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Abstract

Two important similarity measures between sequences are the longest common subsequence
(LCS) and the dynamic time warping distance (DTWD). The computations of these measures for
two given sequences are central tasks in a variety of applications. Simple dynamic programming
algorithms solve these tasks in O(n2) time, and despite an extensive amount of research, no
algorithms with significantly better worst case upper bounds are known.

In this paper, we show that an O(n2−ε) time algorithm, for some ε > 0, for computing
the LCS or the DTWD of two sequences of length n over a constant size alphabet, refutes the
popular Strong Exponential Time Hypothesis (SETH). Moreover, we show that computing the
LCS of k strings over an alphabet of size O(k) cannot be done in O(nk−ε) time, for any ε > 0,
under SETH.
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1 Introduction

Many applications require comparing long strings. For instance, in biology, DNA or protein se-
quences are frequently compared using sequence alignment tools to identify regions of similarity
that may be due to functional, structural, or evolutionary relationships. In speech recognition,
sequences may represent time-series of sounds. Sequences could also be English text, computer
viruses, points in the plane, and so on. Because of the large variety of applications, there are many
notions of sequence similarity. Some of the most important and widely used notions are the Longest
Common Subsequence (LCS), the Edit-Distance (also called Levenshtein distance), the Dynamic
Time Warping Distance (DTWD) and the Frechet distance measures.

LCS and Edit-Distance are defined in terms of the minimum number of changes that can be
performed to obtain the second string from the first. LCS allows symbol insertions and deletions,
whereas Edit-Distance also allows symbol substitutions. DTWD and Frechet distance assume a
distance measure between any two symbols and are defined in terms of a “best” joint traversal of
the sequences. The traversal places a marker at the beginning of each sequence and during each
step one or both markers are moved forward one symbol, until the end of both sequences is reached.
Each step aligns two symbols, one from each sequence. Frechet defines the quality of the traversal
to be the maximum distance between aligned symbols, whereas DTWD defines it to be the sum of
distances.

For each of these similarity measures on two sequences of length n there is a classical, folklore
O(n2) time algorithm (see e.g. [CLRS09]). This O(n2) time algorithm for LCS is typically taught
as a first example of Dynamic Programming in introductory computer science courses and often
makes the students wonder “Can LCS be solved in subquadratic time?” As it is hard to think of a
simpler problem on two sequences than LCS for which a near-linear time algorithm is not known,
this question seems as fundamental as any. Needless to say, researchers have wondered about
the possibility of a subquadratic algorithm for decades, and in the early 1970s Knuth ([CKK],
Problem 35) posed this as an important problem in combinatorics. Besides the obvious theoretical
motivation, the question is of ever increasing relevance in practice, as quadratic time is prohibitive
for many important applications. For instance, the sequences in biological applications have length
in the order of millions and billions.

Unfortunately, despite substantial research, the current best algorithms for all four problems
are only mildly subquadratic– one can shave small polylogarithmic factors, but there is no known
truly subquadratic, O(n2−ε) time algorithm, for ε > 0. Due to the general lack of unconditional
time lower bounds, a popular approach is to prove, via reductions, lower bounds based on famous
conjectures. In 1995, Gajentaan and Overmars [GO12] showed that the lack of progress on many
O(n2) time problems in computational geometry can be explained by the lack of progress on a simple
problem called 3SUM. 3SUM has since become a landmark problem to give reductions from to
show conditional quadratic time hardness: it has enjoyed tremendous success within computational
geometry (e.g. [GO12, MSO02, Eri99, AHP05, CEHP04, BHP99]), graph algorithms (e.g. [P1̌0,
AV14]) and recently also for some sequence similarity problems [ACLL14, AVW14]. Nevertheless,
the 3SUM hardness approach has so far failed for problems such as LCS, Edit-Distance, Frechet
distance and DTWD.

Besides 3SUM, a different conjecture, the Strong Exponential Time Hypothesis (SETH), has re-
cently become popular for proving conditional lower bounds for quadratic time problems (e.g. [RV13,
AGV15, AV14]). It asserts that for all ε > 0, there is some k such that k-SAT on n variables re-
quires essentially 2(1−ε)n time. Two recent papers [Bri14, BI15] explained the quadratic bottleneck
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of Edit-Distance and Frechet distance by showing that any truly subquadratic algorithm for either
problem would refute SETH, and would thus present a breakthrough in the study of SAT algo-
rithms. The techniques used in these two reductions, however, did not seem to work for LCS and
DTWD. In a certain sense this is because LCS and DTWD are simpler looking problems. Here is
some intuition:

LCS is a restricted version of Edit-Distance, as no substitutions are allowed. Intuitively, a
reduction can encode more in the more complex looking Edit-Distance problem. DTWD and
Frechet distance only differ in that DTWD uses + and Frechet uses max. However, some intuition
from other problems seems to indicate that problems with + are easier than ones with max. For
instance, the convolution of two sequences (z[k] =

∑
i x[i] · y[k− i]) can be computed in O(n log n)

time using an FFT, whereas the corresponding max-convolution (z[k] = maxi x[i] · y[k − i]) seems
to require n2−o(1) time [BCD+14]1. Thus apriori it could be possible that DTWD is a substantially
simpler problem and no reduction from k-SAT is possible.

The first contribution of this work is to prove that neither of LCS and DTWD admits truly
subquadratic algorithms, unless SETH fails. To do this, we overcome several technical hurdles with
sophisticated gadgets. Our lower bounds hold even when the input sequences are over a constant
size alphabet. We complement the result for DTWD by providing a truly subquadratic algorithm
for DTWD on binary strings with cost function 0 if the symbols are equal and 1 otherwise. Our
lower bounds also hold for the same distance function. In this paper we present a lower bound for
an alphabet of size 5; however, we believe that one can obtain the same lower bound for a ternary
alphabet, so that, modulo SETH, the runtime complexity of DTWD for this simple cost measure
would be settled.

