
7

More Logarithmic-factor Speedups for 3SUM,
(median,+)-convolution, and Some Geometric
3SUM-hard Problems

TIMOTHY M. CHAN, University of Illinois at Urbana-Champaign, USA

This article presents an algorithm that solves the 3SUM problem for n real numbers in O ((n2/ log2 n)

(log logn)O (1)) time, improving previous solutions by about a logarithmic factor. Our framework for shaving

off two logarithmic factors can be applied to other problems, such as (median,+)-convolution/matrix multipli-

cation and algebraic generalizations of 3SUM. This work also obtains the first subquadratic results on some

3SUM-hard problems in computational geometry, for example, deciding whether (the interiors of) a constant

number of simple polygons have a common intersection.

CCS Concepts: • Theory of computation → Design and analysis of algorithms; Computational geome-

try;

Additional Key Words and Phrases: 3SUM, convolution, matrix multiplication, computational geometry

ACM Reference format:

Timothy M. Chan. 2019. More Logarithmic-factor Speedups for 3SUM, (median,+)-convolution, and Some

Geometric 3SUM-hard Problems. ACM Trans. Algorithms 16, 1, Article 7 (November 2019), 23 pages.

https://doi.org/10.1145/3363541

1 INTRODUCTION

3SUM. The starting point of this article is the 3SUM problem:

Given sets A, B, and C of n real numbers, decide whether there exists a triple
(a,b, c) ∈ A × B ×C with c = a + b.1

The problem has received considerable attention by algorithm researchers, and understanding the
complexity of the problem is fundamental to the field. The conjecture that it cannot be solved in
O (n2−ε) time (in the real or integer setting) has been used as a basis for proving conditional lower
bounds for numerous problems from a variety of areas (computational geometry, data structures,
string algorithms, and so on). See previous papers (such as Reference [22]) for more background.

1The original formulation seeks a triple with a + b + c = 0, which is equivalent after negating the elements of C .

A preliminary version of this article appeared in Proceedings of the 29th ACM-SIAM Symposium on Discrete Algorithms

(SODA’18), pp. 881–897.

Author’s address: T. M. Chan, Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North

Goodwin Avenue, Urbana, IL, 61801, USA; email: tmc@illinois.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1549-6325/2019/11-ART7 $15.00

https://doi.org/10.1145/3363541

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

https://doi.org/10.1145/3363541
mailto:permissions@acm.org
https://doi.org/10.1145/3363541

7:2 T. M. Chan

In a surprising breakthrough, Grønlund and Pettie [22] discovered the first subquadratic

algorithms for 3SUM. They showed the decision-tree complexity of the problem isO (n3/2
√

logn),
and gave a randomized O ((n2/ logn) (log logn)2)-time algorithm and a deterministic

O ((n2/ log2/3 n) (log logn)2/3)-time algorithm in the standard real-RAM model. Small improve-
ments were subsequently reported by Freund [19] and Gold and Sharir [21], who independently

found O ((n2/ logn) log logn)-time deterministic algorithms (the latter also eliminated the
√

logn
factor from the decision-tree complexity bound). In another dramatic breakthrough, Kane
et al. [24] developed a technique for obtaining near-optimal decision-tree complexity for many
problems, and in particular, a near-linear O (n log2 n) decision-tree upper bound for 3SUM; their
technique does not seem to have new implications on the (uniform) time complexity of 3SUM

(although it probably could lead to yet another O ((n2/ logn) (log logn)O (1))-time algorithm).
In this article, we give a further improvement on the time complexity, by about one more loga-

rithmic factor: we present a new deterministic O ((n2/ log2 n) (log logn)O (1))-time algorithm.
Ignoring log logn factors, this matches known results for 3SUM in the special case of integer

input, where a randomized O ((n2/ log2 n) (log logn)2) time bound can be obtained via hashing
techniques [4]. In contrast, besides being more general, our algorithm is deterministic and can
also solve variations of the problem, e.g., finding the closest number (predecessor or successor) in
{a + b : (a,b) ∈ A × B} to each c ∈ C .

The development on 3SUM parallels the history of combinatorial algorithms for the all-pairs
shortest paths (APSP) problem for dense real-edge-weighted graphs, or equivalently, the (min,+)-
matrix multiplication problem for real matrices. In fact, the slightly subquadratic algorithms by
Grønlund and Pettie and the subsequent refinements by Freund or Gold and Sharir all used a
geometric subproblem, dominance searching in logarithmic dimensions, following the author’s
O (n3/ logn)-time APSP algorithm [9]. A later paper by the author [10] gave a further improved

O ((n3/ log2 n) (log logn)O (1))-time algorithm for APSP, using a different geometric approach, via
cuttings in near-logarithmic dimensions. Our improvement will follow the approach in Refer-
ence [10]. The analogy between these 3SUM and APSP algorithms makes sense in hindsight, but
is not immediately obvious, at least to this author (which explains why this article was not written
right after Grønlund and Pettie’s breakthrough), and there are some new technical challenges (for
example, involving bit packing and, at some point, simulation of sorting networks).

(select,+)-Convolution/Matrix Multiplication. The way Grønlund and Pettie and subsequent au-
thors used dominance to solve 3SUM actually more resembled a previous algorithm by Bremner
et al. [6] on another related problem, (median,+)-convolution, or more generally, what we will call
(select,+)-convolution:

Given real sequencesA = 〈a1, . . . ,an〉 and B = 〈b1, . . . ,bn〉 and integers k1, . . . ,kn ,
compute ci = the ki th smallest of {au + bi−u : u ∈ {1, . . . , i − 1}}, for every i ∈
{1, . . . ,n}.

(This problem was used to solve the “necklace alignment problem” under �1 distances [6].) Our

ideas can also improve Bremner et al.’s O ((n2/ logn) (log logn)O (1)) time bound to O ((n2/ log2 n)
(log logn)O (1)) for that problem.

One can similarly solve the (select,+)-matrix multiplication problem in O ((n3/ log2 n)
(log logn)O (1)) time (we are not aware of any prior work on this problem):

Given two real n × n matrices A = {ai j } and B = {bi j } and an integer matrix K =
{ki j }, compute ci j = the ki j th smallest of {aiu + buj : u ∈ {1, . . . ,n}}, for every i, j ∈
{1, . . . ,n}.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:3

Algebraic 3SUM. Barba et al. [5] recently gave an O ((n2/
√

logn) (log logn)O (1))-time algorithm
for a generalization of 3SUM, which we will refer to as algebraic 3SUM:

Let φ : R2 → R be a function of constant description complexity, i.e., {(x ,y, z) ∈
R3 : φ (x ,y) = z} is a semi-algebraic set of constant degree. Given sets A, B, and C
of n real numbers, decide whether there exists a triple (a,b, c) ∈ A × B ×C with
φ (a,b) = c .

Our ideas can also lead to a faster O ((n2/ log2 n) (log logn)O (1))-time algorithm for this problem.

Geometric 3SUM-Hard Problems. The importance of 3SUM stems from the many problems that
were shown to be 3SUM-hard, starting with the seminal paper by Gajentaan and Overmars [20] in
computational geometry. Grønlund and Pettie’s breakthrough was exciting, because it gave hope
to the possibility that slightly subquadratic algorithms might exist for these geometric problems
as well. However, thus far, no such geometric result has materialized. (In contrast, examples of
“orthogonal-vectors-hard” problems in computational geometry with slightly subquadratic algo-
rithms were known earlier [1, 7, 8, 21].) Barba et al.’s work came close: their algebraic 3SUM algo-
rithm can be used to solve a standard geometric 3SUM-hard problem—testing whether a given set
ofn points is degenerate, i.e., contain a collinear triple—but only in the special case when the points
lie on a small number of fixed-degree algebraic curves in 2D. The input there is still intrinsically
one-dimensional.

In this article, we show how to adapt our techniques to obtain anO ((n2/ log2 n) (log logn)O (1))-
time algorithm for some genuinely two-dimensional problems:

(i) Intersection of 3 polygons. Given 3 simple polygons with n vertices, decide whether the
common intersection is empty.2

(ii) Coverage by 3 polygons. Given 3 simple polygons with n vertices and a triangle Δ0, decide
whether the union of the polygons covers Δ0.

(iii) Degeneracy testing for O (1)-chromatic line segments. GivenO (1) sets each consisting of n
disjoint line segments in R2, decide whether there exist three line segments meeting at a
common point.

(iv) Offline triangle range searching for bichromatic segment intersections. Given sets A and B
each consisting of n disjoint line segments, and a set C of n triangles in R2, count the
number of intersection points between A and B that are inside each triangle c ∈ C .3

Furthermore, we obtain a slightly slower O ((n2/ logn) (log logn)O (1))-time algorithm for the fol-
lowing related problems:

(v) Intersection of O (1) polygons. Given O (1) simple polygons with n vertices, decide
whether the common intersection is empty.

(vi) Coverage by O (1) polygons. Given O (1) simple polygons with n vertices and a triangle
Δ0, decide whether the union of the polygons covers Δ0.

(vii) Offline reverse triangle range searching for bichromatic segment intersections. Given setsA
and B each consisting of n disjoint line segments, and a set C of n triangles in R2, count
the number of triangles inC containing each intersection point q between A and B. The
output counts may be stored in some “implicit” representation—more precisely, in a data

2This problem was observed to be 3SUM-hard in an unpublished note http://tcs.postech.ac.kr/workshops/kwcg05/

problems/smallest_circle.pdf (2005).
3An online query version of this problem was recently considered by de Berg et al. [15], who also briefly noted connection

to 3SUM.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

http://tcs.postech.ac.kr/workshops/kwcg05/problems/smallest_circle.pdf
http://tcs.postech.ac.kr/workshops/kwcg05/problems/smallest_circle.pdf

7:4 T. M. Chan

structure that can return the count for any given intersection point q in constant time,
and that also stores explicitly the minimum or maximum count over all intersection
points.

It is not difficult to see that all the above problems are 3SUM-hard. Moreover, (i)–(iii) reduce to
(iv), and (v)–(vi) reduce to (vii): (i) reduces to (iv), since if the intersection of the three polygons is
nonempty, one can triangulate the polygons, and some vertex or some intersection point between
two edges of two polygons would be inside a triangle of the other polygon; (ii) reduces to (i)
by taking complements; (iii) reduces to (iv) by examining each triple of sets and viewing line
segments as degenerate triangles; (v) reduces to (vii), since if the intersection of the polygons is
nonempty, one can triangulate the complements of polygons, and some vertex or some intersection
between 2 edges of 2 polygons would lie in no triangles of the complements of the other polygons;
(vi) reduces to (v) by taking complements. The results for (i), (ii), (v), and (vi) hold even if each
polygon has holes (or is a disconnected collection of disjoint polygons). The time bound remains

subquadratic for a nonconstant number of polygons, if the number is less than logδ n for some δ .
To summarize, our main contributions are:

• a general recipe on how to shave off (in most cases) two logarithmic factors for a host
of problems—for “Four-Russians”-style algorithms, two logarithmic factors are usually the
most one could eliminate (see Section 8 for exceptions, which tend to be more limited in
their applicability).

• identification of the first natural 3SUM-hard problems in computational geometry with
slightly subquadratic algorithms—this is perhaps the most important “qualitative” contri-
bution of the article, to those who care less about the precise number of logarithmic factors
shaved.

2 PRELIMINARIES

Let [n] denote {1, 2, . . . ,n}. For a list A, let A[i] denote its ith element.
We assume a real-RAM model, where a word can hold an input real number or a w-bit num-

ber/pointer for a fixed w = Ω(logn). The only operations on reals are evaluating the signs of
constant-degree polynomials over a constant number of input values (in fact, for our 3SUM algo-
rithms, all comparisons on reals will be of the form a + b ≤ c or a + b ≤ a′ + b ′). For convenience,
we assume that the model supports some nonstandard operations onw-bit words in constant time.
At the end, by setting w = δ0 logn for a sufficiently small constant δ0 > 0, nonstandard word op-
erations with O (1) arguments can be simulated by table lookup after an initial preprocessing of

2O (w) = nO (δ0) time.
We mention some simple facts about bit packing that will be of use later:

Fact 2.1. Let 〈x1, . . . ,x�〉 be a sequence of � numbers in [b] stored in O ((� logb)/w + 1) words.

