
SETH-Based Lower Bounds for Subset Sum and Bicriteria Path∗

Amir Abboud† Karl Bringmann‡ Danny Hermelin§ Dvir Shabtay¶

Abstract

Subset Sum and k-SAT are two of the most extensively
studied problems in computer science, and conjectures about
their hardness are among the cornerstones of fine-grained
complexity. An important open problem in this area is to
base the hardness of one of these problems on the other.

Our main result is a tight reduction from k-SAT
to Subset Sum on dense instances, proving that Bellman’s
1962 pseudo-polynomial O∗(T)-time algorithm for Subset
Sum on n numbers and target T cannot be improved to time
T 1−ε · 2o(n) for any ε > 0, unless the Strong Exponential
Time Hypothesis (SETH) fails.

As a corollary, we prove a “Direct-OR” theorem for
Subset Sum under SETH, offering a new tool for proving
conditional lower bounds: It is now possible to assume that
deciding whether one out of N given instances of Subset
Sum is a YES instance requires time (NT)1−o(1). As an
application of this corollary, we prove a tight SETH-based
lower bound for the classical Bicriteria s, t-Path prob-
lem, which is extensively studied in Operations Research.
We separate its complexity from that of Subset Sum: On
graphs with m edges and edge lengths bounded by L, we
show that the O(Lm) pseudo-polynomial time algorithm by

Joksch from 1966 cannot be improved to Õ(L + m), in con-
trast to a recent improvement for Subset Sum (Bringmann,
SODA 2017).

∗We would like to thank Jesper Nederlof for an inspiring
discussion on Subset Sum. A.A. was supported by the grants
of Virginia Vassilevska Williams: NSF Grants CCF-1417238,
CCF-1528078 and CCF-1514339, and BSF Grant BSF:2012338.
D.H. has received funding from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) under REA grant agreement number
631163.11, and by the ISRAEL SCIENCE FOUNDATION (grant
No. 551145/).
†IBM Almaden Research Center
‡Max Planck Institute for Informatics, Saarland Informatics

Campus, Germany.

§Department of Industrial Engineering and Management, Ben-

Gurion University, Israel
¶Department of Industrial Engineering and Management, Ben-

Gurion University, Israel

1 Introduction

The field of fine-grained complexity is anchored around
certain hypotheses about the exact time complexity of a
small set of core problems. Due to dozens of reductions,
we now know that the current algorithms for many
important problems are optimal unless breakthrough
algorithms for the core problems exist. A central
challenge in this field is to understand the connections
and relative difficulties among these core problems. In
this work, we discover a new connection between two
core problems: a tight reduction from k-SAT to Subset
Sum.

In the first part of the introduction we discuss
this new reduction and how it affects the landscape
of fine-grained complexity. Then, in Section 1.2, we
highlight a corollary of this reduction which gives a
new tool for proving conditional lower bounds. As
an application, in Section 1.3, we prove the first tight
bounds for the classical Bicriteria s, t-Path problem
from Operations Research.

Subset Sum. Subset Sum is one of the most fun-
damental problems in computer science. Its most basic
form is the following: given n integers x1, . . . , xn ∈ N,
and a target value T ∈ N, decide whether there is a
subset of the numbers that sums to T . The two most
classical algorithms for the problem are the pseudo-
polynomial O(Tn) algorithm using dynamic program-
ming [28], and the O(2n/2 ·poly(n, log T)) algorithm via
“meet-in-the-middle” [67]. A central open question in
Exact Algorithms [114] is whether faster algorithms ex-
ist, e.g., can we combine the two approaches to get a
T 1/2 ·nO(1) time algorithm? Such a bound was recently
found in a Merlin-Arthur setting [94].

Open Question 1. Is Subset Sum in time T 1−ε ·
2o(n) or 2(1−ε)

n
2 · T o(1), for some ε > 0?

The status of Subset Sum as a major problem has
been established due to many applications, deep con-
nections to other fields, and educational value. The
O(Tn) algorithm from 1957 is an illuminating example
of dynamic programming that is taught in most under-
graduate algorithms courses, and the NP-hardness proof
(from Karp’s original paper [78]) is a prominent example
of a reduction to a problem on numbers. Interestingly,
one of the earliest cryptosystems by Merkle and Hell-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited41

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

man was based on Subset Sum [92], and was later ex-
tended to a host of Knapsack-type cryptosystems1 (see
[106, 31, 97, 46, 69] and the references therein).

The version of Subset Sum where we ask for k
numbers that sum to zero (the k-SUM problem) is con-
jectured to have ndk/2e±o(1) time complexity. Most fa-
mously, the k = 3 case is the 3-SUM conjecture high-
lighted in the seminal work of Gajentaan and Over-
mars [57]. It has been shown that this problem lies at
the core and captures the difficulty of dozens of prob-
lems in computational geometry. Searching in Google
Scholar for “3sum-hard” reveals more than 250 papers
(see [80] for a highly partial list). More recently, these
conjectures have become even more prominent as core
problems in fine-grained complexity since their interest-
ing consequences have expanded beyond geometry into
purely combinatorial problems [102, 113, 38, 72, 12, 6,
83, 7, 62, 72]. Note that k-SUM inherits its hardness
from Subset Sum, by a simple reduction: to answer
Open Question 1 positively it is enough to solve k-SUM
in T 1−ε · no(k) or nk/2−ε · T o(1) time.

Entire books [91, 79] are dedicated to the algorith-
mic approaches that have been used to attack Subset
Sum throughout many decades, and, quite astonish-
ingly, major algorithmic advances are still being dis-
covered in our days, e.g., [88, 68, 26, 51, 14, 108, 77, 61,
44, 15, 16, 85, 56, 22, 94, 82, 33], not to mention the
recent developments on generalized versions (see [24])
and other computational models (see [107, 41]). At
STOC’17 an algorithm was presented that beats the
trivial 2n bound while using polynomial space, under
certain assumptions on access to random bits [22]. At
SODA’17 we have seen the first improvements (beyond
log factors [100]) over the O(Tn) algorithm, reducing
the bound to Õ(T +n) [82, 33]. And a few years earlier,
a surprising result celebrated by cryptographers [68, 26]
showed that 20.499 algorithms are possible on random
instances. All this progress leads to the feeling that a
positive resolution to Open Question 1 might be just
around the corner.

SETH. k-SAT is an equally fundamental problem
(if not more) but of a Boolean rather than additive
nature, where we are given a k-CNF formula on n
variables and m clauses, and the task is to decide
whether it is satisfiable. All known algorithms have
a running time of the form O(2(1−c/k)n) for some
constant c > 0 [99, 49, 8], and the Strong Exponential
Time Hypothesis (SETH) of Impagliazzo and Paturi
[70, 71, 39] states that no O(2(1−ε)n) time algorithms
are possible for k-SAT, for some ε > 0 independent of k.
Refuting SETH implies advances in circuit complexity

1Cryptographers usually refer to Subset Sum as Knapsack.

[73], and is known to be impossible with popular
techniques like resolution [25].

A seminal paper of Cygan, Dell, Lokshtanov, Marx,
Nederlof, Okamoto, Paturi, Saurabh, and Wahlström
[48] strives to classify the exact complexity of important
NP-hard problems under SETH. The authors design a
large collection of ingenious reductions and conclude
that 2(1−ε)n algorithms for problems like Hitting Set,
Set Splitting, and Not-All-Equal SAT are impossible
under SETH. Notably, Subset Sum is not in this list
nor any problem for which the known algorithms are
non-trivial (e.g., require dynamic programming). As
the authors point out: “Of course, we would also like to
show tight connections between SETH and the optimal
growth rates of problems that do have non-trivial exact
algorithms.”

Since the work of Cygan et al. [48], SETH has
enjoyed great success as a basis for lower bounds in
Parameterized Complexity [87] and for problems within
P [112]. Some of the most fundamental problems
on strings (e.g., [9, 17, 2, 35, 18, 34]), graphs (e.g.,
[86, 104, 6, 58]), curves (e.g., [32]), vectors [110, 111,
19, 29] and trees [1] have been shown to be SETH-
hard : a small improvement to the running time of these
problems would refute SETH. Despite the remarkable
quantity and diversity of these results, we are yet to
see a (tight) reduction from SAT to any problem like
Subset Sum, where the complexity comes from the
hardness of analyzing a search space defined by addition
of numbers. In fact, all hardness results for problems of
a more number theoretic or additive combinatoric flavor
are based on the conjectured hardness of Subset Sum
itself.

In this paper, we address an important open ques-
tions in the field of fine-grained complexity: Can we
prove a tight SETH-based lower bound for Subset
Sum?

The standard NP-hardness proofs imply loose lower
bounds under SETH (in fact, under the weaker ETH)
stating that 2o(

√
n) algorithms are impossible. A

stronger but still loose result rules out 2o(n) · T o(1)-
time algorithms for Subset Sum under ETH [75, 37].
Before that, Patrascu and Williams [98] showed that
if we solve k-SUM in no(k) · T o(1) time, then ETH is
false. These results leave the possibility of O(T 0.001)
algorithms. While it is open whether such algorithms
imply new SAT algorithms, it has been shown that they
would imply new algorithms for other famous problems.
Bringmann [33] recently observed that a an O(T 0.78) al-
gorithm for Subset Sum implies a new algorithm for k-
Clique, via a reduction of Abboud, Lewi, and Williams
[5]. Cygan et al. [48] ruled out O(T 1−εpoly(n)) algo-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited42

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

rithms for Subset Sum under the conjecture that the
Set Cover problem on m sets over a universe of size n
cannot be solved in O(2(1−ε)n ·poly(m)) time. Whether
this conjecture can be replaced by the more popular
SETH remains a major open question.

1.1 Main Result We would like to show that SETH
implies a negative resolution to Open Question 1. Our
main result accomplishes half of this statement, showing
a tight reduction from SAT to Subset Sum on instances
where T = 2δn, also known as dense instances2, ruling
out T 1−ε · 2o(n) time algorithms under SETH.

Theorem 1.1. Assuming SETH, for any ε > 0 there
exists a δ > 0 such that Subset Sum is not in time
O(T 1−ε2δn), and k-Sum is not in time O(T 1−εnδk).

Thus, Subset Sum is yet another SETH-hard prob-
lem. This is certainly a major addition to this list. This
also adds many other problems that have reductions
from Subset Sum, e.g., the famous Knapsack problem,
or from k-SUM (e.g., [54, 30, 4, 43, 81]). For some of
these problems, to be discussed shortly, this even leads
to better lower bounds.

Getting a reduction that also rules out 2(1−ε)n/2 ·
T o(1) algorithms under SETH is still a fascinating open
question. Notably, the strongest possible reduction,
ruling out ndk/2e−ε · T o(1) algorithms for k-SUM, is
provably impossible under the Nondeterministic SETH
of Carmosino et al. [42], but there is no barrier for an
nk/2−o(1) lower bound.