We extend our results for LCS to the version on k strings, k-LCS: find the longest string that
is a subsequence of all k given strings. k-LCS is a classical and well-studied problem. One of its
biggest applications is in biology where one needs to compute the most similar region of a set of
DNA sequences. In fact, one of the most widely used textbook on computational biology [Gus97]
calls the multiple alignment problem “the holy grail” of computational biology.

The fastest known algorithm for k-LCS runs in O(nk) time. We show that an O(nk−ε) time
algorithm, for any ε > 0 would refute SETH, even for alphabet size O(k). Along the way, we
show that k-LCS is W[2]-hard on small alphabets, resolving an open problem in parameterized
complexity.

1.1 Prior work and hypotheses

LCS. LCS has attracted an extensive amount of research, both due to its mathematical sim-
plicity and to its large number of important applications, including data comparison programs
(e.g. diff in UNIX) and bioinformatics (e.g. [JP04]). There are many algorithms for LCS, beyond
the classical dynamic programming solution, in many different settings, e.g. [Hir75, HS77] (see
[BHR00] for a survey). Nevertheless, the best algorithms on arbitrary strings are only slightly
subquadratic and have an O(n2/ log2 n) running time [MP80] if the alphabet size is constant, and
O(n2(log log n)/ log2 n) otherwise [BFC08, Gra14].

1[BCD+14] study (min,+)-convolution, but it is not hard to reduce it to (max, ·) with only a small increase in the
bit complexity of the integers.
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k-LCS. The k-LCS problem is a generalization of LCS to k strings. The classical dynamic
programming solution to k-LCS runs in O(knk) time. Maier [Mai78] showed that k-LCS is NP-
Complete even for binary strings. When k is a parameter, the problem is W [1]-hard, even over a
fixed size alphabet, by a reduction from Clique [Pie03]. When the alphabet can be polynomial in
n, it is known that k-LCS is W [t]-hard for all t ≥ 1 [BDFW94]. The parameters of the reduction
from [Pie03] imply that an no(k) algorithm for k-LCS would refute ETH 2, and an algorithm with
running time sufficiently faster than O(nk/7) would imply a new algorithm for k-Clique. However,
no results ruling out O(nk−1) or even O(nk/2) upper bounds were known. Furthermore, beyond the
W [1]-hardness of [Pie03] the parameterized complexity of k-LCS with an alphabet size independent
of n, say O(k), was unknown. Our results show that in this case, in fact, k-LCS is W [2]-hard.

DTWD. Dynamic time warping is useful in scenarios in which one needs to cope with differing
speeds and time deformations of time-dependent data. Because of its generality, DTWD has been
successfully applied in a large variety of domains: automatic speech recognition [RJ93], music
information retrieval [Mül07] , bioinformatics [AC01], medicine [CPB+98], identifying songs from
humming [ZS03], indexing of historical handwriting archives [RM03], databases [RK05, KR05] and
many more.

DTWD compares sequences over an arbitrary feature space, equipped with a distance function
for any pair of symbols. The sequences may represent time series or features sampled at equidistant
points in time. The cost function differs with the application. For instance, if the features are real
numbers, then the distance could be `p. A simple cost function which is useful when comparing
text is to have the cost between two letters be 1 if they are different and 0 if they are the same
(See Example 4.2. in [Mül07] for this version).

A simple dynamic programming algorithm solves DTWD in O(n2) time and is the best known
in terms of worst-case running time, while many heuristics were designed in order to obtain faster
runtimes in practice (see Wang et al. for a survey [WDT+10]).

Hardness assumptions. The Strong Exponential Time Hypothesis (SETH) [IP01, IPZ01] as-
serts that for any ε > 0 there is an integer k > 3 such that k-SAT cannot be solved in 2(1−ε)n

time. Recently, SETH has been shown to imply many interesting lower bounds for polynomial
time solvable problems [PW10, RV13, AV14, AVW14, Bri14, BI15]. We will base our results on
the following conjecture, which is possibly more plausible than SETH: it is known to be implied by
SETH, yet might still be true even if SETH turns out to be false. See Section 2.2 for a discussion.

Conjecture 1. Given two sets of n vectors A,B in {0, 1}d and an integer r ≥ 0, there is no ε > 0
and an algorithm that can decide if there is a pair of vectors a ∈ A, b ∈ B such that

∑d
i=1 aibi ≤ r,

in O(n2−ε · poly(d)) time.

1.2 Results

Our main result is to show that a truly sub-quadratic algorithm for LCS or DTWD refutes Con-
jecture 1 (and SETH), and should therefore be considered beyond the reach of current algorithmic
techniques, if not impossible. Our results justify the use of sub-quadratic time heuristics and
approximations in practice, and add two important problems to the list of SETH-hard problems.

Theorem 1. If there is an ε > 0 such that either

2The exponential time hypothesis (ETH) is a weaker version of SETH: it asserts that there is some ε > 0 such
that 3SAT on n variables requires Ω(2εn) time.
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• LCS over an alphabet of size 7 can be computed in O(n2−ε) time, or

• DTWD over symbols from an alphabet of size 5 can be computed in O(n2−ε) time,

then Conjecture 1 is false.

Thus, quite remarkably, a slightly faster algorithm for the very innocent looking LCS would
imply a breakthrough algorithm for a notoriously hard satisfiability problem. Conditioned on
SETH, in a certain sense, we give a negative answer to Knuth’s problem [CKK]. Moreover, our
nearly tight lower bound for LCS can now be reported in undergraduate level courses along with
the Dynamic Programming solution.

