
Subtree Isomorphism Revisited ∗

Amir Abboud

Stanford University

abboud@cs.stanford.edu

Arturs Backurs

MIT

backurs@mit.edu

Thomas Dueholm Hansen

Aarhus University

tdh@cs.au.dk

Virginia Vassilevska Williams

Stanford University

virgi@cs.stanford.edu

Or Zamir

Tel Aviv University

orzamir@mail.tau.ac.il

Abstract

The Subtree Isomorphism problem asks whether a given
tree is contained in another given tree. The problem is
of fundamental importance and has been studied since the
1960s. For some variants, e.g., ordered trees, near-linear
time algorithms are known, but for the general case truly
subquadratic algorithms remain elusive.

Our first result is a reduction from the Orthogonal
Vectors problem to Subtree Isomorphism, showing that a
truly subquadratic algorithm for the latter refutes the Strong
Exponential Time Hypothesis (SETH).

In light of this conditional lower bound, we focus
on natural special cases for which no truly subquadratic
algorithms are known. We classify these cases against the
quadratic barrier, showing in particular that:

• Even for binary, rooted trees, a truly subquadratic
algorithm refutes SETH.

• Even for rooted trees of depth O(log log n), where n
is the total number of vertices, a truly subquadratic
algorithm refutes SETH.

• For every constant d, there is a constant εd > 0 and a
randomized, truly subquadratic algorithm for degree-
d rooted trees of depth at most (1 + εd) logd n. In
particular, there is an O(min{2.85h, n2}) algorithm for
binary trees of depth h.

Our reductions utilize new “tree gadgets” that are likely
useful for future SETH-based lower bounds for problems
on trees. Our upper bounds apply a folklore result from
randomized decision tree complexity.

1 Introduction

Trees are among the most frequently used and com-
monly studied objects in computer science. One of the
most basic and fundamental computational problems on
trees is whether one tree is contained in another, that

∗A.A. and V.V.W. were supported by NSF Grants CCF-
1417238 and CCF-1514339, and BSF Grant BSF:2012338. A.B.
was supported by the NSF and the Simons Foundation; part
of the work was done while the author was at the Thomas J.
Watson Research Center. T.D.H. was supported by the Carlsberg
Foundation, grant no. CF14-0617. O.Z. was supported by
BSF grant no. 2012338 and by The Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11).

is, can an isomorphic copy of H be obtained by delet-
ing nodes and edges of G. This problem is known un-
der three names: Subtree Isomorphism, Tree Pattern

Matching and Subgraph Isomorphism on Trees. There
are a few variants of the problem, mainly determined
by (1) whether the trees are rooted or unrooted, (2)
whether their degrees are bounded, and (3) whether the
trees are ordered, i.e. whether the order of the children
of each node must be preserved by the isomorphism. In
this paper we focus on the case of rooted, unordered
trees with degrees bounded by a constant d.

Because of its fundamental importance, the time
complexity of Subtree Isomorphism has been studied
since the 1960s, e.g. by Matula [44] and Edmonds (see
[45]). The problem is an interesting special case of the
Subgraph Isomorphism problem, studied extensively in
theoretical computer science. Subgraph Isomorphism
is well known to be NP-hard since it generalizes hard
problems such as Clique [34]. It is notoriously diffi-
cult: unlike most natural NP-complete problems, it re-
quires 2ω(n) time (under the exponential time hypothe-
sis (ETH)) [18]. Special cases of subgraph isomorphism,
especially ones that are in P, have received extensive at-
tention. A recent 85-page paper by Marx and Pilipczuk
[42] covers the case in which H is of fixed constant size.
Besides fixing the size of H, there are other non-trivial
ways to make the problem polynomial time solvable;
Subtree Isomorphism is the earliest and arguably the
most natural one. Polynomial time algorithms were also
obtained for biconnected outerplanar graphs [39], two-
connected series-parallel graphs [41], and more [43, 19],
while it is known that further generalizations quickly
become NP-hard, e.g., when G is a forest and H is a
binary tree [24].

The problem is also of practical relevance, since it
can model important applications in a wide variety of
areas. Subtree Isomorphism is at the core of many more
expressive problems, such as Largest Common Subtree

[35, 6, 7], which generally ask: how “similar” are two

1256 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

trees? Application areas include computational biology
[58], structured text databases [36], and compiler opti-
mization [52]. Several definitions of tree-similarity have
been proposed, and the search for fast algorithms for
computing them, both in theory and in practice, has
been ongoing for a few decades - see [10, 23, 27, 53]
for surveys and textbooks. We focus on Subtree Iso-
morphism, and then briefly discuss how the techniques
introduced in this paper can be adapted to prove new re-
sults for the Largest Common Subtree problem as well.

Previous results. According to Matula [45], the
first algorithms for Subtree Isomorphism were proposed
in 1968 independently by Edmonds and Matula himself
[44]. 10 years later, Reyner [48] and Matula [45] showed
that these algorithms run in polynomial time and the
runtime is O(n2.5). The algorithm executes many
calls to a subroutine that solves maximum matching in
bipartite graphs. These result were for rooted trees, and
later Chung [14] showed that the same bounds can be
achieved for unrooted trees. In 1983, Lingas [38] shaved
a log factor, and the most recent development was in
1999 by Shamir and Tsur [51] who used the more recent
randomized algorithms for bipartite matching [13] to
reduce the runtime to O(nω) where ω < 2.373 is the
matrix multiplication exponent [56, 22].

Interestingly, in the most basic case of rooted
and constant degree trees, even the early algorithms
run in O(n2) time, and the fastest known runtime
is O(n2/ log n) [38, 51]. For comparison, when the
trees are ordered, a long line of STOC/FOCS papers
[37, 21, 15, 32, 33, 16] brought down the complexity of
the problem from quadratic [28] to O(n log n) time [17].
It is natural to wonder whether the same improvements
can be achieved in the case of unordered trees.

Main results. Our main result is a conditional
lower bound for Subtree Isomorphism. We show that
a truly subquadratic algorithm is unlikely, even on very
restricted cases such as those of binary, rooted trees or
rooted trees of depth O(log log n). A matching upper
bound, up to no(1) factors, has been known since the
1960s (we briefly discuss this algorithm in Section 3).

Our lower bounds are conditioned on the well-
known Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi and Zane [30, 31] which roughly
states that as k grows, k-SAT on n variables requires
2(1−ε)n poly(n) time for all ε > 0. Our result for
Subtree Isomorphism is the first “SETH-hard” problem
on trees, which is an exciting addition to the diverse
list1 which already includes problems on vectors [55],
(general) graphs [47, 49, 3, 2], sequences [5, 9, 1, 12],

1These are problems with O(nc) upper bounds for some c > 1
and an O(nc−ε) algorithm, for some ε > 0, is known to refute
SETH.

and curves [11]. Our ideas and constructions of “tree
gadgets” are useful for proving conditional lower bounds
for other problems on trees. We demonstrate this with a
lower bound for the Largest Common Subtree problem,
discussed below.

Theorem 1.1. For all d ≥ 2, Subtree Isomorphism on

two rooted, unordered trees of size O(n), degree d, and
height h ≤ 2 logd n + O(log log n) cannot be solved in

truly subquadratic O(n2−ε) time under SETH.

More generally, if the size of the smaller tree is n
and the bigger tree is m, then our lower bound says
that O(nm1−ε) time refutes SETH. We remark that
since SETH is believed to hold even for randomized
algorithms, our lower bound is also a barrier for truly
subquadratic randomized algorithms.

To complement our lower bound, we proceed to
tackle natural restrictions of the problem algorithmi-
cally. The most natural way to restrict tree inputs is
to bound the degree or height. Our lower bound leaves
little room for improvement: Even on binary trees of
height (2+o(1)) log n any algorithm must take quadratic
time under SETH (note that the minimum height of a
binary tree is logn).

An intriguing case is when the trees are binary and
almost complete, i.e., d = 2 and h = (1+o(1)) log n. We
are unable to show a super-linear lower bound in this
case, nor are we able to obtain a deterministic algorithm
that runs in truly subquadratic time. Nevertheless, we
present a randomized, Las Vegas, algorithm that solves
this case in truly subquadratic O(n1.507) time. Our
algorithm solves more general cases:

Theorem 1.2. There is a randomized algorithm for

rooted Subtree Isomorphism with expected running time

O(min{2.8431h, n2}) for trees H and G of size O(n) and
height at most h. In particular, the algorithm runs in

time O(n1.507) for trees of depth (1+o(1)) · log2 n and is

truly subquadratic for trees of depth h ≤ 1.3267 · log2 n.

Our algorithm is simple, natural, and easy to
implement. Perhaps more interesting than the upper
bound itself is that the technique we use to obtain it uses
a technique from randomized decision tree complexity.

We also consider the case of ternary trees, providing
a fast Las Vegas algorithm for it. Our approach is
similar to that of the binary tree case. However, here
we use a computer program to analyze the expected
running time of the algorithm.