A substantial technical barrier that we had to
overcome when designing our reduction is the fact that
there was no clear understanding of what the hard
instances of Subset Sum should look like. Significant
effort has been put into finding and characterizing the
instances of Subset Sum and Knapsack that are hard
to solve. This is challenging both from an experimental
viewpoint (see the study of Pisinger [101]) and from
the worst-case analysis perspective (see the discussion
of Austrin et al. [16]). Recent breakthroughs refute
the common belief that random instances are maximally
hard [68, 26], and show that better upper bounds are
possible for various classes of inputs. Our reduction
is able to generate hard instances by crucially relying
on a deep result on the combinatorics of numbers:
the existence of dense average-free sets. A surprising
construction of these sets from 1946 due to Behrend [27]
(see also [52, 96]) has already lead to breakthroughs in
various areas of theoretical computer science [45, 47,
10, 65, 50, 3]. These are among the most non-random-
like structures in combinatorics, and therefore allow our

2The density of an instance is the ratio n
log2 max xi

.

instances to bypass the easyness of random inputs. This
leads us to a candidate distribution of hard instances for
Subset Sum, which could be of independent interest:
Start from hard instances of SAT (e.g., random formulas
around the threshold) and map them with our reduction
(the obtained distribution over numbers will be highly
structured).

Recently, it was shown that the security of certain
cryptographic primitives can be based on SETH [20, 21].
We hope that our SETH-hardness for an already popu-
lar problem in cryptography will lead to further interac-
tion between fine-grained complexity and cryptography.
In particular, it would be exciting if our hard instances
could be used for a new Knapsack-type cryptosystem.
Such schemes tend to be much more computationally
efficient than popular schemes like RSA [31, 97, 69],
but almost all known ones are not secure (as famously
shown by Shamir [106]). Even more recently, Bennett,
Golovnev, and Stephens-Davidowitz [29] proved SETH
hardness for another central problem from cryptogra-
phy, the Closest-Vector-Problem (CVP). While CVP
is a harder problem than Subset Sum, their hardness
result addresses a different regime of parameters, and
rules out O(2(1−ε)n) time algorithms (when the dimen-
sion is large). It would be exciting to combine the two
techniques and get a completely tight lower bound for
CVP.

1.2 A Direct-OR Theorem for Subset Sum
Some readers might find the above result unnecessary:
What is the value in a SETH-based lower bound if we al-
ready believe the Set Cover Conjecture of Cygan et al.?
The rest of this introduction discusses new lower bound
results that, to our knowledge, would not have been
possible without our new SETH-based lower bound. To
clarify what we mean, consider the following “Direct-
OR” version of Subset Sum: Given N different and
independent instances of Subset Sum, each on n num-
bers and each with a different target Ti ≤ T , decide
whether any of them is a YES instance. It is natural
to expect the time complexity of this problem to be
(NT)1−o(1), but how do we formally argue that this is
the case? If we could assume that this holds, it would
be a very useful tool for conditional lower bounds (as
we show in Section 1.3).

Many problems, like SAT, have a simple self-
reduction proving that the “Direct-OR” version is hard,
assuming the problem itself is hard: To solve a SAT in-
stance on n variables, it is enough to solve 2x instances
on n−x variables. This is typically the case for problems
where the best known algorithm is essentially matched
with a brute force algorithm. But what about Subset
Sum or Set Cover? Can we use an algorithm that solves

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited43

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

N instances of Subset Sum in O(N0.1 ·T) time to solve
Subset Sum in O(T 1−ε) time? We cannot prove such
statements; however, we can prove that such algorithms
would refute SETH.

Corollary 1.1. Assuming SETH, for any ε > 0 and
γ > 0 there exists a δ > 0 such that no algorithm can
solve the OR of N given instances of Subset Sum on
target values T1, . . . , TN = O(Nγ) and at most δ logN
numbers each, in total time O(N1+γ−ε).

1.3 The Fine-Grained Complexity of Bicriteria
Path The Bicriteria s, t-Path problem is the natural
bicriteria variant of the classical s, t-Path problem
where edges have two types of weights and we seek an
s, t-path which meets given demands on both criteria.
More precisely, we are given a directed graph G where
each edge e ∈ E(G) is assigned a pair of non-negative
integers `(e) and c(e), respectively denoting the length
and cost of e, and two non-negative integers L and
C representing our budgets. The goal is to determine
whether there is an s, t-path e1, . . . , ek in G, between a
given source and a target vertex s, t ∈ V (G), such that∑k
i=1 `(ei) ≤ L and

∑k
i=1 c(ei) ≤ C.

This natural variant of s, t-Path has been exten-
sively studied in the literature, by various research com-
munities, and has many diverse applications in several
areas. Most notable of these are perhaps the applica-
tions in the area of transportation networks [60], and
the quality of service (QoS) routing problem studied in
the context of communication networks [89, 115]. There
are also several applications for Bicriteria s, t-Path
in Operations Research domains, in particular in the
area of scheduling [36, 84, 93, 105], and in column gener-
ation techniques [66, 116]. Additional applications can
be found in road traffic management, navigation sys-
tems, freight transportation, supply chain management
and pipeline distribution systems [60].

A simple reduction proves that Bicriteria s, t-
Path is at least as hard as Subset Sum (see Garey
and Johnson [59]). In 1966, Joksch [76] presented a dy-
namic programming algorithm with pseudo-polynomial
running time O(Lm) (or O(Cm)) on graphs with m
edges. Extensions of this classical algorithm appeared in
abundance since then, see e.g., [13, 63, 103] and the var-
ious FPTASs for the optimization variant of the prob-
lem [53, 60, 64, 90, 109]. The reader is referred to the
survey by Garroppo et al. [60] for further results on Bi-
criteria s, t-Path.

Our SETH-based lower bound for Subset Sum eas-
ily transfers to show that a O(L1−ε2o(n)) time algorithm
for Bicriteria s, t-Path refutes SETH. However, af-
ter the O(Tn) algorithm for Subset Sum from 1960

was improved last year to Õ(T + n), it is natural to
wonder if the similar O(Lm) algorithm for Bicriteria
s, t-Path from 1966 can also be improved to Õ(L+m)
or even just to O(Lm0.99). Such an improvement would
be very interesting since the pseudo-polynomial algo-
rithm is commonly used in practice, and since it would
speed up the running time of the approximation algo-
rithms. We prove that Bicriteria s, t-Path is in fact
a harder problem than Subset Sum, and an improved
algorithm would refute SETH. The main application of
Corollary 1.1 that we report in this paper is a tight
SETH-based lower bound for Bicriteria s, t-Path,
which (conditionally) separates the time complexity of
Bicriteria s, t-Path and Subset Sum.

Theorem 1.2. Assuming SETH, for any ε > 0 and
γ > 0 no algorithm solves Bicriteria s, t-Path on
sparse n-vertex graphs and budgets L,C = Θ(nγ) in
time O(n1+γ−ε).

Intuitively, our reduction shows how a single instance of
Bicriteria s, t-Path can simulate multiple instances
of Subset Sum and solve the “Direct-OR” version of
it.

Our second application of Corollary 1.1 concerns
the number of different edge-lengths and/or edge-costs
in our given input graph. Let λ denote the former
parameter, and χ denote the latter. Note that λ and χ
are different from L and C, and each can be quite small
in comparison to the size of the entire input. In fact,
in many of the scheduling applications for Bicriteria
s, t-Path discussed above it is natural to assume that
one of these is quite small. We present a SETH-based
lower bound that almost matches the O(nmin{λ,χ}+2)
upper bound for the problem.

Theorem 1.3. Bicriteria s, t-Path can be solved in
O(nmin{λ,χ}+2) time. Moreover, assuming SETH, for
any constants λ, χ ≥ 2 and ε > 0, there is no
O(nmin{λ,χ}−1−ε) time algorithm for the problem.

Finally, we consider the case where we are search-
ing for a path that uses only k internal vertices. This
parameter is naturally small in comparison to the total
input length in several applications of Bicriteria s, t-
Path, for example the packet routing application dis-
cussed above. We show that this problem is equivalent
to the k-Sum problem, up to logarithmic factors. For
this, we consider an intermediate exact variant of Bi-
criteria s, t-Path, the Zero-Weight-k-Path prob-
lem, and utilize the known bounds for this variant to
obtain the first improvement over the O(nk)-time brute-
force algorithm, as well as a matching lower bound.

Theorem 1.4. Bicriteria s, t-Path can be solved in
Õ(nd(k+1)/2e) time. Moreover, for any ε > 0, there is no

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited44

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Õ(nd(k+1)/2e−ε)-time algorithm for the problem, unless
k-Sum has an Õ(ndk/2e−ε)-time algorithm.

2 Preliminaries

For a fixed integer p, we let [p] denote the set of integers
{1, . . . , p}. All graphs in this paper are, unless otherwise
stated, simple, directed, and without self-loops. We use
standard graph theoretic notation, e.g., for a graph G
we let V (G) and E(G) denote the set of vertices and
edges of G, respectively. Throughout the paper, we use
the O∗(·) and Õ(·) notations to suppress polynomial and
logarithmic factors.

Hardness Assumptions: The Exponential Time
Hypothesis (ETH) and its strong variant (SETH) are
conjectures about running time of any algorithm for
the k-SAT problem: Given a boolean CNF formula
φ, where each clause has at most k literals, determine
whether φ has a satisfying assignment. Let sk =
inf{δ : k-SAT can be solved in O∗(2δn) time}. The
Exponential Time Hypothesis, as stated by Impagliazzo,
Paturi and Zane [71], is the conjecture that s3 > 0.
It is known that s3 > 0 if and only if there is a
k ≥ 3 such that sk > 0 [71], and that if ETH is
true, the sequence {sk}∞k=1 increases infinitely often [70].
The Strong Exponential Time Hypothesis, coined by
Impagliazzo and Paturi [40, 70], is the conjecture that
limk→∞ sk = 1. In our terms, this can be stated in the
following more convenient manner:

Conjecture 2.1. For any ε > 0 there exists k ≥ 3
such that k-SAT on n variables cannot be solved in time
O(2(1−ε)n).

We use the following standard tool by Impagliazzo,
Paturi and Zane:

Lemma 2.1. (Sparsification Lemma [71]) For any
ε > 0 and k ≥ 3, there exists ck,ε > 0 and an algo-
rithm that, given a k-SAT instance φ on n variables,
computes k-SAT instances φ1, . . . , φ` with ` ≤ 2εn such
that φ is satisfiable if and only if at least one φi is satis-
fiable. Moreover, each φi has n variables, each variable
in φi appears in at most ck,ε clauses, and the algorithm
runs in time poly(n)2εn.

The k-SUM Problem: In k-SUM we are given
sets Z1, . . . , Zk of non-negative integers and a tar-
get T , and we want to decide whether there are z1 ∈
Z1, . . . , zk ∈ Zk such that z1 + . . . + zk = T . This
problem can be solved in time O(ndk/2e) [67], and it is
somewhat standard by now to assume that this is es-
sentially the best possible [4]. This assumption, which
generalizes the more popular assumption of the k = 3
case [57, 102], remains believable despite recent algo-
rithmic progress [14, 23, 44, 77, 108].

