
Improved Algorithms for Edit Distance and LCS: Beyond Worst Case

Mahdi Boroujeni∗ Masoud Seddighin† Saeed Seddighin‡

Abstract

Edit distance and longest common subsequence are among

the most fundamental problems in combinatorial optimiza-

tion. Recent developments have proven strong lower bounds

against subquadratic time solutions for both problems.

Moreover, the best approximation factors for subquadratic

time solutions have been limited to 3 for edit distance and

super constant for longest common subsequence. Improved

approximation algorithms for these problems1 are some of

the biggest open questions in combinatorial optimization. In

this work, we present improved algorithms for both edit dis-

tance and longest common subsequence. The running times

are truly subquadratic, though we obtain 1 + o(1) approxi-

mate solutions for both problems if the input satisfies a mild

condition. In this setting, first, an adversary chooses one of

the input strings. Next, this string is perturbed by a random

procedure, and then the adversary chooses the second string

after observing the perturbed one.

1 Introduction

Distance similarity measures are classic and well-studied
problems in computer science. The notable examples
are edit distance (ED) and longest common subsequence
(LCS), which have been proposed to capture the notion
of similarity for strings. These problems find their
applications in various contexts, such as computational
biology, text processing, compiler optimization, data
analysis, image analysis, etc. Therefore, both edit
distance and longest common subsequence have been
subject to a plethora of studies in the past few decades
(see e.g. [2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18,
20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 42, 44, 45, 48, 53, 54, 55, 56]).

Edit distance is defined on two strings s and s and
seeks the smallest number of character insertions, char-
acter deletions, and character substitutions to transform
s into s. While in edit distance the goal is to make a
transformation, longest common subsequence asks for
the largest string that appears as a subsequence in both

∗Sharif University of Technology
†Institute for Research in Fundamental Sciences (IPM), School

of Computer Science
‡Harvard University
11 + ε approximation for ED or subpolynomial approximation

for LCS in truly subquadratic time.

s and s. Both problems, almost universally, have been
used as textbook examples of dynamic programming.

Although the quadratic time solutions for ED and
LCS have been known for many decades, no substan-
tial improvement was made to the algorithms. Apart
from the logarithmic improvements of [45], not much
was known for any of the problems in the worst case.
The breakthroughs of Backurs and Indyk [13], Abboud,
Backurs, and Williams [2], and Bringmann and Kunne-
mann [23] explain this failure. They show that a truly
subquadratic time solution for either ED or LCS refutes
a widely believed conjecture2.

Approximate algorithms have also been persistently
studied for the two problems. For edit distance, a series
of works [44], [15], [16], and [12] improve the approxima-
tion factor culminating in the seminal work of Andoni,
Krauthgamer, and Onak [11] that finally obtains a poly-
logarithmic approximation in near-linear time. Recent
developments also answer the long-standing open ques-
tion of whether a constant approximation factor can be
obtained for ED in truly subquadratic time: first a quan-
tum solution [17], next a breakthrough algorithm [24]
obtaining constant factor with a classic computer, and
finally near-linear time solutions for far strings [41, 50]3.
All these algorithms are based on a simple concept: edit
distance satisfies triangle inequality, and thus, by los-
ing a constant factor in the approximation, we can im-
ply bounds on the edit distance between two strings
whose distances from a fixed string are known. Al-
though the hope is to improve the approximation factor
to 2 + ε [40, 52], it seems quite unlikely that triangle in-
equality alone can be used to obtain significantly better
bounds. The question of whether this bound can be im-
proved beyond the current techniques is often discussed
and raised as an important open question by experts
in the community [6, 40, 49]. Our work makes a step
forward in this direction.

LCS has also received tremendous attention in re-
cent years [1, 4, 26, 35, 51, 52]. Only trivial solutions
were known for LCS until very recently: a 2 approximate
solution when the alphabet is 0/1 and an O(

√
n) ap-

2The strong exponential time hypothesis SETH states that SAT
cannot be solved in time O(2(1−ε)n) for any constant ε > 0.

3The running times are near-linear if the distance between the

two strings is Ω(n).

1601
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



proximate solution for general alphabets in linear time.
Both these bounds are recently improved by Hajiaghayi
et al. [35] and Rubinstein and Song [51]. Also, a signif-
icant improvement to the approximation algorithms of
LCS is given by Rubinstein et al. [52]. Despite recent
works, our understanding of approximation algorithms
for LCS is limited. Also, quite a few hardness results are
obtained for both edit distance and LCS [1, 4, 26]. Still,
it remains a mystery to what extent we can approxi-
mate LCS in truly subquadratic time with randomized
algorithms.

In this work, we present approximate solutions for
both problems that run in truly subquadratic time. We
prove that the approximation factor of our algorithms
is 1+o(1) if the instances adhere to our random setting.
In other words, if the input is not delicately engineered
to mislead our algorithm, then we expect to obtain a
1 + o(1) approximation of the solution. In our setting,
after an adversary chooses a string ŝ, the characters of
ŝ are displaced by a random procedure to generate the
first string s. The adversary then chooses the second
string s after observing s (along with changes made to
ŝ).

We note that our improvements are not obtained
because the random displacement changes the structure
of the solution; if an instance (t, t) is hard, the adversary
can choose ŝ = t as the first string, and after observing
the changes made to ŝ, modify t to obtain s in a way that
the solution of (t, t) remains a valid solution for (s, s) (by
rearranging the order of the characters). Rather, our
improvement is based on the fact that algorithm-specific
bad-instances are ruled out in our random setting. This
can be seen as practical solutions for typical (and not
necessarily worst-case) instances of ED and LCS.

1.1 Related Work. Closely related to the present
paper is the work of Kuszmaul [43] wherein the author
presents a constant factor approximation algorithm to
find the edit distance between a pseudo-random string
s and an adversarially constructed string s in sub-
quadratic time. The motivation behind their setting is
the case that the first string is generated independently
from a uniform distribution for which their running time
improves to (almost) linear. We remark that i.i.d. gen-
erated s is a special case of our random setting4, and
thus, our algorithm immediately obtains a 1 + o(1) ap-
proximation for this case. It is easy to verify that if
the first string s is relatively balanced5 the algorithm of

4If we rearrange the characters of an i.i.d. drawn ŝ, the
resulting string s would still be i.i.d. drawn from the same

distribution.
5The number of the occurrences of all symbols are roughly the

same

Kuszmaul et al. obtains constant factor approximation
in our setting in near linear time.

Furthermore, Andoni and Krauthgamer [10] study
the smoothed complexity of edit distance where two
binary strings are given as input by an adversary.
Each character then is perturbed with a probability p
with an additional condition that characters of a fixed
longest common subsequence change similarly in both
strings. Their work obtains an O(n1+ε) time algo-
rithm, which approximates the edit distance between
perturbed strings within a constant factor when p is
constant. One stark difference between our setting and
the setting of Andoni and Krauthgamer [10] is that our
setting only modifies one of the strings, and as such,
edge cases can still be constructed via a careful choice
of the second string. In the setting of Andoni and
Krauthgamer [10], however, random perturbation is ap-
plied to both strings, and therefore, many natural cases
are ruled out. For instance, in their setting, the longest
common subsequence of the two perturbed strings is at
least an Ω(p) fraction of the length of the strings with
high probability. In comparison, our setting is much
stronger: one can easily construct instances for which
the solution size is as small as 0 or as large as n for
both ED and LCS. Also, characters of the solution may
correspond to any subset of positions in the two strings.

To the best of our knowledge, no smoothed algo-
rithm has been proposed for longest common subse-
quence, and the current best bounds are limited to those
given for worst-case scenarios. For edit distance, there
are several works that obtain constant factor approxi-
mation in subquadratic or near-linear time in the worst-
case or under natural assumptions [10, 17, 41, 43, 50].
However, prior to our work, an approximation factor of
1 + o(1) for edit distance was not known even under
additional assumptions.

1.2 Preliminaries, Results, and Techniques. We
start by formally defining the problems and our setting.
In both ED and LCS, two strings are given as input.
We denote the input strings by s and s, respectively.
Also, for simplicity, we assume w.l.o.g that both of the
strings are of the same size n, though this assumption
is not an inherent barrier to any of our algorithms. The
edit distance between two strings is defined as follows:

1602
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



(t, t̄)

r e l e v a n t

s

n r e a e v t l

s̄

n h e a e t l p |lcs(s, s̄)| = 6

n r e a e v t l

n h e a e t l p

|ed(s, s̄)| = 3

e l e p h a n t

|lcs(t, t̄)| = 6

|ed(t, t̄)| = 3

Figure 1: In our setting, if an instance (t, t) is hard, the adversary can choose ŝ = t as the first string, and after
observing the changes made to ŝ, modify t to obtain s in a way that the solution of (t, t) remains a valid solution
for (s, s).

edit distance

input: Two strings s and s, both of size n.

solution: The smallest set of operations that we
need to perform on s to transform it into s. We are
allowed to (i) add a character at any position, (ii)
remove a character, and (iii) change a character.
Each operation incurs a cost of 1.

For instance, if s = elephant and s = relevant, we can
transform s into s by performing three operations as
follows:

elephant
insert ’r’ at position 0
=====================⇒ relephant

replace ’p’ with ’v’ at position 4
=====================⇒ relevhant

delete ’h’ at position 5
=====================⇒ relevant.

Therefore, |ed(elephant, relevant)| = 3. The other
measure that we are interested in is the longest common
subsequence. For two strings s and s, lcs(s, s) is defined
as the longest sequence of (not necessarily consecutive)
characters that the two strings share.

longest common subsequence

input: Two strings s and s, both of size n.

solution: The longest string s that appears as a
subsequence in both s and s.

As an example, when s = elephant and s = relevant,
both strings have eleant as a subsequence and thus
|lcs(elephant, relevant)| = 6.

In our setting, we assume that the adversary first
provides a string ŝ and s is constructed from ŝ via a
random procedure. Our main focus is on the case that
s is a random displacement of ŝ, or in other words,
characters of ŝ are reshuffle by a permutation uniformly
drawn from the space of all permutations.

After s is realized and observed by the adversary,
she provides another string s as the second input of the

problem. Notice that this comes with full knowledge of
s, ŝ, and our algorithm6. An example of this process is
shown in Figure 2.

Before we state our results and techniques, let us
further explain how our setting compares to the worst-
case and random settings. First, we would like to point
out that our setting does not oversimplify the problem.
To see this, consider a pair of strings t and t for which
computing/approximating LCS is desirable. If we start
with ŝ = t in our setting setting, s would consist of
characters of s shuffled by a random permutation. Now,
with an appropriate displacement of characters of t,
one can construct a string s such that the solution of
(t, t) remains a (not necessarily optimal) solution (but
shuffled) for s and s.

Our setting deviates from the average or random
setting in which both strings are generated/modified
with random procedures. For instance, if the characters
of each string are randomly drawn from a certain
distribution over the alphabet, then we expect that the
LCS or ED of the two strings follows from some pattern.
In particular, for LCS, we expect that the positions of
solution characters are distributed almost evenly over
the strings. Indeed this is not the case for our setting
as the adversary chooses s after observing s. In other
words, if we show the longest common subsequence of
the two strings by a matching from characters of s to the
characters of s, the position of the edges in the solution
is as unpredictable as the one for the worst-case setting.

Our framework is inspired by recent developments
for edit distance [17, 24] and LCS [52]. In particular,
the algorithm of [24] is based on a 3-step framework7:

Step 0 (window-compatible solutions): In this
step, they construct a set of windows for both strings,
namely Ws and Ws, with the promise that if the edit
distances between the windows of Ws and Ws are
available, one can recover a 1 + o(1) approximation

6Albeit, the adversary is not aware of our random bits.
7The reader can find more details about this framework in a

blog post by Rubinstein [49].