We note that the non-existence of O(n2−ε) algorithm for DTWD between two sequences of
symbols over an alphabet of size 5 implies that there is no O(n2−ε) time algorithm for DTWD
between two sequences of points from `5p for any p, or from `42 (4-dimensional Euclidean space).
The latter follows because we can choose 5 points in 4-dimensional Euclidean space so that any
two points are at distance 1 from each other, i.e., choose the vertices of a regular 4-simplex.

Next, we consider the problem of computing the LCS of k > 2 strings, k-LCS.
In this work, we prove that even a slight improvement over the classical O(knk) time dynamic

programming algorithm is not possible under SETH when the alphabet is of size O(k).

Theorem 2. If there is a constant ε > 0, an integer k ≥ 2, and an algorithm that can solve k-LCS
on strings of length n over an alphabet of size O(k) in O(nk−ε) time, then SETH is false.

A main question we leave open is whether the same lower bound holds when the alphabet size
is a constant independent of k. In Section 6 we prove Theorem 2 and make a step towards resolving
the latter question by proving that a problem we call Local-k-LCS has such a tight nk−o(1) lower
bound under Conjecture 1 even when the alphabet size is O(1).

Finally, we note that our reduction can be made to work from k-dominating set, thus showing
W [2]-hardness for k-LCS on small alphabets. Previously, the only known result for alphabet size
independent of n was that the problem is W [1]-hard.

Theorem 3. k-LCS for alphabet of size O(k) is W [2]-hard.

1.3 Technical contribution

Our reductions build up on ideas from previous SETH-based hardness results for sequence alignment
problems, and are most similar to the Edit-Distance reduction of [BI15], with several new ideas in
the constructions and the analysis. As in previous reductions, we will need two kinds of gadgets:
the vector or assignment gadgets, and the selection gadgets. Two vector gadgets will be “similar”
iff the two vectors satisfy the property we are interested in (we want to find a pair of vectors that
together satisfy some certain property). The selection gadget construction will make sure that
the existence of a pair of “similar” vector-gadgets (i.e., the existence of a pair of vectors with the
property), determines the overall similarity between the sequences. That is, if there is a pair of
vectors satisfying the property, the sequences are more “similar” than if there is non. Typically,
the vector-gadgets are easier to analyze, while the selection-gadgets might require very careful
arguments.

There are multiple challenges in constructing and analyzing a reduction to LCS. Our first main
contribution was to prove a reduction from a weighted version of LCS (WLCS), in which different
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letters are more valuable than others in the optimal solution, to LCS. Reducing problems to WLCS
is a significantly easier and cleaner task than reducing to LCS. Our second main contribution was
in the analysis of the selection gadgets. The approach of [BI15] to analyze the selection gadgets
involved a case-analysis which would have been extremely tedious if applied to LCS. Instead, we
use an inductive argument which decreases the number of cases significantly.

One way to show hardness of DTWD would be to show a reduction from Edit-Distance. How-
ever, we were not able to show such a reduction in general. Instead, we construct a mapping f with
the following property. Given the hard instance of Edit-Distance, that were constructed in [BI15],
consisting of two sequences x and y, we have that EDIT(x, y) = DTWD(f(x), f(y)). This requires
carefully checking that this equality holds for particularly structures sequences.

2 Preliminaries

For an integer n, [n] stands for {1, 2, 3, ..., n}.

2.1 Formal definitions of the similarity measures

Definition 1 (Longest Common Subsequence). For two sequences P1 and P2 of length n over
an alphabet Σ, the longest sequence X that appears in both P1, P2 as a subsequence is the longest
common subsequence (LCS) of P1, P2 and we say that LCS(P1, P2) = |X|. The Longest Common
Subsequence problem asks to output LCS(P1, P2).

Definition 2 (Dynamic time warping distance). For two sequences x and y of n points from a
set Σ and a distance function d : Σ × Σ → R0+, the dynamic time warping distance, denoted by
DTWD(x, y), is the minimum cost of a (monotone) traversal of x and y.

A traversal of the two sequences x, y has the following form: We have two markers. Initially,
one is located at the beginning of x, and the other is located at the beginning of y. At every step,
one or both of the markers simultaneously move one point forward in their corresponding sequences.
At the end, both markers must be located at the last point of their corresponding sequence.

To determine the cost of a traversal, we consider all the O(n) steps of the traversal, and add
up the following quantities to the final cost. Let the configuration of a step be the pair of symbols
s and t that the first and second markers are pointing at, respectively, then the contribution of this
step to the final cost is d(s, t).

The DTWD problems asks to output DTWD(x, y).

In particular, we will be interested in the following special case of DTWD.

Definition 3 (DTWD over symbols). The DTWD problem over sequences of symbols, is the special
case of DTWD in which the points come from an alphabet Σ and the distance function is such that
for any two symbols s, t ∈ Σ, d(s, t) = 1 if s 6= t and d(s, t) = 0 otherwise.

Besides LCS and DTWD which are central to this work, the following two important measures
will be referred to in multiple places in the paper.

Definition 4 (Edit-Distance). For any two sequences x and y over an alphabet Σ, the edit dis-
tance EDIT(x, y) is equal to the minimum number of symbol insertions, symbol deletions or symbol
substitutions needed to transform x into y. The Edit-Distance problem asks to output EDIT(x, y)
for two given sequences x, y.
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Definition 5 (The discrete Frechet distance). The definition of the Frechet distance between two
sequences of points is equivalent to the definition of the DTWD with the following difference. Instead
of defining the cost of a traversal to be the sum of d(s, t) for all the configurations of points s and t
from the traversal, we define it to be the maximum such distance d(s, t). The Frechet problem asks
to compute the minimum achievable cost of a traversal of two given sequences.

2.2 Satisfiability and Orthogonal Vectors

To prove hardness based on Conjecture 1 and therefore SETH, we will show reductions from the
following vector-finding problems.