Conjecture 2.2. k-Sum cannot be solved in time
Õ(ndk/2e−ε) for any ε > 0 and k ≥ 3.

3 From SAT to Subset Sum

In this section we present our main result, the hard-
ness of Subset Sum and k-Sum under SETH. Our re-
duction goes through three main steps: We start with
a k-SAT formula φ that is the input to our reduc-
tion. This formula is then reduced to subexponentially
many Constraint Satisfaction Problems (CSP) with a
restricted structure. The main technical part is then
to reduce these CSP instances to equivalent Subset
Sum instances. The last part of our construction, re-
ducing Subset Sum to k-Sum, is rather standard. In
the final part of the section we provide a proof for Corol-
lary 1.1, showing that Subset Sum admits the “Direct-
OR” property discussed in Section 1.2.

3.1 From k-SAT to Structured CSP We first
present a reduction from k-SAT to certain structured
instances of Constraint Satisfaction Problems (CSP).
This is a standard combination of the Sparsification
Lemma with well-known tricks.

Lemma 3.1. Given a k-SAT instance φ on n variables
and m clauses, for any ε > 0 and a ≥ 1 we can
compute in time poly(n)2εn CSP instances ψ1, . . . , ψ`,
with ` ≤ 2εn, such that φ is satisfiable if and only if
some ψi is satisfiable. Each ψi has n̂ = dn/ae variables
over universe [2a] and m̂ = dn/ae constraints. Each
variable is contained in at most ĉk,ε · a constraints, and
each constraint contains at most ĉk,ε · a variables, for
some constant ĉk,ε depending only on k and ε.

Proof. Let φ be an instance of k-SAT with n variables
and m clauses. We start by invoking the Sparsification
Lemma (Lemma 2.1). This yields k-SAT instances
φ1, . . . , φ` with ` ≤ 2εn such that φ is satisfiable if and
only if some φi is satisfiable, and where each φi has n
variables, and each variable in φi appears in at most
ck,ε clauses of φi, for some constant ck,ε. In particular,
the number of clauses is at most ck,εn.

We combine multiple variables to a super-variable
and multiple clauses to a super-constraint, which yields
a certain structured CSP. Specifically, let a ≥ 1, and
partition the variables into dn/ae blocks of length a. We
replace each block of a variables by one super-variable
over universe [2a]. Similarly, we partition the clauses
into dn/ae blocks, each containing γ := ack,ε clauses.
We replace each block of γ clauses C1, . . . , Cγ by one
super-constraint C that depends on all super-variables
containing variables appearing in C1, . . . , Cγ .

Clearly, the resulting CSP ψi is equivalent to φi.
Since each variable appears in at most ck,ε clauses in φi,

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited45

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

and we combine a variables to obtain a variable of ψi,
each variable appears in ψi in at most ack,ε constraints.
Similarly, each clause in φi contains at most k variables,
and each super-constraint consists of γ = ack,ε clauses,
so each super-constraint contains at most ĉk,εa variables
for ĉk,ε = kck,ε. This finishes the proof.

3.2 From Structured CSP to Subset Sum Next
we reduce to Subset Sum. Specifically, we show the
following.

Theorem 3.1. For any ε > 0, given a k-SAT instance
φ on n variables we can in time poly(n)2εn construct
2εn instances of Subset Sum on at most c̃k,εn items
and a target value bounded by 2(1+2ε)n such that φ is
satisfiable iff at least one of the Subset Sum instances
is a YES-instance. Here c̃k,ε is a constant depending
only on k and ε.

As discussed in Section 1.1, our reduction crucially
relies on a construction of average-free sets. For any
k ≥ 2, a set S of integers is k-average-free iff for all
k′ ≤ k and (not necessarily distinct) x1, . . . , xk′+1 ∈ S
with x1+ . . .+xk′ = k′ ·xk′+1 we have x1 = . . . = xk′+1.
A surprising construction by Behrend [27] has been
slightly adapted in [5], showing the following.

Lemma 3.2. There exists a universal constant c > 0
such that, given ε ∈ (0, 1), k ≥ 2, and n ≥ 1, a k-
average-free set S of size n with S ⊂ [0, kc/εn1+ε] can
be constructed in poly(n) time.

While it seems natural to use this lemma when
working with an additive problem like Subset Sum,
we are only aware of very few uses of this result in
conditional lower bounds [5, 55, 74]. One example is
a reduction from k-Clique to k2-SUM on numbers in
nk+o(1) [5]. Our result can be viewed as a significant
boosting of this reduction, where we exploit the power
of Subset Sum further. Morally, k-Clique is like MAX-
2-SAT, since faster algorithms for k-Clique imply faster
algorithms for MAX-2-SAT [110]. We show that even
MAX-d-SAT, for any d, can be reduced to k-SUM,
which corresponds to a reduction from Clique on hyper-
graphs to k-SUM.

Proof. [of Theorem 3.1] We let a ≥ 1 be a sufficiently
large constant depending only on k and ε. We need
a λ-average-free set, with λ := ĉk,εa, where ĉk,ε is
the constant from Lemma 3.1. Lemma 3.2 yields
a λ-average-free set S of size 2a consisting of non-
negative integers bounded by B := λc/ε(2a)1+ε, for
some constant c depending only on ε. We let f : [2a]→
S be any injective function. Note that since a and B
are constants constructing f takes constant time.

Run Lemma 3.1 to obtain CSP instances ψ1, . . . , ψ`
with ` ≤ 2εn, each with n̂ = dn/ae variables over
universe [2a] and m̂ = n̂ constraints, such that each
variable is contained in at most λ constraints and each
constraint contains at most λ variables. Fix a CSP
ψ = ψi. We create an instance (Z, T) of Subset Sum,
i.e., a set Z of positive integers and a target value T . We
define these integers by describing blocks of their bits,
from highest to lowest. (The items in Z are naturally
partitioned, as for each variable x of ψ there will be
Ok,ε(1) items of type x, and for each clause C of ψ there
will be Ok,ε(1) items of type C.)

We first ensure that any correct solution picks
exactly one item of each type. To this end, we start
with a block of O(log n̂) bits where each item has value
1, and the target value is n̂+ m̂, which ensures that we
pick exactly n̂ + m̂ items. This is followed by O(log n̂)
many 0-bits to avoid overflow from the lower bits (we
will have Ok,ε(n̂) items overall). In the following n̂+ m̂
bits, each position is associated to one type, and each
item of that type has a 1 at this position and 0s at all
other positions. The target T has all these bits set to
1. Together, these O(log n̂) + n̂ + m̂ bits ensure that
we pick exactly one item of each type. We again add
O(log n̂) many 0-bits to avoid overflow from the lower
bits.

The remaining n̂ blocks of bits correspond to the
variables of ψ. For each variable we have a block
consisting of dlog(2λB+ 1)e = logB+ log λ+O(1) bits.
The target number T has bits forming the number λB
in each block of each variable.

Now we describe the items of type x, where x is a
variable. For each assignment α ∈ [2a] of x, there is
an item z(x, α) of type x. In the block corresponding
to variable x, the bits of z(x, α) form the number
λB − d(x) · f(α), where d(x) is the number of clauses
containing x. In all blocks corresponding to other
variables, the bits of z(x, α) are 0.

Next we describe the items of type C, where C is
a constraint. Let x1, . . . , xs be the variables that are
contained in C. For any assignment α1, . . . , αs ∈ [2a] of
x1, . . . , xs that satisfies the clause C, there is an item
z(C,α1, . . . , αs) of type C. In the block corresponding
to variable xi the bits of z(C,α1, . . . , αs) form the
number f(αi), for any 1 ≤ i ≤ s. In all blocks
corresponding to other variables, the bits are 0.

Example: Suppose a = 1 and ĉk,ε = 2, and
consider a CSP with variables x1, x2, x3 over the uni-
verse [2a] = {1, 2}, and constraints C1 = (x1 = x2),
C2 = (x2 6= x3), and C3 = (x1 = 1 ⇒ x3 = 1).
Note that λ = 2. We construct the 2-average-free set
S = {1, 2}; in particular, we may set B = 2, and use
the injective mapping f : [2a]→ S defined by f(x) = x.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited46

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

The following items correspond to the CSP variables
(the |-symbols mark block boundaries and have no other
meaning):

z(x1, 1) = 1|000|100000|000|0010|0000|0000|

z(x1, 2) = 1|000|100000|000|0000|0000|0000|

z(x2, 1) = 1|000|010000|000|0000|0010|0000|

z(x2, 2) = 1|000|010000|000|0000|0000|0000|

z(x3, 1) = 1|000|001000|000|0000|0000|0010|

z(x3, 2) = 1|000|001000|000|0000|0000|0000|

And the following items correspond to the constraints:

z(C1, 1, 1) = 1|000|000100|000|0001|0001|0000|

z(C1, 2, 2) = 1|000|000100|000|0010|0010|0000|

z(C2, 1, 2) = 1|000|000010|000|0000|0001|0010|

z(C2, 2, 1) = 1|000|000010|000|0000|0010|0001|

z(C3, 1, 1) = 1|000|000001|000|0001|0000|0001|

z(C3, 2, 1) = 1|000|000001|000|0010|0000|0001|

z(C3, 2, 2) = 1|000|000001|000|0010|0000|0010|

We set the target to

T = 110|000|111111|000|0100|0100|0100|.

One can readily verify that T sums up to z(x1, 2) +
z(x2, 2) + z(x2, 1) + z(C1, 2, 2) + z(C2, 2, 1) + z(C3, 2, 1),
and that no other subset sums up to T . That is, the
subsets summing to T are in one-to-one correspondence
to the satisfying assignments of the CSP.

Correctness: Recall that the first O(log n̂)+n̂+m̂
bits ensure that we pick exactly one item of each type.
Consider any variable x and the corresponding block of
bits. The item of type x picks an assignment α, resulting
in the number λB−d(x) ·f(α), where d(x) is the degree
of x. The d(x) constraints containing x pick assignments
α1, . . . , αd(x) and contribute f(α1) + . . . + f(αd(x)).
Hence, the total contribution in the block is

f(α1) + . . .+ f(αd(x))− d(x) · f(α) + λB,

where d(x) ≤ λ. Since f maps to a λ-average-free set,
we can only obtain the target λB if f(α1) = . . . =
f(αd(x)) = f(α). Since f is injective, this shows that
any correct solution picks a coherent assignment α for
variable x. Finally, this coherent choice of assignments
for all variables satisfies all clauses, since clause items
only exist for assignments satisfying the clause. Hence,
we obtain an equivalent Subset Sum instance.

Note that the length of blocks corresponding to
variables is set so that there are no carries between
blocks, which is necessary for the above argument.
Indeed, the degree d(x) of any variable x is at most λ,
so the clauses containing x can contribute at most λ ·B
to its block, while the item of type x also contributes
0 ≤ λB − d(x) · f(α) ≤ λB, which gives a number in
[0, 2λB].