1603
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



ŝ

A G T Y X X B

s

G X T X A Y B

s̄

A G G T Y X B

|lcs(s, s̄)| = 4

G X T X A Y B

A G G T Y X B

|ed(s, s̄)| = 5

Figure 2: Our setting is is illustrated in this figure. First, an adversary chooses a string ŝ of size n. Then, s is
constructed by a random displacement of the characters of ŝ. Next, the adversary chooses another string s of size
n. The LCS or ED for s and s is desired.

of |ed(s, s)| in subquadratic time. This step gives no
improvement nor loss in the running time. That is,
if we naively compute the solution for every pair of
windows via the classic algorithm, the total running
time would be quadratic. This step is useful in the
following sense: the task of approximating the edit
distance between two long strings reduces to the task
of approximating edit distance between many smaller
windows. The construction is shown in Figure 3.

Step 1 (sparsification via triangle inequality):
The main improvement in the running time comes in
this step. Due to Step 0, all one needs to approximate
the solution for the two strings is to compute the
edit distances of the windows. Triangle inequality
is the key to this improvement. While computation
of edit distance between all pairs gives a quadratic
running time, one can use the following observation
to compute the edit distance for only a few8 window
pairs: If |ed(wi, wj)| ≤ d1 and |ed(wi, wk)| ≤ d2 then
d1 + d2 is a clear upper bound on the edit distance
between wj and wk. Although this just gives an upper
bound, Chakraborty et al. [24] show that except for
(|Ws||Ws|)1−ε9 many pairs, the derived upper bound is
a constant approximation of the actual distance. This
step runs in truly subquadratic time and estimates the
distances for almost all window pairs. Note that in
this step, a constant factor loss in the approximation is
inevitable due to the application of triangle inequality.
An LCS analogue of the triangle inequality, called
birthday triangle inequality, provides a solution for
LCS [52]. All that remains is to devise a method to
tolerate the error for the few undiscovered10 distances.

Step 2 (discovering the edit distance between
the remaining window pairs): While the number
of undiscovered distances for window pairs is asymp-
totically smaller than the number of window pairs,

8Truly sublinear in terms of the number of window pairs.
9In this framework 1 > ε > 0 is always a constant number.

This value, however, may vary depending on the sparsification

technique.
10By undiscovered distances, we mean window pairs whose

distance is overestimated by our algorithm.

detecting such pairs may still require quadratic time.
Chakraborty et al. [24] make the following observation
to address this issue: Since the optimal solution (as
well any approximately optimal solution) incorporates
a class of window pairs that adhere to certain struc-
tures, we only need to guarantee that most of the dis-
tances between window pairs of each class are discov-
ered. In other words, we can tolerate some error so long
as in each class, the error incurred by the undiscov-
ered distances is negligible in comparison to the overall
size of the solution. This then leads to the question
of “whether we can guarantee that we discover most of
the distances in each class of window-pairs correctly?”
to which Chakraborty et al. [24] give a positive answer.
In their algorithm, first, the undiscovered distances are
detected for a sampled set of windows, and then neigh-
borhoods close to the undiscovered distances are reex-
amined via the classic algorithm for edit distance. This
is shown in Figure 5.

Both of our algorithms for edit distance and LCS
are inspired by this framework. We too, make use
of Step 0 in order to break the problem down to
smaller windows. Our main novelty is an alternative
sparsification algorithm to replace Step 1, explained
later in the section. Indeed, our aim is to obtain a
1 +o(1) approximation algorithms for ED and LCS, and
triangle inequality is too weak for this purpose. Current
ED algorithms obtain approximation factor 3 [17, 24],
and the belief is that the best bound that can be
obtained via this technique is 2 [40, 52].

Our sparsification deviates from previous work in
the following sense: all the previous algorithms [17, 24,
52] approximate the solutions for the windows in Step
1 and prove that except a few pairs, the rest of the
values are estimated approximately correctly. For the
remaining pairs, the estimated values are worse than
the actual ones; for ED the values are larger, and for
LCS, the values are smaller. Therefore, their only worry
is that an optimal solution should remain approximately
optimal by the estimations, which is addressed in Step 2.
In our sparsification, we may miscalculate the solution
for one pair of windows as a much smaller or a much

1604
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



s

︷
︸︸

︷
w
la
ye
rs

a window of size = wmax − (1 + ε′)j (1 + ε′)j
a window of size wmax

︷ ︸︸ ︷g

..
.

. . .
. . .

. . .
. . .

. . . . . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

Figure 3: s is shown with a solid rectangle and windows of Ws are depicted via dashed rectangles. Next to each
window of size wmax, we have O(log1+ε′ wmax) windows of smaller sizes which is shown for one of the windows on
the top of the figure. Windows of s are constructed similarly.

w1 w3

w2

(a) If |ed(w1, w2)| ≤ 3 and |ed(w2, w3)| ≤ 2, due to trian-
gle inequality, |ed(w1, w3)| ≤ |ed(w1, w2)|+ |ed(w2, w3)| =
5 [17].

w1 w3

w2

(b) If |lcs(w1, w2)| ≥ 4 and |lcs(w2, w3)| ≥ 4, due to
birthday paradox, it is expected that |lcs(w1, w3)| ≥
d(|lcs(w1, w2)|/d)(|lcs(w2, w3)|/d) = 4 in most cases [52].

Figure 4: Let w1, w2, and w3 be three windows of length d = 8. This figure illustrates how the triangle inequality
and the birthday paradox triangle inequality are used to bound the ed or lcs of w1 and w3.

larger value. This adds extra difficulty to deal with
the miscalculated values. On the one hand, we have to
make sure an optimal solution remains approximately
optimal by the estimated values. On the other hand,
we should guarantee that our algorithm does not find
fake solutions. That is, no inefficient solution should
attain a much better quality due to wrong estimations.
This requires additional consideration: previous works
had to prove a bound for just one solution, however,
we need to prove bounds for all inefficient solutions, of
which there are exponentially many! For this purpose,
we add an additional Step 3 to our algorithm. Similar
to previous work, in Step 2, we try to detect pairs with
worse estimates, and then in Step 3, we deal with cases
whose estimates are better than the actual values.

Our main results are truly subquadratic time algo-
rithms that obtain 1 + o(1) approximate solutions for
both edit distance and longest common subsequence in
the random setting.

Theorem 3.1 [restated informally]. There exists an
algorithm for ED, which computes a 1 + o(1) approx-
imate solution and runs in truly subquadratic time in
the random setting.

Theorem 4.1 [restated informally]. There exists an
algorithm for LCS, which computes a 1 + o(1) approx-
imate solution and runs in truly subquadratic time in
the random setting.

In the following, we bring some of the ideas and
techniques of our algorithms. For notational conve-
nience, we state the ideas for LCS, but similar tech-
niques (with a more careful analysis) also apply to edit
distance. Our framework consists of Steps 0 through
3. The main technical contribution of our framework
is Step 1, which is a replacement for triangle inequality
for our setting. Steps 0 and 2 are used from previous
work, and Step 3 is an additional procedure designed to

1605
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



Figure 5: First a subset of windows of Ws are sampled and by computing their ED from all windows of Ws the
undiscovered distances are detected for the sampled windows. Next, neighborhoods close to the undiscovered
distances are reexamined via the classic algorithm for edit distance.

restrain the error made in Step 1.
Much like previous work, in Step 0, we construct

two sets of windows Ws and Ws for the strings, and
then our goal becomes approximating the LCS of every
pair of windows between Ws and Ws. For the purpose
of our problems, the windows may have different sizes
all in the range [wmin,wmax]. However, when the so-
lution size is large (which is the only case we cannot
solve the problem in truly subquadratic time), we have
|Ws||Ws|wmax

2 ' n2. That is, if we näıvely compute the
LCS of every pair of windows, our running time would
be quadratic.

Before we proceed to Step 1, we discretize the
solutions. More precisely, define ξ ∈ {0, 1, 1 +
ε, (1 + ε)2, . . . ,wmax} to be a threshold and let
lcsξ(wi, wj) → {0, 1} be a 0/1 function specifying
whether |lcs(wi, wj)| ≥ ξ. Classic discretization tech-
niques imply that if one determines lcsξ(wi, wj) for all
ξ ∈ {0, 1, 1 + ε, (1 + ε)2, . . . ,wmax} then a 1 + ε approxi-
mation of the solutions for window pairs would be avail-
able. Thus, for Step 1, we fix a ξ ∈ {0, 1, 1 + ε, (1 +
ε)2, . . . ,wmax}, and assume that the goal is to determine
lcsξ for all pairs of windows. For a fixed ξ, let us define
the LCS-graph Gξ to be a bipartite graph whose vertices
are the windows and (i, j) ∈ E(Gξ) iff lcsξ(wi, wj) = 1
(wi ∈ Ws and wj ∈ Ws). Note that we only take into
account the edges between the two parts and not within
the parts.

1.2.1 Step 1: An Alternative to Triangle In-
equality. In Step 1, we make a connection between
the smoothness of the setting and the shape of the LCS-
graph. In general, the degrees of the vertices in Gξ could
be any number between 0 and max{|Ws|, |Ws|}. More
precisely, for each vertex i corresponding to the windows
of Ws and any integer d ∈ [0, |Ws|], one can determine
a threshold for which the degree of vertex i is equal to
d in the LCS-graph. Our key observation in this step is
the following: by relaxing the threshold ξ by a factor of
1 + ε, we can be sure that either the degrees are very
high (close to |Ws|) or very low (close to 0)!

Let us illustrate the above with a thought experi-

ment. Assume for simplicity that all the windows are
disjoint and let Ws be the set of windows constructed
for s and let w ∈ Ws be an arbitrary window of Ws.
Indeed, if w were constructed via a random procedure
(similar to the windows of s) we would expect that the
size of the longest common subsequence of any window
in Ws and w is concentrated around a certain value.
However, this may not be the case as w may be adver-
sarially constructed to be very close to certain windows
of Ws and far from others. In the extreme case, when w
is exactly equal to one of the windows of Ws, the longest
common subsequence for that pair is equal to |w|, which
may be much larger than the value it would obtain had
we constructed w via a random procedure. However, we
can then argue that since w is exactly equal to one of
the windows of Ws and those characters are displaced
according to a random procedure, then for the rest of
the windows, the value of LCS for w is concentrated
around a fixed value. In this case, w is only connected
to one window of Ws in the LCS-graph when ξ is large
enough.

Now consider two windows wi and wj of Ws.
In order to make sure in the LCS-graph, w is only
connected to two windows wi and wj of Ws, it suffices
to divide each of wi and wj into two equal pieces and
then concatenate one piece from each window to obtain
w. Still, we expect the size of the LCS between w and
wi and wj to be large, while this is not the case for the
rest of the windows. This argument can be generalized:
For any subset Q ⊆ Ws with a bounded size, one can
construct w in a way that its corresponding vertex in
the LCS-graph is only connected to the vertices of Q.
However, there is a caveat to our construction: as the
size of Q grows, the longest common subsequence of w
and the windows of Q drops.

Let us step back and recall the construction of
windows in Step 0. As aforementioned, our construction
ensures that |Ws||Ws|wmax

2 ' n2, which is essentially
the time necessary to compute the LCS of every pair
of windows. We point out here that when the value of
the LCS for two windows is bounded by µ, a runtime
of O(wmax

2) is not required; we can actually find the

1606
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



w̄

wa1 wa2 wa|Q|

. . .

. . .