Definition 6 (Orthogonal Vectors). Given two lists {αi}i∈[n] and {βi}i∈[n] of vectors αi, βi ∈
{0, 1}d, is there a pair αi, βj that is orthogonal,

∑d
h=1 αi[h] · βj [h] = 0?

This problem is known under many names and equivalent formulations, e.g. Batched Partial
Match, Disjoint Pair, and Orthogonal Pair. Starting with the reduction of Williams [Wil05], this
problem or variants of it have been used in every hardness result for a problem in P that is based
on SETH, via the following theorem.

Theorem 4 (Williams [Wil05]). If for some ε > 0, Orthogonal Vectors on n vectors in {0, 1}d for
d = O(log n) can be solved in O(n2−ε) time, then CNF-SAT on n variables and poly(n) clauses can
be solved in O(2(1−ε/2)npoly(n)) time, and SETH is false.

The proof of this theorem is via the split-and-list technique and will follow from the proof of
Lemma 1 below. The following is a more general version of the Orthogonal Vectors problem.

Definition 7 (Most-Orthogonal Vectors). Given two lists {αi}i∈[n] and {βi}i∈[n] of vectors αi, βi ∈
{0, 1}d and an integer r ∈ {0, . . . , d}, is there a pair αi, βj that has inner product at most r,∑d

h=1 αi[h] · βj [h] ≤ r? We call any two vectors that satisfy this condition (r-)far, and (r-)close
vectors otherwise.

Clearly, an O(n2−ε) algorithm for Most-Orthogonal Vectors on d dimensions implies a similar
algorithm for Orthogonal Vectors, while the other direction might not be true. In fact, while faster,
mildly sub-quadratic algorithms are known for Orthogonal Vectors when d is polylogarithmic, with
O(n2/superpolylog(n)) running times [CIP02, ILPS14, AWY15], we are not aware of any such
algorithms for Most-Orthogonal Vectors.

Lemma 1 below shows that such algorithms would imply new O(2n/superpoly(n)) algorithms
for MAX-CNF-SAT on a polynomial number of clauses. While such upper bounds are known for
CNF-SAT [AWY15, DH09], to our knowledge, o(2n) upper bounds are known for MAX-CNF-SAT
only when the number of clauses is linear in the number of variables [DW, CK04]. Together with the
fact that the reductions from Most-Orthogonal Vectors to LCS, DTWD and Edit-Distance incur
only a polylogarithmic overhead, this implies that shaving a superpolylogarithmic factor over the
quadratic running times for these problems might be difficult. The possibility of such improvements
for pattern matching problems like Edit-Distance was recently suggested by Williams [Wil14], as
another potential application of his breakthrough technique for All-Pairs-Shortest-Paths.

More importantly, Lemma 1 shows that refuting Conjecture 1 implies an O(2(1−ε)npoly(n))
algorithm for MAX-CNF-SAT and therefore refutes SETH.
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Lemma 1. If Most-Orthogonal Vectors on n vectors in {0, 1}d can be solved in T (n, d) time, then
given a CNF formula on n variables and M clauses, we can compute the maximum number of
satisfiable clauses (MAX-CNF-SAT), in O(T (2n/2,M) · logM) time.

Proof. Given a CNF formula on n variables and M clauses, split the variables into two sets of
size n/2 and list all 2n/2 partial assignments to each set. Define a vector v(α) for each partial
assignment α which contains a 0 at coordinate j ∈ [M ] if α sets any of the literals of the jth clause
of the formula to true, and 1 otherwise. In other words, it contains a 0 if the partial assignment
satisfies the clause and 1 otherwise. Now, observe that if α, β are a pair of partial assignments for
the first and second set of variables, then the inner product of v(α) and v(β) is equal to the number
of clauses that the combined assignment (α, β) does not satisfy. Therefore, to find the assignment
that maximizes the number of satisfied clauses, it is enough to find a pair of partial assignments
α, β such that the inner product of v(α), v(β) is minimized. The latter can be easily reduced to
O(logM) calls to an oracle for Most-Orthogonal Vectors on N = 2n/2 vectors in {0, 1}M with a
standard binary search.

By the above discussion, a lower bound that is based on Most-Orthogonal Vectors can be
considered stronger than one that is only based on SETH.

3 Hardness for LCS

In this section we provide evidence for the hardness of the Longest Common Subsequence problem,
and prove the first item in Theorem 1.

As an intermediate step, we first show evidence that solving a more general version of the
problem in strongly subquadratic time is impossible under Conjecture 1.

Definition 8 (Weighted Longest Common Subsequence (WLCS)). For two sequences P1 and P2 of
length n over an alphabet Σ and a weight function w : Σ→ [K], let X be the sequence that appears

in both P1, P2 as a subsequence and maximizes the expression W (X) =
∑|X|

i=1w(x[i]). We say that
X is the WLCS of P1, P2 and write WLCS(P1, P2) = W (X). The Weighted Longest Common
Subsequence problem asks to output WLCS(P1, P2).

Note that a common subsequence X of two sequences P1, P2 can be thought of as an alignment

or a matching A = {(ai, bi)}|X|i=1 between the two sequences, so that for all i ∈ [|X|] : P1[ai] = P2[bi],

and a1 < · · · < a|X| and b1 < · · · < b|X|. Clearly, the weight
∑|X|

i=1 P1[ai] =
∑|X|

i=1 P2[bi] of the
matching A correspond to the length W (X) of the weighted length of the common subsequence X.

In our proofs, we will find useful the following relation between pairs of indices. For a pair (x, y)
and a pair (x′, y′) of indices we say that they are in conflict or they cross if x < x′ and y > y′ or
x > x′ and y < y′.

3.1 Reducing WLCS to LCS

The following simple reduction from WLCS to LCS gives a way to translate a lower bound for
WLCS to a lower bound for LCS, and allows us to simplify our proofs.