Theorem 1.3. There is a randomized algorithm that

can solve Subtree Isomorphism on two rooted ternary
trees of size O(n) and height at most h in expected

O
(
min

{
6.107h, n2

})
time.

1257 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Finally, we generalize our algorithms to obtain truly
subquadratic algorithms for rooted Subtree Isomor-
phism on trees with small height and constant degree
d, for any d ≥ 2.

Theorem 1.4. There is a randomized algorithm that

solves Subtree Isomorphism on two rooted trees of size

O(n), constant degree d, and height at most h in

expected time

O

(
min

{(
d2 −

1

3
d+

2

3

)h

, n2

})
.

In particular, the algorithm is strongly subquadratic for

trees of height

h ≤

(
log(d2)

log(d2 − 1
3d+

2
3)

− ε

)
· logd n ,

for any constant ε > 0.

The bound in the above theorem is not tight for
small d, as our algorithms for d = 2 and d = 3 show.
For example, it is not subquadratic (on small depth
trees) unless d > 3. To obtain the upper bound,
we prove a new randomized query complexity upper
bound for bipartite perfect matching, which could be
of independent interest (Lemma 3.2).

This work is another example of a fine-grained
study of the complexity of fundamental problems in P
under natural parameterizations. This approach was
formalized in two recent works [4, 25].

Techniques and other results. To prove our
SETH hardness results we show reductions from Or-
thogonal Vectors to Subtree Isomorphism in Section 2.
The reductions follow all previous SETH-hardness re-
sults in spirit, but require careful constructions of “tree
gadgets” that represent vectors, as well as techniques
for combining the gadgets into two big trees H and G
for which the existence of an orthogonal pair of vectors
determines whether H is contained in G. Our reduc-
tion is clean and simple, but it gets more tricky when
restricted to trees of constant degree.

Our reduction is easily modified to obtain similar
lower bounds for related problems such as Largest

Common Subtree on two trees (LCST). This problem
is NP-hard when the number of trees is a parameter
or when the two trees are labelled (and unrooted)
[59, 57], while some approximation and parameterized
algorithms are known [35, 7, 6]. When the two trees
are binary and unlabeled, the problem can be solved
in quadratic time, and an adaptation of Theorem 1.1
shows that even when the height is (1 + o(1)) log n, a
truly subquadratic algorithm refutes SETH.

Theorem 1.5. For all d ≥ 2, The Largest Common

Subtree problem on two rooted trees of size O(n), degree
d and height h ≤ logd n + O(log log n) cannot be solved

in truly subquadratic O(n2−ε) time under SETH.

Theorem 1.5 is surprising when contrasted with our
other results. On the one hand, for arbitrary rooted
trees with constant degrees, both Subtree Isomorphism
and the harder-looking LCST have tight quadratic
upper and (conditional) lower bounds. On the other
hand, we show that under the further restriction that
the trees have small depth (as in Theorem 1.2), Subtree
Isomorphism can be solved in truly subquadratic time,
while by Theorem 1.5 the LCST problem cannot, under
SETH.

We attribute our new algorithmic results to two
ingredients. The first important ingredient comes from
our lower bounds. In particular we noticed that when
the trees are binary and the depth is (1 + ε) log n, it is
difficult to implement our reductions. This turned our
attention to finding upper bounds. Knowing the hard
cases thus allowed us to focus on the solvable cases.
This is an important byproduct of the recent research
on conditional lower bounds in P.

The second ingredient was making a connection be-
tween this problem and a seminal result from random-
ized decision tree complexity [50]. Our algorithm for
binary (and ternary) trees is inspired by the follow-
ing well-known result from complexity theory: Given
a formula represented by a complete AND-OR tree on
n leaves that represent the variables, can you evaluate
the formula without looking at all the inputs? The sur-
prising fact is that this is possible with randomization:
to evaluate a gate, we guess which child to check first
at random, and if we see a 1 input to an OR gate, or a
0 input to an AND gate, we do not have to check the
other child. Therefore it is possible to evaluate the for-
mula by only looking at n1−ε inputs. This result has
found many applications in various areas of complexity
theory, learning theory, and quantum query complexity
[8].

Other related work. In the late 1980s, Subtree
Isomorphism was considered from the viewpoint of ef-
ficient parallel algorithms. Lingas and Karpinski [40]
placed the problem in randomized NC1. Gibbons,
Miller, Karp, and Soroker [26] independently obtained
the same result and also showed an NC1 reduction from
bipartite matching to Subtree Isomorphism. Their re-
duction takes a matching instance on n nodes and pro-
duces trees on Ω(n3) nodes, and therefore does not im-
ply a lower bound on the time complexity of Subtree
Isomorphism even assuming that current matching algo-
rithms are optimal. Note that any many-to-one reduc-
tion from matching (where the input is of size Ω(n2))

1258 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

will generate trees of size Ω(n2). To get our quadratic
lower bound we reduce from a different problem, namely
Orthogonal Vectors.

Many related cases of the problem can be solved in
near-linear time. For example, when both trees have
exactly the same size, we get the Tree Isomorphism

problem which was solved in O(n) time by Hopcroft and
Tarjan [29], and later other linear time algorithms were
suggested (see [20] and the references therein). Another
example is the case of ordered trees, meaning that there
is an order among the children of a node that cannot be
modified in the isomorphism. Also, when a “subtree” is
defined to be a node and all its descendants, “subtree”
isomorphism can be solved in linear time [54].

2 SETH Lower Bounds

In this section we reduce CNF-SAT, via the Orthogonal
Vectors (OV) problem, to different variants of the
Subtree Isomorphism problem to prove our SETH-based
lower bounds. The inputs to OV are two lists of N
vectors in {0, 1}D and the output is “yes” if and only if
there is a pair of vectors α, β, one from each list, that
are orthogonal, i.e. for all i ∈ [D] either α[i] or β[i]
is equal to 0. Williams [55] showed that if OV can be
solved in O(N2−ε) time when D = ω(logN), for some
ε > 0, then CNF-SAT on n variables and nO(1) clauses
can be solved in 2(1−ε/2)n time, and SETH is false.

2.1 Hardness for Subtree Isomorphism

A simpler reduction. We start with a “warm-
up” reduction that presents the high-level idea of our
proofs. In Theorem 2.1 below we reduce OV to Subtree
isomorphism on trees with n = O(ND) vertices, un-
bounded degree, and height h = O(D). We later show
how to change the construction to get trees with small
constant degree and small height.

Theorem 2.1. Orthogonal Vectors on two lists of N
vectors in {0, 1}D can be reduced to Subtree Isomor-

phism on two trees of size O(ND) and depth O(d).

Proof. Let us denote the vectors of the first list by A =
{α1, . . . , αN} and of the second list by B = {β1, . . . , βN}
and recall that our goal is to find a pair of vectors
α ∈ A, β ∈ B such that for every coordinate i ∈ [D]
either α[i] = 0 or β[i] = 0.

The first ingredient in the reduction is to construct
vector gadgets.

For every vector in the first list α ∈ A we create a
vector gadget: a tree Hα of size O(D) as follows. First,
add a path u0 → u1 → u2 → · · · → uD+2 and let u0 be
the root of Hα. Then, for each coordinate i ∈ [D] we
consider α[i] and if it is a 1 we add a node ui,1 to the

tree Hα as the child of the node ui, i.e. we add the edge
ui → ui,1. Otherwise, if α[i] = 0, the only child of ui

will be ui+1.
We now define the vector gadgets for the vectors

in the second list. For every β ∈ B we create a vector
gadget: a tree Gβ of size O(D) as follows. The first step
is similar, we add a path v0 → v1 → v2 → · · · → vD+2

and let v0 be the root. The difference is in the second
step. For each coordinate i ∈ [D], we consider β[i] and
if it is a 0 we add a node vi,0 to Gβ as the child of the
node vi, i.e. we add the edge vi → vi,0.

The following simple claim is the key to our reduc-
tion and explains our gadget constructions.

Claim 2.1. Hα is isomorphic to Gβ iff α, β are orthog-

onal.

Proof. For the first direction, assume that α, β are
orthogonal and therefore for every i ∈ [D] we know that
either α[i] = 0 or β[i] = 0. We will define a mapping f
from Hα to a subgraph of Gβ such that if {u, v} is an
edge in Hα then {f(u), f(v)} is an edge in Gβ . First,
we map the roots and paths to each other, by setting
f(ui) = vi for all i ∈ {0, . . . , D+ 2}. Then, we consider
every i ∈ [D] for which α[i] = 1 and map ui,1 to the node
vi,0 in Gβ . We are guaranteed that vi,0 exists because
if α[i] = 1 then β[i] must be 0, by the orthogonality of
the vectors. It is easy to check that two neighbours in
Hα are mapped to two neighbours in Gβ .

