Announcements:

- Don't forget: ps3 due on Friday
- Project presentations start next week!
- See schedule, and check when yours is!
 - Course Evaluations

How Fine-Grained Improvements Can Imply Circuit Complexity Lower Bounds

Ryan Williams

Circuit Complexity: A Crash Course

Algorithms

Can take in arbitrarily long inputs and still solve the problem

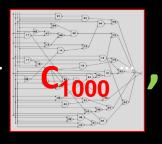
$$f: \{0,1\}^* \to \{0,1\}$$

Circuits

Can only take in fixed-length inputs

$$g: \{0, 1\}^n \to \{0, 1\}$$

Circuit Family = { ,...



For each n, have a circuit C_n to be run on all inputs of length n

Circuit model has "programs with infinite-length descriptions"

P/poly = $\{f: \{0,1\}^* \rightarrow \{0,1\}\}$ computable by a circuit family $\{C_n\}$ where for every n, the size of C_n is at most poly(n) }

Each circuit is "small" relative to its number of inputs

P/poly = { $f: \{0, 1\}^* \rightarrow \{0, 1\}$ computable by a circuit family $\{C_n\}$ where for every n, the size of C_n is at most poly(n) }

Conjecture: NP ⊄ P/poly

Why study this model?

Proving limitations on what circuit families can compute is a step towards a *non-asymptotic complexity theory:*

Concrete limitations on computing within the known universe "Any computer solving most instances of this 10⁴-bit problem needs at least 10¹²⁵ bits to be described"

Functions with High Circuit Complexity

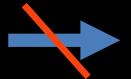
"Most" functions require huge circuits!

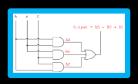
Theorem [Shannon '49, Lupanov '58]

With high probability, a randomly chosen function $f: \{0,1\}^n \rightarrow \{0,1\}$

does not have circuits of size less than 2ⁿ/n (and: every *f* has a circuit of size about 2ⁿ/n)

0 1 0 1 1 0 1 0 1





Which "natural" functions exhibit this exponential behavior?

Circuits and Derandomization

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

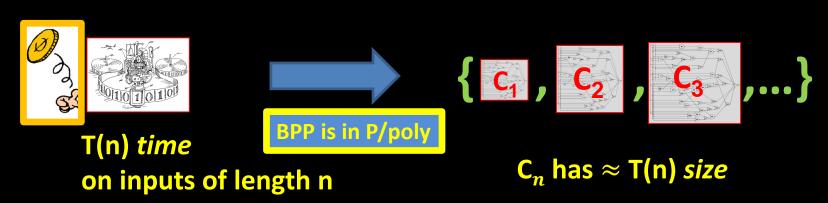
```
If there is a f: \{0,1\}^* \to \{0,1\}
computable in 2^{O(n)} time
that does not have circuits of size at most 2^{n/100}
```

Then Randomized Time ≡ Deterministic Time

Rough intuition:

If f "looks random" to all circuits,
then f can be used to replace true randomness
in any computation!

Algorithms vs Circuit Families



There is a family where every C_n has \approx size n

No algorithm at all!

Some undecidable problems are in P/poly

EXPONENTIAL TIME

 $(2^n steps)$

EXP is in P/poly is open!

every C_n has $\approx n^2$ size !!

Conjecture: NP ⊄ P/poly

Here endeth the Crash Course

Two Difficult Areas of Research

Fine-Grained Improvements for Solving NP Problems

Given: Verifier V(x, y) which reads w(|x|) bits of witness y, runs in t(|x|) time.

Find: Deterministic or Randomized Algorithm which:

- 1. Runs in *less than* $2^{w(|x|)} t(|x|)$ time
- Given any input x, finds a witness y such that V(x,y) accepts (or conclude none)

Circuit Complexity (Non-Uniform Algorithms)

Given: Any **NP** problem Π (or **NEXP** problem!)

Find: Sequence of algorithms {A_n} such that for some k:

- 1. $|A_n| \leq n^k + k$
- 2. On all inputs x of length n, $A_n(x)$ correctly solves Π on x in $O(n^k)$ time.

Prove that no such sequences of algorithms exist for Π

One Seems Easier Than The Other...

Fine-Grained Improvements for Solving NP Problems

Given: Verifier V(x, y) which reads w(|x|) bits of witness y, runs in t(|x|) time.

Find: Deterministic or Randomized Algorithm which:

- 1. Runs in *less than* $2^{w(|x|)} t(|x|)$ time
- Given any input x, finds a witness y such that V(x,y) accepts (or conclude none)

Circuit Complexity (Non-Uniform Algorithms)

Given: Any **NP** problem Π (or **NEXP** problem!)

Find: Sequence of algorithms {A_n} such that for some k:

- 1. $|A_n| \leq n^k + k$
- 2. On all inputs x of length n, $A_n(x)$ correctly solves Π on x in $O(n^k)$ time.

Prove that no such sequences of algorithms exist for Π

One Seems Easier Than The Other...