(a) One can sort the sequence in O ((� log2 (b�))/w + 1) time.
(b) Given a table f : [b]→ [b], one can compute 〈f [x1], . . . , f [x�]〉 in O ((� log2 (b�))/w + b)

time.

Proof. (Review) Part (a) is well known, and is described, for example, in Reference [10,
Lemma 2.3(a)]: Roughly, we use a packed variant of mergesort, with O (log �) rounds of merging,
where each round takes time linear in the number of words, i.e., O ((� logb)/w) (this may require
some nonstandard word operations).

Part (b) can be found in Reference [10, Lemma 2.3(d)]: Roughly, we sort the list of pairs (i,xi)
by xi using (a), split the list into sublists with a common xi , replace xi with f [xi] in each sublist,
concatenate these sublists, and finally sort all pairs by i to get back the original order. �

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:5

3 3SUM

For two lists A and B, let A + B denote the multiset {a + b : a ∈ A, b ∈ B}.

3.1 Reduction to Batched A + B Searching/Selection

We formulate two subproblems, which will be the key to solving 3SUM:

Problem 3.1 (BatchedA + B Searching). Given lists (“groups”)A1, . . . ,Am ,B1, . . . ,Bm ofd real
numbers each, and given “query” listsCi j of values in R with

∑
i, j |Ci j | = Q , find the predecessor of c

in Ai + Bj for each c ∈ Ci j and each i, j ∈ [m].

Problem 3.2 (BatchedA + B Selection). Given lists (“groups”)A1, . . . ,Am ,B1, . . . ,Bm of d real
numbers each, and given “query” listsKi j of numbers in [d2] with

∑
i, j |Ki j | = Q , find the kth smallest

in Ai + Bj for each k ∈ Ki j and each i, j ∈ [m].

Let Tsearch,+ (m,d,Q) and Tselect,+ (m,d,Q) be the time complexity of these two problems.
Note that Tsearch,+ (m,d,Q) = O ((Tselect,+ (m,d,Q) +Q +m2) · logd), since Problem 3.1 reduces to
O (log(d2)) instances of Problem 3.2, by simultaneous binary searches for the rank of c for all c ∈ Ci j

and all i, j.
3SUM clearly reduces to Problem 3.1 with m = 1 and d = Q = n. The following simple lemma,

based on Grønlund and Pettie’s grouping approach [22], shows a better reduction, to instances
with smaller group size d :

Lemma 3.3. 3SUM can be solved in time O (Tsearch,+ (n/d,d,n2/d) + n2/d + n logn) for any given
d ≤ n.

Proof. Sort A and B. Divide A into sublists A1, . . . ,An/d of size d , and B into sublists
B1, . . . ,Bn/d of size d . For each c ∈ C , put c in Ci j iff c ∈ [Ai [1] + Bj [1],Ai+1[1] + Bj+1[1]). For
each c , the (i, j) pairs satisfying this condition form a monotone sequence in [n/d]2 (nondecreas-
ing in the first coordinate and nonincreasing in the second); thus, there areO (n/d) such pairs and
they can be found by a linear scan over the two lists 〈A1[1], . . . ,An/d [1]〉 and 〈B1[1], . . . ,Bn/d [1]〉
inO (n/d) time. So,

∑
i, j |Ci j | = O (n2/d), and the total time to generate allCi j ’s isO (n2/d). For each

c ∈ C , the predecessor of c in A + B is the maximum among the predecessors of c inAi + Bj for all
(i, j) with c ∈ Ci j . This gives an instance of Problem 3.1 withO (n/d) sets of size d and total query
list size Q = O (n2/d). �

3.2 Batched A + B Selection via Cuttings in Near-logarithmic Dimensions

We now solve the batched A + B selection problem for group size d near logm, using a geometric
approach based on the author’s APSP algorithm [10]. One needs one tool from computational
geometry:

Fact 3.4 (Cutting Lemma). Given r ≤ n and a set H of n hyperplanes in Rd , we can cut Rd into

dO (d)rO (d) disjoint cells so that each cell is crossed4 by at most n/r hyperplanes of H .
Furthermore, given a set P of n points, for every cell Δ with P ∩ Δ � ∅, one can generate the set

PΔ = P ∩ Δ and a setHΔ of size at mostn/r containing all hyperplanes ofH crossing Δ, indO (d)nrO (d)

total time.

Proof (Review). If randomization is allowed, then a simple algorithm is to draw a random
sample of about r hyperplanes and take the cells from a canonical triangulation of the arrangement
of these hyperplanes. Derandomization is more involved. See Reference [14] for a survey.

4One says that h crosses Δ if h intersects the interior of Δ (or the relative interior of Δ, in the case that Δ is not full-

dimensional).

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:6 T. M. Chan

In our application, the hyperplanes are orthogonal to only a small number (dO (1)) of directions.
In this case, there is a much easier proof, as noted in Reference [10]: Roughly, select r hyperplanes

(r quantiles) for each direction, and take the cells from the arrangement of the resulting dO (1)r
hyperplanes. �

We begin with one solution to batched A + B selection in Theorem 3.5 below. It will be super-
seded by the later version of Theorem 3.6 but serves as a good warm-up of the basic idea.

Theorem 3.5 (Warm-up Version). Tselect,+ (m,d,Q) = O (Q +m2) for d ≤ δ logm/ log logm for
a sufficiently small constant δ > 0.

Proof. For each Ai , define a point pi = (Ai [1], . . . ,Ai [d]) ∈ Rd . For each Bj , define a set of
O (d4) hyperplanes

Hj =
{
{(x1, . . . ,xd) ∈ Rd : xu + Bj [v] = xu′ + Bj [v

′]} : u,v,u ′,v ′ ∈ [d]
}
.

Let P be the resulting set ofm points and H be the resulting set ofO (d4m) hyperplanes. Apply the

Cutting Lemma to H and P , and obtain sets HΔ and PΔ in time dO (d)mrO (d) , where each HΔ has

size at mostO (d4m/r) and the number of cells Δ is dO (d)rO (d) . Take a cell Δ and an index j ∈ [m].
We describe how to handle the queries for Ki j for all pi ∈ PΔ.

• Case 1: some hyperplane of Hj is in HΔ. Since |HΔ | is small, there are not too many such j’s
and one can afford to use a slow algorithm here:

Namely, for each pi ∈ PΔ, just sort Ai + Bj . Then, one can look up the answer for each
k ∈ Ki j in constant time. The total time is O (

∑
pi ∈PΔ

|Ki j | + |PΔ | · d2 logd).

Since there are at most |HΔ | = O (d4m/r) choices of j for each Δ and
∑

Δ |PΔ | =m, the
total time over all Δ and all j is O (Q + (d4m/r) ·m · d2 logd).

• Case 2: no hyperplane of Hj is in HΔ. One can save time here by observing that the sorted
ordering of Ai + Bj is the same as the sorted ordering of Ai′ + Bj for every pi ,pi′ ∈ PΔ,
because no hyperplane of Hj crosses Δ. In particular, the index pair for the kth smallest in
Ai + Bj is the same as the index pair for the kth smallest in Ai′ + Bj for every pi ,pi′ ∈ PΔ.

So, pick one representative point piΔ in PΔ, and just sort AiΔ + Bj . Then, one can look
up the answer for each k ∈ Ki j in constant time. The total time is O (

∑
pi ∈PΔ

|Ki j | + |PΔ | +
d2 logd).

Since there aredO (d)rO (d) cells Δ and
∑

Δ |PΔ | =m, the total time over all Δ and all j ∈ [m]
is O (Q +m2 + (dr)O (d) ·m · d2 logd).

The overall running time is O (Q +m2 + d6 (m2/r) logd + (dr)O (d)m). Setting r := d7 gives the
desired result for d ≤ δ logm/ log logm. �

It follows that Tsearch,+ (m,Q,d) = O ((Q +m2) logd) for d = δ logm/ log logm, and so by
Lemma 3.3, we immediately obtain a 3SUM algorithm with running time O ((n2/d) logd) =
O ((n2/ logn) (log logn)2). (Note that our solution here is simpler than previous solutions of similar
running time [19, 21].)

To improve Theorem 3.5 by about a w factor, we use bit-packing techniques. (Note that such
an improvement does not seem to work for the previous solutions [19, 21] that were based on
dominance instead of cuttings.) In Problem 3.2, note that each query list Ki j can be stored com-
pactly in O ((|Ki j | logd)/w + 1) words. So can the output for Ki j : if the kth smallest of Ai + Bj is
Ai [u] + Bj [v], it can be represented as an index pair (u,v) ∈ [d]2. Thus, the total input/output size
is O ((Q logd)/w +m2) in words.

We will actually use a variant of the input/output representation that lowers them2 term: Divide
[m] intom/w blocks ofw consecutive indices for a fixed valuew ≥ w . For each i ∈ [m] and block

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:7

β , we store a list Ki β containing (j mod w,k) over all j ∈ β and k ∈ Ki j . The input/output size for

thisw-block representation becomes O ((Q log(dw))/w +m2/w) in words.

Theorem 3.6 (Refined Version). Tselect,+ (m,d,Q) = O ((Q log2 (dw))/w +m2/w) for d ≤
δ logm/ log(w logm) for a sufficiently small constant δ > 0.

Proof. We modify the proof of Theorem 3.5. Define H , P , and the cutting as before.
Take a cell Δ and a block β of w consecutive indices in [m]. We describe how to handle the

queries for Ki β for all pi ∈ PΔ.

• Case 1: some hyperplane of
⋃

j ∈β Hj is in HΔ.

Take a fixed pi ∈ PΔ. Sort Ai + Bj for all j ∈ β in O (wd2 logd) time. Create a table f :
{0, . . . ,w − 1} × [d2]→ [d]2 where f [j mod w,k] stores the index pair for the kth small-
est of Ai + Bj . Look up f for the answers for Ki β in O ((|Ki β | log2 (dw))/w +wd2) time by

Fact 2.1(b). The total time over all pi ∈ PΔ is O (
∑

i ∈PΔ
|Ki β | log2 (dw))/w + |PΔ | ·wd2 logd).

Since there are at most |HΔ | = O (d4m/r) choices of β for each Δ and
∑

Δ |PΔ | =m, the
total time over all Δ and all β is O ((Q log2 (dw))/w + (d4m/r) ·m ·wd2 logd).

• Case 2: no hyperplane of
⋃

j ∈β Hj is in HΔ. Observe that the sorted ordering of Ai + Bj is
the same as the sorted ordering of Ai′ + Bj for every pi ,pi′ ∈ PΔ and every j ∈ β .

So, pick one representative pointpiΔ in PΔ. SortAiΔ + Bj for all j ∈ β inO (wd2 logd) time,
and create a table f : {0, . . . ,w − 1} × [d2]→ [d]2 where f [j mod w,k] stores the index
pair for the kth smallest of AiΔ + Bj . Concatenate the lists Ki β over all pi ∈ PΔ, look up f

for the answers for the combined list inO (
∑

pi ∈PΔ
(|Ki β | log2 (dw))/w +wd2 + |PΔ |) time by

Fact 2.1(b), then split the output list to get the answers for each Ki β .

Since there are dO (d)rO (d) cells Δ and
∑

Δ |PΔ | =m, the total time over all Δ and m/w
blocks β is O ((Q log2 (dw))/w + (dr)O (d) · (m/w) ·wd2 logd + (m/w) ·m).

The overall running time is at mostO ((Q log2 (dw))/w +m2/w + d6w (m2/r) logd + (dr)O (d)m).
Setting r := d7w2 gives the desired result for d ≤ δ logm/ log(w logm). �

Unfortunately, the above theorem in itself is not sufficient to yield a further improvement to
3SUM, because of the O (n2/d) term in Lemma 3.3, unless one could choose a bigger d . We will
propose more sophisticated bit-packing tricks to get around this bottleneck.

3.3 Batched A + B Comparisons/Sorting via Bit Packing and Fredman’s Trick

First, one needs a subroutine for solving the following subproblem:

Problem 3.7 (Batched A + B Comparisons). Given lists (“groups”) A1, . . . ,Am ,B1, . . . ,Bm of d
real numbers each, and given “query” lists Qi j of quadruples in [d]4 with

∑
i, j |Qi j | = Q , test whether

Ai [u] + Bj [v] ≤ Ai [u
′] + Bj [v

′] for each (u,v,u ′,v ′) ∈ Qi j and each i, j ∈ [m].