For the other direction, assume Hα is isomorphic to
a subgraph of Gβ , and let f be the mapping. First, note
that u0 must be mapped to v0 since these are the roots
of the two trees. Then we observe that uD+2 must be
mapped to vD+2 and the path u0 → · · · → uD+2 must
be mapped to the path v0 → · · · → vD+2 since these
are the only paths of length at least (D + 2) in the
trees. Now, let i ∈ [D] be such that α[i] = 1 and note
that ui must have degree 3 in this case, which implies
that f(ui) = vi must also have degree at least 3 in
Gβ , which implies that the node vi,0 must exist, and
β[i] = 0. Thus, whenever α[i] = 1 it must be the case
that β[i] = 0, and the vectors are orthogonal. �

The final step is to combine the vector gadgets into
two trees H,G in a way such that H is isomorphic to a
subtree of G if and only if there is a pair of orthogonal
vectors within our two lists.

To this end, we define a special vector γ = �0 to be
the all-zero vector in D dimensions. By Claim 2.1, for
any vector β ∈ {0, 1}D, we have that Hβ is isomorphic
to a subtree of Gγ .

We are now ready to define the trees H and G of
size O(ND).

G will be composed of a root node g of degree
(2N − 1) that has Gβj

as a child for every βj ∈ B,

1259 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

in addition to (N − 1) distinct Gγ gadgets. That is,
first, for each j ∈ [N] add the vector gadget Gβj

to G
and add the edge g → v0 where v0 is the root of Gβj

.

And then, we add (N − 1) trees G
(1)
γ , . . . , G

(n−1)
γ to G

and for each j ∈ [N − 1] we add the edge g → v0 where

v0 is the root of G
(j)
γ .

H will be constructed in a similar way, except we
do not add the γ vector gadgets. Create a root node h
of degree N that has Hαj

as a child for every αj ∈ A.
As in the definition of G, we add edges h → u0 where
u0 is the root of Hαj

, for every j ∈ [N].
Before proving the correctness of the reduction,

note that the size of each tree is indeed O(ND) since
each gadget has size O(D) and we are combining O(N)
gadgets into our trees H,G. To conclude the proof, we
claim that H is isomorphic to a subgraph of G iff there
is a pair of orthogonal vectors.

Claim 2.2. In the above reduction, H is isomorphic

to a subtree of G iff there is a pair α ∈ A, β ∈ B of

orthogonal vectors.

Proof. For the first direction, assume that there is a
pair of orthogonal vectors α ∈ A, β ∈ B and we will
show that H is isomorphic to a subtree of G. Consider
the mapping which maps Hα to Gβ as in Claim 2.1, and
then for each of the (N−1) Hα′ subtrees, for α′ �= α, we
map it to a different Gγ subtree of G. Finally, the root
h is mapped to g. It is easy to check that neighbours in
H are mapped to neighbours in G.

For the other direction, assume that H is isomor-
phic to a subgraph of G and let f be the corresponding
mapping. We know that f(h) = g and for each vector
gadget Hαj

in H, its image using our mapping f must
be entirely contained in exactly one vector gadget Gx in
G, where x ∈ B ∪ {γ}. Moreover, two gadgets Hα, Hα′

cannot be mapped to the same gadget Gx. There are N
Hα gadgets but only (N − 1) Gγ gadgets, thus, by the
pigeonhole principle, there must be at least one α ∈ A
for which Hα is mapped to a gadget Gx for x �= γ, i.e.,
x = β for some β ∈ B. We conclude that there is a
mapping from Hα to Gβ in which every two neighbours
are mapped to neighbours, that is, that Hα is isomor-
phic to a subgraph of Gβ , which, by Claim 2.1, implies
that α ∈ A, β ∈ B are orthogonal. �

�

Shorter Vector Gadgets. Next, we show how our
reductions can be implemented with trees of smaller
depth, by introducing a new construction of vector gad-
gets. We will use these gadgets in our final reductions
that prove Theorems 1.1 and 1.5.

Lemma 2.1. Given two vectors α, β ∈ {0, 1}D we

can construct two binary rooted trees Hα, Gβ of depth

3 log2(D)+O(1) in linear time, such that Hα is isomor-

phic to a subtree of Gβ if and only if α, β are orthogonal.

Proof. Our constructions will involve careful combina-
tions of “index gadgets”, which are defined as follows.
For a sequence of 	 binary values b1, b2, . . . , bl, we de-
fine a tree “index gadget” Qb1,b2,...,bl (think of 	 as be-
ing 	log2(D + 1)
 and think of b1, b2, . . . , bl as bits rep-
resenting an index in [D]) to be composed of a path
z1 → z2 → ... → zl of length l, in which z1 is the root,
and for all i ∈ [l] we attach a child zi,1 to zi if and only
if bi = 1. That is, our index gadget Qb1,b2,...,bl is repre-
senting the index in the natural way: the edge zi → zi,1
will exist if and only if bi = 1.

Our first “vector gadget” Hα is constructed as
follows. First, we build a complete binary tree with
D leaves u1, u2, . . . , uD where the subtree at each leaf
ui will encode the entry α[i] using our “index gadgets”.
We assume that every index i ∈ [D] can be represented
by l = 	log2(D + 1)
 bits and we let ī denote this
representation and let īS denote the binary sequence
obtained by flipping each bit of ī. For each node ui

we will attach three gadgets, one after the other: first
we will attach the Qī index gadget, then we follow
it by the QīS index gadget, and finally we append a
path of length either 2 or 3 – depending on α[i]. The
necessity of this complicated encoding will become clear
in the proof of correctness below. More formally, we
first attach ui → Qī, then we let z′l denote the node
of Qī corresponding to zl in the above construction
(i.e. the last node on the path), and attach z′l → QīS .
Then, similarly, we let z′′l be the node of QīS which
corresponds to zl in the above construction (i.e. the
last node on the path), and we either attach three nodes
z′′l → ai → bi → ci if α[i] = 1, or we attach only two
nodes z′′l → ai → bi.

The second “vector gadget” Gβ is constructed in
the same way except that we attach a path of length 3
if β[i] = 0 (as opposed to 1) and attach a path of length
2 if β[i] = 1. By construction, the depth of both trees
is 3 log2(D) +O(1) as claimed.

To complete the proof we show that Hα is isomor-
phic to a subtree of Gβ iff α · β = 0. The first direction
is easy: if the vectors are orthogonal then the natural
mapping from Hα to Gβ that follows from our construc-
tion shows the isomorphism: map the binary trees on
top to each other so that the ui’s are mapped to each
other, then map the attachedQī → QīS subtrees to each
other, and finally, we can map the paths ai → bi → ci
(if α[i] = 1) or ai → bi (if it is 0) to each other since in
the first case β[i] must be zero and ci will also exist in
Gβ .

1260 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

It remains to show that if Hα is isomorphic to a
subtree of Gβ , then α · β = 0. Our index gadgets Qī

and QīS will play a crucial role in this part, as they
will show that in any mapping between the leaves of
the complete tree we must map ui in Hα to ui in Gβ

or else the index gadgets will not map into each other
properly. We claim that for any two indices i, j ∈ [D] we
have that i = j if and only if both Qī is contained in Qj̄

and QīS is contained in Qj̄S . This is true because of the
following observation: Qx̄ is isomorphic to a subtree of
Qȳ iff the set of positions in x̄ with 1 is a subset of the set
of positions of ȳ with 1. Therefore, any mapping from
Hα to a subtree of Gβ must map the path representing
α[i] to the path representing β[i], for all i ∈ [D]. By
construction, this can only happen if α · β = 0. �

Constant Degree Trees. Perhaps the most chal-
lenging element towards the proof of Theorem 1.1 is the
combination of all the vector gadgets into two big trees,
without using large degrees.

To see the difficulty, recall the reduction in the proof
of Theorem 2.1: in both trees, we added all X vector
gadgets as children of a root of degree X. By doing
so we have essentially allowed the isomorphism to pick
any matching between the gadgets. Combined with
the auxiliary gadgets that we added, this allowed us
to show that the final two trees are a “yes” instance of
Subtree Isomorphism if and only if the original vectors
contained an orthogonal pair. However, when the trees
have constant degree (say, binary) it is much harder
to combine the vector gadgets into two trees such that
any matching between the gadgets can be chosen by
the isomorphism. A natural approach would be to add
the gadgets at the leaves of a complete binary tree. One
reason this does not work is that any isomorphism must
map the first and second gadgets to adjacent gadgets in
the second tree – that is, only special kinds of matchings
can be “implemented”.

We overcome this difficulty with a two-level con-
struction that allows the isomorphism to pick exactly
one gadget from each of the two trees and “match”
them, while all the other gadgets do not affect the out-
come.

Theorem 2.2. Given sets of vectors A,B, we can con-

struct two rooted trees H = H(A) and G = G(B) such

that the following properties hold.

1. The number of nodes in both trees and the construc-

tion time is upper bounded by O(ND).

2. The degree of both trees is upper bounded by d.

3. The depth of both trees is upper bounded by

2 logd(N) +O(logD).