Figure 6: For any subset Q ⊆ Ws with a bounded size, Q = {wa1 , wa2 , . . . , wa|Q|}, one can construct w in a way
that its corresponding vertex in the LCS-graph is only connected to the vertices of Q. However, as the size of Q
grows, the longest common subsequence of w and the windows of Q drops.

longest common subsequence in time O(wmaxµ). Thus,
when µ is asymptotically smaller than wmax

11 we can
find the LCS’s in truly subquadratic time. Therefore, in
the above construction, when |Q| is large enough (say
|Q| =

√
|Ws|), the constructed instance is not very hard

to solve. Therefore, there is a limit to which a window
w of Ws can have edges to only an arbitrary subset of
Ws.

Of course, the above is just an attempt to make
instances for which detecting the edges of the LCS-graph
is challenging. The failure alone does not imply that
hard instances do not exist. One technical challenge
that we face in this paper is to formally prove that the
degrees of the vertices in our setting cannot be arbitrary.
More formally, we show this in Lemma 1.1.

Lemma 1.1. (stated informally) Let (s, s) be a
random instance of LCS and Ws and Ws be constructed
accordingly. There exists a 0 < κ < 1 such that for any
0 ≤ ξ ≤ wmax, any 0 < ε < 1, and any window w of
Ws, either the degree of window w in G(1−ε)ξ is at least
|Ws| − |Ws|1−κ or the degree of w in G(1+ε)ξ is at most
|Ws|1−κ.

One thing to keep in mind before outlining the
proof of Lemma 1.1 is that one needs to relax ξ by
a factor of 1 + ε to obtain Lemma 1.1. Otherwise,
trivial counterexamples can be made. Moreover, in our
construction for Ws and Ws, we may very well have
overlapping windows or windows with different sizes
that further make the argument difficult to prove.

To prove Lemma 1.1, we first simplify the problem
by defining another string s′ which shares a lot of
similarity with s, yet it has a simpler structure. Let
Σ be the alphabet of the strings and D be a distribution
over the symbols of Σ. More precisely, D returns
symbol σ ∈ Σ with probability frŝ(σ)/n, where frŝ(σ)
is the frequency of symbol σ in ŝ. We construct
string s′ by realizing n characters from distribution D
independently.

11µ = wmax
1−ε for some constant ε > 0.

Construct Ws′ the same way as Ws and assume
for simplicity that Ws′ only contains non-overlapping
windows of size nβ and that |Ws′ | = nα (α + β = 1).
Let w ∈Ws be a window of Ws. In Section 2.1, we show
that for each window w′ of Ws′ , with high probability
|lcs(w′, w)| is close to

AVGLw = E
r∼Dnβ

[
|lcs(r, w)|

]
12

The key to proving this fact is that LCS can be seen
as a bounded function since replacing a character in a
string by another symbol changes the size of the longest
common subsequence by at most one. Thus, we can use
the result of Boucheron et al. [19] to bound the value
of |lcs(w′, w)− AVGLw|13.

In the second step, we roughly prove that for a
given threshold nτ , a constant ε, and a large enough
n, either (I) for almost all the windows w′ ∈ Ws′ we
have |lcs(w′, w)| > nτ/(1 + ε) or (II) for almost all the
windows w′ ∈ Ws′ we have |lcs(w′, w)| ≤ nτ (1 + ε).
Suppose |w| = nζ and let Ω be the set of all the
strings of length nζ constructed by characters of Σ. We
use a probabilistic method to show that with a high
probability, for no string in Ω both conditions (I) and
(II) are violated. In fact, we show that if we select a
string r ∈ Ω uniformly at random, the probability that r
violates both conditions (I) and (II) is O(1/|Ω|2), which
in turn implies that with a high probability, no such
string exists.

In the third step, we prove that although s is
made via a different procedure than s′, yet the same
argument holds for it. The challenge is that there is
a correlation between the windows of s (for s′ all the
windows were completely independent). Hence, the
concentration bounds proved for the windows of s′ are
not directly applicable to the windows of s. However,

12Term r ∼ Dn
β

indicates that r is constructed by realizing nβ

characters from distribution D.
13Due to some structural differences of LCS and ED, we use

another concentration bound (McDiarmid [47]) for edit distance

1607
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



in Section 2.3, we introduce a two-phase procedure to
shuffle ŝ that enables us to show similar concentration
bounds for s. In this procedure, instead of directly
permuting the characters of ŝ, we first initialize s by
realizing n independent characters from D and then
modify a subset of the characters to make sure s and
ŝ have the same multiset of characters. We then show
that the symbols whose frequencies are significantly
changed during the perturbation phase do not have a
considerable impact on the size of LCS. Consequently,
we prove a statement similar to the statement in Section
2.2 for the windows of Ws.

1.2.2 Steps 2 and 3: A 1 + o(1) Approximation
Algorithm for ED and LCS Lemma 1.1 gives us a
strong tool to approximate the solutions for the window
pairs. For a given ξ and a window w ∈ Ws, we can
sample a few windows of Ws and compute the longest
common subsequence of w and the sampled windows.
Based on the outcome, we can decide which case of
Lemma 1.1 holds for w. If w is high-degree, we report
all edges and we can be sure that the error is small,
otherwise, we simply report no edges for w and can be
sure that we leave a few edges behind. This is similar to
the sparsification of Chakraborty et al. [24] for obtaining
a constant approximation algorithm for edit distance.

What differs between the two algorithms is that in
the algorithm of Chakraborty et al. [24], when the value
of |ed(wi, wj)| is miscalculated, we are sure that the es-
timated value is an upper bound on the edit distance in
which case may not necessarily approximate the correct
distance. In our algorithm, however, the miscalculated
value could be much larger or much smaller. For this
reason, Step 2 alone does not guarantee an approxima-
tion factor of 1 + o(1). More precisely, when overesti-
mates are also given for LCS, (or equivalently underes-
timates are made for ED), any inefficient algorithm can
attain a value which may be better than that of the op-
timal. Thus, in addition to proving a lower bound on
the quality of the optimal solution, we need to prove
an upper bound on the quality of any solution in which
case their count is exponentially large.

We do use Step 2 of the algorithm of Chakraborty
et al. [24] but we complement that with our own Step 3.
In Step 2, we address the error of underestimates and
make sure the value of the optimal solution is not hurt
significantly. In Step 3, we deal with overestimates. The
idea is based on the following simple observation: an
overestimation may only incur an error to our solution
if the overestimated pair of windows is used in our
solution.

Let us be more specific about the algorithm. After
Step 2, the estimates for the LCS of the window pairs

are stored in a table T . Next, a dynamic program finds
an optimal alignment between the windows of s and
windows s that maximizes the LCS. Denote by D[i][j]
the longest common subsequence for the prefix of s
ending at the last character of wi and the prefix of s
ending at the last character of wj . This is then updated
by considering the previous pair that takes part in the
solution. This runs in time Õ(|Ws||Ws|) and finds the
optimal alignment.

In Step 3, we run this DP and find an optimal
alignment. However, keep in mind that overestimates
may give us a fake solution. To address this issue, after
solving the DP, we compute the LCS of every pair of
windows that contribute to the found solution and find
out what is the actual quality of the solution we found.
If the quality of the solution does not change by much,
we report the solution and can be sure that it is a 1+o(1)
approximation of the optimal solution. Otherwise, we
correct the values that made us find a fake solution
and update table T accordingly. We next run the same
DP to find a solution according to the same recursive
formula, but this time we use the updated table as the
estimates for the LCS of the windows. We continue on
with this routine: (1) we find the optimal alignment, (2)
verify if the solution is fake or not, and (3) if fake, we
update the table and run the dynamic program again.

The crux of the argument is that at some point our
algorithm terminates with a solution which is not fake
and since the number of overestimates is significantly
smaller than the number of window pairs, the total
running time is truly subquadratic for this step. This is
formally proven in Section 4.

2 Step 1: An Alternative to Triangle Inequality

Let α and β be two constants such that α + β = 1
and let W = {w1, w2, . . . , wnα} be a subset of Ws

that partitions s into nα non-overlapping windows of
size nβ . Furthermore, let w be a window of Ws, and
suppose |w| = nζ . Our goal in this section is to prove
Lemmas 2.1 and 2.2, which state roughly that for a small
constant ε, and a threshold nτ , with a high probability
we have

• Either for almost all windows wi ∈ W we have
|lcs(w,wi)| ≥ nτ/(1 + ε), or for almost all windows
wi ∈W we have |lcs(w,wi)| ≤ nτ (1 + ε).

• Either for almost all windows wi ∈ W we have
|ed(w,wi)| ≥ nτ/(1 + ε), or for almost all windows
wi ∈W we have |ed(w,wi)| ≤ nτ (1 + ε).

Lemma 2.1. Let κ be a constant such that κ > (ζ−τ)+

1608
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



2(β − τ) and assume

n > max



τ

√
16eα
3ε2τ ln 16eα

3ε2τ

η1

√
32e

3ε2η1
ln 32e

3ε2η1

η2

√
32e
ε2η2

ln 32e
ε2η2


,

where ε is a small constant, η1 = κ − (ζ − τ), and
η2 = κ−(ζ−τ)−2(β−τ). Then, with a high probability,
either |lcs(wi, w)| ≥ nτ (1 + ε) holds for at most nκ

windows wi ∈ W , or |lcs(wi, w)| < nτ/(1 + ε) holds
for at most nκ windows wi ∈W .

Lemma 2.2. Let κ be a constant such that κ > (ζ−τ)+
2(β − τ) and assume

n > max



2τ−β
√

eα
ε2(2τ−β) ln eα

ε2(2τ−β)

η1

√
2e
ε2η1

ln 2e
ε2η1

η2

√
32e
ε2η2

ln 32e
ε2η2


,

where ε is a small constant, η1 = κ− (ζ − τ)− (β − τ),
and η2 = κ − (ζ − τ) − 2(β − τ). Then, , with a high
probability, either |ed(wi, w)| ≥ nτ (1 + ε) holds for at
most nκ windows wi ∈ W , or |ed(wi, w)| < nτ/(1 + ε)
holds for at most nκ windows wi ∈W .

We prove Lemmas 2.1 and 2.2 in three steps. In the
first step, in Section 2.1, we provide two concentration
bounds for LCS and ED. Next, in Section 2.2, we
prove two statements similar to Lemmas 2.1 and 2.2
for the case that the characters of each window are
independently drawn from an arbitrary distribution.
Finally, in the third step, in Section 2.3, we extend these
results to the case of the windows in W .

2.1 Concentration of LCS and ED. Let Σ =
{σ1, σ2, . . . , σk} be a set of alphabets and let D be a
distribution over the symbols in Σ. Throughout this
section, we prove two concentration bounds for LCS and
ED. These two bounds imply that for a window w ∈Ws

and a string w whose every character is randomly drawn
from D, values of |lcs(w,w)| and |ed(w,w)| are highly
concentrated around their mean values.

Suppose w is a string of length nβ , constructed by
realizing nβ independent characters from D (we denote

this by w ∼ Dn
β

) and let w ∈Ws be a window of length
nζ . Define AVGEw and AVGLw as

(2.1) AVGEw = E
w′∼Dnβ |ed(w′, w)|

and

(2.2) AVGLw = E
w′∼Dnβ |lcs(w

′, w)|.

Our goal in this section is to prove Lemmas 2.3 and
2.4. Notice that the bound provided by Lemma 2.4 is
tighter than Lemma 2.3, which is due to some structural
advantages of LCS over ED.

Lemma 2.3. The probability that∣∣∣|ed(w,w)| − AVGEw

∣∣∣ ≥ q
is upper-bounded by 2 exp(− 2q2

nβ
).

Lemma 2.4. The probability that∣∣∣|lcs(w,w)| − AVGLw

∣∣∣ ≥ q
is upper-bounded by exp(− q2

2AVGLw+2q/3 ).