Let Tcomp,+ (m,d,Q) be the time complexity of this problem. Note that by bit packing, the total

input size is O ((Q logd)/w +m2) in words, and the total output size is O (Q/w +m2) in words,
since the output to each Qi j is a |Qi j |-bit vector. (One will not need block representations here.)
The following theorem is inspired by Reference [10, Theorem 2.4] (which in turn was based on
some ideas from an APSP algorithm of Han [23]):

Theorem 3.8. Tcomp,+ (m,d,Q) = O ((Q log2 d)/w +m2) form ≥ d2 logd .

Proof. We use “Fredman’s trick,” i.e., the (trivial) observation that

Ai [u] + Bj [v] ≤ Ai [u
′] + Bj [v

′] ⇐⇒ Ai [u] −Ai [u
′] ≤ Bj [v

′] − Bj [v].

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:8 T. M. Chan

(This observation was the key behind Fredman’s first subcubic decision-tree result on APSP and
(min,+)-matrix multiplication [18].)

Sort the O (d2m) elements
{
Ai [u] −Ai [u

′] : i ∈ [m],u,u ′ ∈ [d]
} ∪

{
Bj [v

′] − Bj [v] : j ∈ [m],v,v ′ ∈ [d]
}

in O (d2m log(dm)) time. Let L be the resulting list. Create tables f ,д : [m] × [d]2 → [d2m] where
f [i,u,u ′] stores the rank of Ai [u] −Ai [u

′] in L and д[j,v ′,v] stores the rank of Bj [v
′] − Bj [v] in

L.
Map each quadruple (u,u ′,v,v ′) in the list Qi j to (i, j,u,u ′,v,v ′). Concatenate the lists over

all (i, j) ∈ [m]2 in lexicographical order. In the concatenated list, map (i, j,u,u ′,v,v ′) to (i,u,u ′),
then to f [i,u,u ′] by Fact 2.1(b); similarly, map (i, j,u,u ′,v,v ′) to (j,v,v ′), then to д[j,v,v ′] by
Fact 2.1(b) again; all this takes O ((Q log2 (dm))/w +m2 + d2m) time. Combine the two resulting
lists to get a list of pairs (f [i,u,u ′],д[j,v,v ′]). One can then obtain the output list of Boolean
values corresponding to whether f [i,u,u ′] ≤ д[j,v ′,v], and split the list by (i, j) to get the answers
to each Qi j . The total time is O ((Q log2 (dm))/w +m2 + d2m log(dm)) = O ((Q log2 (dm))/w +m2)
form ≥ d2 logd .

The log(dm) factors in the above time bound can be replaced by logd easily: Letm0 := d2 logd .
Divide A1, . . . ,Am ,B1, . . . ,Bm into O (m/m0) blocks of O (m0) lists each. Apply the above al-
gorithm to each pair of blocks. The total time is now O ((Q log2 (dm0))/w + (m/m0)2 ·m2

0) =

O ((Q log2 d)/w +m2). �

The above subroutine enables us to solve the following, tougher subproblem:

Problem 3.9 (Batched A + B Sorting). Given lists (“groups”) A1, . . . ,Am ,B1, . . . ,Bm of d real
numbers each, and given “query” listsQi j with

∑
i, j |Qi j | = Q , where each element ofQi j is a sequence

of � pairs in [d]2, reorder each sequence 〈(u1,v1), . . . , (u�,v�)〉 in Qi j so that at the end, Ai [u1] +
Bj [v1] ≤ · · · ≤ Ai [u�] + Bj [v�], for each i, j ∈ [m].

Let Tsort,+ (m,d, �,Q) be the time complexity of this problem. Note that if � ≤ δw/ logd for a
sufficiently small constant δ , then each sequence in Qi j can be packed in a word, and the total
input/output size (in words) is O (Q +m2).

Theorem 3.10. Tsort,+ (m,d, �,Q) = O ((Q +m2) · logO (1) (dw)) if m ≥ d2 logd and � ≤ δw/
log(dw) for a sufficiently small constant δ > 0.

Proof. The main idea is to simulate a sorting network to sort the sequences in Qi j for all i, j
simultaneously. Recall that a sorting network sorts � elements x1, . . . ,x� in rounds. In each round,
we have a pre-chosen set ofO (�) disjoint pairs of indices, and we perform a compare-and-exchange
operation on each such pair. A compare-and-exchange operation on an index pair (r , r ′) ∈ [�]2 in-
volves testing whether xr > xr ′ , and if true, swapping xr and xr ′ . (The pre-chosen set of index pairs
per round is independent of the input values.) The AKS sorting network [3] can sort � elements in
O (log �) rounds.

Consider one round of the network. For each i, j and each sequence in Qi j , we first extract the
list ofO (�) pairs of elements that need to be compare inO (1) time by using a (nonstandard) word
operation, since the sequence is packed in a word, and the pre-chosen set of index pairs (r , r ′) can
also be encoded in a word (as � log � ≤ δw). The total time so far is O (Q +m2). We concatenate
these lists over all sequences inQi j for each i, j, apply the algorithm for batchedA + B comparisons
with total query list size O (�Q), and split the answer list per i, j and per sequence. For each i, j
and each sequence in Qi j , one can then perform the necessary swaps in O (1) time by another
word operation, since each sequence is packed in a word and the outcomes of the comparisons fit

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:9

in a word. Each round requires total timeO (Tcomp,+ (m,d, �Q) +Q +m2) = O ((�Q log2 d)/w +Q +
m2) = O (Q logd +m2). The overall running time is multiplied by an O (log �) factor, by using the
AKS sorting network. �

Note that the above algorithm can sort Qi j even when extra fields are attached to each pair in
Qi j , provided that the extra fields require O (log(dw)) bits.

3.4 Putting Everything Together via 2-Level Grouping

We now solve the batched A + B searching problem for a bigger group size d near w logm, by
reducing to batched A + B selection for a smaller group size:

Lemma 3.11. Tsearch,+ (m,d,Q) = O ((Tselect,+ (�m,d/�, �Q) +Tsort,+ (m,d, �,Q) + �Q/w +Q +

m2 + �2m2/w) · logO (1) (dw) + dm logd) for any given � ≤ min{d,w }.

Proof. One may assume that � and d are powers of 2. If |Ci j | ≥ d2, then one can afford to use a
slow algorithm: compute Ai + Bj inO (d2 logd) time and test for each c ∈ Ci j whether c ∈ Ai + Bj

by binary search. The number of such Ci j ’s is at most O (Q/d2) and so the total time for this step
isO ((Q/d2) · d2 logd +Q logd) = O (Q logd). Thus, one may assume that |Ci j | < d2 from now on.

Sort each Ai and Bj . Divide each Ai into sublists Ai1, . . . ,Ai� of size d0 := d/�, and each Bj into
sublists Bj1, . . . ,Bj� of size d0.

Consider a fixed c ∈ Ci j . We describe an algorithm search(c,Ai ,Bj) to find the predecessor of
c in Ai + Bj . Observe that if the answer is in Aip + Bjq , then we either have (i) c ∈ [Aip[1] +
Bjq[1],Aip[1] + Bj,q+1[1]), or (ii) c ∈ [Aip[1] + Bj,q+1[1],Ai,p+1[1] + Bj,q+1[1]). One assumes the
first case; the second case can be handled by a symmetric algorithm. The algorithm is given by
the pseudocode below, and works as follows: For each p ∈ [�], first find the unique index qp for
which c ∈ [Aip[1] + Bjqp

[1],Aip[1] + Bj,qp+1[1]), by binary search (lines 2 and 3). Then find the
predecessor of c inAip + Bjqp

by another binary search, this time, over the ranks (lines 4–6), using
an oracle for selection in Aip + Bjqp

. The largest of the predecessors found gives us the overall
predecessor of c in Ai + Bj .

search(c,Ai ,Bj):

1. initialize q1 = · · · = q� = k1 = · · · = k� = 1
2. for s = �/2, �/4, . . . , 1:
3. for each p ∈ [�], if c > Aip[1] + Bj,qp+s [1], then qp := qp + s
4. for s = d2

0/2,d
2
0/4, . . . , 1:

5. for each p ∈ [�], if c > (the (kp + s)th smallest in Aip + Bjqp
), then kp := kp + s

6. return max{the kp th smallest in Aip + Bjqp
: p ∈ [�]}

The main idea is to run algorithm search(c,Ai ,Bj) simultaneously for all c ∈ Ci j and all i, j ∈
[m], using bit-packed lists. For each i, j, c , one maintains a list Li jc of O (�) tuples (p,qp ,kp) for
all p ∈ [�] and variables qp and kp kept by the algorithm. There are

∑
i, j |Ci j | = Q such lists Li jc ,

which in total contain O (�Q) tuples and require O ((�Q logd)/w +Q) space.
To implement line 3, we first sort the tuples (p,qp ,kp) in Li jc by Aip[1] + Bj,qp+s [1]; by the

batched A + B sorting subroutine, this takes O (Tsort,+ (m,d, �,Q)) total time over all i, j, c . After
sorting, one can resolve all comparisons between c and Aip[1] + Bj,qp+s [1] for all p ∈ [�], by stan-
dard binary search for c inO (log �) time per i, j, c (no bit packing needed here). The total time for
all these binary searches is O (Q logd).

Line 5 (or 6) is similar. However, before one can sort, one needs to find the index pair for the
(kp + s)th smallest in Aip + Bjqp

for all p ∈ [�]. This can be done by the batched A + B selection

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:10 T. M. Chan

algorithm in O (Tselect,+ (�m,d0, �Q)) total time over all i, j, c . Before the call to batched A + B
selection, some setup is required to reformat to a w-block input representation. More precisely,
divide [�m] into blocks ofw indices. Instead of putting kp + s in a list Ki�+p, j�+qp

, one wants to put
((j mod (w/�))� + qp ,kp + s) in a list Ki�+p,β where β is the block containing j�. To this end, first
map each tuple (p,qp ,kp) in Li jc to (p,qp ,kp , j mod (w/�), c) (note that c can be encoded as an in-

teger in [|Ci j |] = [O (d2)]); for each i and each block β , let Li β be the concatenation of Li jc over all c
and all j such that j� ∈ β ; sort Li β by p (by Fact 2.1(a)), and split it into sublists Lipβ with a common
p; from Lipβ , we can then obtain Ki�+p,β and are ready for the call. After the call, one can concate-
nate the answers for Lipβ over all p to get the answers for Li β , then sort Li β by (j mod (w/�), c)
to get back the answers for Li jc . Since there are O (�m/w) choices for β and so O (m · � · �m/w)

choices for (i,p, β), these extra steps take O ((�Q log2 (dw))/w + �2m2/w) total time.
Since the entire algorithm has log � + log(d2

0) iterations, the overall running time is multiplied
by an O (logd) factor. �

Combining Lemma 3.11 and Theorems 3.6 and 3.10, one obtains

Tsearch,+ (m,d,Q) = O ((�Q/w +Q +m2 + �2m2/w) · logO (1) (dw))

= O ((Q +m2) · logO (1) w)

by setting � ≈ δw/ log(dw) andw := w2, assuming that d ≤ δ 2w logm/ log2w , andw = Ω(logm),
andw ≤ mo (1) .

By Lemma 3.3 with d ≈ δ 2w logn/ log2w , we obtain our main result:

Corollary 3.12. 3SUM can be solved in O ((n2/(w logn)) logO (1) w) ≤ O ((n2/ log2 n)
(log logn)O (1)) time, assuming that w = Ω(logn) and w ≤ no (1) .

We do not feel it is important to optimize the log log factors, but for those interested, the above
3SUM algorithm has 5 log logn factors. If one does not care about log logn factors, then one can
replace the AKS sorting network by one of Batcher’s sorting networks, which is simpler. With
randomization, sorting networks can probably be avoided entirely (by using approximate medians
instead of sorting).