4. H is isomorphic to a subtree of G iff there are

α ∈ A and β ∈ B with α · β = 0.

Proof. Let {Hα}α∈A = {Hαi
}i∈[N] and {Gβ}β∈B =

{Gβi
}i∈[N] be the two sets of vector gadgets correspond-

ing to the vectors of A and B that are obtained by the
construction in Lemma 2.1. We will now combine these
vector gadgets into two big trees H and G, which will
be constructed quite differently from each other.

Assume that logd(N) is an integer, otherwise add
dummy vectors to increase N . The first tree H will
be composed of a complete d-ary tree with N leaves
u1, u2, . . . uN , followed by a path of length logd(N) + 1,
followed by the vector gadgets Hαi

. More formally, for
every i ∈ [N] we add:

ui → hi,1 → hi,2 → . . . → hi,logd(N)+1 → Hαi
.

To construct the second tree G we need to construct
vector gadgets Gγ corresponding to the all-zero vector

γ = �0 of length D. As before, we start with a complete
d-ary tree with N leaves v1, v2, . . . vN and attach a path
of length logd(N) + 1 to each leaf, except for vN which
will be treated differently. Then, we attach a copy of
Gγ at the end of each one of these paths, that is N − 1
copies in total. Formally, for every i = 1, . . . , N − 1 we
add:

vi → hi,1 → hi,2 → . . . → hi,logd(N)+1 → Gγ .

Note that none of the vectors in the second list are
encoded in this part of G and they will appear now
in the subtree rooted at vN which we construct next.
Rooted at vN , we add another complete d-ary tree
with N leaves v′1, v

′
2, . . . v

′
N , and then attach the vector

gadgets right after these leaves. That is, for every
i ∈ [N] we add: v′i → Gβi

.
This finishes the construction of H and G and the

first two properties are immediate. The third property
follows from Lemma 2.1, and we now turn to proving
the fourth property which is the correctness of our
construction.

Claim 2.3. There is a pair of vectors α ∈ A and β ∈ B
with α ·β = 0 if and only if H is isomorphic to a subtree

of G.

Proof. For the first direction, let αi and βj be a pair of
orthogonal vectors and we will show that H is contained
in G. First, consider the rearrangement of H so that
the rightmost leaf of the complete d-ary tree (where uN

used to be) is ui, the node to which the vector gadget
Hαi

is attached. We claim that all vector gadgets in H
can now be properly mapped to subtrees of G, without
rearranging the vi nodes in G. To see this, first note

1261 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

that all vector gadgets Hαx
for x �= i will be paired up

with the Gγ vector gadgets, and by Lemma 2.1 and the
fact that γ is orthogonal to any vector, we know that
there is a proper mapping. Then, it remains to show
that the subtree of H rooted at ui is contained in the
subtree of G rooted at vN , which follows because we
can map the vector gadget Hαi

to the vector gadget
Gβj

since αi · βj = 0.
For the second direction, assume that there is a

mapping from H to a subtree of G and we will show
that there must exist a pair of orthogonal vectors. First,
note that under this mapping, there is some i ∈ [N]
such that ui is mapped to vN . By construction of the
subtree rooted at vN , this means that the vector gadget
Hαi

must be mapped into one of the vector gadgets Gβj

for some j ∈ [N], and not into Gγ . By Lemma 2.1, this
can only happen if αi · βj = 0. �

�

Theorem 2.2 and the connection between SETH
and OV of Williams [55] imply Theorem 1.1 from the
introduction.

2.2 Hardness for Largest Common Subtree

Next, we prove a lower bound for the Largest Common
Subtree (LCST) problem, which is a generalization of
Subtree Isomorphism. Although the reductions above
already imply a quadratic lower bound for LCST,
we will now optimize these reductions and prove a
stronger hardness result: we will show that even on
binary trees of depth (1 + o(1)) log n the LCST cannot
be computed in truly subquadratic time. This will
show an interesting gap between LCST and Subtree
Isomorphism, since the latter can be solved in truly
subquadratic time on such trees - we present such upper
bounds in Section 3. Our strengthened hardness result
gives an explanation for why we are not able to extend
our upper bounds to LCST: such extensions would
refute SETH. The next theorem implies Theorem 1.5
from the introduction.

Theorem 2.3. If for some ε > 0, the Largest Common

Subtree problem on two trees size n can be solved in

O(n2−ε) time, then Orthogonal Vectors on N vectors in

{0, 1}D can be solved in O(N2−ε ·DO(1)) time. The trees

produced in the reduction from the Orthogonal Vectors

problem have degree d and height at most logd(N) +
O(logD) for arbitrary d ≥ 2.

Proof. We note that the construction provided in The-
orem 2.2 is not sufficient for our purposes because the
height of the produced trees is 2 logd(N) + O(logD),
which is larger than what we want. We will use the

more expressive nature of LCST to implement our re-
duction with smaller height.

To achieve smaller height, we will try to implement
vector gadgets such that the largest common subtree of
two gadgets would be of a certain fixed size E if the
vectors are not orthogonal, while it will be of a larger
size E′ > E if the vectors are orthogonal. This trick was
introduced by Backurs and Indyk in their reduction to
Edit-Distance [9] and later used in the reductions to
LCS [1]. Here, we carefully implement such gadgets
with degree d trees of small height instead of sequences.
WLOG, we can assume that all vectors in A start with
1 and all vectors in B start with 0. If it is not so,
we can add an extra coordinate at the beginning of
every vector and set the entry accordingly. This does
not change the answer to the problem (whether there
are two orthogonal vectors). Also, we assume that all
vectors in A have the same number of entries equal to 1.
If it is not so, we can subdivide the set A into smaller
sets so that every set contain vectors with the same
number of entries equal to 1. Then we run the reduction
on every subset of A and B. This increase the runtime
to solve the Orthogonal Vectors problem by a factor of
D + 1 but we are fine with that.

For each vector in the first list, α ∈ A, we construct
a vector gadget Hα as follows. Let H ′

α be the vector
gadget constructed in Lemma 2.1 corresponding to
vector α ∈ A. Then Hα is equal to r → root(H ′

α)
for some vertex r, which is the root of Hα.

For each vector in the second list, β ∈ B, we
construct a vector gadget Gβ as follows. Let δ be a
vector with D coordinates. The first entry is equal to
1 and the rest of entries are equal to 0. Let G′

β be the
vector gadget constructed in Lemma 2.1 corresponding
to vector β ∈ B. Then we obtain Gβ by choosing a
vertex r to be its root and adding r → G′

δ and r → G′
β .

The main idea behind this construction is that,
when matching Hα and Gβ , one has a choice: either
match H ′

α to G′
δ (giving a fixed score, independent of

α), or match it to G′
β (and the score then depends on

the orthogonality of α and β.) We make this argument
formal in the next lemma. Let E′ denote the size of Hα

for α ∈ A, which is independent of α since all vectors in
A contain the same number of 1’s. Let E = E′ − 1.

Lemma 2.2. The largest common subtree of Hα and Gβ

is of size E′ = |Hα| if α, β are orthogonal and it is of

size E = E′ − 1 otherwise. We have that the size of Hα

and Hα′ are equal |Hα| = |Hα′ | for all α, α′ ∈ A.

Proof. First, if α, β are orthogonal, then by Lemma 2.1
we have that Hα is isomorphic to a subgraph of Gβ and
the LCST has size E′.

For the second case, assume that α, β are not

1262 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

orthogonal. We first remark that there is a common
subtree of size E′− 1: Let α′ denote α where we set the
first coordinate of α (which is equal to 1) to 0, then H ′

α′

is a subtree of H ′
α of size |H ′

α′ | = E′−1, and by Lemma
2.1, it is also a subtree of G′

δ because α′ · δ = 0. It
remains to show that we cannot map the entire tree Hα

to a subtree of Gβ , which follows because H ′
α is neither

isomorphic to a subtree of G′
δ (since α · δ = 1) nor to a

subtree of G′
β (since α · β �= 0). �

We are now ready to present the final trees H,G.
We construct H as follows. First, we build a complete
d-ary tree with N leaves h1, . . . , hN at the lowest
level. For every j ∈ [N], we add hj → Hαj

, where
A = {α1, . . . , αN}. Similarly we construct G. Take a
complete d-ary tree with leaves g1, . . . , gN at the lower
level. For every j ∈ [N], we add gj → Gβj

, where
B = {β1, . . . , βN}.

Theorem 2.4. The Largest Common Subtree of H and

G is of size at most (2N−1)+(N ·E) if there is no pair

of orthogonal vectors, and is at least (2N−1)+(N ·E+1)
otherwise.

Proof. We must map the nodes hi for every i ∈ [N]
to nodes gπ(i), for some permutation π : [N] → [N].
Notice, however, that π cannot be an arbitrary permu-
tation since, e.g. π(1) = π(2)±1 (the permutation must
be implemented by swapping children in a complete bi-
nary tree.)