Lemma 2. Computing the WLCS of two sequences of length n over Σ with weights w : Σ → [K]
can be reduced to computing the LCS of two sequences of length O(Kn) over Σ.
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Proof. The reduction simply copies each symbol ` ∈ Σ in each of the sequences w(`) times. That
is, we define a mapping f from symbols in Σ to sequences of length up to K so that for any ` ∈ Σ,
f(`) = [`w(`)] ∈ Σw(`).

For a sequence P of length n over Σ, let f(P ) = ©n
i=1f(P [i]). That is, replace the ith symbol

P [i] with the sequence f(P [i]) defined above.
Note that |f(P )| ≤ K|P | and the reduction follows from the next claim.

Claim 1. For any two sequences P1, P2 of length n over Σ, the mapping f satisfies:

WLCS(P1, P2) = LCS(f(P1), f(P2)).

Proof. For brevity of notation, we let P ′1 = f(P1) and P ′2 = f(P2).
First, observe that WLCS(P1, P2) ≤ LCS(P ′1, P

′
2), since for any common subsequence X of

P1, P2, the sequence f(X) is a common subsequence of P ′1, P
′
2 and has length |f(X)| =

∑n
i=1 |f(X[i])| =∑n

i=1w(X[i]) = W (X).
In the remainder of this proof, we show that WLCS(P1, P2) ≥ LCS(P ′1, P

′
2). Let X be the LCS

of P ′1, P
′
2 and consider a corresponding matching A.

Let x ∈ {1, 2}. We say that a symbol ` in P ′x at index i ≤ Kn belongs to interval Ix(i) ∈ [n],
iff this symbol was generated when mapping Px[Ix(i)] to the subsequence f(`). Moreover, we say
that it is at index Jx(i) ∈ [w(`)] in interval Ix(i), iff it is the Jx(i)th symbol in that interval.

We will go over the symbols ` ∈ Σ of the alphabet in an arbitrary order, and perform the
following modifications to X and the matching A for each such symbol in turn.

Go over the indices i of P ′1 that are matched in A to some index j of P ′2, and for which P ′1[i] = `,
in increasing order. Consider the intervals I1(i) and I2(j), both of which contain the symbol `, w(`)
times. Throughout our scan, we maintain the invariant that: i is the first index to be matched to
the interval I2(j).

If J1(i) = J2(j) = 1, and the next w(`) − 1 pairs in our matching A are matching the rest of
the interval I1(i) to the interval I2(j), we do not need to modify anything, and we move on to the
next index i′ that is not a part of this interval I1(i) and is matched to some index j′ - note that
at this point, i′ satisfies the invariant, since it cannot also be matched to the interval I2(j) by the
pigeonhole principal, and therefore I2(j

′) > I2(j) and i′ is the first index to be matched to this
interval.

Otherwise, we modify A so that now the whole intervals I1(i) and I2(j) are matched to one
another: for each i′, j′ such that I1(i

′) = I1(i), I2(j
′) = I2(j), and J1(i

′) = J2(j
′), we add pair

(i′, j′) to the matching A, and remove any conflicting pairs from A. We claim that we obtain a
matching of at least the original size, since we add w(`) pairs and we remove only up to w(`) pairs.
To see this, note that for a pair (x, y) to be in conflict with one of the pairs we added, it must
be one of the following three types: (1) I1(x) = I1(i) and I2(y) = I2(j), or (2) I1(x) = I1(i) but
I2(y) > I2(j), or (3) I2(y) = I2(j) but I1(x) > I1(i). Here, we use the invariant to rule out pairs
for which I1(x) < I1(i) or I2(y) < I2(j). However, in any matching A, there cannot be both pairs
of type (2) and pairs of type (3), since any such two pairs would cross. Therefore, we conclude that
all conflicting pairs either come from the interval I1(i) or they all come from the interval I2(j), and
in any case, there are only w(`) of them. After this modification, we move on to the next index i′

that is not a part of this interval I1(i) and is matched (in the new matching A) to some index j′ -
as before, this i′ satisfies the invariant.

After we are done with all these modifications, we end up with a matching A of size at least |X|
in which complete intervals are aligned to each other. Now, we can define a matching A′ between P1
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and P2 that contains all pairs (I1(i), I2(j)) for which (i, j) ∈ A. In words, we contract the intervals
of P ′1, P

′
2 to the original symbols of P1, P2. Finally, A′ corresponds to a common subsequence X ′

of P1, P2, and W (X ′) = |A| ≥ |X| since each matched interval corresponds to some symbol ` and
contributes w(`) matches to A and a single match of weight w(`) to A′.

3.2 Reducing Most-Orthogonal Vectors to LCS

We are now ready to present our main reduction, proving our hardness result for LCS.

Theorem 5. Most-Orthogonal Vectors on two lists {αi}i∈[n] and {βi}i∈[n] of n binary vectors in d

dimensions (αi, βi ∈ {0, 1}d) can be reduced to LCS problem on two sequences of length n · dO(1)

over an alphabet of size 7.

Proof. We will proceed in two steps. First, we will show that WLCS is at least as hard as the
Most-Orthogonal Vectors problem. Second, given that the symbols in the constructed WLCS
instance will have small weights, an application of Lemma 2 will allow as to conclude that LCS is at
least as hard as the Most-Orthogonal Vectors problem. Our alphabet will be Σ = {0, 1, 2, 3, 4, 5, 6}.

We start with the reduction to WLCS. Let α, β denote two vectors from the Most-Orthogonal Vectors
instance, from the first and the second set, respectively.