4 (SELECT,+)-CONVOLUTION/MATRIX MULTIPLICATION

One can apply similar ideas to the (select,+)-matrix multiplication and (select,+)-convolution
problems. For two lists A and B of d elements, let A +̂B denote the list 〈A[1] + B[1],A[2] +
B[2], . . . ,A[d] + B[d]〉. LetTselect,+̂ (m,d,Q) be the time complexity of batched A +̂B selection, i.e.,
the variant of Problem 3.2 with + replaced by +̂.

4.1 Reduction to Batched A +̂ B Selection

We first show how (select,+)-matrix multiplication and (select,+)-convolution can be reduced to
batched A +̂B selection for small group size d .

Lemma 4.1.

(a) (select,+)-matrix multiplication can be solved in O ((Tselect, +̂ (n,d,n2) + n2) · (n/d) logd)
time.

(b) (select,+)-convolution can be solved in O ((Tselect,+̂ (n/d,d,n2/d2) + n2/d2) · d logd) time.

Proof. Given � sorted arrays X1, . . . ,X� of d elements each, there are known algorithms that
can find the kth smallest in O (� logd) time [16, 17, 25]. Most such algorithms proceed in O (logd)
iterations, where each iteration takes O (�) time and requires looking up O (1) entries per array in

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:11

parallel. The exact details are not important for our purposes, but for the sake of completeness, we
provide one such algorithm:

select(k,X1, . . . ,X�):

1. initialize k1 = · · · = k� = 0 and s1 = · · · = sp = d
2. while S := s1 + · · · + s� > 20� do:
3. if k ≤ S/2:
4. for each p ∈ [�], let μp := Xp[kp + �sp/3�] and νp := Xp[kp + 2�sp/3�]
5. let x be the smallest such that

∑
μp ≤x �sp/3� +

∑
νp ≤x �sp/3� > k

6. for each p ∈ [�], if μp ≥ x , then sp := �sp/3�, else if νp ≥ x , then sp := 2�sp/3�
7. else negate and reverse Xp[kp + 1, . . . ,kp + sp] for each p ∈ [�], and set k := S − k + 1
8. return the k-th smallest in

⋃
p∈[�]Xp[kp + 1, . . . ,kp + sp]

The above algorithm maintains the invariant that the answer is the kth smallest in⋃
p∈[�]Xp[kp + 1, . . . ,kp + sp]. Consider the case when k ≤ S/2. In line 5, the answer is at most x ,

because there are more than k elements at most x . Thus, in line 6, if μp ≥ x , then one can remove
the top two-thirds ofXp[kp + 1, . . . ,kp + sp], else if νp ≥ x , then one can remove the top third. The

number of remaining elements is at most
∑

μp <x �sp/3� +
∑

νp <x �sp/3� +
∑�

p=1 (sp − 2�sp/3�) ≤
k + S/3 + 2� ≤ 5S/6 + 2�. The case when k ≥ S/2 is symmetric (note that the negate-and-reverse
operation can be done implicitly). It takes at mostO (logd) iterations for S to drop fromd� to below
20�. Lines 5 and 8 require O (�) time by using a linear-time (weighted) selection algorithm, so the
total time is indeed O (� logd).

Now, we are ready to prove the lemma:

(a) Let � := n/d . Divide the ith row of A into sublists A(1)
i , . . . ,A

(�)
i of d elements each, and

divide the jth column of B into sublists B (1)
j , . . . ,B

(�)
j ofd elements each. For each i, j ∈ [n],

one wants to compute ci j = the ki j th smallest of the union of A(1)
i +̂B

(1)
j , . . . ,A

(�)
i +̂B

(�)
j .

Let X
(p)
i j denote the listA

(p)
i +̂B

(p)
j rearranged in sorted order. The idea is to run the above

algorithm select(ki j ,X
(1)
i j , . . . ,X

(�)
i j) simultaneously for all i, j ∈ [n]. We do not explicitly

store the sorted list X
(p)
i j , but when desired, can retrieve the kth element in the sorted list

for any given k by selection in A
(p)
i +̂B

(p)
j . Thus, in each iteration, line 4 can be done by

� instances of batched A +̂B selection (one instance per p); the total time over all i, j is
O ((Tselect,+̂ (n,d,n2) + n2) · �). Line 5 takes O (�) time per i, j, for a total of O (n2�) time.
Since the algorithm has O (logd) iterations, the overall running time is multiplied by an
O (logd) factor.

(b) Divide A into � := n/d sublists A1, . . . ,A� of size d each, and B into sublists B1, . . . ,B�

of size d each. For each i ∈ [�], one wants to compute cid+1 = the kid+1th smallest of
the union of A1 +̂B

r
i ,A2 +̂B

r
i−1, . . . ,Ai +̂B

r
1 , where Lr denotes the reverse of L. Let Xip

denote the list Ap +̂B
r
i−p+1 rearranged in sorted order. The idea is to run the algorithm

select(ki ,Xi1, . . . ,Xii) simultaneously for all i ∈ [�]. In each iteration, line 4 can be done
by batchedA +̂B selection; the total time over all i isO (Tselect, +̂ (�,d, �2) + �2). Line 5 takes

O (�) time per i , for a total of O (�2) time. Since the algorithm has O (logd) iterations, the
overall running time is multiplied by an O (logd) factor.

We have computed only the output entries cid+1. To compute cid+r for other r ∈ [d],
one can shift A by r − 1 positions and apply the above algorithm. The final running time
is multiplied by an O (d) factor. �

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:12 T. M. Chan

Note that Tselect,+̂ (m,d,Q) = O (Tselect,+ (m,d,Q)), since batched A +̂B selection reduces to
batched A + B selection, for example, by mapping Ai [p] to pM +Ai [p] and Bj [q] to −qM + Bj [q]
for a sufficiently large M , and mapping k to d (d − 1)/2 + k .

4.2 Putting Everything Together via 2-Level Grouping

One can further adapt Lemma 3.11 to solve not just batched A +̂B searching but batched A +̂B
selection:

Lemma 4.2. Tselect,+̂ (m,d,Q) = O ((Tselect,+̂ (�m,d/�, �Q) +Tsort,+ (m,d, �,Q) + �Q/w +Q +m2 +

�2m2/w) · logO (1) (dw) + dm logd) for any given � ≤ min{d,w }.
Proof. Divide each Ai into sublists Ai1, . . . ,Ai� of size d0 := d/�, and each Bj into sublists

Bj1, . . . ,Bj� of size d0. Let Xi jp denote the list Aip + Bjp rearranged in sorted order.
The main idea is to run the algorithm select(k,Xi j1, . . . ,Xi j�), from the proof of Lemma 4.1,

simultaneously for all k ∈ Ki j and i, j ∈ [m], using bit-packed lists. For each i, j,k , we maintain a
list Li jk of O (�) tuples (p,kp , sp) of tuples for all p ∈ [�] and the variables kp and sp kept by the
algorithm. We do not explicitly store the sorted list Xi jp , but when desired, can retrieve the kth
element in the sorted list for any given k by selection in Aip +̂Bjp . For line 4, we apply batched
A +̂B selection, takingO (Tselect,+̂ (�m,d0, �Q)) total time. For line 5, we apply batchedA + B sorting
to first sort the tuples in Li jk by μp and by νp , which would then make x easy to find; this takes
O (Tsort,+ (m,d, �,Q)) total time. For line 8, we again use batchedA + B sorting. Other details of the
bit-packed list manipulation and running-time analysis are as in the proof of Lemma 3.11. �

As before, we have Tselect,+̂ (m,d,Q) = O ((Q +m2) logO (1) w) assuming that d ≤ δ 2w logm/

log2w , andw = Ω(logm), andw ≤ mo (1) .
By Lemma 4.1 with d ≈ δ 2w logn/ log2w , one obtains:

Corollary 4.3. (median,+)-matrix multiplication can be solved in O ((n3/(w logn)) logO (1) w) ≤
O ((n3/ log2 n) (log logn)O (1)) time, and (median,+)-convolution can be solved in O ((n2/(w logn))

logO (1) w) ≤ O ((n2/ log2 n) (log logn)O (1)) time, assuming that w = Ω(logn) and w ≤ no (1) .

5 ALGEBRAIC 3SUM

One can generalize the 3SUM algorithms to solve Barba et al.’s algebraic 3SUM problem [5]
stated in the Introduction. Define A+φ B = {φ (a,b) : a ∈ A, b ∈ B}. Define the batched A+φ B
searching problem as in Problem 3.1, with + replaced by +φ , except that instead of finding the
predecessor, one just wants to know whether c ∈ Ai +φ Bj for each c ∈ Ci j . Define the batched
A+φ B selection/comparison/sorting problems as in Problems 3.2–3.9, with + replaced by +φ . Let
Tsearch,+φ (·),Tselect,+φ (·),Tcomp,+φ (·),Tsort,+φ (·) be the time complexities of these problems.

5.1 Reduction to Batched A+φ B Searching/Selection

Lemma 5.1. Algebraic 3SUM can be solved in time O (Tsearch,+φ (n/d,d,n2/d) + n2/d + n logn) for
any given d ≤ n.

Proof. As in the proof of Lemma 3.3. One needs the property that for any fixed c , the number of
(i, j) pairs with c ∈ φ ([Ai [1],Ai+1[1]) × [Bj [1],Bj+1[1])) isO (n/d) (and that these (i, j) pairs can be
found inO (n/d) time). In other words, a curve of the form {(x ,y) ∈ R2 : φ (x ,y) = c} can intersect
at most O (n/d) grid cells formed by the grid lines x = Ai [1] and y = Bj [1]. This was noted by
Barba et al. [5] and follows since the curve can intersect each of theO (n/d) grid lines at mostO (1)
times. One extra case needs to be addressed: the curve may be completely contained in a grid cell
without intersecting the boundary grid lines. But the number of such grid cells is O (1), since the
curve has O (1) connected components. �

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:13

5.2 Batched A+φ B Selection via Cuttings in Near-logarithmic Dimensions

To adapt the proofs of Theorems 3.5 and 3.6, we replace the hyperplanes ofHj with (hyper)surfaces

{(x1, . . . ,xd) ∈ Rd : φ (xu ,Bj [v]) = φ (xu′,Bj [v
′])} for eachu,v,u ′,v ′ ∈ [d]. For these surfaces, one

can apply the following version of the Cutting Lemma (Fact 3.4) with t = 2:

Fact 5.2 (Generalized Cutting Lemma). Fact 3.4 remains true for a set H of n surfaces in Rd

each of which is of the form {(x1, . . . ,xd) ∈ Rd : (xu1 , . . . ,xut
) ∈ S } for some semi-algebraic set S of

constant degree, for some u1, . . . ,ut ∈ [d], and for some absolute constant t .

Proof. Let Hu1, ...,ut
be the subset of all surfaces in H with a common tuple (u1, . . . ,ut). For

each fixed (u1, . . . ,ut) ∈ [d]t , one can compute a cutting Γu1, ...,ut
into rO (t) cells, so that each

cell is crossed by at most |Hu1, ...,ut
|/r surfaces of Hu1, ...,ut

, by known results from computational
geometry in a constant dimension t [2]. We output the overlay Γ of all theseO (dt) cuttings, i.e., a
cell in Γ is the intersection of O (dt) cells from the Γu1, ...,ut

’s. Clearly, each cell in Γ is crossed by
at most n/r surfaces of H .

Note that the cells of Γ are the cells in an arrangement of O (dtrO (t)) semi-algebraic sets in Rd .

Thus, the complexity of Γ is O ((dtrO (t))d) ≤ dO (d)rO (d) , assuming that t is a constant.
In the applications, one does not need an explicit representation of the cells of Γ (and they do

not necessarily have constant complexity). Given the point set P , we can assign each point p ∈ P
to the cell in Γu1, ...,ut

containing p in O (log r) time by t-dimensional point location for each tuple
(u1, . . . ,ut). From this, one obtains the label of the cell in Γ containing p. �

Theorem 5.3. Tselect,+φ (m,d,Q) = O ((Q log2 (dw))/w +m2/w) for d ≤ δ logm/ log(w logm) for
a sufficiently small constant δ > 0.