Fine-Grained Improvements

- 3-SAT: O(1.308ⁿ) time
- k-SAT: O(2^{n-n/k})
- Hamiltonian Path: O(1.66ⁿ)
- Vertex Cover: O(1.2ⁿ)
 - on degree-3 graphs: O(1.09ⁿ)
- Max-2-SAT: O(1.8ⁿ)
- 3-Coloring: **O(1.33**ⁿ)
- k-Coloring: O(2ⁿ)

Circuit Complexity

Given: Any NP problem Π (or NEXP problem!)

Find: Sequence of algorithms {A_n} such that for some k:

- 1. $|A_n| \leq n^k + k$
- 2. On all inputs x of length n, $A_n(x)$ correctly solves Π on x in $O(n^k)$ time.

Prove that no such sequences of algorithms exist for Π

One Seems Easier Than The Other...

Fine-Grained Improvements

- 3-SAT: O(1.308ⁿ) time
- k-SAT: O(2^{n-n/k})
- Hamiltonian Path: O(1.66ⁿ)
- Vertex Cover: O(1.2ⁿ)
 - on degree-3 graphs: O(1.09ⁿ)
- Max-2-SAT: O(1.8ⁿ)
- 3-Coloring: **O(1.33**ⁿ)
- k-Coloring: O(2ⁿ)

Circuit Complexity

- For all these algorithms on the LHS, we don't know how to get non-uniform algorithms (circuits) that are any better
- Best lower bound known:
 There is a function in NP that requires circuits of size 5n + o(n)
- Cannot yet rule out that **NEXP** is in P/poly...

Faster Algorithms ⇒ Lower Bounds

Faster "Algorithms for Circuits" [R.W. '10,'11]

Deterministic algorithms for:

- Circuit SAT in O(2ⁿ/n¹⁰) time
 with n inputs and n^k gates
- Formula SAT in $O(2^n/n^{10})$
- C-SAT in $O(2^n/n^{10})$
- Given a circuit of n^k size that's either *UNSAT*, or has $\geq 2^{n-1}$ *SAT* assignments, determine which in $O(2^n/n^{10})$ time (Easily solved w/ randomness!)

No "Circuits for NEXP"

Would imply:

NEXP ⊄ **P/poly**

Even Faster \Longrightarrow "Easier" Functions

Better "Algorithms for Circuits" [Murray-W. '18]

Det. algorithm for some $\epsilon > 0$:

- Circuit SAT in $O(2^{n-n^{\epsilon}})$ time with n inputs and $2^{n^{\epsilon}}$ gates
- Formula SAT in $O(2^{n-n^{\epsilon}})$
- C-SAT in $O(2^{n-n^{\epsilon}})$
- Given a circuit of $2^{n^{\epsilon}}$ size that's either *UNSAT*, or has $\geq 2^{n-1}$ *SAT* assignments, determine which in $O(2^{n-n^{\epsilon}})$ time

(Easily solved w/ randomness!)

No "Circuits for Quasi-NP"

Would imply:

- NTIME[$n^{polylog n}$] $\not\subset$ P/poly
- NTIME[$n^{polylog n}$] $\not\subset$ NC1
- NTIME[$n^{polylog n}$] $\not\subset C$

 $\mathsf{NTIME}[n^{polylog\ n}] \not\subset \mathsf{P/poly}$

Even Faster \Longrightarrow "Easier" Functions

Fine-Grained SAT Algorithms [Murray-W. '18]

Det. algorithm for some $\epsilon > 0$:

- Circuit SAT in $O(2^{(1-\epsilon)n})$ time on n inputs and $2^{\epsilon n}$ gates
- Formula SAT in $O(2^{(1-\epsilon)n})$
- C-SAT in $O(2^{(1-\epsilon)n})$
- Given a circuit of $2^{\epsilon n}$ size that's either *UNSAT*, or has $\geq 2^{n-1}$ *SAT* assignments, determine which in $O(2^{(1-\epsilon)n})$ time (Easily solved w/ randomness!)

No "Circuits for NP"

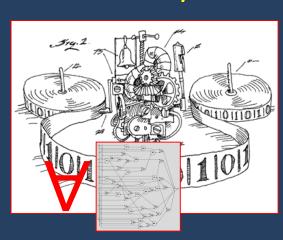
Would imply:

- NP $\not\subset$ SIZE(n^k) for all k
- NP $\not\subset$ Formula-SIZE (n^k)
- NP $\not\subset$ C-SIZE (n^k) for all k

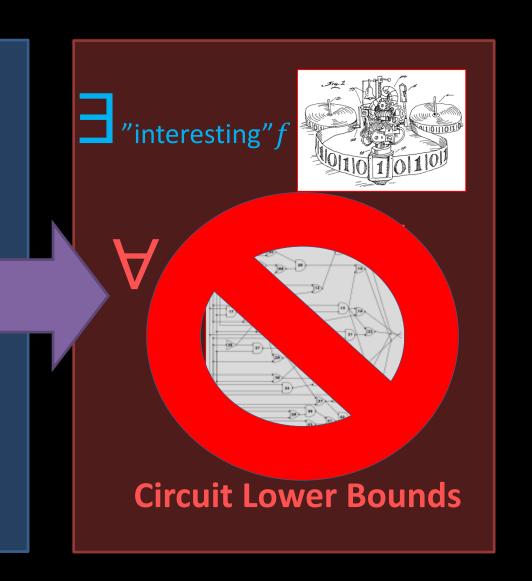
 $\mathsf{NP} \not\subset \mathsf{SIZE}(n^k)$ for all k

Why on Earth would it be true?