We construct our coordinate gadgets as follows. For i ∈ [d] we define,

CG1(α, i) =

{
5465 if α[i] = 0

545 otherwise

CG2(β, i) =

{
5645 if β[i] = 0

565 otherwise

Setting the weight function so that w(4) = w(6) = 1, w(5) = X = 100d.
These gadgets satisfy the following equalities:

WLCS(CG1(α, i), CG2(β, i)) =

{
2X + 1 if α[i] · β[i] = 0

2X otherwise

Now, we define the vector gadgets as a concatenation of the coordinate gadgets. Let R1(α) =
©d
i=1CG1(α, i) and R2(β) =©d

i=1CG2(β, i).

V G1(α) = 1 ◦R1(α)

V G2(β) = R2(β) ◦ 1

The weight of the symbol 1 is w(1) = A = (r+ 1)2X + (d− (r+ 1))(2X + 1). It is now easy to
prove the following claims.

Claim 2. If two vectors α, β, are r-far, then:

WLCS(V G1(α), V G2(β)) ≥ A+ 1 = r · 2X + (d− r)(2X + 1).

9



Proof. For each i ∈ [d], match CG2(β, i) to CG1(α, i) optimally to get a weight at least A + 1 =
r · 2X + (d− r)(2X + 1).

Claim 3. If two vectors α, β, are r-close, then:

WLCS(V G1(α), V G2(β)) = A.

Proof. WLCS(V G1(α), V G2(β)) ≥ A is true because we can match the 1 symbols, which gives cost
A.

Now we prove that WLCS(V G1(α), V G2(β)) ≤ A. If we match the 1 symbols, then we cannot
match any other symbols and the inequality is true. Thus, we assume now that the 1 symbols are
not matched.

Now we can check that, if there is a 5 symbol in VG1(α) or VG2(β) that is not matched to a
5 symbol, then we cannot achieve weight A even if we match all the other symbols (except for the
1 symbols). Therefore, we assume that all the 5 symbols are matched. The required inequality
follows from the fact that there are at least r + 1 coordinates where α and β both have 1 (the
vectors are r-close), and the construction of the coordinate gadgets.

Finally, we combine the vector gadgets into two sequences. Let V G′1(α) = 0 ◦ V G1(α) ◦ 2 and
V G′2(β) = 0 ◦ V G2(β) ◦ 2 ◦ 3. Let f be a dummy vector of length d that is all 1.

P1 = 3|P2| ◦©n
i=1V G

′
1(αi) ◦ 3|P2|

P2 = 3 ◦©n−1
i=1 V G

′
2(f) ◦©n

i=1V G
′
2(βi) ◦©n−1

i=1 V G
′
2(f)

And set the weights so that w(3) = B = A2 and w(0) = w(2) = C = B2.
Let EU = 2C +A, and EG = n · EU + 2n ·B.
The following two lemmas prove that there is a gap in the WLCS of our two sequences when

there is a pair of vectors that are r-far as opposed to when there is none.

Lemma 3. If there is a pair of vectors that are r-far, then WLCS(P1, P2) ≥ EG + 1.

Proof. Let i, j be such that αi, βj are r-far. Match V G′1(αi) and V G′2(βj) to get a weight of at least
2C + r · 2X + (d− r)(2X + 1) ≥ EU + 1. Match the i− 1 vector gadgets to the left of V G′1(αi) to
the i− 1 vector gadgets immediately to the left of V G′2(βj), and similarly, match the n− i gadgets
to the right. The total additional weight we get is at least (n − 1) · EU . Finally, note that after
the above matches, only (n − 1) out of the (3n − 1) 3-symbols in P2 are surrounded by matched
symbols. The remaining 2n 3-symbols can be matched, giving an additional weight of 2n ·B. The
total weight is at least EU + 1 + (n− 1) · EU + 2n ·B = EG + 1.

Lemma 4. If there is no pair of vectors that are r-far, then WLCS(P1, P2) ≤ EG.

Proof. The main part of the proof will be dedicated to showing that if the n vector gadgets in P1

are matched to a substring of n′ vector gadgets from P2, then n′ must be equal to n. This will
follow since: if n′ < n, then at least one of the 0/2 symbols in P1 will remain unmatched, and, if
n′ > n, then less than 2n of the 3 symbols in P2 can be matched. The large weights we gave 0/2
and 3 make this impossible in an optimal matching. It will be easy to see that in any matching in
which n = n′, the total weight is at most EG.

Now, we introduce some notation. Let L ≤ L′ and define W (L,L′) to be the optimal score of
matching two sequence T, T ′ where T is composed of L vector gadgets V G′1(α) and T ′ is composed
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of L′ vector gadgets V G′2(β), where no pair α, β are r-far. Define W0(L,L
′) similarly, except that

we restrict the matchings so that all 0 or 2 symbols in T (the shorter sequence) must be matched. In
the following two claims we prove an upper bound on W (L,L′), via an upper bound on W0(L,L

′).

Claim 4. For any integers 1 ≤ L ≤ L′, we can upper bound W0(L,L
′) ≤ L ·EU +(L′−L) · (B−1).

Proof. Let T, T ′ be two sequences with L,L′ vector gadgets, respectively. We will refer to these
“vector gadgets” as intervals. Consider an optimal matching of T and T ′ in which all the 0 and 2
symbols of T are matched, i.e., a matching that achieves weight W0(L,L

′) - we will upper bound
its weight EF by L ·EU + (L′−L) · (B− 1). Note that in such a matching, each interval of T must
be matched completely within one or more intervals of T ′, and each interval of T ′ has matches to
at most one interval from T (otherwise, it must be the case that some 0 or 2 symbol in T is not
matched).

Let x be the number of intervals of T that contribute at most EU to the weight of our optimal
matching. Note that any of the L − x other intervals must be matched to a substring of T ′ that
contains at least two intervals for the following reason. The 0 and 2 symbols of the interval of T ′

must be matched, and, if the matching stays within a single interval of T ′ and has more than EU
weight, then we have a pair which is r-far because of Claim 3. Thus, using the fact that there are
only L′ intervals in T ′, we get the condition,

x+ 2(L− x) ≤ L′.