We start by proving Lemma 2.3. To this end, we
use McDiarmid’s Inequality [46]. A formal statement of
this inequality is given in Theorem 2.1 .

Theorem 2.1. (McDiarmid [46]) Let X1,...,Xk ∈ X
be k independent random variables and assume that we
have a function f : X k → R such that for every i ∈ [k]
(2.3)

sup
x1,...,xk,x̂i

∣∣f(x1,x2,...,xk)−f(x1,x2,...,xi−1,x̂i,xi+1,...,xk)
∣∣ ≤ ci.

Then for every q > 0 we have:

P(
∣∣E[f(X1,...,Xk)]− f(X1,...,Xk)

∣∣ ≥ q) ≤ 2exp
(
− 2q2∑k

i=1c
2
i

)
.

Inequality (2.3) states roughly that for every i, replacing
the i’th coordinate by some other value while keeping
the rest of the coordinates intact, changes the value f
by at most ci. It can be easily verified that for both
f(·) = |ed(·, w)| and f(·) = |lcs(·, w)|, Inequality (2.3)
holds for every 1 ≤ i ≤ nβ and ci = 1. More formally,
assume |lcs(·, w)| and |ed(·, w)| are two functions which
receive a string r consisted of nβ characters as input
and return |lcs(r, w)| and |ed(r, w)| respectively. Then,
we have

(2.4)
∣∣∣|lcs(r, w)| − |lcs(ri, w)|

∣∣∣ ≤ 1

and

(2.5)
∣∣∣|ed(r, w)| − |ed(ri, w)|

∣∣∣ ≤ 1,

where ri is a string similar to r, except that the i’th
character is replaced by another symbol. The reason

1609
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



that these inequalities hold is the trivial observation
that changing a character in a string, can change the size
of the longest common subsequence and edit distance
by at most one. Thus, for these cases, we have an
upper bound of nβ for

∑
i c

2
i . Combining Theorem 2.1

and Inequalities (2.3), (2.4) and (2.5), we conclude that
Inequalities (2.6) and (2.7) hold for LCS and ED (recall

that w is a string randomly drawn from Dn
β

):

(2.6) P
(∣∣∣|lcs(w,w)| − AVGLw

∣∣∣ ≥ q) ≤ 2 exp(−2q2

nβ
),

(2.7) P
(∣∣∣|ed(w,w)| − AVGEw

∣∣∣ ≥ q) ≤ 2 exp(−2q2

nβ
).

Inequality (2.7) directly implies Lemma 2.3. However,
as mentioned earlier, the bound of Lemma 2.4 is tighter. To
prove Lemma 2.4, we use the result of Boucheron, Lagosi,
and Massart [19] for bounded functions.

Theorem 2.2. (Boucheron et al. [19]) Suppose
X1, X2, . . . , Xk ∈ X are k independent random vari-
ables and assume that we have a function f : X k → R such
that for every 1 ≤ i ≤ k and x1, x2, . . . , xk the conditions

sup
x̂i

f(x1,x2,...,xk)− f(x1,x2,...,xi−1,x̂i,xi+1,...,xk) ≤ 1,

and

k∑
i=1

sup
x̂i

f(x1,...,xk)−f(x1,...,xi−1,x̂i,xi+1,...,xk) ≤ f(x1,...,xk)

hold. Then

P(
∣∣E[f(X1, X2, . . . , Xn)]− f(X1, X2, . . . , Xk)

∣∣ ≥ t)
≤ 2 exp

(
− 2q2

2E[f(X1, X2, . . . , Xk)] + 2q/3

)
.

To prove Lemma 2.4, it suffices to show that the conditions
of Theorem 2.2 hold for LCS. As discussed earlier, the first
condition of Theorem 2.2 is valid for LCS. Thus, it only
remains to verify the second condition, which we show in
Lemma 2.5.

Lemma 2.5. Suppose r is a string, and for every i, let ri be
a string similar to r, except that the i’th character is replaced
by some other symbol, such that |lcs(ri, w)| is minimized. We
have ∑

i

|lcs(r, w)| − |lcs(ri, w)| ≤ |lcs(r, w)|.

Proof. For every i, we say the i’th character of r (denoted
by r[i]) is excess, if there exists a common subsequence l
of r and w such that |l| = |lcs(r, w)| (that is, l is one of
the longest common subsequences of r and w), and r[i] /∈ l.
Trivially, if r[i] is excess, we have |lcs(r, w)|−|lcs(ri, w)| = 0.
On the other hand, at least nβ − |lcs(r, w)| of the characters

in r are excess. For the rest of the characters, we know that
|lcs(r, w)| − |lcs(ri, w)| ≤ 1. Hence, we have∑

i

|lcs(r, w)| − |lcs(ri, w)| ≤ |lcs(r, w)|.

Combining Theorem 2.2 and Lemma 2.5 implies Lemma 2.4.
It is worth to mention that the reason that we could

not provide a better bound for ED was that the condition
of Lemma 2.5 does not necessarily hold for ED. To see why,
consider the strings in Figure 7. For this example, w consists
of nβ−φ blocks of size nφ, and r consists of nβ−φ + 1 blocks
of size nφ, and Σ = {a, b}. Each block of w and r only differs
in the first character. Note that for this instance, we have
ed(w, r) = nφ + nβ−φ. Furthermore, it is easy to observe
that for every 1 ≤ i ≤ nβ , changing r[i] to b decreases the
size of ed(w, r) exactly by one. Hence, for every i we have
|ed(r, w)| − |ed(ri, w)| = 1, and consequently∑

i

|ed(r, w)| − |ed(ri, w)| = nβ .

2.2 Independent Random Strings. In this section,
we consider the following setting: suppose W ′ = {w1, w2,
. . . , wnα} are nα strings of length nβ , each constructed by
realizing nβ independent characters from a distribution D
over alphabet Σ, and let w ∈ Ws be a window of length
nζ . In Section 2.1, we showed that with a high probability,
for each wi, the sizes of lcs(wi, w) and ed(wi, w) are close to
AVGLw and AVGEw. Using this fact, here we prove Lemmas
2.6 and 2.7 for the windows in W ′.

Lemma 2.6. Let κ be a constant such that κ > ζ − τ and
assume that

n > max


τ

√
16eα
3ε2τ

ln 16eα
3ε2τ

,

η1

√
32e

3ε2η1
ln 32e

3ε2η1

 ,

where ε is a small constant and η1 = κ− (ζ− τ). Then, with
high probability, either |lcs(wi, w)| ≥ (1 + ε)nτ holds for at
most nκ windows wi ∈W ′, or |lcs(wi, w)| < nτ/(1+ε) holds
for at most nκ windows wi ∈W ′.

Lemma 2.7. Let κ be a constant such that κ > (ζ−τ)+(β−
τ) and assume that

n > max


2τ−β
√

eα
ε2(2τ−β) ln eα

ε2(2τ−β) ,

η1

√
2e
ε2η1

ln 2e
ε2η1

 ,

where ε is a small constant and η1 = κ− (ζ − τ)− (β − τ).
Then, with high probability, either |ed(wi, w)| ≥ (1 + ε)nτ

holds for at most nκ windows wi ∈ W ′, or |ed(wi, w)| <
nτ/(1 + ε) holds for at most nκ windows wi ∈W ′.

1610
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



aaa...a aaa...a aaa...a aaa...a aaa...a aaa...a

baa...a baa...a baa...a baa...a baa...aw̄

r

nφ characters

nβ−φ

blocks

Figure 7: For strings w and r we have ed(w, r) = nφ +nβ−φ. Furthermore, except the characters in the last block
of r, changing every other character of r to b decreases the size of ed(w, r) exactly by one.

Before proving Lemmas 2.6 and 2.7, we would like to
note that choosing q = εAVGEw and q = εAVGLw in Lemmas
2.3 and 2.4, implies the following two inequalities:
(2.8)

P
(∣∣∣|ed(w,w)| − AVGEw

∣∣∣ ≥ εAVGEw) ≤ 2exp(−2ε2AVGE2
w

nβ
)

and
(2.9)

P
(∣∣∣|lcs(w,w)| − AVGLw

∣∣∣ ≥ εAVGLw) ≤ exp(− ε
2AVGLw
2 + 2ε/3

).

In addition, we use Lemma 2.8 to provide a lower bound
on the value of n in the proof of both Lemmas 2.6 and 2.7.

Lemma 2.8. Let z > 1 and 0 < p < 1 be two constants and
let k = p

√
(ez/p) ln(ez/p). We have kp

ln k
≥ z.

We prove Lemmas 2.6 and 2.7 in Sections 2.2.1 and 2.2.2.
However, the proof of both lemmas has the same structure.

2.2.1 Proof of Lemma 2.6. Let Ω be the set of all
strings of size nζ made by characters in Σ. Divide Ω into
two categories L and R. A string ` belongs to L if

E
w∼Dn

β

[
|lcs(`, w)|

]
≤ nτ

and belongs to R otherwise. Notice that |Ω| = |L| + |R| ≤
nn

ζ

.
Let ` be a string randomly drawn from L. First, we

use Inequality (2.9) to provide an upper bound on the
probability that |lcs(`, wi)| > (1 + ε)nτ holds for `.

Lemma 2.9. Let ` be a string randomly drawn from L, and
let wi ∈W ′ be a window. We have

Pr

[
|lcs(`, wi)| > (1 + ε)nτ

]
≤ exp−

[
nτ ε2

8/3

]
.

Define E` to be the event that for at least nα−η of the
windows in W ′, |lcs(`, wi)| > (1 + ε)nτ holds. Using the
upper bound we obtained in Lemma 2.9 and union bound, In
Lemma 2.10 we bound the probability that event E` occurs
(Pr[E`]).

Lemma 2.10. Let ` be a string randomly drawn from L, and
let E` be the event that for at least nα−η windows in W ′,
|lcs(`, wi)| > (1 + ε)nτ holds. We have

Pr[E`] ≤ nαn
α−η
· exp−

[
ε2nα+τ−η

8/3

]
.

Note that we have |L| ≤ nn
ζ

. Now, if |L| ·Pr[E`] = o(1),
then we can claim that for a large enough n, with a high
probability, for no string ` ∈ L, event E` occurs. Therefore,
we adjust η in a way that:
(2.10)

|L| · Pr[E`] = nn
ζ

· nαn
α−η
· exp−

[
ε2nα+τ−η

8/3

]
< 1/nn

ζ

,

which means

lnn(2nζ + αnα−η) < cε2nτ+α−η

2nζ lnn < (cε2nτ − α lnn)nα−η

2nζ lnn

cε2nτ − α lnn
< nα−η,(2.11)

where c = 3/8.

Lemma 2.11. In order for Inequality (2.11) to hold, it suf-
fices to

• Choose a small enough η such that α− η > ζ − τ .

• Choose a large enough n, such that

(2.12) α lnn < cε2nτ/2.

and

(2.13)
32

3ε2
< n(α−η)−(ζ−τ)/ lnn.

With a similar argument, we can prove the same bounds as
in Lemma 2.14 for the strings in R.

Suppose that we chose η and n so that the conditions
of Lemma 2.14 hold, and let κ = α − η. String w
either belongs to L or R. If w ∈ L, then, with a high
probability, |lcs(w,wi)| > nτ (1 + ε) holds for at most nκ

windows wi ∈ W ′. If w ∈ R, then with a high probability,
|lcs(w,wi)| < nτ/(1 + ε) holds for at most nκ windows in
wi ∈W ′.

Finally, using Lemma 2.8 we can provide a lower bound
on n according to Inequalities (2.12) and (2.13). This,
implies Lemma 2.6.