Proof. As in the proof of Theorem 3.6, using Fact 5.2. �

The analog of Theorem 3.5without bit packing already yields an algorithm for algebraic 3SUM in
O ((n2/ logn) (log logn)2) time, which is faster, and somewhat simpler, than Barba et al.’s algorithm.
We next adapt the ideas in Section 3.3.

5.3 Batched A+φ B Comparisons/Sorting via Bit Packing and Fredman’s Trick

Theorem 5.4. Tcomp,+φ (m,d,Q) = O ((Q log2 d)/w +m2) form ≥ d10 log2 d .

Proof. We adapt the proof of Theorem 3.8 as follows. Consider a block β of r consec-
utive indices in [m]. Build the two-dimensional arrangement A of O (rd2) curves {(x ,x ′) ∈
R2 : φ (x ,Bj [v]) = φ (x ′,Bj [v

′])} over all j ∈ β and v,v ′ ∈ [d]. The arrangement has O ((rd2)2) =

O (r 2d4) cells, and one can build a data structure in O (r 2d4 logO (1) d) time supporting point lo-
cation queries in A in O (logd) time [2]. Create a table f : [m] × [d]2 → [O (r 2d4)] that maps
(i,u,u ′) to the index of the cell of A that contains the point (Ai [u],Ai [u

′]). The table can be
constructed in O (md2 · logd) time by repeated point location queries. Next create a table д :
[O (r 2d4)] × β × [d]2 → {true, false} that maps (γ , j,v,v ′) to whether φ (x ,Bj [v]) ≤ φ (x ′,Bj [v

′])
for an arbitrary point (x ,x ′) in the cell γ of A. The table can be constructed in O (r 2d4 · rd2) =
O (r 3d6) time. Map each tuple (u,v,u ′,v ′) in Qi j to (i, j,u,v,u ′,v ′). Concatenate the Qi j ’s over
all (i, j) ∈ [m] × β . In the concatenated list, map (i, j,u,v,u ′,v ′) to (i,u,u ′), then to f [i,u,u ′] by
Fact 2.1(b); recombine with the original list to get a list of tuples (f [i,u,u ′], i, j,u,v,u ′,v ′), and
map each of them to (f [i,u,u ′], j,v,v ′), then to д[f [i,u,u ′], j,v,v ′] by Fact 2.1(b) again; all this
takes O ((Q log2 (dm))/w +mr +md2 + r 3d6) time. One can then split the resulting list to get the
answers to each Qi j for all (i, j) ∈ [m] × β .

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:14 T. M. Chan

Repeating the process for all O (m/r) blocks β gives total time O ((Q log2 (dm))/w + (m/r) ·
(mr +md2 logd + r 3d6)) = O ((Q log2 (dm))/w +m2) by setting r = d2 logd , assuming that m ≥
d10 log2 d .

As before, the log(dm) factors can be replaced by logd . �

Theorem 5.5. Tsort,+φ (m,d, �,Q) = O ((Q +m2) · logO (1) (dw)) if m ≥ d10 log2 d and
� ≤ δw/ log(dw) for a sufficiently small constant δ > 0.

Proof. As in the proof of Theorem 3.10. �

5.4 Putting Everything Together via 2-Level Grouping

Lemma 5.6. Tsearch,+φ (m,d,Q) = O ((Tselect,+φ (�m,d/�, �Q) +Tsort,+φ (m,d, �,Q) + �Q/w +Q +

m2 + �2m2/w) · logO (1) (dw) + dm logd) for any given � ≤ min{d,w }.

Proof. As in the proof of Lemma 3.11. In algorithm search(c,Ai ,Bj), replace + with φ in
line 3. If c ∈ Aip +φ Bjq , then the curve {(x ,y) ∈ R2 : φ (x ,y) = c} may hit the left boundary edge
of [Aip[1],Bjq[1]) × [Ai,p+1[1],Bj,q+1[1]), in which case the algorithm would be correct; it may
also hit one of the other three boundary edges, but each of these cases can be handled by a similar
algorithm. One extra case needs to be addressed: the curve may be completely contained in a grid
cell. Here, one can pick an arbitrary point in each connected component of the curve and find the
unique (p,q) pair for which [Aip[1],Bjq[1]) × [Ai,p+1[1],Bj,q+1[1]) contains the point; there are
only O (1) extra (p,q) pairs to check for each c ∈ Ci j . �

Corollary 5.7. The algebraic 3SUM problem can be solved in O ((n2/(w logn)) logO (1) w) ≤
O ((n2/ log2 n) (log logn)O (1)) time, assuming that w = Ω(logn) and w ≤ no (1) .

6 OFFLINE RANGE SEARCHING FOR BICHROMATIC SEGMENT INTERSECTIONS

We next adapt our 3SUM algorithms to solve the geometric problems (i)–(iv) stated in the In-
troduction. It suffices to consider (iv) offline triangle range searching for bichromatic segment
intersections, since the other three problems reduce to it.

For simplicity, one assumes that the input is nondegenerate, for example, no three-line seg-
ments intersect at a common point, and no two intersection points have the same x-coordinate.
Degeneracies can be handled by tedious modifications of our algorithms, or by applying general
perturbation techniques.

We first concentrate on the special case where all line segments and triangles are long, i.e., have
all endpoints lying on the boundary of a fixed triangle Δ0. One may assume that the long triangles
in C are halfplanes, since one can replace each long triangle with its at bounding halfplanes, so
that the number of intersection points outside the triangle is equal to the sum of the number of
intersection points outside the halfplanes. Without loss of generality, one may assume that the
halfplanes are lower halfplanes and that all the segments inA and B touch a common edge e0 of Δ0

(the original problem reduces to 3 instances with this property). One may assume that e0 is vertical.
For a point a ∈ R2, let ax and ay be its x- and y-coordinates, respectively. For two points a,b ∈

R2, let λ(a,b) denote the line through a and b, i.e., {(x ,y) ∈ R2 : (by − ay)x + (ax − bx)y = byax −
bxay }. The slope of λ(a,b) is

μ (a,b) :=
by − ay

bx − ax
,

and the x-coordinate of the intersection of λ(a,b) and λ(a′,b ′) is given by the formula

ξ (a,b,a′,b ′) :=
(a′x − b ′x) (byax − bxay) − (ax − bx) (b ′ya

′
x − b ′xa′y)

(a′x − b ′x) (by − ay) − (ax − bx) (b ′y − a′y)
.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:15

For a segment a, let a∗ ∈ R2 denote the point dual5 to the line extension of a. For a halfplane c ,
let c∗ ∈ R2 denote the point dual to the line bounding c . For a point a, let a∗ denote the line dual to
a. For a set S of points, let S∗ = {a∗ : a ∈ S }. For a set S of lines, let A (S) denote the arrangement
of S .

For two lists A and B of long segments in R2, define A ⊕ B as the set of all intersection points
between A and B.

6.1 Reduction to Batched A ⊕ B Searching/Selection

We replace Problems 3.1 and 3.2 with the following:

Problem 6.1 (BatchedA ⊕ B Searching). Given listsA1, . . . ,Am ,B1, . . . ,Bm ofd long segments
each, and given “query” lists Ci j of lower halfplanes with

∑
i, j |Ci j | = Q , count the number of points

in Ai ⊕ Bj inside c , i.e., the number of lines inA ((Ai ⊕ Bj)
∗) below the point c∗, for each c ∈ Ci j and

each i, j ∈ [m].

Problem 6.2 (Batched A ⊕ B Selection).

(i) Given lists A1, . . . ,Am ,B1, . . . ,Bm of d long segments each, and given “query” lists Ki j of
numbers in [d4] with

∑
i, j |Ki j | = Q , find the kth leftmost vertex inA ((Ai ⊕ Bj)

∗), for each
k ∈ Ki j and each i, j ∈ [m].

(ii) Given sorted lists A1, . . . ,Am ,B1, . . . ,Bm of d long segments each, and given “query” lists
Ki j of pairs in [d4] × [d2] with

∑
i, j |Ki j | = Q , find the k ′th lowest line in A ((Ai ⊕ Bj)

∗) at
the x-value of the kth leftmost vertex, for each (k,k ′) ∈ Ki j and each i, j ∈ [m].

Let Tsearch,⊕ (m,d,Q) and Tselect,⊕ (m,d,Q) be the time complexities of Problems 6.1 and 6.2,
respectively. Note thatTsearch,⊕ (m,d,Q) = O ((Tselect,⊕ (m,d,Q) +Q +m2) · logd) by simultaneous
binary searches, first in x via Problem 6.2(i), then in y via Problem 6.2(ii), to find the level of c∗ in
A ((Ai ⊕ Bj)

∗), for all c ∈ Ci j and all i, j. (This is analogous to the standard slab method for planar
point location [28].)

Lemma 6.3. Offline halfplane range searching for bichromatic segment intersections in the long
case can be solved in O (Tsearch,⊕ (n/d,d,n2/d) + n2/d + n logn) time for any given d ≤ n.

Proof. We adapt the proof of Lemma 3.3. SortA and B by the y-values of their endpoints on e0.
As before, divide A into sublists A1, . . . ,An/d of size d , and B into sublists B1, . . . ,Bn/d of size d .
Recall that the segments in A (respectively, B) are disjoint. Let αi denote the region betweenAi [1]
and Ai+1[1] within Δ0, and let βj denote the region between Bj [1] and Bj+1[1] within Δ0. For each
c ∈ C , there are two types of intersections to count:

(1) intersections in Ai ⊕ Bj where αi ∩ βj intersects ∂(c ∩ Δ0), and
(2) intersections in Ai ⊕ Bj where αi ∩ βj is in the interior of c ∩ Δ0.

For type-1 intersections, put c inCi j iff αi and βj intersect along ∂(c ∩ Δ0). The number of such
(i, j) pairs is O (n/d) and they can be found in O (n/d) time by a linear scan over the intersections
of the segmentsAi [1]’s and Bj [1]’s with ∂(c ∩ Δ0). This gives an instance of Problem 6.1 with total
query list size Q = O (n2/d).

For type-2 intersections, it suffices to count the number of (i, j) pairs with αi ∩ βj in the interior
of c ∩ Δ0, and multiply the number by d2; the count can be computed in O (n/d) time by another
linear scan over the intersections of the segments Ai [1]’s and Bj [1]’s with ∂(c ∩ Δ0). The total
time for type-2 intersections is O (n2/d). �

5The dual of a line with equation y = ax − b refers to the point (a, b), and the dual of a point (a, b) refers to the line with

equation y = ax − b . A point is below a line iff the dual of the point is below the dual of the line.

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:16 T. M. Chan

6.2 Batched A ⊕ B Selection via Cuttings in Near-logarithmic Dimensions

Theorem 6.4. Tselect,⊕ (m,d,Q) = O ((Q log2 (dw))/w +m2/w) for d ≤ δ logm/ log(w logm) for
a sufficiently small constant δ > 0.

Proof. To adapt the proof of Theorems 3.5 and 3.6, we redefine pi = (Ai [1]
∗
x ,Ai [1]

∗
y , . . . ,

Ai [d]∗x , Ai [d]∗y) ∈ R2d and redefine Hj as a set of O (d8) surfaces, containing
{
(x1,y1, . . . ,xd ,yd) ∈ R2d : ξ ((xu ,yu),Bj [v]∗, (xu′,yu′),Bj [v

′]∗)

= ξ ((xu′′,yu′′),Bj [v
′′]∗, (xu′′′,yu′′′),Bj [v

′′′]∗)
}

for every u,v,u ′,v ′,u ′′,v ′′,u ′′′,v ′′′ ∈ [d], and also
{
(x1,y1, . . . ,xd ,yd) ∈ R2d : μ ((xu ,yu),Bj [v]∗) = μ ((xu′,yu′),Bj [v

′]∗)
}

for every u,v,u ′,v ′ ∈ [d],
{
(x1,y1, . . . ,xd ,yd) ∈ R2d : xu = Bj [v]∗x

}

for every u,v ∈ [d], and
{
(x1,y1, . . . ,xd ,yd) ∈ R2d : μ ((xu ,yu),Bj [v]∗) = μ (e∗,Bj [v]∗)

}

for every u,v ∈ [d] and each of the three edges e of Δ0. Each of these surfaces can be re-expressed
as {(x1,y1, . . . ,xd ,yd) ∈ R2d : P (xu ,yu ,xu′,yu′,xu′′,yu′′,xu′′′,yu′′′) = 0} for some degree-4 polyno-
mial P andu,u ′,u ′′,u ′′′ ∈ [d], so the generalized Cutting Lemma (Fact 5.2) is applicable with t = 8.