We now give an upper bound on the weight of our matching, by summing the contributions of
each interval of T : there are x intervals contributing ≤ EU weight, and there are (L− x) intervals
matched to T ′ with unbounded contribution, but we know that even if all the symbols of an interval
are matched, it can contribute at most EB = 2C + A + d(2X + 2). Therefore, the total weight of
the matching can be upper bounded by

EF ≤ (L− x) · EB + x · EU

We claim that no matter what x is, as long as the above condition holds, this expression is less
than L · EU + (L′ − L) · (B − 1).

To maximize this expression, we choose the smallest possible x that satisfies the above condition,
since EB > EU , which implies that x = max{0, 2L−L′}. A key inequality, which we will use multiple
times in the proof, following from the fact that the 0/2/3 symbols are much more important than
the rest, is that EB < EU +B − 1, which follows since EB − EU < A+ d(2X + 2) < 1000d2 < B.

First, consider the case where L ≤ L′/2, and therefore x = 0, which means that all the intervals
of T might be fully matched. Using that EB < EU + B − 1 and that L′ − L ≥ L′/2 ≥ L, we get
the desired upper bound:

EF ≤ L · EB ≤ L · (EU +B − 1) ≤ L · EU + (L′ − L) · (B − 1).

Now, assume that L > L′/2, and therefore x = 2L − L′. In this case, when setting x as small
as possible, the upper bound becomes:

EF ≤ (L′ − L) · EB + (2L− L′) · EU = L · EU + (L′ − L) · (EB − EU ),

which is less than L · EU + (L′ − L) · (B − 1), since EB < EU +B − 1.
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Next, we prove by induction that leaving 0/2 symbols in the shorter sequence unmatched will
only worsen the weight of the optimal matching.

Claim 5. For any integers 1 ≤ L ≤ L′, we can upper bound W (L,L′) ≤ L ·EU + (L′−L) · (B− 1).

Proof. We will prove by induction on i ≥ 2 that: for all L′ ≥ L ≥ 1 such that L + L′ ≤ i,
W (L,L′) ≤ L · EU + (L′ − L) · (B − 1).

The base case is when i = 2 and L = L′ = 1. Then W (1, 1) = EU and we are done.
For the inductive step, assume that the statement is true for all i′ ≤ i − 1 and we will prove

it for i. Let L,L′ be so that 1 ≤ L ≤ L′ and L + L′ = i and let T, T ′ be sequences with L,L′

intervals (assignment gadgets), respectively. Consider the optimal (unrestricted) matching of T
and T ′, denote its weight by EF . Our goal is to show that EF ≤ L · EU + (L′ − L) · (B − 1).

If every 0/2 symbol in T is matched then, by definition, the weight cannot be more than
W0(L,L

′), and by Claim 4 we are done. Otherwise, consider the first unmatched 0/2 symbol, call
it x, and there are two cases.

The x = 0 case: If x is the first 0 in T , then the first 0 in T ′ must be matched to some 0
after x (otherwise we can add this pair to the matching without violating any other pairs) which
implies that none of the symbols in the interval starting at x can be matched, since such matches
will be in conflict with the pair containing this first 0. Otherwise, consider the 2 that appears
right before x and note that it must be matched to some y = 2 in T ′, by our choice of x as the
first unmatched 0/2. Now, there are two possibilities: either there are no more intervals in T ′

after y, or there is a 0 right after y in T ′ that is matched to a 0 in T that is after x (from a
later interval in T ). Note that in either case, the interval starting at x (and ending at the 2 after
it) is completely unmatched in our matching. Therefore, in this case, we let T1 be the sequence
with (L − 1) intervals which is obtained from T by removing the interval starting at x. The
weight of our matching will not change if we look at it as a matching between T ′ and T1 instead
of T , which implies that EF ≤ W (L − 1, L′). Using our inductive hypothesis we conclude that
EF ≤ (L− 1) ·EU + (L′ −L+ 1) · (B − 1) ≤ L ·EU + (L′ −L) · (B − 1), since EU > B, and we are
done.

The x = 2 case: The 0 at the start of x’s interval must have been matched to some y = 0. Let
z be the 2 at the end of y’s interval. Note that z must be matched to some w = 2 in T after x, since
otherwise, we can add the pair (x, z) to the matching, gaining a cost of C, and the only possible
conflicts we would create will be with pairs containing a symbol inside the y → z interval or inside
x’s interval, and if we remove all such pairs, we would lose at most (A+ d(2X + 2)) which is much
less than the gain of C - implying that our matching could not have been optimal. Therefore, there
are c ≥ 2 intervals in T that are matched to a single interval in T ′: all the intervals starting at the 0
right before x and ending at w are matched to the y → z interval. Let T1 be the sequence obtained
from T by removing all these c intervals and let T2 be the sequence obtained from T ′ by removing
the y → z interval. Our matching can be split into two parts: a matching between T1 and T2, and
the matching of the y → z interval to the removed interval. The contribution of the latter part
to the weight of the matching can be at most the weight of all the symbols in an interval, which
is EB. By the inductive hypothesis, we know that any matching of T1 and T2 can have weight at
most W (L− c, L′ − 1) ≤ (L− c) ·EU + (L′ − 1− L+ c) · (B − 1). Summing up the two bounds on
the contributions, we get that the total weight of the matching is at most:

EF ≤ EB+(L−c)·EU+(L′−L+c−1)·(B−1) ≤ L·EU+(L′−L)·(B−1)+(c−1)·(B−1)+EB−c·EU
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However, note that EB < 1.1EU and that (c − 1.1)EU > 10(c − 1.1)B > (c − 1)B, which implies
that EF can be upper bounded by L · EU + (L′ − L) · (B − 1), and we are done.