1611
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



Lemma 2.6. Let κ be a constant such that κ > ζ − τ and
assume that

n > max


τ

√
16eα
3ε2τ

ln 16eα
3ε2τ

,

η1

√
32e

3ε2η1
ln 32e

3ε2η1

 ,

where ε is a small constant and η1 = κ− (ζ− τ). Then, with
high probability, either |lcs(wi, w)| ≥ (1 + ε)nτ holds for at
most nκ windows wi ∈W ′, or |lcs(wi, w)| < nτ/(1+ε) holds
for at most nκ windows wi ∈W ′.

2.2.2 Proof of Lemma 2.7 The structure of the proof
of Lemma 2.7 is very similar to the proof of Lemma 2.6.
Again, let Ω be the set of all strings of size nζ made by
characters in Σ. Divide Ω into two subsets L and R. A
string ` belongs to L if

E
w∼Dn

β

[
|ed(`, w)|

]
≤ nτ

and belongs to R otherwise (|Ω| = |L|+ |R| ≤ nn
ζ

).
Let ` be a string randomly drawn from L. We use In-

equality (2.9) to provide an upper bound on the probability
that |ed(`, wi)| > (1 + ε)nτ holds for `.

Lemma 2.12. Let ` be a string randomly drawn from L, and
let wi ∈W ′ be a window. We have

Pr

[
|ed(`, wi)| > (1 + ε)nτ

]
≤ exp−

[
2n2τ ε2

nβ

]
.

Using a similar argument as Lemma 2.12 for R, we show
that for a string r selected uniformly at random from R we
have

Pr

[
|lcs(r, wi)| < (1− ε)nτ

]
≤ exp−

[
2n2τ ε2

nβ

]
.

Lemma 2.13. Let ` be a string randomly drawn from L, and
let E` be the event that for at least nα−η windows in W ′,
|ed(`, wi)| > (1 + ε)nτ holds. We have

Pr[E`] ≤ nαn
α−η
· exp−

[
2ε2nα+2τ−η

nβ

]
.

Now, if |L| ·Pr[E`] = o(1), then we claim that for a large
enough n, with a high probability for no string ` ∈ L, event

E` occurs. We have |L| ≤ nn
ζ

. Thus, we must adjust η in a
way that:
(2.14)

|L| · Pr[E`] = nn
ζ

· nαn
α−η
· exp−

[
2ε2nα+2τ−η

nβ

]
< 1/nn

ζ

,

which means

(2nζ + αnα−η) lnn < cε2n2τ+α−η−β

2nζ lnn < (cε2n2τ−β − α lnn)nα−η

2nζ lnn

cε2n2τ−β − α lnn
< nα−η,(2.15)

where c = 2.

Lemma 2.14. In order for Inequality (2.15) to hold, it suf-
fices to

• Choose a small enough η such that α − η > (ζ − τ) +
(β − τ).

• Choose a large enough n, such that

(2.16) α lnn < ε2n2τ−β ,

and

(2.17)
2

ε2
< n(α−η)−(ζ−τ)−(β−τ)/ lnn.

Finally, suppose that α − η > (ζ − τ) + (β − τ) and n
is large enough such that both Inequalities (2.16) and (2.17)
hold, and let κ = α − η. String w either belongs to L or R.
If w ∈ L, then |ed(w,wi)| > nτ (1 + ε) holds for at most nκ

windows wi ∈ W . If w ∈ R, then |ed(w,wi)| < nτ/(1 + ε)
holds for at most nκ windows in wi. Moreover, using
Lemma 2.8 we can provide a lower bound on n according
to Inequalities (2.16) and (2.17). This, implies Lemma 2.7.

Lemma 2.7. Let κ be a constant such that κ > (ζ−τ)+(β−
τ) and assume that

n > max


2τ−β
√

eα
ε2(2τ−β) ln eα

ε2(2τ−β) ,

η1

√
2e
ε2η1

ln 2e
ε2η1

 ,

where ε is a small constant and η1 = κ− (ζ − τ)− (β − τ).
Then, with high probability, either |ed(wi, w)| ≥ (1 + ε)nτ

holds for at most nκ windows wi ∈ W ′, or |ed(wi, w)| <
nτ/(1 + ε) holds for at most nκ windows wi ∈W ′.

2.3 Windows of a Random Permutation. In Sec-
tion 2.2, we proved Lemmas 2.6 and 2.7 for the windows in
W ′. In this section, we present generalized versions of these
lemmas for the windows in W . Recall that the strings in W
are windows of s, and s is constructed by a random shuffle
on ŝ. Unfortunately, the windows in W do not admit the
nice random structure of the windows in W ′. However, we
show that the structure of the windows in W and W ′ are
not too different.

To provide a tool to compare the windows in W and
W ′, let us introduce a probabilistic procedure to generate
a random shuffle of the characters in ŝ. In this section, we
assume that s is constructed via the following process:

• Let D be a distribution of probabilities over the sym-
bols in Σ, which selects character σ with probability
frŝ(σ)/|ŝ|. Draw a random string s′ ∼ Dn.

• Initially set s = s′. Call a symbol σ ∈ Σ overly-frequent,
if frs(σ) > frŝ(σ) and infrequent if frs(σ) < frŝ(σ).
While s is not a permutation of ŝ, repeat the following
update process.

• (Update process): select an infrequent symbol σ and
choose a random character in s whose corresponding
symbol is overly-frequent and change it to σ.

1612
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



It is clear that at the end of the process, s is a random
shuffle of ŝ. According to the above process for producing s,
we attribute every character of s a label which shows whether
or not that character is changed during the update process.

Definition 1. We say a character in s is stable, if it does
not change during the update process.

Trivially, stable characters are the same in s′ and
s, while unstable characters are not. Intuitively, stable
characters show how similar s is to a random string drawn

from Dn
α+β

. In Lemma 2.15, we compare the frequency of
the characters in s and s′. This lemma states that the ratio
of unstable characters for high-frequency symbols is small.

Lemma 2.15. Let σ be a symbol with frequency at least
n2(β−τ)+η in s, where η > 0 is a constant. We can say
that for γ =

√
8 ln(n)n−(β−τ+η/2), with probability at least

1 − 1/n3, the number of unstable characters corresponding
to symbol σ is at most γfrŝ(σ).

Corollary 2.1. (of Lemma 2.15) Since unstable charac-
ters are selected uniformly at random, according to
Lemma 2.15, we can say that for a character c whose cor-
responding symbol has a frequency at least n2(β−τ)+η, the
probability that c would be unstable is less than γ.

Now, we show that the number of unstable characters
in s is not large enough to have a significant impact on
|lcs(wi, w)| and |ed(wi, w)|. To this end, we define negligible
symbols.

Definition 2. Let wi ∈ W be a window of s and let w′i be
its corresponding window in s′. For a given threshold nτ

and a small constant ε′, we say that a set C of symbols is
negligible for window wi, if the total number of the unstable
characters in wi with symbols in C is at most ε′nτ .

Intuitively, if a set C of symbols is negligible for some
window wi, we can ignore the unstable characters corre-
sponding to C in that window, while losing a factor at most
ε′ of the longest common subsequence and edit distance of
wi and w. Denote by H the set of symbols with frequency
at least n2(β−τ)+η in ŝ. In Lemma 2.16 we show that with a
high probability, symbols in H are negligible for any window
wi.

Lemma 2.16. For every window wi, with probability at least
1− 1/n3, set H is negligible.

By Lemma 2.16, the expected number of the windows
that H is not negligible for them is less than nα ·n−3 = nα−3.
Using Chernoff bound we can conclude that the number of
such windows is concentrated around its mean value, which
implies that with a high probability, no such window exists.

Corollary 2.2. With probability at least 1 − 1/n3, the
number of the windows in W for which set H is not negligible
is o(1).

Finally, consider the symbols with a frequency less than
n2(β−τ)+η. Note that w contains at most nζ number of
such symbols, and each one of these symbols has frequency
less than n2(β−τ)+η in s. Thus, the total number of such
characters in s is at most nζ+2(β−τ)+η.

Observation 1. Let L be the set of the symbols in w with
frequency less than n2(β−τ)+η in s. The number of the
windows in Ws for which L is non-negligible is at most
nζ+2(β−τ)+η/ε′nτ .

According to Observation 1, the number of windows for
which low-frequency characters are not negligible is bounded
by nζ−τ+2(β−τ)+η/ε′. On the other hand, by Lemma
2.16, high-frequency symbols are negligible for the rest of
the windows. Recall from Section 2.1 that any unstable
character can increase the value of |lcs(w,wi)| − |lcs(w,w′i)|
and |ed(w,wi)| − |ed(w,w′i)| by at most one. Therefore, for
these windows, we have |lcs(w,wi)| − |lcs(w,w′i)| < ε′nτ and
|ed(w,wi)|−|ed(w,w′i)| < ε′nτ . This along with Lemma 2.16
yields Lemmas 2.1 and 2.2.

Lemma 2.1. Let κ be a constant such that κ > (ζ − τ) +
2(β − τ) and assume

n > max



τ

√
16eα
3ε2τ

ln 16eα
3ε2τ

η1

√
32e

3ε2η1
ln 32e

3ε2η1

η2

√
32e
ε2η2

ln 32e
ε2η2


,

where ε is a small constant, η1 = κ − (ζ − τ), and η2 =
κ − (ζ − τ) − 2(β − τ). Then, with a high probability,
either |lcs(wi, w)| ≥ nτ (1 + ε) holds for at most nκ windows
wi ∈ W , or |lcs(wi, w)| < nτ/(1 + ε) holds for at most nκ

windows wi ∈W .

Lemma 2.2. Let κ be a constant such that κ > (ζ − τ) +
2(β − τ) and assume

n > max



2τ−β
√

eα
ε2(2τ−β) ln eα

ε2(2τ−β)

η1

√
2e
ε2η1

ln 2e
ε2η1

η2

√
32e
ε2η2

ln 32e
ε2η2


,

where ε is a small constant, η1 = κ− (ζ − τ)− (β − τ), and
η2 = κ− (ζ − τ)− 2(β − τ). Then, , with a high probability,
either |ed(wi, w)| ≥ nτ (1 + ε) holds for at most nκ windows
wi ∈ W , or |ed(wi, w)| < nτ/(1 + ε) holds for at most nκ

windows wi ∈W .

3 1 + o(1) Approximation Algorithm for Edit
Distance

In this section, we present a 1 + o(1) approximation truly
subquadratic time algorithm for ED in the random setting.
Although we denote the approximation factor by 1 + O(ε),

1613
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



since the dependence of the running time on 1/ε is polyno-
mial, choosing ε = 1/ logn results in a 1 + o(1) approxima-
tion factor and only incurs a poly(logn) term to the running
time.

We assume an estimate of the solution, denoted by
nδ, is given to our algorithm. It is shown that such an
assumption only imposes a 1 + ε multiplicative term to the
approximation factor and an O((1/ε) log n) multiplicative
term to the running time of our algorithm [17]. For a small
solution size, we use the algorithm of Landau et al. [44] which
finds the exact solution in time O(n+ |ed|2) where |ed| is the
size of the solution. In this case, the running time would
be bounded by O(n+ n2δ). Hence, we only deal with cases
with a large solution size. In Section 1.2, we discussed the
outline of our algorithm. Here, we present Steps 0, 1, 2, and
3 in more details.

3.1 Step 0. In Step 0, two sets of windows Ws and Ws

are constructed for both s and s. This construction has the
property that if the edit distances between the windows of
Ws and Ws are known, one can find a 1 + 4ε approximation
solution of |ed(s, s)| in truly subquadratic time. Therefore,
the task of approximating the edit distance between s and
s reduces to approximating edit distance between many
smaller windows. The construction we use is similar to the
construction of Boroujeni et al. [17]. You can find more
details about this construction in the full version of the
paper. In the construction of windows, for an arbitrary
parameter 0 < x < 1,

• the total number of windows is equal to |Ws|+ |Ws| =
Õε(n

x+(1−δ)),

• the minimum size of a window is wmin = εn1−x,

• the maximum size of a window is wmax = n1−x,

• the number of different window sizes is wsizes = Õ(1/ε),
and

• the ratio of the maximum window size over the mini-
mum window size is bounded by wgap = wmax/wmin =

Õ(1/ε).