Constructing the arrangement A ((Ai ⊕ Bj)
∗) costs O (d4) time instead of O (d2 logd), but this

does not affect the final bound (with appropriate settings of parameters).
In Case 2, due to the definition of Hj , the sorted x-ordering of the vertices of A ((Ai ⊕ Bj)

∗)
is the same as the sorted x-ordering of the vertices of A ((Ai′ ⊕ Bj)

∗), and the sorted ordering of
the slopes ofA ((Ai ⊕ Bj)

∗) is the same as the sorted ordering of the slopes ofA ((Ai′ ⊕ Bj)
∗), for

every pi ,pi′ ∈ PΔ. It follows that the kth leftmost vertex, or the k ′th lowest line at the x-value of
the kth leftmost vertex, is the same. The rest of the proof is as before. �

As before, the above theorem leads to an O ((n2/ logn) (log logn)O (1))-time algorithm, which is
already new. We next adapt the ideas in Section 3.3.

6.3 Batched A ⊕ B Comparisons/Sorting via Bit Packing and Fredman’s Trick

We redefine Problem 3.7 as follows:

Problem 6.5 (Batched A ⊕ B Comparisons).

(i) Given lists A1, . . . ,Am ,B1, . . . ,Bm of d long segments each, and given “query” lists Qi j

of tuples in [d]8 with
∑

i, j |Qi j | = Q , test whether ξ (Ai [u]∗,Bj [v]∗,Ai [u
′]∗,Bj [v

′]∗) ≤
ξ (Ai [u

′′]∗, Bj [v
′′]∗,Ai [u

′′′]∗,Bj [v
′′′]∗) for each (u,v,u ′,v ′,u ′′,v ′′,u ′′′,v ′′′) ∈ Qi j and

each i, j ∈ [m].
(ii) Given lists A1, . . . ,Am ,B1, . . . ,Bm of d long segments each, and given “query” lists Qi j of

tuples in [d]4 with
∑

i, j |Qi j | = Q , test whether μ (Ai [u]∗,Bj [v]∗) ≤ μ (Ai [u
′]∗,Bj [v

′]∗) for
each (u,v,u ′,v ′) ∈ Qi j and each i, j ∈ [m].

Let Tcomp,⊕ (m,d,Q) be the time complexity of the above problem.

Theorem 6.6. Tcomp,⊕ (m,d,Q) = O ((Q log2 d)/w +m2) form ≥ d68 log8 d .

Proof. We focus on solving Problem 6.5(i), as (ii) is similar (and easier). We proceed
as in the proof of Theorem 5.4. Consider a block β of r consecutive indices in [m]. Build

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:17

the 8-dimensional arrangement A of O (rd4) surfaces {(x ,y,x ′,y ′,x ′′,y ′′,x ′′′,y ′′′) ∈ R8 :
ξ ((x ,y),Bj [v]∗, (x ′,y ′),Bj [v

′]∗) = ξ ((x ′′,y ′′),Bj [v
′′]∗, (x ′′′,y ′′′),Bj [v

′′′]∗)} over all j ∈ β and
v,v ′,v ′′,v ′′′ ∈ [d]. The arrangement has O ((rd4)8) = O (r 8d32) cells, and one can build a data

structure in O (r 8d32 logO (1) d) time supporting point location queries in A in O (logd) time [2].
Create a table f : [m] × [d]4 → [O (r 8d32)] that maps (i,u,u ′,u ′′,u ′′′) to the index of the cell of
A that contains the point (Ai [u]∗x ,Ai [u]∗y ,Ai [u

′]∗x , Ai [u
′]∗y ,Ai [u

′′]∗x ,Ai [u
′′]∗y ,Ai [u

′′′]∗x ,Ai [u
′′′]∗y).

The table can be constructed in O (md4 · logd) time by repeated point location queries.
Next create a table д : [O (r 8d32)] × β × [d]4 → {true, false} that maps (γ , j,v,v ′,v ′′,v ′′′)
to whether ξ ((x ,y),Bj [v]∗, (x ′,y ′),Bj [v

′]∗) ≤ ξ ((x ′′,y ′′),Bj [v
′′]∗, (x ′′′,y ′′′),Bj [v

′′′]∗) for
an arbitrary point (x ,y,x ′,y ′,x ′′,y ′′,x ′′′,y ′′′) in the cell γ of A. The table can be con-
structed in O (r 8d32 · rd4) = O (r 9d36) time. Map each tuple (u,v,u ′,v ′,u ′′,v ′′,u ′′′,v ′′′)
in Qi j to (i, j,u,v,u ′,v ′,u ′′,v ′′,u ′′′,v ′′′). Concatenate the Qi j ’s over all (i, j) ∈ [m] × β .
In the concatenated list, map (i, j,u,v,u ′,v ′,u ′′,v ′′,u ′′′,v ′′′) to (i,u,u ′,u ′′,u ′′′), then
to f [i,u,u ′,u ′′,u ′′′] by Fact 2.1(b); recombine with the original list to get a list of
tuples (f [i,u,u ′,u ′′,u ′′′], i, j,u,v,u ′,v ′,u ′′,v ′′,u ′′′,v ′′′), and map each of them to
(f [i,u,u ′,u ′′,u ′′′], j,v,v ′,v ′′,v ′′′), then to д[f [i,u,u ′,u ′′,u ′′′], j,v,v ′,v ′′,v ′′′] by Fact 2.1(b)
again; all this takes O (Q log2 (dm))/w +mr +md4 + r 9d36) time. One can then split the resulting
list to get the answers to each Qi j for all (i, j) ∈ [m] × β .

Repeating the process for all O (m/r) blocks β gives total time O ((Q log2 (dm))/w + (m/r) ·
(mr +md4 logd + r 9d36)) = O ((Q log2 (dm))/w +m2) by setting r = d4 logd , assuming that m ≥
d68 log8 d .

As before, the log(dm) factors can be replaced by logd . �

Next, we redefine Problem 3.9 as follows:

Problem 6.7 (Batched A ⊕ B Sorting).

(i) Given lists A1, . . . ,Am ,B1, . . . ,Bm of d long segments each, and given “query” lists Qi j

with and
∑

i, j |Qi j | = Q , where each element of Qi j is a sequence of � quadruples in

[d]4, reorder each sequence 〈(u1,v1,u
′
1,v
′
1), . . . , (u�,v�,u

′
�
,v ′

�
)〉 in Qi j so that at the end,

ξ (Ai [u1]
∗,Bj [v1]

∗,Ai [u
′
1]
∗,Bj [v

′
1]
∗) ≤ · · · ≤ ξ (Ai [u�]

∗,Bj [v�]
∗,Ai [u

′
�
]∗,Bj [v

′
�
]∗), for each

i, j ∈ [m].
(ii) Given lists A1, . . . ,Am ,B1, . . . ,Bm of d long segments each, and given “query” lists Qi j with∑

i, j |Qi j | = Q , where each element of Qi j is a sequence containing a real number x0 ∈ R
followed by � pairs in [d]2, reorder each sequence 〈x0, (u1,v1), . . . , (u�,v�)〉 in Qi j so that
at the end, the lines λ(Ai [u1]

∗,Bj [v1]
∗), . . . , λ(Ai [u�]

∗,Bj [v�]
∗) are in increasing y-order at

the x-value x0, for each i, j ∈ [m].

LetTsort,⊕ (m,d, �,Q) be the time complexity of the above problem. As before, if � ≤ δw/ logd for
a sufficiently small constant δ , then the total input/output size isO (Q +m2) (since each sequence,
excluding the x0 field, can be packed in one word).

Theorem 6.8. Tsort,⊕ (m,d, �,Q) = O ((Q +m2) · logO (1) (dw)) if m ≥ d68 log8 d and � ≤ δw/
log(dw) for a sufficiently small constant δ > 0.

Proof. The batchedA ⊕ B sorting algorithm for Problem 6.7(i) proceeds as in the proof of The-
orem 3.10, using the batched A ⊕ B comparison subroutine for Problem 6.5(i) from Theorem 6.6.

Problem 6.7(ii) requires more effort. As before, the idea is to simulate a sorting network on
all sequences in Qi j for all i, j simultaneously. Consider one round of the network. Consider
one sequence 〈x0, (u1,v1), . . . , (u�,v�)〉 in Qi j . For each of the O (�) pre-chosen index pairs (r , r ′)
in the round, we want to test whether λ(Ai [ur]

∗,Bj [vr]
∗) is lower than λ(Ai [ur ′]

∗,Bj [vr ′]
∗)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:18 T. M. Chan

at the x-value x0. This is true iff the following two statements are both true or both false:
(a) ξ (Ai [ur]

∗,Bj [vr]
∗,Ai [ur ′]

∗,Bj [vr ′]
∗) ≥ x0; (b) μ (Ai [ur]

∗,Bj [vr]
∗) ≤ μ (Ai [ur ′]

∗,Bj [vr ′]
∗).

To resolve comparisons of type (a), we first sort the tuples by ξ (Ai [ur]
∗,Bj [vr]

∗,Ai [ur ′]
∗,

Bj [vr ′]
∗) via Problem 6.7(i), already solved above (for each sequence, we can extract the tuples that

need to be sorted inO (1) time by a word operation, since the sequence excluding x0 is packed in a
word, and the pre-chosen set of index pairs (r , r ′) can also be encoded in a word, as � log � ≤ δw).
Then, one can resolve all the comparisons with x0 by a standard binary search for x0 in O (log �)
time, for each sequence in Qi j and each i, j. The cost for all these binary searches is O (Q log �).

To resolve comparisons of type (b), we use Problem 6.5(ii) (batched A ⊕ B comparisons), solved
by Theorem 6.6.

Each round requires total time O (Tcomp,⊕ (m,d, �Q) + (Q +m2) · logO (1) (d�)) = O ((Q +m2) ·
logO (1) (d�)). The running time over all rounds is multiplied by another O (log �) factor. �

6.4 Putting Everything Together via 2-Level Grouping

Lemma 6.9. Tsearch,⊕ (m,d,Q) = O ((Tselect,⊕ (�m,d/�, �Q) +Tsort,⊕ (m,d, �,Q) + �Q/w +Q +

m2 + �2m2/w) · logO (1) (dw) + dm logd) for any given � ≤ min{d,w }.

Proof. We adapt the proof of Lemma 3.11. If |Ci j | ≥ d4, then one can afford to use a slow al-
gorithm: compute the arrangement A ((Ai ⊕ Bj)

∗) and answer a point location query for c∗ for
each c ∈ Ci j . The number of such Ci j ’s is at most O (Q/d4) and so the total time for this step is
O ((Q/d4) · d4 +Q logd) = O (Q logd). Thus, one may assume that |Ci j | < d4 from now on.

Sort eachAi and Bj by the y-values of their endpoints on the edge e0, and divideAi into sublists
Ai1, . . . ,Ai� of size d0 := d/�, and Bj into sublists Bj1, . . . ,Bj� of size d0. Let αip denote the region
betweenAip[1] andAi,p+1[1] within Δ0, and let βjq denote the region between Bjq[1] and Bj,q+1[1]
within Δ0.

Consider a fixed (i, j). For each c ∈ Ci j , there are two types of intersections to count:

(1) intersections in Aip ⊕ Bjq where αip ∩ βjq intersects ∂(c ∩ Δ0), and
(2) intersections in Aip ⊕ Bjq where αip ∩ βjq is in the interior of c ∩ Δ0.