On the one hand, the total size of the common sub-
tree can be upper bounded by the size of a complete bi-
nary tree with N leaves, plus

∑N
i=1 LCST (Hαi

, Gβπ(i)
),

for an arbitrary permutation π. If there is no pair
of orthogonal vectors, then by Lemma 2.2, the latter
sum is exactly N · E, and the total size is bounded by
(2N − 1) +N · E.

On the other hand, if there is an orthogonal pair
αi, βj , we can take any mapping in which hi is mapped
to gj while the other hx’s are mapped arbitrarily to
different gy’s. This induces some permutation π : [N] →
[N] so that hx is mapped to gπ(x). Since αi · βj = 0,
Lemma 2.2 implies that this mapping can be completed
to a mapping of score

(2N − 1) +
N∑

v=1

LCST (Hαv
, Gβπ(v)

) ≥

(2N − 1) + (N − 1) · E + (E + 1) =

(2N − 1) + (N · E + 1) .

�

�

3 Algorithms

In this section we present new algorithms for Subtree
Isomorphism on rooted trees with vertices of bounded
degree. Edmonds and Matula independently described
a procedure for reducing the rooted Subtree Isomor-
phism problem to a polynomially bounded collection of
recursively smaller Subtree Isomorphism problems, and
how to combine the answers by solving a maximum bi-
partite matching problem (see [45]). We follow the same
approach but focus on the case where the degrees are
bounded by a constant.

Given two rooted trees H and G, we want to decide
whether H is isomorphic to a subtree of G where the
root ofH maps to the root ofG. LetH1, H2, . . . , Hk and
G1, G2, . . . , G	 be the subtrees of H and G, respectively,
with roots that are children of the root of H and the
root of G. Let G be a bipartite graph with vertex set
V = {u1, . . . , uk} ∪ {v1, . . . , v	}, and let (ui, vj) be an
edge of G if and only if Hi is isomorphic to a subtree of
Gj . ThenH is isomorphic to a subtree ofG if and only if
G contains a matching of size k. The Edmonds-Matula
procedure constructs the graph G by recursion and then
solves the maximum bipartite matching problem on G.

Designing similar algorithms for rooted Subtree
Isomorphism thus involves two challenges: constructing
G and solving the maximum bipartite matching problem
on G. The currently fastest randomized algorithm
for the maximum bipartite matching problem is due
to Mucha and Sankowski [46] and runs in expected
time O((k +)ω), where ω < 2.373 is the matrix
multiplication exponent. Improving this algorithm is
itself a challenging open problem.

For constructing the graph G, it is not hard to
see that any deterministic algorithm needs to know all
edges of G. For randomized algorithms, however, it
is not always necessary to know for every pair ui, vj
whether the edge (ui, vj) is in the graph. The expected
number of node pair queries (“is the pair an edge in
the graph?”) that a randomized algorithm needs to
make in order to be able to determine whether a perfect
matching exists, is known as the randomized query

complexity (or decision tree complexity) of bipartite
perfect matching. It is an easy exercise to check that the
randomized query complexity of the problem is Ω(k).
Estimating the exact number of queries is, however, not
straightforward. It is not even clear whether k	 queries
are necessary in expectation, or whether (1−ε)k	 queries
might be sufficient for some ε > 0. Factoring this
into the analysis of the maximum bipartite matching
algorithm complicates things further.

To simplify things, we restrict our attention to the
case where the degrees of the trees are bounded by a
constant. In this case we can check in constant time

1263 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

whether G contains the desired perfect matching, once
a sufficient number of edge queries have been made.
We can thus focus solely on the randomized query
complexity of the bipartite matching problem and its
use in recursive algorithms for the Subtree Isomorphism
problem.

It is easy to show that in this case the algorithm
of Edmonds and Matula runs in time O(mn), where
|H| = m and |G| = n. The same algorithm is also able
to handle labelled vertices, i.e., each vertex has a label
and the labels of H are required to match the labels
of the subtree of G. Moreover, the algorithm can solve
the largest common subtree problem in O(mn) time as
well. This is done by recursively assigning a weight to
every edge (ui, vj) of G equal to the size of the largest
common subtree of Hi and Gi, and then asking for the
matching of largest weight. (We refer to the appendix
for a short complexity analysis and further description
of these algorithms.) Our lower bounds from theorems
1.1 and 1.5 are thus tight for trees of constant degree.

For the remainder of the section we restrict our at-
tention to trees of constant degree d and height h. We
first introduce a randomized algorithm that solves the
binary problem in expected time O(min{2.8431h,mn}).
For comparison, the corresponding upper bound by Ed-
monds and Matula [45] is O(min{4h,mn}), i.e., their
algorithm makes four recursive calls at each level of
the tree. In particular our algorithm is truly sub-
quadratic when h < 1.3267 log2 n. For d = 3 we
give a similar, but more complicated case analysis
showing that the problem can be solved in expected
time O(min{6.107h,mn}), improving the straightfor-
ward O(min{9h,mn}) bound by Edmonds and Mat-
ula. For d > 3 we introduce a randomized algo-
rithm with expected running time upper bounded by
O(min{(d2 − 1

3d+
2
3)

h,mn}).

3.1 A faster algorithm for binary trees

For trees with degree at most two, the Edmonds-Matula
procedure can be interpreted as follows. LetHL andHR

be the left and right subtrees of H, and let GL and GR

be the left and right subtrees of G. H is isomorphic to
a subtree of G if and only if one of the following two
conditions are true:

1. HL is isomorphic to a subtree of GL, and HR is
isomorphic to a sutree of GR.

2. HL is isomorphic to a subtree of GR, and HR is
isomorphic to a sutree of GL.

Each case can be checked with two recursive calls, and
checking whether H is isomorphic to a subtree of G can
thus be done with at most four recursive calls, giving
an O(4h) upper bound.

Algorithm RandBinarySubIso(H,G)

1. If |H| = 0, return true;

2. If |G| = 0, return false;

3. With probability 1/2 swap HL and HR in H;

4. With probability 1/2 swap GL and GR in G;

5. If RandBinarySubIso(HL, GL) = false,
then go to step 7;

6. If RandBinarySubIso(HR, GR) = true,
then return true;

7. If RandBinarySubIso(HL, GR) = false,
then return false;

8. If RandBinarySubIso(HR, GL) = true,
then return true.
Otherwise return false;

Figure 1: A randomized, recursive algorithm for rooted
Subtree Isomorphism on binary trees.

Observe that if HL is not isomorphic to a subtree
of GL, then there is no reason to check whether HR is
isomorphic to a sutree of GR. Similarly, if the algorithm
concludes that the first condition is met, then there is
no reason to check the second condition since we already
know that H is isomorphic to a subtree of G. Based on
these observations, we introduce a simple randomized
variant of the algorithm that achieves a significantly
better running time by saving recursive calls: Swap
HL and HR with probability 1/2, and swap GL and
GR with probability 1/2. Then run the Edmonds-
Matula algorithm, but do not perform unnecessary
recursive calls. We give a formal description of the
algorithm in Figure 1. We refer to the algorithm as
RandBinarySubIso.

Theorem 3.1. The RandBinarySubIso algorithm

runs in expected time O(min{2.8431h, n2}) for trees

H and G of size O(n) and height at most h. In

particular, it runs in time O(n1.507) for trees of height

(1 + o(1)) · log2 n, and is strongly subquadratic for trees

of height h < 1.3267 log2 n.

Before proving Theorem 3.1 we first prove a useful
lemma. Let T (h) be the maximum expected number
of times RandBinarySubIso(H,G) makes a recursive
call with an empty tree when H and G are arbitrary
rooted trees with height at most h. Let Tyes(h) and

1264 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Tno(h) be defined similarly, but under the assumption
that the algorithm returns true and false, respectively.
Note that T (0) = Tyes(0) = Tno(0) = 1. Also note that
T (h) = max{Tyes(h), Tno(h)}.

Lemma 3.1. For all h ≥ 0,

Tyes(h) ≤ 2.25 · Tyes(h− 1) + 0.5 · Tno(h− 1) ,

Tno(h) ≤ Tyes(h− 1) + 2 · Tno(h− 1) .

Proof. To simplify notation we write H ⊆ G when H is
isomorphic to a subtree of G, and H �⊆ G otherwise.

We first show that Tyes(h) ≤ 2.25 · Tyes(h − 1) +
0.5 · Tno(h − 1). Assume therefore that H ⊆ G. With
probability 1/2 we then have HL ⊆ GL and HR ⊆ GR,
such that the algorithm returns true in line 6 after
spending 2 · Tyes(h − 1) time in expectation. On the
other hand, with probability 1/2 the outcomes of lines 5
and 6 depend on the trees in question, and the recursive
calls in lines 7 and 8 both return true if reached. More
precisely, we get three cases that depend on the trees:

(i) HL ⊆ GL and HR ⊆ GR: The recursive calls in
lines 5 and 6 both return true, and the algorithm
spends 2 · Tyes(h− 1) time in expectation.