Moreover, for each window, we only need to know its
distance to Õε(n

x) other windows. We also assume all
pairwise distances between windows are at least εnδ−x. This
assumption only imposes a 1 + ε term to the approximation
factor.

Let opt be an optimal solution, and opt′ be an optimal
window-compatible solution. A window w ∈ Ws with
respect to a threshold ξ and a window size λ is called:

• high degree if the ed’s between w and almost all windows
of Ws with size nβ are less than ξ · (1 + ε), or is called

• low degree if the ed’s between w and almost all windows
of Ws with size nβ are more than ξ/(1 + ε).

We show in Lemma 2.2 that if n is large enough, every
window is either high degree or low degree (or both) with
high probability for arbitrary ξ and λ. Since a 1 + O(ε)
approximation of the solution suffices for our algorithm, we
use a discretization technique and consider only log1+ε wmax

possible values for ξ. More precisely, we consider all
ξ ∈ {0, 1, 1 + ε, (1 + ε)2, . . . ,wmax} except ξ’s smaller than
εnδ−x. Furthermore, we consider all wsizes possibilites for
λ. The total number of such values for ξ and λ is at most
(log1+ε wmax) · wsizes = Õε(1).

Before Step 1 (sparsification), our algorithm must de-
cide whether each window is high degree or low degree with
respect to each threshold and window size. This part of our
algorithm is presented in Section 3.1.1.

3.1.1 High Degree and Low Degree Windows.
In this section, our algorithm decides whether a window
w ∈ Ws is high degree or low degree with regards to a
threshold ξ and a window size λ via random sampling. Let
k be the number of samples which we fix later. We sample
k non-overlapping windows of Ws of length λ and compute
the ed between w and the sampled windows. Afterward,
we decide whether w is high degree or low degree according
to the median of the computed ed’s. The computed edit
distance between window w and a sampled window w has
one of the following situations.

• It is smaller than or equal to ξ/(1 + ε): in this case,
we are almost sure that w is high degree since for a
low degree window, the probability of sampling one
string of size λ and a ed of no more than ξ/(1 + ε)
is nκ

n/λ
where nκ is bounded by (1/ε3)n3(1−δ)+ρ in

Lemma 3.2. Moreover, n/λ is the number of possible
non-overlapping windows of size λ. Therefore, the
probability is bounded by

nκ

n/λ
≤ (1/ε3)n3(1−δ)+ρ

n
wmin

= (1/ε4)n−x+3(1−δ)+ρ.

Assuming x > 3(1−δ)+ρ, we define c = x−3(1−δ)−ρ >
0. Therefore, the probability of w being low degree is at
most (1/ε4)n−c. Therefore, the window is high degree
with a probability of at least 1− (1/ε4)n−c.

• Similarly, if the ed is more than or equal to ξ · (1 + ε),
the window is low degree with a probability of at least
1− (1/ε4)n−c.

• If the ed is in range (ξ/(1 + ε), ξ · (1 + ε)), we take a
slightly different ed threshold ξ′ = ξ · (1 + ε)2 and claim
that w is high degree according to the new threshold
since the probability of such an ed of a sampled string
for a low degree window is at most (1/ε4)n−c. Note
that

ξ = ξ · (1 + ε)2 = nτ+2 logn(1+ε) = nτ+2(ε+O(ε2))/ logn.

Therefore, we can hide the difference between τ and
τ + 2(ε + O(ε2))/ logn, which is o(1), in ρ for a large
enough n.

The median of the ed’s between w and the k sampled
windows also belongs to one of the three cases explained
above which is used for deciding whether w is low degree
or high degree. In the following, we prove that the overall
probability of an incorrect decision for even one window is
bounded by n−3.

1614
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



Lemma 3.1. We can decide whether every window w of
Ws with regards to all thresholds and window sizes are low
degree or high degree in time Õε(n

2−x+(1−δ)), within an
approximation factor of (1 + ε)3, and with a probability of
at least 1− n−3.

In Step 1, our algorithm handles high degree windows.
Step 2 deals with low degree windows.

3.2 Step 1. Lemma 2.2 shows that high degree windows
of Ws, with respect to a threshold ξ and a window size λ, are
connected to almost all windows of Ws with size λ. However,
we cannot apply this lemma for windows of size λ all at once
since they overlap. Therefore, we apply Lemma 2.2 several
times, each time on a subset of non-overlapping windows of
size λ. Lemma 3.2 is concluded directly from Lemma 2.2
and partitioning the windows of size λ into non-overlapping
subsets.

Lemma 3.2. If a window w ∈Ws is high degree with respect
to a threshold ξ and a window size λ, the number of windows
of Ws with size λ and which have an ed from w more than
ξ · (1 + ε) is bounded by Õε(n

4(1−δ)+ρ), with high probability,
where ρ > 0 is an arbitrarily small constant.

Therefore, if w is high-degree with regard to a ξ and
a λ, we report all edges for it and considering Lemma 3.2,
we can be sure that the error is small. With this intention,
Lemma 3.3 shows an upper bound on the error.

Lemma 3.3. If we report all edges for all high degree
windows with respect to all thresholds and window sizes,
the total number of false positives edges is bounded by
Õε(n

x+5(1−δ)+ρ), with high probability, where ρ > 0 is an
arbitrarily small constant.

3.3 Step 2. In this section, for a low degree window s
with respect to ξ and λ, we find almost all windows of size
λ in Ws with an ed less than ξ. We use a random sampling
technique similar to that of [24]. Here, we only prove the
running time since the correctness is already proven in [24].

The idea is to sample a limited number of low degree
windows and use them to restrict the number of relevant
windows for other low degree windows near the sampled
ones. To explain what we mean when we say two windows
are near each other, suppose we hypothetically construct
larger windows by using a smaller parameter x′. Now, we
say two windows are nearby if they lie on the same larger
window. The properties of the new construction such as
wmin

′ and wmax
′ are defined similarly.

If the number of low degree windows inside a larger
window is at most ε2nx−x

′−(1−δ), we can ignore these low
degree windows since ignoring them imposes a total error of
at most

n

wmin
′ · ε

2nx−x
′−(1−δ) · n1−x = εnδ

to the overall solution. Large windows with few low degree
windows are called type one.

On the other hand, if the number of such low degree
windows in a larger window is more than ε2nx−x

′−(1−δ), we

call the larger window type two. For a larger window of type
two, we hit at least one of its low degree windows using a
random sampling method with high probability. We sample
each window of Ws with a probability of

p =
1

ε2nx−x′−(1−δ) · 4 logn.

The sampling is repeated for all ξ’s and λ’s. Therefore, we
find at least one low degree window of each larger window of
type two with the right ξ and λ with high probability. The
expected size of the hitting set is

E[|hitting set|] = |Ws| · p · log1+ε wmax · wsizes

= Õε(n
x′+2(1−δ)).

We then find the ed of each sampled window with all
of the windows of Ws. Note that only Õε(n

x) windows of
Ws are possibly matching a window. The running time of
this part of our algorithm and the number of windows pairs
found are shown in Lemma 3.4.

Lemma 3.4. Our algorithm for sampled low degree windows
runs in time Õε(n

2+x′−x+2(1−δ)) and outputs an expected

number of Õε(n
x′+5(1−δ)+ρ) pairs of windows such that for

every larger window of type two, at least one low degree
window with the right ξ and λ exists in the output. Moreover,
this part of our algorithm works correctly with a probability
of at least 1− n−3.

If a pair of windows such as (w,w) ∈Ws×Ws is found,
we conclude that if this pair is used in opt′, windows near w
are also matched to windows near w. Therefore, every pair
is extended to at most

(
d′

g
· log1+ε wmax

′)2 = (
d′

d
wlayers · Õε(1))2

≤ Õε(nx−x
′
wlayers)

2

= Õε(n
2(x−x′)+2(1−δ))

pairs. In Lemma 3.5, all pairs found in the first part of Step 2
are extended and their corresponding ed’s are computed.

Lemma 3.5. The extension phase of our algorithm takes
expected time Õε(n

2−x′+9(1−δ)+ρ) and produces expected

Õε(n
2x−x′+7(1−δ)+ρ) tuples containing a pair of windows and

an ed size, such that for each larger window of type two, a
tuple relatively close to its match in opt is found.

3.4 Step 3. A total solution can be found from partial
solution between windows in Õε(n

2x+(1−δ)) time via a dy-
namic program similar to [17] and [24]. However, the total
solution may be fake since it may incorporate many false-
positive pairs. More precisely, the total solution is not fake
if it contains at most εnx−(1−δ) false-positive pairs. Note
that this number of false-positive pairs produce an error of
at most εnx−(1−δ) · wmax = εnδ. If the solution is fake, it
contains several false-positive pairs. In this case, we remove
the discovered false-positive pairs and restart the dynamic

1615
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



program. To find whether if a solution is fake or not, we
should check all partial solutions used in the total solution.
This check is done in time

n

wmin
·O(wmax

2) = Õε(n
2−x)

Using Lemma 3.3 we immediately show an upper bound on
the number of restarts.

Corollary 3.1. The dynamic program for ED restarts at

most Õε(n
x+5(1−δ)+ρ)
εnx−(1−δ) = Õε(n

6(1−δ)+ρ) times.

The running time of Step 3 is therefore, bounded by the the
number of restarts times the running time of the dynamic
program.

Corollary 3.2. Step 3 of our algorithm runs in time
Õε(n

6(1−δ)+ρ) · Õε(n2x+(1−δ) + n2−x) = Õε(n
2x+7(1−δ)+ρ +

n2−x+6(1−δ)+ρ).

3.4.1 A 1 + o(1) Approximation Algorithm for
ED. In this section, we conclude our algorithm by setting
the parameters and showing that the running time is truly
subquadratic. We denote the running time of our algorithm
by Õε(n

z+ρ) and set the parameters x, x′, and δ to optimize
the running time of our algorithm. Here, nδ is a critical
value such that instances with a solution size smaller than
nδ are solved via the algorithm of Landau et al. [44], and
instances with a solution size larger than nδ are solved
via the main part our algorithm. Also, note that ρ is an
arbitrarily small positive constant; therefore, we ignore it in
the linear program.
(3.18)

minimize z

subject to 2δ∗ ≤ z (Landau et al. [44])

1 ≤ 2δ∗ (Landau et al. [44])

2− x+ (1− δ∗) ≤ z (Lemma 3.1)

2 + x′ − x+ 2(1− δ∗) ≤ z (Lemma 3.4)

2− x′ + 9(1− δ∗) ≤ z (Lemma 3.5)

2x+ 7(1− δ∗) ≤ z (Corollary 3.2)

2− x+ 6(1− δ∗) ≤ z (Corollary 3.2)

0 < x′ < x < 1

0 < δ∗ < 1

This linear program is minimized for x′ = 22/39, x = 30/39,
and δ∗ = 37/39 where z = 2−4/39 ≈ 1.897436. By rewriting
the time complexity as O(n1.898), we hide all poly(1/ε),
polylog(n), and nρ terms. This gives us the desired truly
subquadratic time complexity of our algorithm.

Theorem 3.1. There exists a randomized algorithm which
runs in expected time O(n1.898) and approximates random
ED within a factor of 1 + o(1).

The following corollary of Theorem 3.1 shows that a
solution can be found with high probability.

