ 0,α,β,x ,y ≥ 0

(D.10)

Here, θj
def
= αj +

∑
1≤i≤m:Aij 6=0 y i,∀1 ≤ j ≤ n, ηi

def
= βi +

∑
1≤j≤n:Aij 6=0 x j ,∀1 ≤ i ≤ m, and ζ

def
=

γ +
∑

1≤j≤n:cj 6=0 x j +
∑

1≤i≤m:bi 6=0 y i. All θj , βi, ζ are shorthands rather than new variables.

The last inequality is due to Lemma D.1.
To make solution x satisfy Equation (D.8), it

suffices to set

ε ≤ min

{
ε′

2KU ′
,

ε′κP (L)

2KU ′max{‖b‖∞ ,−OPT(L)}

}
If we can (1 − ε)-approximately solve the packing

LP (D.10) in time Õ(N log(1/ε)), then we can compute
a solution x satisfying Equation (D.8) in time

Õ

(
N log

(
KU(m+ n) max{1, |OPT(L)|}

κP (L)ε′

))
Given all parameters in the log is polynomially bounded,
the run time is Õ(N log(1/ε′)).

296
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 14.40 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20191108085217
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     14.4000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     18
     17
     18
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 5.40 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     5.4000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     18
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