(ii) HL �⊆ GL and HR �⊆ GR: The recursive call in
line 5 returns false, and the recursive calls in lines
7 and 8 both return true. The algorithm spends
Tno(h− 1) + 2 · Tyes(h− 1) time in expectation.

(iii) HL ⊆ GL and HR �⊆ GR, or HL �⊆ GL and
HR ⊆ GR: The recursive call in line 5 returns false
with probability 1/2 and true with probability
1/2. In the second case the recursive call in line
6 returns false. The recursive calls in lines 7
and 8 both return true. The algorithm spends
Tno(h− 1) + 2.5 · Tyes(h− 1) time in expectation.

The third case thus dominates the two others, and we
conclude that Tyes(h) ≤ 2.25·Tyes(h−1)+0.5·Tno(h−1).

We next show that Tno(h) ≤ Tyes(h − 1) + 2 ·
Tno(h − 1). Assume therefore that H �⊆ G. We get
the contribution 2 · Tno(h− 1) as follows. In either line
5 or 6 we get the answer false from a recursive call,
and in either line 7 or 8 we also get the answer false

from a recursive call. This amounts to two “no” answers
which cost 2 · Tno(h − 1) in expectation. We get the
contribution Tyes(h− 1) as follows. With probability at
most 1/2 we get the answer true in line 5 (which means
that we get false in line 6). Similarly, with probability
at most 1/2 we get the answer true in line 7 (which
means that we get false in line 8). In total, we get that
Tno(h) ≤ 2 ·Tno(h−1)+ 1

2Tyes(h−1)+ 1
2Tyes(h−1). �

Proof. [Proof of Theorem 3.1] Lemma 3.1 gives us that(
Tyes(h)
Tno(h)

)
≤

(
2.25 0.5
1 2

)(
Tyes(h− 1)
Tno(h− 1)

)

≤

(
2.25 0.5
1 2

)h (
1
1

)
.

A diagonalization of the matrix yields(
2.25 0.5
1 2

)
= Q−1JQ ,

where

Q−1 =

(
1−

√
33

8
1−

√
33

8
1 1

)

J =

(
17−

√
33

8 0

0 17+
√
33

8

)

Q =

(
− 4√

33
1
2 + 1

2
√
33

4√
33

1
2 − 1

2
√
33

)
,

and therefore(
Tyes(h)
Tno(h)

)
≤

(
0.065 · 1.407h + 0.94 · 2.8431h

−0.109 · 1.407h + 1.109 · 2.8431h

)
.

Thus, T (h) = O(2.8431h), which proves the theorem. �

3.2 A Faster Algorithm for Ternary Trees

Here we discuss the subtree isomorphism problem for
rooted ternary trees. We prove Theorem 1.3 by showing
that Subtree isomorphism for rooted ternary trees of
height h can be solved in expected time O(6.107h).

We note that this running time is lower than the
runtime given by our generic algorithm for constant
degree trees in Section 3.3.

Let’s prove the theorem. As before, we proceed by a
recursive approach. In each recursive call, we consider
a randomized decision tree for 3 × 3 bipartite perfect
matching, where each query corresponds to a recursive
call on height one less. We then analyze the runtime
similar to the binary tree case: we distinguish between
the “yes” and “no” case of the query answer, and write
the running time as two recurrences, one for Tyes, when
the algorithm said the trees are isomorphic, and one for
Tno when they were not. We analyze the randomized
decision tree in terms of the expected number of “yes”
and “no” query answers in the worst case.

The randomized query protocol is as follows. Let U
and V be the two partitions of the bipartite matching
instance (respectively, U are the subtrees of the root of
one tree and V are the subtrees of the root of the other).
First we pick U or V at random w.p. 1/2. If we pick

1265 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

V , then the names of U and V are swapped. Now, with
probability 1/6 we pick a permutation of the vertices
in U , and with probability 1/6 we pick a permutation
of V . From this point on, the protocol is deterministic.
Let a, b, c be the nodes of U and x, y, z be the nodes of
V . The deterministic decision tree we use is depicted in
Figures 2 and 3.

For each of the 29 choices for the answers to the 9
edge queries in the 3×3 matching instance, we consider
each of the 72 randomized choices as described above
(swap U and V , permute U and V) and consider the
decision tree, computing the expected number of “yes”
and “no” calls. Using a computer program, we establish
that when the instance has no perfect matching, the
expected number of “yes” calls is always at most 26/9,
and the expected number of “no” calls is always at most
37/9; this happens when the complement of the graph
consists of a 4-cycle, disjoint from a single edge. On
the other hand, if the instance has a perfect matching
there are two cases that dominate all others: when
the expected number of “yes” calls is 131/36, and
the expected number of “no” calls is 61/36, or when
the expected number of “yes” calls is 133/36, and the
expected number of “no” calls is 5/3. There are thus
two options for the recurrence relation, and one of them
dominates the other. We present the recurrence that
achieves the maximum, and hence gives the worst-case
expected runtime for the ternary case.

(
Tyes(h)
Tno(h)

)
≤

(
133/36 5/3
26/9 37/9

)(
Tyes(h− 1)
Tno(h− 1)

)

≤

(
133/36 5/3
26/9 37/9

)h (
1
1

)

The diagonalization yields(
133/36 5/3
26/9 37/9

)
= Q−1JQ,

where

J =

(
281−

√
25185

72 0

0 281+
√
25185

72

)

Q =

(
1
2 +

√
25185
3358

1
2 −

√
25185
3358

− 104√
25185

104√
25185

)
,

which gives that(
Tyes(h)
Tno(h)

)
≤

(
0.17 · 1.7h + 0.831 · 6.107h

−0.2 · 1.69h + 1.21 · 6.107h

)
.

Thus, the running time overall is O(6.107h).

3.3 An algorithm for any constant degree

In this section we describe a way to use randomization
to save subtree comparisons in the Edmonds-Matula
algorithm [45] for all degrees d > 2. Recall that the
algorithm works as follows. Given two trees H and G
of constant degree d, the goal is to decides whether H
is isomorphic to a subtree of G by using recursion. If
the roots of either H or G have less than d children,
we simply view the missing subtrees as being a special
empty subtree.

1. Let H1, . . . , Hd be the d subtrees of H, and let
G1, . . . , Gd be the d subtrees of G;

2. Build a bipartite graph G with d vertices U =
{u1, . . . , ud} on the left and d vertices W =
{v1, . . . , vd} on the right. For all i, j ∈ [d], con-
nect ui and vj if and only if Hi is isomorphic to
a subtree of Gj . We decide which edges appear in
the graph recursively.

3. Output that H is isomorphic to a subtree of G
if and only if there is a perfect matching in the
bipartite graph G.

The runtime of the algorithm is O(min{d2h, n2}), where
h is the height. Intuitively, we can improve the runtime
of the algorithm as follows. Perform recursive calls
corresponding to edges (ui, vj) in a random order, and
stop as soon as we either detect a perfect matching
or rule out the existence of a perfect matching. It
is not difficult to show that this randomized version
of the algorithm performs d2 − Ω(1) recursive calls in
expectation out of the d2 possible calls. That is, in
expectation, we save at least a constant number of
recursive calls. This implies that the algorithm runs in
O((d2−Ω(1))h) expected time, which is faster than the
deterministic algorithm. However, we prove below that
we can save Ω(d) recursive calls in expectation using a
slightly different variant of the randomized algorithm.

Lemma 3.2. Let G be a bipartite graph with d vertices

U = {u1, . . . , ud} on the left and d vertices W =
{v1, . . . , vd} on the right, and suppose we are given

query access to the adjacency matrix of G. There is

a randomized query algorithm that decides whether G
contains a perfect matching by making d2 − 1

3d + 2
3

queries in expectation, with probability 0 of making an

error.

We use the following two claims to prove the lemma.

Claim 3.1. Assume that G has a perfect matching.

Then the following algorithm finds a perfect matching

after making d2 − d + 2 expected queries: Query edges

1266 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

c, x

a, y c, y

b, z a, z a, x c, z

b, y b, y T1

a, y c, y

YES b, z T2
a, y NO

yes no

a, z T3
c, yYES a, zYES b, x a, x

c, zYES b, x NO b, x T4
b, yYES b, y NO

a, x NO a, xYES c, zYES a, x NO YES NO

b, xYES b, z NO b, y NO YES NO

YES NO YES NO YES NO

Figure 2: The decision tree used for bipartite matching in the degree 3 case.

YES NO

b, x

T1

a, x

c, z NO

b, y b, z

YES b, z c, y NO

c, y NO

YES NO

T2

b, x

a, z NO

YES c, z

a, y NO

YES NO

T3

c, z NO

YES a, z

c, y NO

YES NO

c, z

T4

b, y NO

YES b, x

a, y NO

YES NO

Figure 3: The missing subtrees of the decision tree used for bipartite matching in the degree 3 case.

1267 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(ui, vj) in a random order, and stop when finding a

perfect matching.