SAT? YES/NO



"Non-Trivial"
Circuit Analysis
Algorithm



Concrete Lower Bounds From Algs!

Thm [R.W.'11]: NEXP $\not\subset$ ACC⁰

Thm [Murray-W'18]: NTIME[$n^{poly(\log n)}$] $\not\subset$ ACC⁰

```
NEXP = NTIME[2^{n^{O(1)}}]
```

ACC⁰: polynomial size, constant depth circuits with AND, OR, and MOD[m] gates for some constant m.

A simple but Annoying Circuit Class to prove lower bounds for (proposed in 1986)

How It Was Proved

Let C be a "typical" circuit class (like ACC⁰)

Thm A [W'11]:

If for all k, \mathbb{C} -SAT on n^k -size is in $O(2^n/n^k)$ time, then NEXP does not have poly-size \mathbb{C} -circuits.

Thm B [W'11]:

 $\exists \ \varepsilon$, ACC°-SAT on $2^{n^{\varepsilon}}$ size is in $O(2^{n-n^{\varepsilon}})$ time.

An inefficiency!

Theorem B gives a much stronger algorithm than is needed in Theorem A.

This is exactly the starting point of [Murray-W'18]...

More on Theorem A

Let C be some circuit class (like ACC⁰)

Thm A [W'11]:

If for all k, \mathbb{C} -SAT on n^k -size is in $O(2^n/n^k)$ time, then NEXP does not have poly-size \mathbb{C} -circuits.

Idea. Show that if we assume both:

(1) NEXP has poly-size C-circuits, and

(2) a faster \mathbb{C} -SAT algorithm

Then we can show $NTIME[2^n] \subseteq NTIME[o(2^n)]$

Idea. Assume

(1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[\mathsf{o}(2^n)]$

- 1. Guessing some witness y of $O(2^n)$ length.
- 2. Checking y is a witness for x in $O(2^n)$ time.

Idea. Assume

(1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[\mathfrak{o}(2^n)]$

- 1. Guessing some witness y of $o(2^n)$ length.
- 2. Checking y is a witness for x in $o(2^n)$ time.

Idea. Assume

(1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[\mathsf{o}(2^n)]$

- 1. Guessing some witness y of $o(2^n)$ length.
- 2. Checking y is a witness for x in $o(2^n)$ time.

Idea. Assume

(1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[\mathsf{o}(2^n)]$

- 1. Guessing some witness y of $o(2^n)$ length.
- 2. Checking y is a witness for x in $o(2^n)$ time.

Guessing Short Witnesses

1. Guess a witness y of $o(2^n)$ length.

Easy Witness Lemma [IKW'02]:

If NEXP has polynomial-size circuits, then all NEXP problems have "easy witnesses"

Def. An NEXP problem L has easy witnesses if \forall Verifiers V for L and $\forall x \in L$, \exists poly(|x|)-size circuit D_x such that V(x,y) accepts, where $y = Truth Table of circuit <math>D_x$.

1'. Guess poly(|x|)-size circuit D_x

Verifying Short Witnesses

2. Check y is a witness for x in $o(2^n)$ time.

Assuming NEXP has polynomial-size circuits, "easy witnesses" exist for *every* verifier V. We choose a V for an NEXP-complete L so that

Checking a witness for x

Solving a C-UNSAT instance with poly(|x|) size and $n = |x| + O(\log|x|)$ inputs

Then, $2^n/n^k$ time for C-UNSAT $\rightarrow o(2^{|x|})$ time

Verifying Short Witnesses

2. Check y is a witness for x in $o(2^n)$ time.

Assuming NEXP has polynomial-size circuits, "easy witnesses" exist for *every* verifier V. We choose a V for an NEXP-complete L so that

Checking a witness for x

Distinguishing *unsatisfiable* circuits from those with *many* satisfying assignments (PCP Theorem!)

Idea. Assume

(1) NEXP has poly-size \mathbb{C} -circuits, and (2) a faster \mathbb{C} -SAT algorithm Show that $\mathsf{NTIME}[2^n] \subseteq \mathsf{NTIME}[\mathsf{o}(2^n)]$

- 1. Guessing a circuit D_x of poly(|x|) size
- 2. Checking D_x encodes a witness for x in $o(2^n)$ time

End