We describe an algorithm search(c,Ai ,Bj) to count intersections of type 1.
For type-1 intersections, note that at least one of the four points in Aip[1] ∩ ∂(c ∩ Δ0) and

Ai,p+1[1] ∩ ∂(c ∩ Δ0) lies in the region βjq , or at least one of the four points in Bjq[1] ∩ ∂(c ∩ Δ0)
and Bj,q+1[1] ∩ ∂(c ∩ Δ0) lies in the region αip . Without loss of generality, assume that the left
point inAip[1] ∩ ∂(c ∩ Δ0) lies in the region βjq ; each of the other cases can be handled by a simi-
lar algorithm (we just have to be careful not to double-count). The algorithm is given by the pseu-
docode below, andworks as follows: For eachp ∈ [�], first find the unique indexqp such that the left
point in Aip[1] ∩ ∂(c ∩ Δ0) lies in the region βjqp

(i.e., between Bjqp
[1] and Bj,qp+1[1]), by binary

search (lines 2 and 3). Then find the x-rank kp of c∗x among the vertices in A ((Aip ⊕ Bjqp
)∗), by

binary search (lines 4 and 5). Finally, find the y-rank k ′p of c∗y among the lines inA ((Aip ⊕ Bjqp
)∗)

at x-value c∗x , by another binary search (lines 6 and 7). Then, k ′p tells us how many intersections
in Aip ⊕ Bjqp

lie inside c .

Search(c,Ai ,Bj):

1. initialize q1 = · · · = q� = k1 = · · · = k� = k ′1 = · · · = k ′� = 1
2. for s = �/2, �/4, . . . , 1:
3. for each p ∈ [�],

if the left point in Aip[1] ∩ ∂(c ∩ Δ0) is below Bj,qp+s [1], then qp := qp + s
4. for s = d4

0/2,d
4
0/4, . . . , 1:

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:19

5. for each p ∈ [�],
if c∗x > (x-value of the (kp + s)th leftmost vertex in A ((Aip ⊕ Bjqp

)∗)), then

kp := kp + s
6. for s = d2

0/2,d
2
0/4, . . . , 1:

7. for each p ∈ [�],
if c∗ is above the (k ′p + s)th lowest line at the x-value of the kp th leftmost vertex

in A ((Aip ⊕ Bjqp
)∗), then k ′p := k ′p + s

8. for each p ∈ [�], add k ′p to the count

As before, the main idea is to run search(c,Ai ,Bj) simultaneously for all c ∈ Ci j and all i, j ∈ [m],
using bit-packed lists.

To implement line 3, one needs to test which side of the segment c contains the point Aip[1] ∩
Bj,qp+s [1], i.e., which side of the line λ(Aip[1]∗,Bj,qp+s [1]

∗) contains the point c∗, for each p ∈ [�].
One can first sort these lines in y-order at the x-value c∗x by batched A ⊕ B sorting, specifically,
Problem 6.7(ii). Then, one can resolve all these line comparisons with c∗ by standard binary search
in y in O (log �) time.

To implement line 5, we apply batched A ⊕ B selection, namely, Problem 6.2(i), to obtain the
indices to the (kp + s)th leftmost vertex in A ((Aip ⊕ Bjq)∗) for each p ∈ [�], and then sort these
vertices by x by batched A ⊕ B sorting, namely, Problem 6.7(i). Then, one can resolve all the com-
parisons with c∗x by standard binary search in x in O (logd0) time.

To implement line 7, we apply batched A ⊕ B selection, namely, Problem 6.2(ii), to obtain the
index to the (k ′p + s)th lowest line at the x-value of the kp th leftmost vertex in A ((Aip ⊕ Bjq)∗)
for each p ∈ [�], and then sort these lines at the x-value c∗x by batched A ⊕ B sorting, namely,
Problem 6.7(ii). Then, one can resolve all the line comparisons with c∗ by standard binary search
in y in O (logd0) time.

The details of the bit-packed list manipulation and the running-time analysis are as before.
For type-2 intersections, for a fixed (i, j) and fixed c ∈ Ci j , it suffices to count, for each p, the

number of βjq ’s whose intersection with αip is in the interior of c ∩ Δ0, and then multiply the

total number by d2. In other words, one wants to count the number of βjq ’s that are above both
the left points in Ai [1] ∩ ∂(c ∩ Δ0) and Ai+1[1] ∩ ∂(c ∩ Δ0) and below both the right points in
Ai [1] ∩ ∂(c ∩ Δ0) and Ai+1[1] ∩ ∂(c ∩ Δ0), or vice versa. The count can be easily computed after
finding the index q of the region βjq containing each of the four points in Ai [1] ∩ ∂(c ∩ Δ0) and
Ai+1[1] ∩ ∂(c ∩ Δ0). Each of these four indices can be found by binary search, in a manner similar
to lines 2 and 3 above. Thus, the running time is similar. �

Corollary 6.10. Offline halfplane range searching for bichromatic segment intersections in the

long case can be solved in O ((n2/(w logn)) logO (1) w) ≤ O ((n2/ log2 n) (log logn)O (1)) time, assum-

ing that w = Ω(logn) and w ≤ no (1) .

6.5 Reduction to the Long Case

Finally, one can solve the problem for arbitrary setsA and B of n disjoint (but not necessarily long)
segments and an arbitrary set C of n triangles:

Corollary 6.11. Offline triangle range searching for bichromatic segment intersections can

be solved in O ((n2/(w logn)) logO (1) w) ≤ O ((n2/ log2 n) (log logn)O (1)) time, assuming that w =
Ω(logn) and w ≤ no (1) .

Proof. We first construct a cutting with O (r 2) triangular cells, each intersecting O (n/r) seg-
ments and triangle edges. The cutting and its conflict lists (list of segments and triangle edges
intersecting each cell) can be generated in O (nr) time [14]. We further subdivide each cell by

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:20 T. M. Chan

vertical lines at each segment endpoint and triangle vertex, and we triangulate the cell (and the
clipped triangles in C), so that each cell has only long segments and long triangles. The num-
ber of cells increases to O (r 2 + n). We then invoke Corollary 6.10 in each cell. The total time is

O ((r 2 + n) · ((n/r)2/(w logn)) logO (1) w + nr).
One also needs to determine whether a triangle completely contains any cell with at least one

point in A ⊕ B. This can be done by n queries in a standard multi-level range searching structure

on the O (r 2 + n) cells, in O ((r 2 + n + ((r 2 + n)n)2/3 logO (1) n) time [27].
Setting r =

√
n yields the result. �

7 OFFLINE REVERSE RANGE SEARCHING FOR BICHROMATIC SEGMENT
INTERSECTIONS

We next adapt the algorithms in Section 6 to solve the geometric problems (v)–(vii) stated in the
Introduction; the running time is slightly worse. It suffices to consider (vii) offline reverse triangle
range searching for bichromatic segment intersections, since the other two problems reduce to it.

As in Section 6, we first concentrate on the special case where all line segments and triangles are
long. One may again assume that the long triangles inC are halfplanes, since one can replace each
long triangle with its bounding halfplanes, so that the number of long triangles not containing an
intersection point q ∈ Δ0 is equal to the sum of the number of halfplanes not containing q.

7.1 Reduction to Batched A ⊕ B Searching/Selection

Let Tsearch-report,⊕ (m,d,Q) be the time complexity of the variant of Problem 6.1, where “count the
number of” is replaced by “report all.” Note that the output for each c ∈ Ci j and i, j ∈ [m] can
be encoded inO (d logd) bits as a sequence of pairs of the form (u, Iu), where u ∈ [d] and Iu is the
interval of all v’s such that Ai [u] ∩ Bj [v] lies inside c (indeed, Iu is an interval, assuming that the
segments are sorted). The total output size isO ((dQ logd)/w +Q +m2). (One will not need block
representations here.)

Let Tselect-report,⊕ (m,d,Q) be the time complexity of the variant of Problem 6.1, where “find the
k ′th lowest” is replaced by “find the first k ′ lowest.” We use the same output encoding scheme.

Like before, Tsearch-report,⊕ (m,d,Q) = O ((Tselect-report,⊕ (m,d,Q) + (dQ logd)/w +Q +m2) ·
logd) (the (dQ logd)/w term is due to the output size).

Lemma 7.1. Offline reverse halfplane range searching for bichromatic segment intersections in

the long case can be solved inO (Tsearch-report,⊕ (n/d,d,n2/d) + (n2 log2 d)/w + (n2/d) logd + n logn)
time for any given d ≤ n.

Proof. We follow the proof of Lemma 6.3. We first describe how to compute, for each (i, j,u,v),
the number of c ∈ C that contains Ai [u] ∩ Bj [v] as a type-1 intersection, as defined in the proof
of Lemma 6.3. These numbers will be referred to as type-1 counters. To this end, we define and
compute theCi j ’s as before, and solve the reporting variant of Problem 6.1. Recall that

∑
i, j |Ci j | =

O (n2/d).
Consider a fixed (i, j) with |Ci j | ≥ d6. Here, one can afford to use a slow algorithm: compute the

arrangementA ((Ai ⊕ Bj)
∗) inO (d4) time, answer a point location query for c∗ inO (logd) time for

each c ∈ Ci j , and count the number of points c∗ inside each of theO (d4) cells of the arrangement.
Since all c ∈ Ci j with c∗ in a common cell are equivalent, the type-1 counter for (i, j,u,v) can
subsequently be computed by brute force in O (d4) time for each u,v ∈ [d]. The number of Ci j ’s
with |Ci j | ≥ d6 is at mostO ((n2/d)/d6) = O (n2/d7), and so the total time over all i, j in this case is
O ((n2/d7) · d2 · d4 + (n2/d) logd) = O ((n2/d) logd).

Next consider a fixed (i, j) with |Ci j | < d6. Here, all type-1 counters will be small (bounded

by dO (1)), so one can use bit packing to store them compactly. Sort all the O (d |Ci j |) pairs (u, Iu)

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

More Logarithmic-factor Speedups for 3SUM 7:21

of these elements’ outputs by u in O ((d |Ci j | log2 d)/w + 1) time (using Fact 2.1(a)) and split into
sublists with a common u. For each sublist, sort the endpoints of its intervals, and perform a linear
scan to determine the number of intervals containing each v ∈ [d]; these linear scans over all
u ∈ [d] take O ((d |Ci j | logd)/w + d) time (with nonstandard word operations) and give precisely
the desired counts. Since

∑
i, j |Ci j | = O (n2/d) and there areO (n2/d2) terms, the total time over all

i, j is O ((n2 log2 d)/w + (n2/d2) · d).
Finally, we describe how to compute the number of c ∈ C that containsAi [u] ∩ Bj [v] as a type-2

intersection, for each (i, j) (the answer is independent of u and v). These numbers will be referred
to as type-2 counters; there are only O (n2/d2) of them. The type-2 counter for (i, j) is equal to the
number of c ∈ C such that αi ∩ βj is strictly inside c ∩ Δ0. These numbers can be generated in
O (n2/d) total time over all i, j, since the number for (i, j) can be computed from that for (i, j − 1)
by examining the halfplanes in Ci j and Ci, j−1.

When requested, the actual count for any given intersection pointAi [u] ∩ Bj [v] can be produced
in constant time by summing the type-1 counter for (i, j,u,v) and the type-2 counter for (i, j).
One can also determine the overall minimum/maximum count by taking the minimum/maximum
type-1 counter for each (i, j) and adding to the type-2 counter for (i, j), without increasing the
time bound. �

7.2 Batched A ⊕ B Selection via Cuttings in Near-logarithmic Dimensions

Theorem 7.2. Tselect-report,⊕ (m,d,Q) = O ((dQ logd)/w +Q +m2) for d ≤ δ logm/ log logm for
a sufficiently small constant δ > 0.

Proof. As in the proof of Theorem 6.4 (except that it is sufficient to follow the simpler Theo-
rem 3.5 instead of Theorem 3.6). The (dQ logd)/w term is due to the output size. �

It follows that Tsearch-report,⊕ (m,d,Q) = O (((dQ logd)/w +Q +m2) · logd) = O ((Q +

m2) (log logm)O (1)) for d = δ logm/ log logm, and so by Lemma 7.1, one obtains:

Corollary 7.3. Offline reverse halfplane range searching for bichromatic segment intersections in

the long case can be solved in O ((n2/ logn) (log logn)O (1)) time.

We think some small improvements are possible with a more complicated algorithm, incor-
porating the ideas in Sections 6.3 and 6.4, but currently we have not yet been able to achieve

O ((n2/ log2 n) (log logn)O (1)) running time for this problem.

7.3 Reduction to the Long Case

Corollary 7.4. Offline reverse triangle range searching for bichromatic segment intersections can

be solved in O ((n2/ logn) (log logn)O (1)) time.