Proof. Fix a perfect matching present in G and call its
d edges “marked”. We stop when all marked edges have
been queried. There are d2 − d unmarked edges. The
probability that a given unmarked edge is not queried
is 1

d+1 . Therefore, the expected number of unqueried,

unmarked edges is d2−d
d+1 ≥ d− 2. �

Claim 3.2. Assume that G does not have a perfect

matching. Then the following algorithm makes at most

d2 − 1
2d + 1 queries in expectation before determining

that G does not contain a perfect matching.

1. With probability 1/2 swap U and W;

2. Randomly permute the vertices of U =
{u1, u2, . . . , ud};

3. Query all edges adjacent to ui for i going from 1 to

d, but stop when ruling out the existence of a per-

fect matching, i.e., stop when the set of processed

vertices S = {u1, . . . , ui} contains a subset S′ with
a neighbourhood N(S′) that is smaller than the size

of S′.

Proof. Consider the sets U and W prior to running the
algorithm. By Hall’s theorem, the set U contains a
set S′ such that |N(S′)| < |S′|. We can assume that
|S′| = |N(S′)| + 1, since otherwise we can iteratively
remove a vertex from S′ until this condition is satisfied.
Consider two cases.

• d is even: If |S′| ≥ d
2 +1, we define T ′ = W\N(S′).

Because N(S′) ≥ d/2, we get that |T ′| ≤ d
2 . By our

construction of T ′, we have that N(T ′) ⊆ U \ S′

and, as a result, |N(T ′)| < |T ′|. Given the first
step of the algorithm, with probability at least 1/2
the set U therefore contains a set S′ such that
|N(S′)| < |S′| ≤ d

2 .

• d is odd: It follows from as similar argument that,
with probability at least 1/2, the set U contains a
set S′ such that |N(S′)| < |S′| ≤ d+1

2 .

We now condition on the set U containing S′ with
|S′| ≤ d+1

2 and |N(S′)| < |S′|.
The algorithm stops once it queries all vertices from

S′, since a perfect matching is then ruled out by Hall’s
theorem. The probability that we do not process a given
vertex before processing all vertices in S′ is 1/(|S′|+ 1).
Therefore the expected number of unprocessed vertices
when the algorithm stops is at least

(d− |S′|) ·
1

|S′|+ 1
≥

d− 1

2
·

1
d+1
2 + 1

=
d− 1

d+ 3
.

Hence, with probability 1/2, we query d
(
d− d−1

d+3

)
edges, and overall the number of queried edges is

1

2

[
d

(
d−

d− 1

d+ 3

)]
+

1

2
d2 = d2

(
1−

1− 1
d

2(d+ 3)

)

≤ d2 −
1

2
d+ 1 .

In the last inequality we use that d ≥ 3. �

Proof. [Proof of Lemma 3.2]
We prove the lemma by using claims 3.1 and 3.2.
With probability 1/3 we run the algorithm from

Claim 3.1 and with probability 2/3 we run the algorithm
from Claim 3.2. Consider the case when G has a perfect
matching. Then the expected number of edges queried
is upper bounded by

1

3
(d2 − d+ 2) +

2

3
d2 = d2 −

1

3
d+

2

3
.

On the other hand, for the case when G does not
contain a perfect matching, the expected number of
edges queried is upper bounded by

1

3
d2 +

2

3

(
d2 −

1

2
d+ 1

)
= d2 −

1

3
d+

2

3
.

Overall, regardless of G, we therefore query at most
d2 − 1

3d+
2
3 edges in expectation. �

Theorem 3.2. There is a randomized algorithm that

solves Subtree Isomorphism on two rooted trees of size

O(n), constant degree d, and height at most h in

expected time O
((

d2 − 1
3d+

2
3

)h)
. In particular, the

algorithm is strongly subquadratic for trees of height

h ≤

(
2 log d

log(d2 − 1
3d+

2
3)

− ε

)
· logd n ,

for any constant ε > 0.

Proof. We run the following randomized, recursive algo-
rithm that decides whether H is isomorphic to a subtree
of G.

1. Let H1, . . . , Hd be the d subtrees of H, and let
G1, . . . , Gd be the d subtrees of G;

2. Let G be a bipartite graph with d vertices U =
{u1, . . . , ud} on the left and d vertices W =
{v1, . . . , vd} on the right. For all i, j ∈ [d], let ui

and vj be connected if and only if Hi is isomorphic
to a subtree of Gj .

3. Decide whether the graph G has a perfect matching
by running the algorithm from Lemma 3.2. When-
ever we need to decide whether an edge (ui, vj) is
present in G, do it recursively.

1268 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

By the proof of Lemma 3.2, it suffices to query d2 −
1
3d + 2

3 edges for every level. Given that the height of
the trees is upper bounded by h, we get the desired
running time. �

Acknowledgements. We would like to thank
Shiri Chechik, Piotr Indyk, Haim Kaplan, Michael
Kapralov, Huacheng Yu, and Uri Zwick for many helpful
discussions.

References

[1] A. Abboud, A. Backurs, and V. Vassilevska Williams.
Tight Hardness Results for LCS and other Sequence
Similarity Measures. In Proc. of the 56th FOCS, 2015.

[2] A. Abboud, F. Grandoni, and V. V. Williams. Sub-
cubic equivalences between graph centrality problems,
APSP and diameter. In Proc. of the 26th SODA, pages
1681–1697, 2015.

[3] A. Abboud and V. Vassilevska Williams. Popular
conjectures imply strong lower bounds for dynamic
problems. Proc. of the 55th FOCS, pages 434–443,
2014.

[4] A. Abboud, V. V. Williams, and J. R. Wang. Approx-
imation and fixed parameter subquadratic algorithms
for radius and diameter. CoRR, abs/1506.01799, 2015.

[5] A. Abboud, V. V. Williams, and O. Weimann. Conse-
quences of faster alignment of sequences. In Automata,
Languages, and Programming, pages 39–51. Springer,
2014.

[6] T. Akutsu and M. M. Halldórsson. On the approxima-
tion of largest common subtrees and largest common
point sets. Theoretical Computer Science, 233(1):33–
50, 2000.

[7] T. Akutsu, T. Tamura, A. A. Melkman, and A. Takasu.
On the complexity of finding a largest common subtree
of bounded degree. Theoretical Computer Science,
590:2–16, 2014.

[8] A. Ambainis, A. M. Childs, B. Reichardt, R. Spalek,
and S. Zhang. Any AND-OR formula of size N can be

evaluated in time N1/2+o(1) on a quantum computer.
SIAM J. Comput., 39(6):2513–2530, 2010.

[9] A. Backurs and P. Indyk. Edit Distance Cannot
Be Computed in Strongly Subquadratic Time (unless
SETH is false). In Proc. of the 47th STOC, pages 51–
58, 2015.

[10] P. Bille. A survey on tree edit distance and re-
lated problems. Theoretical Computer Science, 337(1–
3):217–239, 2005.

[11] K. Bringmann. Why walking the dog takes time:
Fréchet distance has no strongly subquadratic algo-
rithms unless seth fails. In Proc. of the 55th FOCS,
pages 661–670, 2014.

[12] K. Bringmann and M. Kunnemann. Quadratic Condi-
tional Lower Bounds for String Problems and Dynamic
Time Warping. In Proc. of the 56th FOCS, 2015.

[13] J. Cheriyan. Randomized O(M(|V|)) algorithms for

problems in matching theory. SIAM Journal on Com-
puting, 26(6):1635–1655, 1997.

[14] M. J. Chung. O(n2.5) time algorithms for the sub-
graph homeomorphism problem on trees. Journal of
Algorithms, 8(1):106–112, 1987.

[15] R. Cole and R. Hariharan. Tree pattern matching and

subset matching in randomized O(n log3m) time. In
Proc. of the 29th STOC, pages 66–75, 1997.

[16] R. Cole and R. Hariharan. Verifying candidate
matches in sparse and wildcard matching. In Proc.
of the 34th STOC, pages 592–601, 2002.

[17] R. Cole and R. Hariharan. Tree pattern matching
to subset matching in linear time. SIAM Journal on
Computing, 32(4):1056–1066, 2003.

[18] M. Cygan, J. Pachocki, and A. Socala. The hardness of
subgraph isomorphism. CoRR, abs/1504.02876, 2015.

[19] A. Dessmark, A. Lingas, and A. Proskurowski. Faster
algorithms for subgraph isomorphism of k-connected
partial k-trees. Algorithmica, 27(3-4):337–347, 2000.

[20] Y. Dinitz, A. Itai, and M. Rodeh. On an algorithm
of zemlyachenko for subtree isomorphism. Information
Processing Letters, 70(3):141–146, 1999.

[21] M. Dubiner, Z. Galil, and E. Magen. Faster tree
pattern matching. Journal of the ACM (JACM),
41(2):205–213, 1994.