Corollary 3.3. There exists a randomized algorithm which
runs in time O(n1.898) and approximates random ED within
a factor of 1 + ε with probability at least 1− n−3.

4 A 1 + o(1) Approximation Algorithm for LCS

In this section, we present a 1 + o(1) approximation truly
subquadratic time algorithm for LCS in our random setting.
Similar to Section 3, we denote the approximation factor
by 1 + O(ε) and use ε = 1/ logn to achieve a 1 + o(1)
approximation factor. Moreover, similar to Section 3, we
assume a value of n1−δ is given as input and we must decide
whether the solution size is at most n1−δ or it is much
larger than n1−δ. Here, for a small solution size, we use
a classic dynamic program which finds the exact solution in
time O(n2−δ).

Lemma 4.1. Let s and s be two arbitrary strings of size n
and δ > 0 be an arbitrary constant. If |lcs(s, s)| ≤ n1−δ,
then there exists an algorithm that computes |lcs(s, s)| in

time Õ(n2−δ).

The main challenge of our algorithm is to deal with
the Instances with a larger solution size. In Section 1.2 we
illustrated the overall structure of the algorithm. In the
following sections, we describe the steps of our algorithm in
more detail.

4.1 Step 0. In Step 0, two sets of windows Ws and Ws

are constructed for both s and s. This construction has
the property that if the lcs of the windows of Ws and Ws

are known, one can find a 1 + 8ε approximation solution
of |lcs(s, s)| in truly subquadratic time. Therefore, the
task of approximating the lcs between s and s reduces to
approximating lcs’s between many smaller windows. The
construction we use is similar to the construction of [52].

Note that in this construction for an arbitrary 0 < x <
1, the following properties hold.

• The total number of windows is equal to |Ws|+ |Ws| =
Õε((n

2δ)nx).

• The maximum size of the windows is equal to wmax =
Õε(n

1−x+δ).

• The minimum size of the windows is equal to wmin =
n1−x.

• The ratio of the maximum window size over the min-
imum window size is bounded by wgap = wmax/wmin =

Õε(n
δ).

• The number of different window sizes is equal to wsizes =
Õε(n

δ).

Moreover, we ignore all distances less than εn(1−δ)−x be-
tween windows.

Let opt be an optimal solution and opt′ be an optimal
window-compatible solution. A window w ∈ Ws with
respect to a threshold ξ and a window size λ is called

• high degree if the lcs’s of w and almost all of the
windows of Ws with size λ are at least ξ/(1 + ε), or
is called

• low degree if the lcs’s of w and almost all of the windows
of Ws with size nβ are at most ξ · (1 + ε).

Recall that we treat high degree and low degree windows
differently in our algorithm. Therefore, in Section 4.1.1 we
determine each window is high degree or low degree.

1616
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



4.1.1 High Degree and Low Degree Windows.
Next, our algorithm decides whether a window B is high
degree or low degree with regards to a specified lcs threshold
ξ and a window size λ via random sampling. Let k be the
number of samples which we fix later. For each window
s ∈ Ws, we sample k non-overlapping windows of Ws with
length λ and compute the lcs between w and the sampled
windows. Afterward, we decide whether w is high degree or
low degree according to the median of the computed lcs’s.
Note that each lcs has one of these situations:

• It is smaller than or equal to ξ/(1 + ε): in this case, the
window is low degree with a high probability since for
a high degree window, the probability of sampling even
one string of size λ and a lcs of no more than ξ/(1 + ε)
according to Lemma 4.3 is

Õε(n
7δ+ρ)

n/wmax
= Õε(n

−x+8δ+ρ).

Assuming x > 8δ + ρ and c = x − 8δ − ρ > 0, the
probability of the event that the lcs of a sampled string
for a high degree window being less than or equal to
ξ/(1 + ε) is at most Õε(n

−c). Therefore, the window is

low degree with a probability of at least 1− Õε(n−c).
• Similarly, if the lcs is more than or equal to (1 + ε)nτ ,

the window is high degree with a probability of at least
1− Õε(n−c).

• If the lcs is in range (nτ/(1 + ε), (1 + ε)nτ ), we take a
slightly different lcs threshold ξ′ = ξ/(1 + ε)2 and claim
that w is high degree according to the new threshold
since the probability of such an lcs of a sampled string
for a low degree window is at most Õε(n

−c). Note that
since ξ′ = nτ−2 logn(1+ε) = nτ−O(ε/ logn), we can hide
the difference between ξ′ and ξ in ρ.

The median of the lcs of the k samples also has one of the
three cases explained above which is the outcome of our
decision process. In Lemma 4.2, we prove the probability
of an incorrect decision is bounded by n−3.

Lemma 4.2. The time complexity of deciding each window is
high degree or low degree within an approximation factor of
(1 + ε)3 is Õε(n

2−x+3δ) and we decide all windows correctly
with a probability of at least 1− n−3.

4.2 Step 1. Lemma 2.1 states that every window with
respect to a threshold ξ and a window size λ is either high
degree or low degree (or both) with high probability. Note
that even if we know opt′ uses which windows of Ws, we do
not know their contribution to the solution (ξ) and the size
of their matching window λ. Therefore, our algorithm uses
all possible values for both ξ and λ. To be more specific, we
consider log1+ε wmax possible values for ξ, and wsizes values
for λ. The number of all possibilities is bounded by

(log1+ε wmax) · wsizes = Õ(1/ε) · Õε(nδ) = Õε(n
δ).

4.2.1 High Degree Windows. Lemma 2.1 states
that high degree windows are connected to almost all of the

windows of Ws except a small subset of them. However,
to apply this theorem, we should resolve the correlation be-
tween overlapping windows. We resolve this issue by apply-
ing Theorem 2.1 several times on a set of non-overlapping
windows. Note that windows of Ws with an specific size
can be partitioned into wlayers = di

gi
= Õε(n

δ) layers of non-
overlapping windows.

Lemma 4.3. If a window s ∈ Ws is high degree for a
threshold ξ and a window size λ, the number of windows of
size λ in Ws which have a lcs less than ξ/(1 + ε) is bounded

by Õε(n
7δ+ρ).

In Lemma 4.4 we show how many false-positives in total may
occur by assuming high degree windows are connected to all
of the windows of Ws.

Lemma 4.4. The total number of false-positives for all win-
dows of Ws, all thresholds and all window sizes is bounded
by Õ((1/ε6)nx+9δ+ρ).

4.3 Step 2. In this section, we find the lcs of low degree
windows and the windows of Ws. The intuition of this part
is to sample a limited number of low degree windows and
use them to restrict the number of relevant windows for
nearby low degree windows. To implement this idea, we
first define when two low degree windows are nearby. Note
that the construction of the windows can be done for another
parameter x′ < x which results in larger window sizes. The
properties of the construction of larger windows are defined
similarly such as wmin

′ and wmax
′. We say two windows are

nearby if the lie in a larger window. Note that we fix the
parameter x′ later in Section 4.4.1.

If the number of low degree windows inside a larger
window is at most (ε/nδ)nx−x

′
, we can ignore these low

degree windows since their neglection impose an error of at
most

(n/wmin
′) · (ε/nδ)nx−x

′
· n1−x = εn1−δ.

to the total solution. Large windows with few low degree
windows are called type one.

On the other hand, if the number of such low degree
window in a larger window is more than (ε/nδ)nx−x

′
, we

call the larger window type two. For larger windows of type
two, we hit at least one of their low degree windows using a
random sampling method with high probability. We sample
each window with a probability of

p =
1

εnx−x′−δ
· 4 logn.

The expected size of the hitting set is

E[|hitting set|] = |Ws| · p · log1+ε wmax · wsizes = Õε(n
x′+4δ).

We then find the lcs of each sampled window with all of the
windows of Ws. By assuming all lcs thresholds, we find at
least one low degree window of each window of type two with
the right matched window size and the right lcs threshold
with high probability. We prove this claim in Lemma 4.5.

1617
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



Lemma 4.5. There is an algorithm that finds an expected
number of Õε(n

x′+11δ+ρ) potential pairs of windows and

their lcs and runs in expected time Õε(n
2+x′−x+6δ) such that

at least one window with the right window size and the right
lcs is found for every window of type two with a probability
of at least 1− n−3.

Therefore, it only remains to compute the lcs between
low degree windows of Ws and a restricted subset of windows
of Ws. An output pair of Lemma 4.5 is extended to at most

(
wmax

′

gi
· wsizes)

2 = Õε(n
2(x−x′)+6δ).

pairs.

Lemma 4.6. The extension phase of our algorithm takes
expected time Õε(n

2−x′+17δ+ρ) and produces expected

Õε(n
2x−x′+17δ+ρ) tuples, each containing a pair of windows

and their lcs, such that for each window of type two, a tuple
relatively close to its match in opt′ is found.

4.4 Step 3. Recall that Step 0 of our algorithm ensures
that partial solutions for windows can be merged into a
total solution using a dynamic program which runs in time
Õε(n

2x+6δ). However, the dynamic program may find a fake
solution which incorporates too many false-positive pairs.
More precisely, the algorithm either finds a total solution
that uses at most εnx−δ false-positive pairs which impose
an error of at most εnx−δ · wmin = εn1−δ and finished
successfully, or fails. In the case of failure, the dynamic
program detects at least εnx−δ false-positive pairs which can
be removed for the next run of the dynamic program and
the algorithm restarts. Using Lemma 4.4 we immediately
conclude that the number of restarts is at most Õε(n

11δ+ρ).

Corollary 4.1. The last phase of our algorithm for LCS
restarts at most Õε(n

11δ+ρ) times.

The following lemma shows the running time of this
phase of our algorithm.

Lemma 4.7. The last phase of our algorithm runs in time
Õ(n2x+17δ+ρ + n2−x+11δ+ρ) and finds a solution within an
approximation factor of 1 + o(1).

4.4.1 A 1 + o(1) Approximation Algorithm for
LCS. In this section, we conclude the algorithm by setting
the parameters and calculate the running time by solving
a linear program. We denote the running time of our
algorithm by Õε(n

z+ρ) and set the parameters x, x′, and
δ∗ to optimize the running time of our algorithm. Note
that n1−δ∗ is the threshold where solutions smaller than
it are solved via the dynamic program and solutions larger
than it are solved via our main algorithm. Since the time
complexities of both of these algorithms are maximized
for n1−δ∗ , we use δ∗ in our linear program instead of
δ. Moreover, ρ is an arbitrarily small positive constant;

therefore, we ignore it in the linear program.

(4.19)

minimize z

subject to 2− δ∗ ≤ z (Lemma 4.1)

2− x+ 3δ∗ ≤ z (Lemma 4.2)

x < 1− δ∗ (Lemma 4.5)

2 + x′ − x+ 6δ∗ ≤ z (Lemma 4.5)

2− x′ + 17δ∗ ≤ z (Lemma 4.6)

2x+ 17δ∗ ≤ z (Lemma 4.7)

2− x+ 11δ∗ ≤ z (Lemma 4.7)

0 ≤ x′ < x ≤ 1

0 ≤ δ∗ ≤ 1

This linear program is minimized for x′ = 18/34, x = 25/34,
and δ∗ = 1/34 where z = 2−1/34 ≈ 1.970589. Note that the

running time of our algorithm is Õε(n
2−1/34+ρ) which we can

rewrite as O(n1.971) and hide all poly(1/ε), polylog(n), and
nρ terms by rounding up the exponent to the third decimal
digit.

Theorem 4.1. There exists a randomized algorithm which
runs in expected time O(n1.971) and approximates random
LCS within a factor of 1 + o(1).

The following corollary of Theorem 4.1 shows that a
solution can be found with high probability.