Size Bounds: Let us count the number of bits in
the constructed numbers. We have O(log n̂) + n̂ + m̂
bits from the first part ensuring that we pick one item
of each type, and n̂ · (logB + log λ + O(1)) bits from
the second part ensuring to pick coherent and satisfying
assignments. Plugging in B = λc/ε(2a)1+ε and λ =
ĉk,εa and using n̂ = m̂ = dn/ae yields a total number
of bits of

log T = O(log n̂) + n̂+ m̂+ n̂ · (logB + log λ+O(1))

= (1 + ε)n+Ok,ε(n log(a)/a),

where the hidden constant depends only on k and ε.
Since log(a)/a tends to 0 for a → ∞, we can choose
a sufficiently large, depending on k and ε, to obtain
log T ≤ (1 + ε)n+ εn ≤ (1 + 2ε)n.

Let us also count the number of constructed items.
We have one item for each variable x and each assign-
ment α ∈ [2a], amounting to 2an̂ ≤ 2an items. More-
over, we have one item for each clause C and all assign-
ments α1, . . . , αs ∈ [2a] that jointly satisfy the clause C,
where s ≤ λ is the number of variables contained in C.
This amounts to up to 2aλm̂ ≤ 2aλn ≤ 2ĉk,εa

2

n items.
Note that both factors only depend on k and ε, since a
only depends on k and ε. Thus, the number of items is
bounded by c̃k,εn, where c̃k,ε only depends on k and ε.

In total, we obtain a reduction that maps an
instance φ of k-SAT on n variables to 2εn instances of
Subset Sum with target at most 2(1+2ε)n on at most
c̃k,εn items. The running time of the reduction is clearly
poly(n)2εn.

Our main result (Theorem 1.1) now follows.

Proof. [of Theorem 1.1] Subset Sum: For any ε > 0
set ε′ := ε/5 and let k be sufficiently large so that k-
SAT has no O(2(1−ε

′)n) algorithm; this exists assuming
SETH. Set δ := ε′/c̃k,ε′ , where c̃k,ε′ is the constant
from Theorem 3.1. Now assume that Subset Sum
can be solved in time O(T 1−ε2δn). We show that this
contradicts SETH. Let φ be a k-SAT instance on n
variables, and run Theorem 3.1 with ε′ to obtain 2ε

′n

Subset Sum instances on at most c̃k,ε′n items and

target at most 2(1+2ε′)n. Using the assumedO(T 1−ε2δn)
algorithm on each Subset Sum instance, yields a total

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited47

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

time for k-SAT of

poly(n)2ε
′n + 2ε

′n ·
(
2(1+2ε′)n

)1−ε
2δ·c̃k,ε′n

= 2(ε
′+(1+2ε′)(1−5ε′)+ε′)n ≤ 2(1−ε

′)n,

where we used the definitions of ε′ and δ as well as
(1+2ε′)(1−5ε′) ≤ 1−3ε′. This running time contradicts
SETH, yielding the lower bound for Subset Sum.

k-SUM: The lower bound O(T 1−εnδk) for k-Sum
now follows easily from the lower bound for Subset
Sum. Consider a Subset Sum instance (Z, T) on
|Z| = n items and target T . Partition Z into sets
Z1, . . . , Zk of of equal size, up to ±1. For each set
Zi, enumerate all subset sums Si of Zi, ignoring the
subsets summing to larger than T . Consider the k-
Sum instance (S1, . . . , Sk, T), where the task is to pick
items si ∈ Si with s1 + . . . + sk = T . Since |Si| ≤
O(2n/k), an O(T 1−εnδk) time algorithm for k-Sum now
implies an O(T 1−ε2δn) algorithm for Subset Sum, thus
contradicting SETH.

3.3 Direct-OR Theorem for Subset Sum We
now provide a proof for Corollary 1.1. We show that de-
ciding whether at least one of N given instances of Sub-
set Sum is a YES-instance requires time (NT)1−o(1),
where T is a common upper bound on the target. Here
we crucially use our reduction from k-SAT to Subset
Sum, since the former has an easy self-reduction allow-
ing us to tightly reduce one instance to multiple subin-
stances, while such a self-reduction is not known for
Subset Sum.

Proof. [of Corollary 1.1] Let ε > 0 and γ > 0, we will fix
δ > 0 later. Assume that the OR of N given instances
of Subset Sum on target values T1, . . . , TN = O(Nγ)
and at most δ logN numbers each, can be solved in total
time O(N (1+γ)(1−ε)). We will show that SETH fails.

Let φ be an instance of k-SAT on n variables. Split
the set of variables into X1 and X2 of size n1 and n2,
such that n2 = γ · n1 up to rounding. Specifically, we
can set n1 := d n

1+γ e and n2 := b γn1+γ c and thus have
n2 ≤ γn1. Enumerate all assignments of the variables in
X1. For each such assignment α let φα be the resulting
k-SAT instance after applying the partial assignment α.

For each φα, run the reduction from Theorem 3.1
with ε′ = min{1/2, 1/γ} · ε/2, resulting in at most 2ε

′n2

instances of Subset Sum on at most c̃k,ε′n2 items and

target at most 2(1+2ε′)n2 . In total, we obtain at most
2n1+ε

′n2 instances of Subset Sum, and φ is satisfiable
iff at least one of these Subset Sum instances is a YES-
instance. Set N := 2(1+ε/2)n1 and note that the number
of instances is at most 2n1+ε

′n2 ≤ 2(1+γε
′)n1 ≤ N ,

and that the target bound is at most 2(1+2ε′)n2 ≤
2(1+2ε′)γn1 ≤ Nγ . Thus, we constructed at most N

instances of Subset Sum on target at most Nγ , each
having at most c̃k,ε′n2 ≤ c̃k,ε′n items.

Using the assumed algorithm, the OR of these
instances can be solved in total time O(N (1+γ)(1−ε)).
Since (1 + γ)n1 = (1 + γ)d n

1+γ e ≤ n+ 1 + γ = n+O(1)

and (1 + ε/2)(1− ε) ≤ 1− ε/2, this running time is

O
(
N (1+γ)(1−ε)) = O

((
2(1+ε/2)n1

)(1+γ)(1−ε))
= O

(
2(1−ε/2)n

)
,

which contradicts SETH. Specifically, for some k = k(ε)
this running time is less than the time required for k-
SAT. Setting δ := c̃k,ε′ finishes the proof.

4 The Bicriteria s, t-Path Problem

In this section we apply the results of the previous sec-
tion to the Bicriteria s, t-Path problem. We will
show that the Bicriteria s, t-Path problem is in fact
harder than Subset Sum, by proving that the classi-
cal pseudo-polynomial time algorithm for the problem
cannot be improved on sparse graphs assuming SETH.
We also prove Theorem 1.3 concerning a bounded num-
ber of different edge-lengths λ and edge-costs χ in the
input network, and Theorem 1.4 concerning a bounded
number k of internal vertices in a solution path.

4.1 Sparse networks We begin with the case of
sparse networks; i.e. input graphs on n vertices and
O(n) edges. We embed multiple instances of Subset
Sum into one instance of Bicriteria s, t-Path to prove
Theorem 1.2, namely that there is no algorithm for
Bicriteria s, t-Path on sparse graphs faster than the
well-known O(min{nL, nC})-time algorithm.

Proof. [of Theorem 1.2] We show that for any ε >
0, γ > 0, an algorithm solving Bicriteria s, t-Path
on sparse n-vertex graphs and budgets L,C = Θ(nγ)
in time O(n(1+γ)(1−ε)) contradicts SETH. As in Corol-
lary 1.1, let (Z1, T1), . . . , (ZN , TN) be instances of Sub-
set Sum on targets Ti ≤ Nγ and number of items
|Zi| ≤ δ logN for all i. Without loss of generality,
we can assume that all sets Zi have the same size
k = δ logN (e.g., by making Zi a multiset containing
the number 0 multiple times).

Fix an instance (Zi, Ti) and let Zi = {z1, . . . , zk}.
We construct a graph Gi with vertices s, v1, . . . , vk, t.
Writing v0 := s for simplicity, for each j ∈ [k] we
add an edge from vj−1 to vj with length zj and cost
Nγ − zj , and we add another3 edge from vj−1 to vj
with length 0 and cost Nγ . Finally, we add an edge

3Note that parallel edges can be avoided by subdividing all
constructed edges.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited48

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

from vk to t with length Nγ −Ti and cost Ti. Then the
set of s, t-paths corresponds to the power set of Zi, and
the s, t-path corresponding to Y ⊆ Zi has total length
Nγ−Ti+

∑
y∈Y y and cost kNγ +Ti−

∑
y∈Y y. Hence,

setting the upper bound on the length to L = Nγ and
on the cost to C = kNγ , there is an s, t-path respecting
these bounds iff there is a subset Y of Zi summing to
Ti, i.e., iff (Zi, Ti) is a YES-instance.

We combine the graphs G1, . . . , GN into one graph
G by identifying all source vertices s, identifying all
target vertices t, and then taking the disjoint union
of the remainder. With the common length bound
L = Nγ and cost bound C = kNγ , there is an s, t-
path respecting these bounds in G iff some instance
(Zi, Ti) is a YES-instance. Furthermore, note that G
has n = Θ(N logN) vertices, is sparse, and can be con-
structed in time O(N logN). Hence, an O(n(1+γ)(1−ε))
time algorithm for Bicriteria s, t-Path would imply
an O(N (1+γ)(1−ε)polylogN) = O(N (1+γ)(1−ε/2)) time
algorithm for deciding whether at least one of N Sub-
set Sum instances is a YES-instance, a contradiction
to SETH by Corollary 1.1.

Finally, let us ensure that L,C = Θ(nγ). Note that
the budgets L and C are both bounded by O(Nγ logN).
If γ ≥ 1, then add a supersource s′ and one edge
from s′ to s with length and cost equal to Nγ logγ N ,
and add Nγ logγ N to L and C. This results in
an equivalent instance, and the new bounds L,C are
Θ(Nγ logγ N) = Θ(nγ). If γ < 1, then do the same
where the length and cost from s′ to s is Nγ logN , and
then add N log1/γ N dummy vertices to the graph to
increase n to Θ(N log1/γ N). Again we obtain budgets

L,C = Θ(Nγ logN) = Θ((N log1/γ N)γ) = Θ(nγ). In
both cases, the same running time analysis as in the
last paragraph goes through. This completes the proof
of Theorem 1.2.

4.2 Few different edge-lengths or edge-costs
We next consider the parameters λ (the number of
different edge-lengths) and χ (the number of different
edge-costs). We show that Bicriteria s, t-Path can
be solved in O(nmin{λ,χ}+2) time, while its unlikely to
be solvable in O(nmin{λ,χ}−1−ε) for any ε > 0, providing
a complete proof for Theorem 1.3. The upper bound of
this theorem is quite easy, and is given in the following
lemma.

Lemma 4.1. Bicriteria s, t-Path can be solved in
O(nmin{λ,χ}+2) time.