[22] F. L. Gall. Powers of tensors and fast matrix multi-
plication. In Proc. of the 39th ISSAC, pages 296–303,
2014.

[23] B. Gallagher. Matching structure and semantics: A
survey on graph-based pattern matching. AAAI FS,
6:45–53, 2006.

[24] M. R. Garey and D. S. Johnson. Computers and
intractability, volume 29. W. H. Freeman, 2002.

[25] A. C. Giannopoulou, G. B. Mertzios, and R. Nieder-
meier. Polynomial fixed-parameter algorithms: A case
study for longest path on interval graphs. CoRR,
abs/1506.01652, 2015.

[26] P. B. Gibbons, R. M. Karp, G. L. Miller, and D. Soro-
ker. Subtree isomorphism is in random NC. Discrete
Applied Mathematics, 29(1):35–62, 1990.

[27] D. Gusfield. Algorithms on strings, trees and se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press, 1997.

[28] C. M. Hoffmann and M. J. O’Donnell. Pattern match-
ing in trees. Journal of the ACM (JACM), 29(1):68–95,
1982.

[29] J. E. Hopcroft and R. E. Tarjan. Isomorphism of
planar graphs. In Proc. of Complexity of Computer
Computations, pages 131–152. 1972.

[30] R. Impagliazzo and R. Paturi. On the complexity of
k-SAT. Journal of Computer and System Sciences,
62(2):367–375, 2001.

[31] R. Impagliazzo, R. Paturi, and F. Zane. Which prob-
lems have strongly exponential complexity? Journal
of Computer and System Sciences, 63:512–530, 2001.

[32] P. Indyk. Deterministic superimposed coding with
applications to pattern matching. In Proc. of the 38th
FOCS, pages 127–136, 1997.

1269 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[33] P. Indyk. Faster algorithms for string matching prob-
lems: Matching the convolution bound. In Proc. of the
39th FOCS, pages 166–173, 1998.

[34] R. M. Karp. Reducibility among combinatorial prob-
lems. In Complexity of Computer Computations, The
IBM Research Symposia Series, pages 85–103. Springer
US, 1972.

[35] S. Khanna, R. Motwani, and F. F. Yao. Approximation
algorithms for the largest common subtree problem.
Technical report, Stanford University, 1995.

[36] P. Kilpeläinen and H. Mannila. Ordered and un-
ordered tree inclusion. SIAM Journal on Computing,
24(2):340–356, 1995.

[37] S. R. Kosaraju. Efficient tree pattern matching (pre-
liminary version). In Proc. of the 30th FOCS, pages
178–183, 1989.

[38] A. Lingas. An application of maximum bipartite c-
matching to subtree isomorphism. In Proc. of the 8th
CAAP, pages 284–299, 1983.

[39] A. Lingas. Subgraph isomorphism for biconnected out-
erplanar graphs in cubic time. Theoretical Computer
Science, 63(3):295–302, 1989.

[40] A. Lingas and M. Karpinski. Subtree isomorphism is
NC reducible to bipartite perfect matching. Informa-
tion Processing Letters, 30(1):27–32, 1989.

[41] L. Lovász and M. D. Plummer. Matching theory,
volume 367. American Mathematical Soc., 2009.

[42] D. Marx and M. Pilipczuk. Everything you always
wanted to know about the parameterized complexity
of subgraph isomorphism (but were afraid to ask). In
Proc. of the 31st STACS, pages 542–553, 2014.

[43] J. Matoušek and R. Thomas. On the complexity of
finding iso-and other morphisms for partial k-trees.
Discrete Mathematics, 108(1):343–364, 1992.

[44] D. W. Matula. An algorithm for subtree identification.
SIAM Review, 10:273–274, 1968.

[45] D. W. Matula. Subtree isomorphism in O(n5/2).
In Algorithmic Aspects of Combinatorics, volume 2
of Annals of Discrete Mathematics, pages 91–106.
Elsevier, 1978.

[46] M. Mucha and P. Sankowski. Maximum matchings via
gaussian elimination. In Proc. of the 45th FOCS, pages
248–255, 2004.

[47] M. Patrascu and R. Williams. On the possibility of
faster SAT algorithms. In Proc. of the 21st SODA,
volume 10, pages 1065–1075, 2010.

[48] S. W. Reyner. An analysis of a good algorithm for
the subtree problem. SIAM Journal on Computing,
6(4):730–732, 1977.

[49] L. Roditty and V. Vassilevska Williams. Fast approxi-
mation algorithms for the diameter and radius of sparse
graphs. In Proc. of the 45th STOC, pages 515–524,
2013.

[50] M. Saks and A. Wigderson. Probabilistic boolean
decision trees and the complexity of evaluating game
trees. In Proc. of the 27th FOCS, pages 29–38, 1986.

[51] R. Shamir and D. Tsur. Faster subtree isomorphism.
Journal of Algorithms, 33(2):267–280, 1999.

[52] K.-C. Tai. The tree-to-tree correction problem. Jour-
nal of the ACM (JACM), 26(3):422–433, 1979.

[53] G. Valiente. Algorithms on trees and graphs. Springer
Science & Business Media, 2013.

[54] R. M. Verma. Strings, trees, and patterns. Information
Processing Letters, 41(3):157–161, 1992.

[55] R. Williams. A new algorithm for optimal 2-constraint
satisfaction and its implications. Theoretical Computer
Science, 348(2):357–365, 2005.

[56] V. V. Williams. Multiplying matrices faster than
coppersmith-winograd. In Proc. of the 44th STOC,
pages 887–898, 2012.

[57] K. Zhang and T. Jiang. Some max snp-hard results
concerning unordered labeled trees. Information Pro-
cessing Letters, 49(5):249–254, 1994.

[58] K. Zhang and D. Shasha. Simple fast algorithms for the
editing distance between trees and related problems.
SIAM journal on computing, 18(6):1245–1262, 1989.

[59] K. Zhang, R. Statman, and D. Shasha. On the editing
distance between unordered labeled trees. Information
processing letters, 42(3):133–139, 1992.

A Analysis of the Edmonds-Matula algorithm

and its variants

Lemma A.1. On binary trees, the Edmonds-Matula al-

gorithm takes O(mn) time, where m = |H|, n = |G|.

Proof. Denote by mL,mR, nL, nR the sizes of
HL, HR, GL, GR, the left and right subtrees of H
and G, notice that mL+mR = m−1, nL+nR = n−1.
The runtime of the algorithm is described by the
recurrence

T (0, n) = T (m, 0) = 1 ,

T (m,n) = 1 + T (mL, nL) + T (mR, nR)+

T (mL, nR) + T (mR, nL) .

Then, by induction, we prove T (m,n) ≤ mn,

T (m,n) = 1 + T (mL, nL) + T (mR, nR)+

T (mL, nR) + T (mR, nL)

≤ 1 +mL · nL +mR · nR +mL · nR +mR · nL

= 1 + (mL +mR) · (nL + nR)

= 1 + (m− 1)(n− 1)

≤ mn .

�

As mentioned in section 3, this algorithm is easily
extended to solve the labelled version of the problem or
the Largest Common Subtree problem for any constant
bounded degree d = O(1). For completeness, we include
pseudo-code of a variant that solves the Labelled Largest

Common Subtree problem, generalizing both.

1270 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm 1: LLCS(H,G, d)

if Size(F) = 0 or Size(G) = 0 then

return 0
end if

for i = 1 to d do

for j = 1 to d do

if Label(H.Children[i]) = Label(G.Children[j])
then

Sub[i, j] ← LLCS(Subtree(H.Children[i]),
Subtree(G.Children[j]), d)

else

Sub[i, j] ← 0
end if

end for

end for

w ← the weight of a maximum weight bipartite
matching in the bipartite graph with edges
defined by Sub[i, j].
return w + 1

Lemma A.2. Algorithm 1 solves the Labelled Largest
Common Subtree problem in time O(mn) for rooted

trees H,G of bounded degree d = O(1), where m,n are

the sizes of H,G respectively.

Proof. Correctness is straightforward, it is also clear
that as d = O(1), Algorithm 1 makes a constant number
of operations excluding the recursive calls. Denote
by m1,m2, ...,mr the sizes of the (maximal) subtrees
rooted at the r ≤ d children of the root of H, and
by n1, n2, ..., ns the sizes of those rooted at the s ≤ d
children of the root of G. It holds that

∑r
i=1 mi = m−1

and
∑s

j=1 nj = n− 1. The runtime of the algorithm is
described by the recurrence

T (0, n) = T (m, 0) = 1 ,

T (m,n) = 1 +

r,s∑
i=1,j=1

T (mi, nj) .

Then, by induction, we prove T (m,n) ≤ mn,

T (m,n) = 1 +

r,s∑
i=1,j=1

T (mi, nj)

≤ 1 +

r,s∑
i=1,j=1

mi · nj

= 1 + (

r∑
i=1

mi) · (

s∑
j=1

nj)

= 1 + (m− 1)(n− 1)

≤ mn .

�

1271 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