Corollary 4.2. There exists a randomized algorithm which
runs in time O(n1.971) and approximates random LCS within
a factor of 1 + o(1) with probability at least 1− n−3.

References

[1] A. Abboud and A. Backurs. Towards hardness of
approximation for polynomial time problems. In ITCS,
volume 67 of LIPIcs, pages 11:1–11:26. Dagstuhl, 2017.

[2] A. Abboud, A. Backurs, and V. V. Williams. Tight
hardness results for LCS and other sequence similarity
measures. In FOCS, pages 59–78. IEEE, 2015.

[3] A. Abboud, T. D. Hansen, V. V. Williams, and
R. Williams. Simulating branching programs with edit
distance and friends or: a polylog shaved is a lower
bound made. In STOC, pages 375–388. ACM, 2016.

[4] A. Abboud and A. Rubinstein. Fast and deterministic
constant factor approximation algorithms for LCS im-
ply new circuit lower bounds. In ITCS 2018, volume 94
of LIPIcs, pages 35:1–35:14. Dagstuhl, 2018.

[5] C. E. Alves, E. N. Cáceres, and S. W. Song. A
coarse-grained parallel algorithm for the all-substrings
longest common subsequence problem. Algorithmica,
45(3):301–335, 2006.

[6] A. Andoni. Private Communication, 2018.

1618
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



[7] A. Andoni, M. Deza, A. Gupta, P. Indyk, and
S. Raskhodnikova. Lower bounds for embedding edit
distance into normed spaces. In SODA, pages 523–526.
SIAM, 2003.

[8] A. Andoni, A. Goldberger, A. McGregor, and E. Po-
rat. Homomorphic fingerprints under misalignments:
Sketching edit and shift distances. In STOC, pages 931–
940. ACM, 2013.

[9] A. Andoni and R. Krauthgamer. The computational
hardness of estimating edit distance. In FOCS, pages
724–734. IEEE, 2007.

[10] A. Andoni and R. Krauthgamer. The smoothed com-
plexity of edit distance. In ICALP, pages 357–369.
Springer, 2008.

[11] A. Andoni, R. Krauthgamer, and K. Onak. Polyloga-
rithmic approximation for edit distance and the asym-
metric query complexity. In FOCS, pages 377–386.
IEEE, 2010.

[12] A. Andoni and K. Onak. Approximating edit distance
in near-linear time. In STOC, pages 199–204. ACM,
2009.

[13] A. Backurs and P. Indyk. Edit distance cannot be
computed in strongly subquadratic time (unless SETH
is false). In STOC, pages 51–58. ACM, 2015.

[14] N. Bansal, M. Lewenstein, B. Ma, and K. Zhang.
On the longest common rigid subsequence problem.
Algorithmica, 56(2):270–280, Feb. 2010.

[15] Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and R. Ku-
mar. Approximating edit distance efficiently. In FOCS,
pages 550–559. IEEE, 2004.

[16] T. Batu, F. Ergun, and C. Sahinalp. Oblivious string
embeddings and edit distance approximations. In
SODA, pages 792–801. SIAM, 2006.

[17] M. Boroujeni, S. Ehsani, M. Ghodsi, M. HajiAghayi,
and S. Seddighin. Approximating edit distance in truly
subquadratic time: Quantum and MapReduce. In
SODA, pages 1170–1189. SIAM, 2018.

[18] M. Boroujeni and S. Seddighin. Improved MPC algo-
rithms for edit distance and Ulam distance. In SPAA,
pages 31–40. ACM, 2019.

[19] S. Boucheron, G. Lugosi, and P. Massart. A sharp
concentration inequality with applications. Random
Structures & Algorithms, 16(3):277–292, 2000.

[20] V. Braverman, M. Charikar, W. Kuszmaul, D. P.
Woodruff, and L. F. Yang. The one-way communication
complexity of dynamic time warping distance. In SoCG,
volume 129 of LIPIcs, pages 16:1–16:15. Dagstuhl, 2019.

[21] K. Bringman and M. Künnemann. Multivariate fine-
grained complexity of longest common subsequence. In
SODA, pages 1216–1235. SIAM, 2018.

[22] K. Bringmann, F. Grandoni, B. Saha, and V. V.
Williams. Truly sub-cubic algorithms for language edit
distance and RNA-folding via fast bounded-difference
min-plus product. In FOCS, pages 375–384. IEEE,
2016.

[23] K. Bringmann and M. Kunnemann. Quadratic condi-
tional lower bounds for string problems and dynamic
time warping. In FOCS, pages 79–97. IEEE, 2015.

[24] D. Chakraborty, D. Das, E. Goldenberg, M. Koucky,
and M. Saks. Approximating edit distance within
constant factor in truly sub-quadratic time. In FOCS,
pages 979–990. IEEE, 2018.

[25] M. Charikar, O. Geri, M. P. Kim, and W. Kuszmaul.
On estimating edit distance: Alignment, dimension
reduction, and embeddings. In ICALP, pages 34:1–
34:14. Dagstuhl, 2018.

[26] L. Chen, S. Goldwasser, K. Lyu, G. N. Rothblum,
and A. Rubinstein. Fine-grained complexity meets
IP=PSPACE. In SODA, pages 1–20. SIAM, 2019.

[27] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and
J. F. Reid. A fast and practical bit-vector algorithm for
the longest common subsequence problem. Information
Processing Letters, 80(6):279–285, 2001.

[28] M. Crochemore, G. M. Landau, and M. Ziv-Ukelson.
A subquadratic sequence alignment algorithm for unre-
stricted scoring matrices. SIAM Journal on Computing,
32(6):1654–1673, 2003.

[29] J. B. de Monvel. Extensive simulations for longest
common subsequences. The European Physical Journal
B-Condensed Matter and Complex Systems, 7(2):293–
308, 1999.

[30] M. Garofalakis and A. Kumar. Correlating XML data
streams using tree-edit distance embeddings. In PODS,
pages 143–154. ACM, 2003.

[31] O. Gold and M. Sharir. Dynamic time warping and
geometric edit distance: Breaking the quadratic barrier.
In ICALP. Dagstuhl, 2017.

[32] E. Goldenberg, R. Krauthgamer, and B. Saha. Sublin-
ear algorithms for gap edit distance. In FOCS. IEEE,
2019. in press.

[33] D. Gusfield. Algorithms on strings, trees and sequences:
computer science and computational biology. Cam-
bridge University Press, 1997.

[34] B. Haeupler, A. Rubinstein, and A. Shahrasbi.
Near-linear time insertion-deletion codes and (1+ε)-
approximating edit distance via indexing. In STOC,
pages 697–708, 2019.

1619
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited



[35] M. Hajiaghayi, M. Seddighin, S. Seddighin, and X. Sun.
Approximating LCS in linear time: Beating the

√
n

barrier. In SODA, pages 1181–1200. SIAM, 2019.

[36] M. Hajiaghayi, S. Seddighin, and X. Sun. Massively
parallel approximation algorithms for edit distance and
longest common subsequence. In SODA, pages 1654–
1672. SIAM, 2019.

[37] J. W. Hunt and T. G. Szymanski. A fast algorithm for
computing longest common subsequences. Communi-
cations of the ACM, 20(5):350–353, 1977.

[38] P. Indyk. Algorithmic applications of low-distortion
geometric embeddings. In FOCS, pages 10–33. IEEE,
2001.

[39] R. Jayaram and B. Saha. Approximating language edit
distance beyond fast matrix multiplication: Ultralinear
grammars are where parsing becomes hard! In ICALP,
pages 19:1–19:15. Dagstuhl, 2017.

[40] M. Koucky. Approximating edit distance within con-
stant factor in truly sub-quadratic time. TCS+, 2018.

[41] M. Koucky and M. Saks. Constant factor approxima-
tions to edit distance on far input pairs in nearly linear
time. arXiv preprint arXiv:1904.05459, 2019.

[42] W. Kuszmaul. Dynamic time warping in strongly
subquadratic time: Algorithms for the low-distance
regime and approximate evaluation. arXiv preprint
arXiv:1904.09690, 2019.

[43] W. Kuszmaul. Efficiently approximating edit distance
between pseudorandom strings. In SODA, pages 1165–
1180. SIAM, 2019.

[44] G. M. Landau, E. W. Myers, and J. P. Schmidt.
Incremental string comparison. SIAM Journal on
Computing, 27(2):557–582, 1998.

[45] W. J. Masek and M. S. Paterson. A faster algorithm
computing string edit distances. Journal of Computer
and System Sciences, 20(1):18–31, 1980.

[46] C. McDiarmid. On the method of bounded differences.
Surveys in Combinatorics, 141(1):148–188, 1989.

[47] C. McDiarmid. Concentration for independent per-
mutations. Combinatorics, Probability and Computing,
11(2):163–178, 2002.

[48] R. Ostrovsky and Y. Rabani. Low distortion embed-
dings for edit distance. In STOC, pages 218–224. ACM,
2005.

[49] A. Rubinstein. Approximating edit dis-
tance. https://theorydish.blog/2018/07/20/

approximating-edit-distance, 2018.

[50] A. Rubinstein and J. Brakensiek. Constant-factor
approximation of near-linear edit distance in near-linear
time. arXiv preprint arXiv:1904.05390, 2019.

[51] A. Rubinstein and Z. Song. Reducing approximate
longest common subsequence to approximate edit dis-
tance. arXiv preprint arXiv:1904.05451, 2019.

[52] A. Runbinstein, S. Seddighin, Z. Song, and X. Sun.
Approximation algorithms for LCS and LIS with truly
improved running times. In FOCS. IEEE, 2019. in
press.

[53] B. Saha. Language edit distance and maximum likeli-
hood parsing of stochastic grammars: Faster algorithms
and connection to fundamental graph problems. In
FOCS, pages 118–135. IEEE, 2015.

[54] B. Saha. Fast & space-efficient approximations of
language edit distance and RNA folding: An amnesic
dynamic programming approach. In FOCS, pages 295–
306. IEEE, 2017.

[55] M. E. Saks and C. Seshadhri. Space efficient streaming
algorithms for the distance to monotonicity and asym-
metric edit distance. In SODA, pages 1698–1709, 2013.

[56] X. Sun and D. P. Woodruff. The communication and
streaming complexity of computing the longest common
and increasing subsequences. In SODA, pages 336–345.
SIAM, 2007.

1620
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

https://theorydish.blog/2018/07/20/approximating-edit-distance
https://theorydish.blog/2018/07/20/approximating-edit-distance

	Introduction
	Related Work.
	Preliminaries, Results, and Techniques.
	Step 1: An Alternative to Triangle Inequality. 
	Steps 2 and 3: A 1+o(1) Approximation Algorithm for ED and LCS 


	Step 1: An Alternative to Triangle Inequality
	Concentration of LCS and ED.
	Independent Random Strings.
	Proof of Lemma 2.6.
	Proof of Lemma 2.7

	Windows of a Random Permutation.

	1+o(1) Approximation Algorithm for Edit Distance
	Step 0.
	High Degree and Low Degree Windows.

	Step 1.
	Step 2.
	Step 3.
	A 1+o(1) Approximation Algorithm for ED.


	A 1+o(1) Approximation Algorithm for LCS
	Step 0.
	High Degree and Low Degree Windows.

	Step 1.
	High Degree Windows.

	Step 2.
	Step 3.
	A 1+o(1) Approximation Algorithm for LCS. 




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
     Shift: move up by 14.40 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20191108085217
       792.0000
       US Letter
       Blank
       612.0000
          

     Tall
     1
     0
     No
     675
     322
     Fixed
     Up
     14.4000
     0.0000
            
                
         Both
         AllDoc
              

       PDDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     20
     19
     20
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 5.40 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     322
     Fixed
     Up
     5.4000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     20
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