Proof. It suffices to give an O(nλ+2) time algorithm,
as the case of time O(nχ+2) is symmetric, and a
combination of these two algorithms yields the claim.
Let ˜̀

1, . . . , ˜̀
λ be all different edge-length values. We

compute a table T [v, i1, . . . , iλ], where v ∈ V (G) and
i1, . . . , iλ ∈ {0, . . . , n}, which stores the minimum
cost of any s, v-path that has exactly ij edges of

length ˜̀
j , for each j ∈ {1, . . . , λ}. For the base

case of our computation, we set T [s, 0, . . . , 0] = 0 and
T [s, i1, . . . , iλ] = ∞ for entries with some ij 6= 0.
The remaining entries are computed via the following
recursion:

T [v, i1, . . . , iλ] =

min
1≤j≤λ

min
(u,v)∈E(G),

`((u,v))=˜̀
j .

T [u, i1, . . . , ij − 1, . . . , iλ] + c((u, v)).

It is easy to see that the above recursion is correct,
since if e1, . . . , ek is an optimal s, v-path corresponding
to an entry T [v, i1, . . . , iλ] in T , with ek = (u, v) and
`(ek) = ˜̀

j for some j ∈ {1, . . . , λ}, then e1, . . . , ek−1
is an optimal s, u-path corresponding to the entry
T [u, i1, . . . , ij − 1, . . . , iλ]. Thus, after computing table
T , we can determine whether there is a feasible s, t-path
inG by checking whether there is an entry T [t, i1, . . . , iλ]

with
∑λ
j=1 ij · ˜̀j ≤ L and T [t, i1, . . . , iλ] ≤ C. As there

are O(nλ+1) entries in T in total, and each entry can be
computed in O(n) time, the entire algorithm requires
O(nλ+2) time.

We now turn to proving the lower-bound given
in Theorem 1.3. The starting point is our lower
bound for k-Sum ruling out O(T 1−εnδk) algorithms
(Theorem 1.1). We present a reduction from k-Sum to
Bicriteria s, t-Path, where the resulting graph in the
Bicriteria s, t-Path instance has few different edge-
lengths and edge-costs.

Let (Z1, . . . , Zk, T) be an instance of k-Sum with
Zi ⊂ [0, T] and |Zi| ≤ n for all i, and we want to
decide whether there are z1 ∈ Z1, . . . , zk ∈ Zk with
z1 + . . .+ zk = T . We begin by constructing an acyclic
multigraph G∗, using similar ideas to those used for
proving Theorem 1.2. The multigraph G∗ has k + 1
vertices s = v0, . . . , vk = t, and is constructed as follows:
For each i ∈ {1, . . . , k}, we add at most n edges from
vi−1 to vi, one for each element in Zi. The length of an
edge e ∈ E(G∗) corresponding to element zi ∈ Zi is set
to `(e) = zi, and its cost is set to c(e) = T − zi.

Lemma 4.2. (Z1, . . . , Zk, T) has a solution iff G∗ has
an s, t-path of length at most L = T and cost at most
C = T (k − 1).

Proof. Suppose there are z1 ∈ Z1, . . . , zk ∈ Zk that
sum to T . Consider the s, t-path e1, . . . , ek in G∗,
where ei is the edge from vi−1 to vi corresponding

to zi. Then
∑k
i=1 `(ei) =

∑k
i=1 zi = T = L, and

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited49

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

∑k
i=1 c(ei) =

∑k
i=1 T − zi = kT − T = C. Conversely,

any s, t-path in G∗ has k edges e1, . . . , ek, where ei is
an edge from vi−1 to vi. If such a path is feasible,

meaning that
∑k
i=1 `(ei) ≤ L = T and

∑k
i=1 c(ei) ≤

C = T (k− 1), then these two inequalities must be tight
because c(ei) = T − `(ei) for each i ∈ [k]. This implies
that the integers z1, . . . , zk corresponding to the edges
e1, . . . , ek of G∗, sum to T .

Let τ ≥ 1 be any constant and let B := dT 1/τe.
We next convert G∗ into a graph G̃ which has τ + 1
different edge-lengths and τ + 1 different edge-costs,
both taken from the set {0, B0, B1, . . . , Bτ−1}. Recall
that V (G∗) = {v0, . . . , vk}, and the length and cost of
each edge in G∗ is non-negative and bounded by T . The
vertex set of G̃ will include all vertices of G∗, as well as
additional vertices.

For an edge e ∈ E(G∗), write its length as `(e) =∑τ−1
i=0 aiB

i, and its cost as c(e) =
∑τ−1
i=0 biB

i, for
integers a1, . . . , aτ−1, b1, . . . , bτ−1 ∈ {0, . . . , B − 1}. We
replace the edge e of G∗ with a path in G̃ between the
endpoints of e that has

∑τ−1
i=0 (ai + bi) internal vertices.

For each i ∈ {0, . . . , τ − 1}, we set ai edges in this path
to have length Bi and cost 0, and bi edges to have length
0 and cost Bi. Replacing all edges of G∗ by paths in this
way, we obtain the graph G̃ which has O(nB) vertices
and edges (since k and τ are constant). As any edge in
G∗ between vi and vi+1 corresponds to a path between
these two vertices in G̃ with the same length and cost,
we have:

Lemma 4.3. Any s, t-path in G∗ corresponds to an s, t-
path in G̃ with same length and cost, and vice-versa.

Lemma 4.4. Assuming SETH, for any constant λ, χ ≥
2 there is no O(nmin{λ,χ}−1−ε) algorithm for Bicrite-
ria s, t-Path for any ε > 0.

Proof. Suppose Bicriteria s, t-Path has a
O(nmin{λ,χ}−1−ε) time algorithm. We use this
algorithm to obtain a fast algorithm for k-Sum,
contradicting SETH by Theorem 1.1. On a given
input (Z1, . . . , Zk, T) of k-Sum on n items, for
τ := min{λ, χ} − 1 we construct the instance
(G̃, s, t, L, C) described above. Then G̃ is a directed
acyclic graph with τ + 1 = min{λ, χ} different
edge-lengths and edge-costs {0, B0, B1, . . . , Bτ−1}.
Moreover, due to Lemmas 4.2 and 4.3, there are
z1 ∈ Z1, . . . , zk ∈ Zk summing to T iff G̃ has a feasible
s, t-path. Thus, we can use our assumed Bicriteria
s, t-Path algorithm on (G̃, s, t, L, C) to solve the given
k-Sum instance. As G̃ has O(nB) vertices and edges,
where B = dT 1/τe, an O(nmin{λ,χ}−1−ε) algorithm
runs in time O((nB)τ−ε) = O(T 1−ε/τnτ) time on

(G̃, s, t, L, C). For δ := δ(ε/τ) from Theorem 1.1 and k
set to τ/δ, this running time is O(T 1−ε/τnδ(ε/τ)k) and
thus contradicts SETH by Theorem 1.1.

4.3 Solution paths with few vertices In this sec-
tion we investigate the complexity of Bicriteria s, t-
Path with respect to the number of internal vertices k
in a solution path. Assuming k is fixed and bounded,
we obtain a tight classification of the time complexity
for the problem, up to sub-polynomial factors, under
Conjecture 2.2.

Our starting point is the Exact k-Path problem:
Given an integer T ∈ {0, . . . ,W}, and a directed
graph G with edge weights, decide whether there is a
simple path in G on k vertices in which the sum of
the weights is exactly T . Thus, this is the ”exact”
variant of Bicriteria s, t-Path on graphs with a single
edge criteria, and no source and target vertices. The
Exact k-Path problem can be solved in Õ(nd(k+1)/2e)
time by a “meet-in-the-middle” algorithm [4], where
the Õ(·) notation suppresses poly-logarithmic factors
in W . It is also known that Exact k-Path has no
Õ(nd(k+1)/2e−ε) time algorithm, for any ε > 0, unless
the k-Sum conjecture is false [4]. We will show how
to obtain similar bounds for Bicriteria s, t-Path by
implementing a very efficient reduction between the two
problems.

To show that Exact k-Path can be used to solve
Bicriteria s, t-Path, we will combine multiple ideas.
The first is the observation that Exact k-Path can
easily solve the Exact Bicriteria k-Path problem, a
variant which involves bicriteria edge weights: Given
a pair of integers (T1, T2), and a directed graph G
with two edge weight function w1(·) and w2(·), decide
whether there is a simple path in G on k vertices
in which the sum of the wi-weights is exactly Ti for
i ∈ {1, 2}.

Lemma 4.5. There is an O(n2) time reduction that
reduces an instance of Exact Bicriteria k-Path with
edge weights in {0, 1, . . . ,W}2 to an instance of Exact
k-Path with edge weights in {0, 1, . . . , 2kW 2 +W}.

Proof. Define a mapping of a pairs in {0, 1, . . . ,W}2
to single integers {0, . . . , 2kW 2 + W} by setting
f(w1, w2) = w2+w1 ·2kW for each w1, w2 ∈ {0, . . . ,W}.
Observe that for any k pairs (w1

1, w
1
2), . . . , (wk1 , w

k
2),

we have (
∑k
i=1 w

i
1 = T1 ∧

∑k
i=1 w

i
2 = T2) iff∑k

i=1 f(wi1, w
i
2) = f(T1, T2). Therefore, given a graph

as in the statement, we can map each pair of edge
weights into a single edge weight, thus reducing to Ex-
act k-Path without changing the answer.

The next and more difficult step is to reduce Bicri-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited50

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

teria s, t-Path to Exact Bicriteria k-Path. This
requires us to reduce the question of whether there is
a path of length and cost at most L and C, to ques-
tions about the existence of paths with length and cost
equalling exactly T1 and T2. A naive approach would
be to check if there is a path of exact length and cost
(T1, T2) for all values T1 ≤ L and T2 ≤ C. Such a reduc-
tion will incur a very large O(LC) overhead. We will

improve this to O(logO(1) (L+ C)).
In the remainder of this section, let W be the

maximum of L and C. The idea behind our reduction
is to look for the smallest x, y ∈ [logW] such that if
we restrict all edge lengths ` to the x most significant
bits of `, and all edge costs c to the y most significant
bits of c, then there is a path that satisfies the threshold
constraints with equality. To do this, we can check for
every pair x, y, whether after restricting edge lengths
and costs, there is a k-path with total weight exactly
equal to the restriction of the vector (L,C), possibly
minus the carry from the removed bits. Since the carry
from summing k numbers can be at most k, we will
not have to check more than O(k2) “targets” per pair
x, y ∈ [logW].

To implement this formally, we will need the fol-
lowing technical lemma. The proof uses a bit scaling
technique that is common in approximation algorithms.
Previously, tight reductions that use this technique were
presented by Vassilevska and Williams [113] (in a very
specific setting), and by Nederlof et al. [95] (who proved
a general statement). We will need a generalization of
the result of [95] in which we introduce a parameter k,
and show that the overhead depends only on k and W ,
and does not depend on n.

Lemma 4.6. Let U be a universe of size n with two
weight functions w1, w2 : U → {0, . . . ,W}, and let
T1, T2 ∈ {0, . . . ,W} be two integers. Then, there
is a polynomial time algorithm that returns a set of

weight functions w
(i)
1 , w

(i)
2 : U → {0, . . . ,W} and

integers T
(i)
1 , T

(i)
2 ∈ {0, . . . ,W}, for i ∈ [q] and q =

O(k2 log2W), such that: For every subset X ⊆ U of
size |X| = k it holds that (w1(X) ≤ T1 ∧ w2(X) ≤ T2)

iff (w
(i)
1 (X) = T

(i)
1 ∧ w

(i)
2 (X) = T

(i)
2) for some i ∈ [q].