Proof. The reduction to the long case is as in the proof of Corollary 6.11. The only main change
is that for each cell in the cutting, we need an additional counter for the number of triangles
completely containing the cell. (When requested, the actual count for an intersection point can
be found by including the additional counter for the cell containing the point to the sum.) These
additional counters can be determined by answering O (r 2 + n) queries in a standard multi-level

range searching structure onO (n) triangles, inO ((n + r 2 + ((n + r 2)r 2)2/3 logO (1) n) time [27]. �

8 FINAL REMARKS

The analogy between 3SUM and (select,+)-convolution suggests how close in hindsight Bremner

et al.’s method for (select,+)-convolution [6] was to anO ((n2/ logn) (log logn)O (1))-time algorithm
for 3SUM. Their method was even closer to solving the convolution-3SUM problem: given three lists

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

7:22 T. M. Chan

A, B, and C of n real numbers, decide whether there exist i,u ∈ [n] with C[i] = A[u] + B[i − u].
(Bremner et al. basically solved the batched A +̂B selection problem with group size d near logn,
but convolution-3SUM reduces to batched A +̂B selection by simultaneous binary searches, with
an extra O (logd) = O (log logn) factor.)

Note that (select,+)-convolution is integer-3SUM-hard, since the integer version of 3SUM re-
duces to the integer version of convolution-3SUM [26, 29] (with some extra logarithmic factor
overhead), which in turn reduces to the integer version of (select,+)-convolution by simultaneous
binary searches (with at most another logarithmic factor overhead).

For the geometric problems considered here, one can obtain a truly subquadraticO (n2−ε) upper
bound on the decision tree complexity, using just a subset of the ideas in Section 6. (For instance,
one can just setw ≈ nε for a sufficiently small constant ε when working in the decision tree model,
since the cost of bit manipulation is not counted; as logarithmic factors are less important here, one
does not even need the part concerning cuttings in near-logarithmic dimensions.) To optimize ε in
the exponent, the approach of Barba et al. [5]might be better. It is unclear if the recent techniques of
Kane et al. [24] could be applicable to these geometric problems (since these problems require point
location in high-dimensional arrangements of nonlinear surfaces, whereas Kane et al.’s technique
deals with point location in arrangements of hyperplanes with integer coefficients).

We hope that my techniques will find further applications in computational geometry. Cur-
rently, the techniques are limited to geometric settings where the objects in each of the input sets
A and B are disjoint. In particular, they do not work when A and B are arbitrary lines in R2. It re-
mains open whether there is a subquadratic algorithm for the degeneracy testing for n lines in R2

(i.e., deciding whether there exist three lines meeting at a common point), or equivalently, by dual-
ity, degeneracy testing for n points in R2 (i.e., deciding whether there exist three collinear points).
Since many 3SUM-hard problems in computational geometry are actually “collinear-triple-hard,”
such problems remain unaffected by our techniques at present, unfortunately.

The author’s latest combinatorial algorithm for APSP or (min,+)-matrix multiplication [12] runs

inO ((n3/ log3 n) (log logn)O (1)) time (building on earlier combinatorial algorithms for Boolean ma-
trix multiplication [11, 31]), but the ideas there do not seem applicable to 3SUM or (select,+)-matrix
multiplication to shave off a third logarithmic factor. Williams [30] gave a breakthrough non-

combinatorial n3/2Ω(
√

log n)-time algorithm for APSP or (min,+)-matrix multiplication, using the
polynomial method, but these ideas have so far failed to give better results for 3SUM or (select,+)-
matrix multiplication. We do not know how to obtain still faster algorithms for the integer special
case of the 3SUM problem, although truly subquadratic algorithms have been found in some in-
teresting special cases [13].

REFERENCES

[1] Pankaj K. Agarwal, Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. 2014. Computing the discrete Fréchet dis-

tance in subquadratic time. SIAM J. Comput. 43, 2 (2014), 429–449. DOI:https://doi.org/10.1137/130920526

[2] Pankaj K. Agarwal and Micha Sharir. 2000. Arrangements and their applications. In Handbook of Computational

Geometry. Elsevier, 49–119.

[3] Miklós Ajtai, János Komlós, and Endre Szemerédi. 1983. Sorting in c log n parallel steps. Combinatorica 3, 1 (1983),

1–19. DOI:https://doi.org/10.1007/BF02579338

[4] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. 2008. Subquadratic algorithms for 3SUM. Algorithmica 50, 4 (2008),

584–596. DOI:https://doi.org/10.1007/s00453-007-9036-3

[5] Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam Solomon. 2017. Subquadratic

algorithms for algebraic generalizations of 3SUM. In Proceedings of the 33rd Symposium on Computational Geometry

(SoCG’17). 13:1–13:15.

[6] David Bremner, Timothy M. Chan, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, John Iacono, Stefan Langerman,

Mihai Pǎtraşcu, and Perouz Taslakian. 2014. Necklaces, convolutions, and X + Y . Algorithmica 69, 2 (2014), 294–314.

DOI:https://doi.org/10.1007/s00453-012-9734-3

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

https://doi.org/10.1137/130920526
https://doi.org/10.1007/BF02579338
https://doi.org/10.1007/s00453-007-9036-3
https://doi.org/10.1007/s00453-012-9734-3

More Logarithmic-factor Speedups for 3SUM 7:23

[7] Karl Bringmann. 2014. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms

unless SETH fails. In Proceedings of the 55th IEEE Symposium on Foundations of Computer Science (FOCS’14). 661–670.

DOI:https://doi.org/10.1109/FOCS.2014.76

[8] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. 2014. Four Soviets walk the dog—With an

application to Alt’s conjecture. In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA’14).

1399–1413. DOI:https://doi.org/10.1137/1.9781611973402.103

[9] Timothy M. Chan. 2008. All-pairs shortest paths with real weights in O (n3/ log n) time. Algorithmica 50, 2 (2008),

236–243. DOI:https://doi.org/10.1007/s00453-007-9062-1

[10] Timothy M. Chan. 2010. More algorithms for all-pairs shortest paths in weighted graphs. SIAM J. Comput. 39, 5 (2010),

2075–2089. DOI:https://doi.org/10.1137/08071990X

[11] Timothy M. Chan. 2015. Speeding up the Four Russians algorithm by about one more logarithmic factor. In Proceed-

ings of the 26th ACM–SIAM Symposium on Discrete Algorithms (SODA’15). 212–217.

[12] Timothy M. Chan. 2017. Orthogonal range searching in moderate dimensions: k-d trees and range trees strike back.

In Proceedings of the 33rd Symposium on Computational Geometry (SoCG’17). 27:1–27:15.

[13] Timothy M. Chan and Moshe Lewenstein. 2015. Clustered integer 3SUM via additive combinatorics. In Proceedings

of the 47th ACM Symposium on Theory of Computing (STOC’15). 31–40. DOI:https://doi.org/10.1145/2746539.2746568

[14] Bernard Chazelle. 2004. Cuttings. In Handbook of Data Structures and Applications. Chapman and Hall/CRC, 25.1–

25.10. DOI:https://doi.org/10.1201/9781420035179.ch25

[15] Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi. 2015. Finding pairwise intersections inside a query range.

In Proceedings of the 14th Algorithms and Data Structures Symposium (WADS’15). 236–248. DOI:https://doi.org/10.

1007/978-3-319-21840-3_20

[16] Greg N. Frederickson and Donald B. Johnson. 1982. The complexity of selection and ranking in X + Y and matrices

with sorted columns. J. Comput. Syst. Sci. 24, 2 (1982), 197–208. DOI:https://doi.org/10.1016/0022-0000(82)90048-4

[17] Greg N. Frederickson and Donald B. Johnson. 1984. Generalized selection and ranking: Sorted matrices. SIAM J.

Comput. 13, 1 (1984), 14–30. DOI:https://doi.org/10.1137/0213002

[18] Michael L. Fredman. 1976. New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 1 (1976),

83–89. DOI:https://doi.org/10.1137/0205006

[19] Ari Freund. 2017. Improved subquadratic 3SUM. Algorithmica 77, 2 (2017), 440–458. DOI:https://doi.org/10.1007/

s00453-015-0079-6

[20] Anka Gajentaan and Mark H. Overmars. 2012. On a class of O (n2) problems in computational geometry. Comput.

Geom. 45, 4 (2012), 140–152. DOI:https://doi.org/10.1016/j.comgeo.2011.11.006

[21] Omer Gold and Micha Sharir. 2017. Improved bounds for 3SUM, k-SUM, and linear degeneracy. In Proceedings of the

25th European Symposium on Algorithms (ESA’17). 42:1–42:13. DOI:https://doi.org/10.4230/LIPIcs.ESA.2017.42

[22] Allan Grønlund and Seth Pettie. 2018. Threesomes, degenerates, and love triangles. J. ACM 65, 4 (2018), 22:1–22:25.

DOI:https://doi.org/10.1145/3185378

[23] Yijie Han. 2008. O (n3 (log log n/ log n)5/4) time algorithm for all pairs shortest path. Algorithmica 51, 4 (2008), 428–

434. DOI:https://doi.org/10.1007/s00453-007-9063-0

[24] Daniel M. Kane, Shachar Lovett, and Shay Moran. 2019. Near-optimal linear decision trees for k-SUM and related

problems. J. ACM 66, 3 (2019), 16:1–16:18. DOI:https://doi.org/10.1145/3285953

[25] Haim Kaplan, László Kozma, Or Zamir, and Uri Zwick. 2019. Selection from heaps, row-sorted matrices, and X + Y

using soft heaps. In Proceedings of the 2nd Symposium on Simplicity in Algorithms (SOSA). 5:1–5:21. DOI:https://doi.

org/10.4230/OASIcs.SOSA.2019.5

[26] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. 2016. Higher lower bounds from the 3SUM conjecture. In Proceed-

ings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1272–1287. DOI:https://doi.org/10.1137/

1.9781611974331.ch89

[27] Jiří Matoušek. 1992. Efficient partition trees. Discrete Comput. Geom. 8 (1992), 315–334. DOI:https://doi.org/10.1007/

BF02293051

[28] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry: An Introduction. Springer. DOI:
https://doi.org/10.1007/978-1-4612-1098-6

[29] Mihai Pǎtraşcu. 2010. Towards polynomial lower bounds for dynamic problems. In Proceedings of the 42nd ACM

Symposium on Theory of Computing (STOC’10). 603–610. DOI:https://doi.org/10.1145/1806689.1806772

[30] R. Ryan Williams. 2018. Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput. 47, 5 (2018), 1965–1985.

DOI:https://doi.org/10.1137/15M1024524

[31] Huacheng Yu. 2015. An improved combinatorial algorithm for Boolean matrix multiplication. In Proceedings of the

42nd International Colloquium on Automata, Languages, and Programming (ICALP’15). 1094–1105.

Received March 2018; revised September 2019; accepted September 2019

ACM Transactions on Algorithms, Vol. 16, No. 1, Article 7. Publication date: November 2019.

https://doi.org/10.1109/FOCS.2014.76
https://doi.org/10.1137/1.9781611973402.103
https://doi.org/10.1007/s00453-007-9062-1
https://doi.org/10.1137/08071990X
https://doi.org/10.1145/2746539.2746568
https://doi.org/10.1201/9781420035179.ch25
https://doi.org/10.1007/978-3-319-21840-3_20
https://doi.org/10.1007/978-3-319-21840-3_20
https://doi.org/10.1016/0022-0000(82)90048-4
https://doi.org/10.1137/0213002
https://doi.org/10.1137/0205006
https://doi.org/10.1007/s00453-015-0079-6
https://doi.org/10.1007/s00453-015-0079-6
https://doi.org/10.1016/j.comgeo.2011.11.006
https://doi.org/10.4230/LIPIcs.ESA.2017.42
https://doi.org/10.1145/3185378
https://doi.org/10.1007/s00453-007-9063-0
https://doi.org/10.1145/3285953
https://doi.org/10.4230/OASIcs.SOSA.2019.5
https://doi.org/10.4230/OASIcs.SOSA.2019.5
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1007/BF02293051
https://doi.org/10.1007/BF02293051
https://doi.org/10.1007/978-1-4612-1098-6
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1137/15M1024524