Proof. We will assume that a number in {0, . . . ,W} is
encoded in binary with logW bits in the standard way.
For numbers a ∈ {0, . . . ,W} and x ∈ [logW] we let
[a]x be the x-bit number that is obtained by taking
the x most significant bits in a. Alternatively, [a]x =
ba/2logW−xc. In what follows, we will construct weight
functions and targets for each dimension independently
and in a similar way. We will present the construction
for the w1’s.

First, we add the weight functions w
(i)
1 = w1, with

target T
(i)
1 = L−a for any a ∈ [4k]. Call these the initial

(i)’s. Then, for any x ∈ [logW] and a ∈ [2k], we add the

weight function w
(i)
1 (e) = [w1(e)]x, and set the target

to T
(i)
1 = [L]x − k − a. This defines O(k logW) new

functions and targets, and we will show below that for
any subset X ⊆ U we have that w1(X) ≤ L iff for some

i we have w
(i)
1 (X) = T

(i)
1 . Then, we apply the same

construction for w2, and take every pair of constructed
functions and targets, to obtain a set of O(k2 log2W)
functions and targets that satisfy the required property.

The correctness will be based on the following
bound, which follows because when summing k numbers
the carry from removed least significant bits cannot
be more than k. For any x ∈ [logW], a1, . . . , ak ∈
{0, . . . ,W}, k∑

j=1

aj

x

− k ≤
k∑
j=1

[aj]x ≤

 k∑
j=1

aj

x

Fix some X ⊂ U . For the first direction, assume

that for some i, w
(i)
1 (X) = T

(i)
1 . If it is one of the

initial (i)’s, then we immediately have that w1(X) ≤ L.
Otherwise, let X = {v1, . . . , vk}, then we get that

[w1(X)]x =

 k∑
j=1

w1(vj)

x

≤
k∑
j=1

[w1(vj)]x + k

= w
(i)
1 (X) + k

= T
(i)
1 + k ≤ [L]x − 1

which implies that w1(X) < L.
For the other direction, assume that w1(X) < L. If

w1(X) ≥ L− 4k then for one of the initial (i)’s we will

have w
(i)
1 (X) = w1(X) = L−a = T

(i)
1 for some a ∈ [4k].

Otherwise, let x be the smallest integer in [logW] for
which [w1(X)]x ≤ [L]x − k. Because x is the smallest,
we also know that [w1(X)]x ≥ [L]x − 2k. Therefore,

w
(i)
1 (X) =

k∑
j=1

[w1(vj)]x ≤

 k∑
j=1

w1(vj)

x

≤ [L]x − k

and

w
(i)
1 (X) =

k∑
j=1

[w1(vj)]x ≥

 k∑
j=1

w1(vj)

x

−k ≥ [L]x−3k.

Therefore, for some a ∈ [2k], we will have that

w
(i)
1 (X) = [L]x − k − a = T

(i)
1 .

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited51

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

We are now ready to present the main reduction
of this section. Let (G, s, t, L, C) be a given instance
of Bicriteria s, t-Path. Our reduction follows three
general steps that proceed as follows:

1. Color coding: At the first step, we use the deran-
domized version of the color coding technique [11]
to obtain p′ = O(lg n) partitions of the vertex set

V (G) \ {s, t} into k classes V
(α)
1 , . . . , V

(α)
k , α ∈ [p′],

with the following property: If there is a feasible
s, t-path P with k internal vertices in G, we are
guaranteed that for at least one partition we will

have |V (P) ∩ V (α)
i | = 1 for each i ∈ [k]. By trying

out all possible O(1) orderings of the classes in each
partition, we can assume that if P = s, v1, . . . , vk, t,

then V (P) ∩ V (α)
i = {vi} for each i ∈ [k].

Let p denote the total number of ordered
partitions. For each ordered partition α ∈ [p],
we remove all edges between vertices inside the

same class, and all edges (u, v) where u ∈ V
(α)
i ,

v ∈ V
(α)
j , and j 6= i + 1. We also remove all

edges from s to vertices not in V
(α)
1 , and all edges

to t from vertices not in Vk. Let Gα denote the
resulting graph, with α ∈ [p] for p = O(lg n).

2. Removal of s and t: Next, we next remove s and

t from each Gα. For every vertex v ∈ V
(α)
1 , if v

was connected with an edge from s of length `
and cost c, then we remove this edge and add this
length ` and cost c to all the edges outgoing from

v. Similarly, we remove the edge from v ∈ V (α)
k to

t, and add its length and cost to all edges ingoing

to v. Finally, any vertex in V
(α)
1 that was not

connected with an edge from s is removed from

the graph, and every vertex in V
(α)
k that was not

connected to t is removed.

3. Inequality to equality reduction: Now, for each Gα,
we apply Lemma 4.6 with the universe U being the
edges of Gα, and w1, w2 : U → {0, . . . ,W} being
the lengths and costs of the edges. We get a set of
q = O(log2W) weight functions and targets. For
β ∈ [q], let Gα,β be the graph obtained from G by
replacing the lengths and costs with new functions

w
(β)
1 , w

(β)
2 . The final Exact Bicriteria k-Path

is then constructed as (Gα,β , T
(β)
1 , T

(β)
2).

Thus, we reduce our Bicriteria s, t-Path instance
to at most O(log n log2W) instances of Exact Bicri-
teria k-Path. Note that if G contains a feasible s, t-
path P = s, v1, . . . , vk, t of length `P ≤ L and cost

cP , then by correctness of the color coding technique,
there is some α ∈ [p] such that Gα contains P with

V (P)∩V (α)
i = {vi} for each i ∈ [k]. Moreover, the total

weight of v1, . . . , vk in Gα is (`P , cP). By Lemma 4.6,
there is some β ∈ [q] for which the total weight of

v1, . . . , vk in Gα,β is (T
(β)
1 , T

(β)
2). Thus, P is a solution

for (Gα,β , T
(β)
1 , T

(β)
2). Conversely, by the same line of

arguments, any solution path for some Exact Bicri-

teria k-Path instance (Gα,β , T
(β)
1 , T

(β)
2) corresponds

to a feasible s, t-path in G with k internal vertices.
Thus, we have obtained a reduction from Bicrite-

ria s, t-Path to Exact Bicriteria k-Path. Com-
bining this with reduction from Exact Bicriteria k-
Path to Exact k-Path given in Lemma 4.5, we obtain
the following.

Lemma 4.7. Fix k ≥ 1, and let (G, s, t, L, C) be an in-
stance of Bicriteria s, t-Path where G has n vertices.
Set W = max{L,C}. Then one can determine whether
(G, s, t, L, C) has a solution with k internal vertices by
solving O(log n log2W) instances of Exact k-Path on
graphs with O(n) vertices and edge weights bounded by
W 2.

Corollary 4.1. There is an algorithm solving Bicri-
teria s, t-Path in Õ(nd(k+1)/2e) time.

Proof. By Lemma 4.7, an instance of Bicriteria s, t-
Path can be reduced to O(log n log2W) instances of
Exact k-Path. Using the algorithm in [4], each
of these Exact k-Path instances can be solved in
Õ(nd(k+1)/2e) time.

We next turn to proving our lower bound for
Bicriteria s, t-Path. For this, we show a reduction in
the other direction, from Exact k-Path to Bicriteria
s, t-Path.

Lemma 4.8. Let ε > 0. There is no Õ(nd(k+1)/2e−ε)
time algorithm for Bicriteria s, t-Path unless the k-
Sum conjecture (Conjecture 2.2) is false.

Proof. We show a reduction from Exact k-Path to
Bicriteria s, t-Path. This proves the claim, as it
is known that an Õ(nd(k+1)/2e−ε) time algorithm for
Exact k-Path, for any ε > 0, implies that the k-
Sum conjecture is false [4]. Let (G,T) be an instance of
Exact k-Path, where G is an edge-weighted graph and
T ∈ {0, . . . ,W} is the target. We proceed as follows: As
in the upper-bound reduction, we first apply the color-
coding technique [11] to obtain p = O(log n) vertex-

partitioned graphs G1, . . . , Gp, V (Gα) = V
(α)
1] · · ·]

V
(α)
k for each α ∈ [p], such that G has a solution path

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited52

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

P = v1, . . . , vk iff for at least one graph Gα we have

V (P) = V
(α)
i ∩ {vi} for each i ∈ [k].

We then construct a new graph Hα from each graph
Gα as follows: We first remove from Gα all edges

inside the same vertex class V
(α)
i , and all edges between

vertices in V
(α)
i and vertices in V

(α)
j with j 6= i + 1.

We then replace each remaining edge with weight x ∈
{0, . . . ,W} in Gα with an edge with length x and cost
W −x in Hα. Then, we add vertices s, t to Hα, connect

s to all the vertices in V
(α)
1 , connect all the vertices in

V
(α)
k to t, and set the length and cost of all these edges

to 0. To complete the proof, we argue that G has a
simple path of weight exactly T iff some Hα contains a
feasible s, t-path for L = T and C = (k − 1)W − T .

Suppose P = v1, . . . , vk is a simple path in G with
w(P) = T . Then there is some α ∈ [p] such that P is

a path in Gα with V (P) = V
(α)
i ∩ {vi} for each i ∈ [k].

By construction of Hα, P ′ = s, v1, . . . , vk, t is a path in
Hα, and it has total length `(P ′) = w(P) = T ≤ L, and
total cost c(P ′) = (k−1)W−w(P) = (k−1)W−T ≤ C.
Conversely, if P ′ = s, v1, . . . , vk, t is a feasible s, t-
path in some Hα with length `(P ′) ≤ L and cost
c(P ′) ≤ C, then P = v1, . . . , vk is path in G. We
know that the weight of P in G is bounded by above
by w(P) = `(P ′) ≤ L = T . Furthermore, we have
(k − 1)W − w(P) = (k − 1)W − `(P ′) = c(P ′) ≤ C =
(k − 1)W − T , implying that w(P) ≥ T . These two
inequalities imply w(P) = T , and thus P is a solution
for (G,T).

Thus, we can solve (G,T) by solving O(log n)
instances of Bicriteria s, t-Path. This means that
an Õ(nd(k+1)/2e−ε) algorithm for Bicriteria s, t-Path,
for ε > 0, would imply an algorithm with the same
running time for Exact k-Path. By the reductions
in [4], this refutes the k-Sum conjecture.

Theorem 1.4 now immediately follows from the
upper and lower bounds given in Corollary 4.1 and
Lemma 4.8 for finding a solution for a Bicriteria s, t-
Path instance that has k internal vertices.

References

[1] Amir Abboud, Arturs Backurs, Thomas Dueholm
Hansen, Virginia Vassilevska Williams, and Or Za-
mir. Subtree isomorphism revisited. In Proc. of the
27th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1256–1271, 2016.

[2] Amir Abboud, Arturs Backurs, and Virginia Vas-
silevska Williams. Tight hardness results for LCS and
other sequence similarity measures. In Proc. of the 56th
Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 59–78, 2015.

[3] Amir Abboud and Greg Bodwin. The 4/3 additive
spanner exponent is tight. In Proc. of the 48th Annual
ACM SIGACT Symposium on Theory of Computing
(STOC), pages 351–361, 2016.

[4] Amir Abboud and Kevin Lewi. Exact weight sub-
graphs and the k-Sum conjecture. In Proc. of the 40th
International Colloquium on Automata, Languages,
and Programming (ICALP), pages 1–12, 2013.

[5] Amir Abboud, Kevin Lewi, and R. Ryan Williams.
Losing weight by gaining edges. In Proc. of the 22th
annual European Symposium on Algorithms (ESA),
pages 1–12, 2014.

[6] Amir Abboud and Virginia Vassilevska Williams. Pop-
ular conjectures imply strong lower bounds for dynamic
problems. In Proc. of the 55th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS),
pages 434–443, 2014.

[7] Amir Abboud, Virginia Vassilevska Williams, and
Huacheng Yu. Matching triangles and basing hard-
ness on an extremely popular conjecture. In Proc. of
the 47th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 41–50, 2015.

[8] Amir Abboud, R. Ryan Williams, and Huacheng Yu.
More applications of the polynomial method to al-
gorithm design. In Proc. of the 26th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 218–230, 2015.

[9] Amir Abboud, Virginia Vassilevska Williams, and
Oren Weimann. Consequences of faster alignment of
sequences. In Proc. of the 41st International Col-
loquium on Automata, Languages, and Programming
(ICALP), pages 39–51, 2014.

[10] Noga Alon, Michael Krivelevich, Eldar Fischer, and
Mario Szegedy. Efficient testing of large graphs. In
Proc. of the 40th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 656–666,
1999.

[11] Noga Alon, Raphael Yuster, and Uri Zwick. Color-
coding. Journal of the ACM, 42(4):844–856, 1995.

[12] Amihood Amir, Timothy M. Chan, Moshe Lewenstein,
and Noa Lewenstein. On hardness of jumbled indexing.
In Proc. of the 41st International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pages
114–125, 2014.

[13] Yash P. Aneja and Kunhiraman P.K. Nair. The
constrained shortest path problem. Naval Research
Logistics Quarterly, 25:549–553, 1978.

[14] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jussi
Määttä. Space–time tradeoffs for Subset Sum: An
improved worst case algorithm. In Proc. of the 40th
International Colloquium on Automata, Languages,
and Programming (ICALP), pages 45–56, 2013.

[15] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper
Nederlof. Subset Sum in the absence of concentration.
In Proc. of the 32nd International Symposium on
Theoretical Aspects of Computer Science (STACS),
pages 48–61, 2015.

[16] Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited53

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

Nederlof. Dense Subset Sum may be the hardest. In
Proc. of the 33rd Symposium on Theoretical Aspects of
Computer Science (STACS), pages 13:1–13:14, 2016.

[17] Arturs Backurs and Piotr Indyk. Edit Distance Can-
not Be Computed in Strongly Subquadratic Time (un-
less SETH is false). In Proc. of the 47th Annual
ACM SIGACT Symposium on Theory of Computing
(STOC), pages 51–58, 2015.

[18] Arturs Backurs and Piotr Indyk. Which regular ex-
pression patterns are hard to match? In Proc. of
the 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 457–466, 2016.

[19] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt.
On the fine-grained complexity of empirical risk mini-
mization: Kernel methods and neural networks. arXiv
preprint arXiv:1704.02958, 2017.

[20] Marshall Ball, Alon Rosen, Manuel Sabin, and
Prashant Nalini Vasudevan. Average-case fine-grained
hardness. In Proc. of the 49th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), to ap-
pear, 2017.

[21] Marshall Ball, Alon Rosen, Manuel Sabin, and
Prashant Nalini Vasudevan. Proofs of useful work.
IACR Cryptology ePrint Archive, 2017:203, 2017.

[22] Nikhil Bansal, Shashwat Garg, Jesper Nederlof, and
Nikhil Vyas. Faster space-efficient algorithms for
Subset Sum, k-Sum and related problems. In Proc. of
the 49th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), to appear, 2017.

[23] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu.
Subquadratic algorithms for 3SUM. Algorithmica,
50(4):584–596, 2008.

[24] Luis Barba, Jean Cardinal, John Iacono, Stefan
Langerman, Aurélien Ooms, and Noam Solomon. Sub-
quadratic algorithms for algebraic generalizations of
3SUM. In Proc. of the 15th international Workshop
on Algorithms and Data Structures (WADS), pages 97–
108, 2017.

[25] Christopher Beck and Russell Impagliazzo. Strong
ETH holds for regular resolution. In Proc. of the
45th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 487–494, 2013.

[26] Anja Becker, Jean-Sébastien Coron, and Antoine Joux.
Improved generic algorithms for hard knapsacks. In
Proc. of 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pages 364–385, 2011.

[27] Felix A. Behrend. On sets of integers which contain no
three terms in arithmetical progression. Proceedings of
the National Academy of Sciences of the United States
of America, 32(12):331–332, 1946.

[28] Richard E. Bellman. Dynamic programming. Prince-
ton University Press, 1957.

[29] Huck Bennett, Alexander Golovnev, and Noah
Stephens-Davidowitz. On the quantitive hardness of
CVP. CoRR, abs/1704.03928, 2017.

[30] Arnab Bhattacharyya, Piotr Indyk, David P.
Woodruff, and Ning Xie. The complexity of lin-

ear dependence problems in vector spaces. In Proc. of
the 1st ACM Conference on Innovations in Theoretical
Computer Science (ICS), pages 496–508, 2011.

[31] Ernest F Brickell and Andrew M Odlyzko. Cryptanal-
ysis: A survey of recent results. Proceedings of the
IEEE, 76(5):578–593, 1988.

[32] Karl Bringmann. Why walking the dog takes time:
Frechet distance has no strongly subquadratic algo-
rithms unless SETH fails. In Proc. of the 55th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 661–670, 2014.

[33] Karl Bringmann. A near-linear pseudopolynomial time
algorithm for Subset Sum. In Proc. of of the 28th An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1073–1084, 2017.

[34] Karl Bringmann, Allan Grønlund, and Kasper Green
Larsen. A dichotomy for regular expression member-
ship testing. In 58th IEEE Annual Symposium on
Foundations of Computer Science (FOCS 2017), pages
307–318. IEEE, 2017.

[35] Karl Bringmann and Marvin Künnemann. Quadratic
conditional lower bounds for string problems and dy-
namic time warping. In Proc. of the 56th Annual
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 79–97, 2015.

[36] Dirk Briskorn, Byung-Cheon Choi, Kangbok Lee,
Joseph Y.-T. Leung, and Michael Pinedo. Complexity
of single machine scheduling subject to nonnegative in-
ventory constraints. European Journal of Operational
Research, 207:605–619, 2010.

[37] Harry Buhrman, Bruno Loff, and Leen Torenvliet.
Hardness of approximation for knapsack problems.
Theory Comput. Syst., 56(2):372–393, 2015.

[38] Ayelet Butman, Peter Clifford, Raphaël Clifford,
Markus Jalsenius, Noa Lewenstein, Benny Porat, Ely
Porat, and Benjamin Sach. Pattern matching under
polynomial transformation. SIAM Journal on Com-
puting, 42(2):611–633, 2013.

[39] Chris Calabro, Russell Impagliazzo, and Ramamohan
Paturi. A duality between clause width and clause den-
sity for SAT. In Proc. of 21st Conference on Compu-
tational Complexity (CCC), pages 252–260, 2006.

[40] Chris Calabro, Russell Impagliazzo, and Ramamohan
Paturi. The complexity of satisfiability of small depth
circuits. In Proc. of the 4th International Workshop
on Parameterized and Exact Computation (IWPEC),
pages 75–85, 2009.

[41] Jean Cardinal, John Iacono, and Aurélien Ooms. Solv-
ing k-SUM using few linear queries. In Proc. of the 24th
Annual European Symposium on Algorithms (ESA),
pages 25:1–25:17, 2016.

[42] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo,
Ivan Mihajlin, Ramamohan Paturi, and Stefan Schnei-
der. Nondeterministic extensions of the strong ex-
ponential time hypothesis and consequences for non-
reducibility. In Proc. of the 7th ACM Conference on
Innovations in Theoretical Computer Science (ITCS),
pages 261–270, 2016.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited54

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

[43] David Cattanéo and Simon Perdrix. The parameter-
ized complexity of domination-type problems and ap-
plication to linear codes. In Proc. of the 11th Interna-
tional Conference on Theory and Applications of Mod-
els of Computation (TAMC), pages 86–103, 2014.

[44] Timothy M. Chan and Moshe Lewenstein. Clustered
integer 3SUM via additive combinatorics. In Proc.
of the 47th annual ACM Symposium on Theory Of
Computing (STOC), pages 31–40, 2015.

[45] Ashok K. Chandra, Merrick L. Furst, and Richard J.
Lipton. Multi-party protocols. In Proc. of the 15th
annual ACM Symposium on Theory Of Computing
(STOC), pages 94–99, 1983.

[46] Benny Chor and Ronald R. Rivest. A knapsack-type
public key cryptosystem based on arithmetic in finite
fields. IEEE Transactions on Information Theory,
34(5):901–909, 1988.

[47] Don Coppersmith and Shmuel Winograd. Matrix
multiplication via arithmetic progressions. Journal of
symbolic computation, 9(3):251–280, 1990.

[48] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel
Marx, Jesper Nederlof, Yoshio Okamoto, Ramamohan
Paturi, Saket Saurabh, and Magnus Wahlström. On
problems as hard as CNF-SAT. ACM Transactions on
Algorithms, 12(3):41, 2016.

[49] Evgeny Dantsin and Edward A. Hirsch. Worst-case
upper bounds. In Handbook of Satisfiability, pages 403–
424. 2009.

[50] Holger Dell and Dieter Van Melkebeek. Satisfia-
bility allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In Proc. of the
42th annual ACM Symposium on Theory Of Comput-
ing (STOC), pages 251–260, 2010.

[51] Itai Dinur, Orr Dunkelman, Nathan Keller, and
Adi Shamir. Efficient dissection of composite prob-
lems, with applications to cryptanalysis, knapsacks,
and combinatorial search problems. In Proc. of the
32nd Annual Conference on Advances in Cryptology
(CRYPTO), pages 719–740, 2012.

[52] Michael Elkin. An improved construction of
progression-free sets. In Proc. of the 21st An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 886–905, 2010.

[53] Funda Ergun, Rakesh Sinha, and Lisa Zhang. An im-
proved FPTAS for the restricted shortest path prob-
lem. Information Processing Letters, 83:287–291, 2002.

[54] Jeff Erickson. New lower bounds for convex hull prob-
lems in odd dimensions. SIAM Journal on Computing,
28(4):1198–1214, 1999.

[55] Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov,
and Saket Saurabh. Almost optimal lower bounds
for problems parameterized by clique-width. SIAM J.
Comput., 43(5):1541–1563, 2014.

[56] Ari Freund. Improved subquadratic 3SUM. Algorith-
mica, 77(2):440–458, 2017.

[57] Anka Gajentaan and Mark H. Overmars. On a class
of O(n2) problems in computational geometry. Com-
putational Geometry, 5(3):165–185, 1995.

[58] Jiawei Gao, Russell Impagliazzo, Antonina Kolokolova,
and R. Ryan Williams. Completeness for first-order
properties on sparse structures with algorithmic appli-
cations. In Proc. of the 28th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 2162–
2181, 2017.

[59] Michael R. Garey and David S. Johnson. Computers
and Intractability: A Guide to the Theory of NP
Completeness. W.H. Freeman & Co., 1976.

[60] Rosario G. Garroppo, Stefano Giordano, and Luca Ta-
vanti. A survey on multi-constrained optimal path
computation: Exact and approximate algorithms.
Computer Networks, 54:3081–3107, 2010.

[61] Omer Gold and Micha Sharir. Improved bounds for
3SUM, k-SUM, and linear degeneracy. In Proc. of
the 25th annual European Symposium on Algorithms
(ESA), pages 42:1–42:13, 2017.

[62] Isaac Goldstein, Tsvi Kopelowitz, Moshe Lewenstein,
and Ely Porat. How hard is it to find (honest)
witnesses? In Proc. of the 24th annual European
Symposium on Algorithms (ESA), pages 45:1–45:16,
2016.

[63] Pierre Hansen. Bicriterion path problems. In Proc.
of the 3rd confernece om Multiple Criteria Decision
Making Theory and Application, pages 109–127, 1980.

[64] Refael Hassin. Approximation schemes for the re-
stricted shortest path problem. Mathematics of Op-
erations Research, 17:36–42, 1992.

[65] Johan H̊astad and Avi Wigderson. Simple analysis of
graph tests for linearity and PCP. Random Structures
& Algorithms, 22(2):139–160, 2003.

[66] Kaj Holmberg and Di Yuan. A multicommodity
network-flow problem with side constraints on paths
solved by column generation. INFORMS Journal on
Computing, 15(1):42–57, 2003.

[67] Ellis Horowitz and Sartaj Sahni. Computing partitions
with applications to the knapsack problem. Journal of
the ACM, 21(2):277–292, 1974.

[68] Nick Howgrave-Graham and Antoine Joux. New
generic algorithms for hard knapsacks. In Proc. of
29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques (EURO-
CRYPT), pages 235–256, 2010.

[69] Russell Impagliazzo and Moni Naor. Efficient cryp-
tographic schemes provably as secure as subset sum.
Journal of cryptology, 9(4):199–216, 1996.

[70] Russell Impagliazzo and Ramamohan Paturi. On the
complexity of k-SAT. Journal of Computer and System
Sciences, 62(2):367 – 375, 2001.

[71] Russell Impagliazzo, Ramamohan Paturi, and Francis
Zane. Which problems have strongly exponential com-
plexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[72] Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR,
triangles. Algorithmica, 74(1):326–343, 2016.

[73] Hamid Jahanjou, Eric Miles, and Emanuele Viola. Lo-
cal reductions. In Proc. of the 42nd International Col-
loquium on Automata, Languages, and Programming

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited55

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

(ICALP), pages 749–760, 2015.
[74] Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó

Schlotter. Bin packing with fixed number of bins
revisited. J. Comput. Syst. Sci., 79(1):39–49, 2013.

[75] Klaus Jansen, Felix Land, and Kati Land. Bounding
the running time of algorithms for scheduling and
packing problems. SIAM J. Discrete Math., 30(1):343–
366, 2016.

[76] Hans C. Joksch. The shortest route problem with
constraints. Journal of Mathematical Analysis and
Applications, 14:191–197, 1966.

[77] Allan Grønlund Jørgensen and Seth Pettie. Three-
somes, degenerates, and love triangles. In Proc. of
the 55th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 621–630, 2014.

[78] Richard M. Karp. Reducibility among combinatorial
problems. In Complexity of computer computations,
pages 85–103. Springer, 1972.

[79] Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Knapsack problems. Springer, 2004.

[80] James King. A survey of 3SUM-hard problems. 2004.
[81] Tomasz Kociumaka, Solon P. Pissis, and Jakub Ra-

doszewski. Parameterizing PWM-and profile-matching
and knapsack by the feasible-weight solutions count.
arXiv:1604.07581, 2016.

[82] Konstantinos Koiliaris and Chao Xu. A faster pseu-
dopolynomial time algorithm for Subset Sum. In Proc.
of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1062–1072, 2017.

[83] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher
lower bounds from the 3SUM conjecture. In Proc. of
the 27th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1272–1287, 2016.

[84] Kangbok Lee, Byung-Cheon Choi, Joseph Y.-T. Leung,
and Michael L. Pinedo. Approximation algorithms for
multi-agent scheduling to minimize total weighted com-
pletion time. Information Processing Letters, 109:913–
917, 2009.

[85] Andrea Lincoln, Virginia Vassilevska Williams,
Joshua R. Wang, and R. Ryan Williams. Determin-
istic time-space trade-offs for k-SUM. In Proc. of the
43rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP), pages 58:1–58:14,
2016.

[86] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh.
Known algorithms on graphs on bounded treewidth
are probably optimal. In Proc. of the 27th 2nd An-
nual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 777–789, 2011.

[87] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh.
Lower bounds based on the exponential time hypothe-
sis. Bulletin of the EATCS, 105:41–72, 2011.

[88] Daniel Lokshtanov and Jesper Nederlof. Saving space
by algebraization. In Proc. of the 42nd Annual
ACM SIGACT Symposium on Theory of Computing
(STOC), pages 321–330, 2010.

[89] Dean H. Lorenz and Ariel Orda. QoS routing on
networks with uncertain parameters. IEEE/ACM

Transactions on Networking, 6:768–778, 1998.
[90] Dean H. Lorenz and Danny Raz. A simple efficient

approximation scheme for the restricted shortest path
problem. Operations Research Letters, 28:213–219,
2001.

[91] Silvano Martello and Paolo Toth. Knapsack problems:
algorithms and computer implementations. John Wiley
& Sons, Inc., 1990.

[92] Ralph Merkle and Martin Hellman. Hiding information
and signatures in trapdoor knapsacks. IEEE transac-
tions on Information Theory, 24(5):525–530, 1978.

[93] Joseph Naor, Hadas Shachnai, and Tami Tamir. Real-
time scheduling with a budget. Algorithmica, 47:343–
364.

[94] Jesper Nederlof. A short note on Merlin-Arthur pro-
tocols for subset sum. Information Processing Letters,
118:15–16, 2017.

[95] Jesper Nederlof, Erik Jan van Leeuwen, and Ruben
van der Zwaan. Reducing a target interval to a
few exact queries. In Proc. of the 37th international
symposium on Mathematical Foundations of Computer
Science (MFCS), pages 718–727, 2012.

[96] Kevin O’Bryant. Sets of integers that do not contain
long arithmetic progressions. Electronic Journal of
Combinatorics, 18(1):P59, 2011.

[97] Andrew M. Odlyzko. The rise and fall of knapsack
cryptosystems. Cryptology and computational number
theory, 42:75–88, 1990.

[98] Mihai Pătraşcu and Ryan Williams. On the possibility
of faster SAT algorithms. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algo-
rithms, pages 1065–1075. SIAM, 2010.

[99] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks,
and Francis Zane. An improved exponential-time
algorithm for k-SAT. Journal of the ACM, 52(3):337–
364, 2005.

[100] David Pisinger. Dynamic programming on the word
RAM. Algorithmica, 35(2):128–145, 2003.

[101] David Pisinger. Where are the hard knapsack prob-
lems? Computers & Operations Research, 32(9):2271–
2284, 2005.

[102] Mihai Pǎtraşcu. Towards polynomial lower bounds for
dynamic problems. In Proc. of the 42nd Annual ACM
Symposium on Theory Of Computing (STOC), pages
603–610, 2010.

[103] Andrea Raith and Matthias Ehrgott. A comparison
of solution strategies for biobjective shortest path
problems. Computers & OR, 36(4):1299–1331, 2009.

[104] Liam Roditty and Virginia Vassilevska Williams. Fast
approximation algorithms for the diameter and ra-
dius of sparse graphs. In Proc. of the 45th Annual
ACM SIGACT Symposium on Theory of Computing
(STOC), pages 515–524, 2013.

[105] Dvir Shabtay, Kfir Arviv, Yael Edan, and Helman
Stern. A combined robot selection and schedul-
ing problem for flow-shops with no-wait restrictions.
Omega, 43:96–107, 2014.

[106] Adi Shamir. A polynomial-time algorithm for break-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited56

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

ing the basic Merkle-Hellman cryptosystem. IEEE
transactions on information theory, 30(5):699–704,
1984.

[107] Emanuele Viola. The communication complexity of
addition. Combinatorica, 35(6):703–747, 2015.

[108] Joshua R. Wang. Space-efficient randomized algo-
rithms for k-SUM. In Proc. of the 22th annual Euro-
pean Symposium on Algorithms (ESA), pages 810–829,
2014.

[109] Arthur Warburton. Approximation of pareto optima
in multiple-objective, shortest-path problems. Opera-
tions Research, 35(1):70–79, 1987.

[110] R. Ryan Williams. A new algorithm for optimal 2-
constraint satisfaction and its implications. Theoretical
Computer Science, 348(2–3):357–365, 2005.

[111] R. Ryan Williams and Huacheng Yu. Finding orthog-
onal vectors in discrete structures. In Proc. of the
25th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 1867–1877, 2014.

[112] Virginia Vassilevska Williams. Hardness of easy prob-
lems: basing hardness on popular conjectures such as
the strong exponential time hypothesis (invited talk).
In LIPIcs-Leibniz International Proceedings in Infor-
matics, volume 43, 2015.

[113] Virginia Vassilevska Williams and R. Ryan Williams.
Finding, minimizing, and counting weighted sub-
graphs. In Proc. of the 41st Annual ACM Sympo-
sium on Theory Of Computing (STOC), pages 455–
464, 2009.

[114] Gerhard J. Woeginger. Open problems around
exact algorithms. Discrete Applied Mathematics,
156(3):397–405, 2008.

[115] O. Younis and S. Fahmy. Constraint-based routing
in the internet: Basic principles and recent research.
IEEE Communications Surveys and Tutorials, 5(1):2–
13, 2003.

[116] U. Zimmermann and M.E. Lübbecke. Computer aided
scheduling of switching engines. In Willi Jäger and
Hans-Joachim Krebs, editors, Mathematics — Key
Technology for the Future: Joint Projects between
Universities and Industry, pages 690–702. Springer
Berlin Heidelberg, 2003.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited57

D
ow

nl
oa

de
d

10
/1

4/
20

 to
 2

4.
61

.9
.5

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 16
 17

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryList_V1
 qi2base