We are now ready to complete the proof of the Lemma. Consider the optimal matching of P1

and P2. Let x and y be the first and last 3 symbols in P2 that are not matched, respectively. Note
that there cannot be any matched 3 symbols between x and y, since otherwise we could match
either x or y and gain extra weight without incurring any loss. Moreover, note that x cannot be
the first symbol in P2 and y cannot be the last one, since those must be matched in an optimal
alignment. The substring between the 3 preceding x, and the 3 following y, contains n′ intervals
(vector gadgets) for some 1 ≤ n′ ≤ 3n − 2. If all the 3’s are matched, we let n′ = 1, and focus on
the only interval (vector gadget) of P2 that has matched non-3-symbols.

We can now bound the total weight of the matching by the sum of the maximum possible
contribution of these n′ intervals, and the contribution of the rest of P2. The substring before and
including the 3 symbol preceding x and the substring after and including the 3 symbol following
y can only contribute 3’s to the matching, and they contain exactly (3n − 1 − (n′ − 1)) such 3
symbols, giving a contribution of (3n − n′) · B. To bound the contribution of the n′ intervals, we
use Claim 5: since no 3 symbols are matched in this part, we can “remove” those symbols for the
analysis, to obtain two sequences T, T ′ composed of n, n′ vector gadgets, respectively, in which no
pair is r-far. The contribution of the T, T ′ part, depends on n, n′:

If n′ ≤ n, then by Claim 5, when setting L = n′, L′ = n, the contribution is at most (n′ · EU +
(n− n′) · (B − 1)) and the total weight of our matching can be upper bounded by

(3n− n′) ·B + (n′ · EU + (n− n′) · (B − 1)),

which is maximized when n′ is as large as possible, since EU > (2B − 1). Thus, setting n′ = n, we
get the upper bound: (3n− n) ·B + n · EU = EG.

Otherwise, if n′ > n, we apply Claim 5 with L = n,L′ = n′, and get that the contribution is at
most (n ·EU + (n′ − n) · (B − 1)), and the total weight of our matching can be upper bounded by

(3n− n′) ·B + (n · EU + (n′ − n) · (B − 1)) = n · EU + 2n ·B − (n′ − n) < EG.

To conclude our reduction, we note that the largest weight used in our weight function is poly-
nomial in d, and therefore the reduction of Lemma 2 gives two unweighted sequences f(P1), f(P2)
of length n · dO(1), for which the LCS equals the WLCS of our P1, P2.

4 Hardness for DTWD

In this section, we complete the proof of Theorem 1 by showing that a truly sub-quadratic algorithm
for DTWD implies a truly sub-quadratic algorithm for the Most-Orthogonal Vectors problem.

We first show that we can modify the reduction from CNF-SAT to Edit-Distance from [BI15]
so that we get a reduction from Most-Orthogonal Vectors to Edit-Distance. We will later use
properties of the two sequences produced in this reduction, call them P ′1, P

′
2. In particular, we

will show that there is an easy transformation of P ′1 into a sequence S1 and of P ′2 into a se-
quence S2 so that EDIT(P ′1, P

′
2) = DTWD(S1, S2). This will give the desired reduction from

Most-Orthogonal Vectors to DTWD.
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4.1 Reducing Most-Orthogonal Vectors to Edit-Distance

Before showing the reduction from Most-Orthogonal Vectors to Edit-Distance, let us recast the
reduction of [BI15] as a reduction from Orthogonal Vectors instead of CNF-SAT.

Reducing Orthogonal Vectors to Edit-Distance. Instead of having 2N/2 partial assignments
for the first half of the variables and 2N/2 partial assignments for the second half of the variables,
we have n vectors in the first and the second set of vectors (we replace 2N/2 by n in the argument).
Instead of having M clauses, we have d coordinates for every vector (we replace M by d in the
argument).

Instead of having clause gadgets, we have coordinate gadgets. For a vector α from the first set
of vectors {αi}i∈[n] and j ∈ [d], we define a coordinate gadget,

CG1(α, j) =

{
0l10l01l01l01l00l1 if α[j] = 0,

0l10l00l00l01l00l1 otherwise.

For a vector β from the second set of vectors {βi}i∈[n] and j ∈ [d],

CG2(β, j) =

{
0l10l00l01l01l00l1 if β[j] = 0,

0l11l01l01l01l00l1 otherwise.

We leave g the same: g = 0
l1
2
−110

l1
2 0l01l01l01l00l1 .

Instead of assignment gadgets, we have vector gadgets.

VG1(αi) = Z1LV0RZ2 and VG2(βi) = V1DV2,

where R =©j∈[d]CG1(αi, j), D =©j∈[d]CG2(βi, j).
Then, we replace the statement “ϕ is satisfied by a1 ∨ a2” with “vectors αi1 and βi2 are orthog-

onal” and the statement “ϕ is satisfiable” with “there is a vector from the first set of variables and
a vector from the second set of variables that are orthogonal”.

For a vector v and k ∈ {1, 2}, we have VG′k(v) = 2TVGk(v)2T , instead of AG′k. We set
f ∈ {0, 1}d to have f [i] = 1 for all i ∈ [d].

We define the sequences as
P1 =©α∈{αi}i∈[n]

VG′1(α),

P2 =
(
©n−1
i=1 VG′2(f)

) (
©β∈{βi}i∈[n]

VG′2(β)
) (
©n−1
i=1 VG′2(f)

)
.

This completes the modification of the argument. We can check that we never use any property
of CNF-SAT that Orthogonal Vectors does not have.

Reducing Most-Orthogonal Vectors to Edit-Distance. Next, we modify the construction to
show that Edit-Distance is a hard problem under a weaker assumption, i.e., that the Most-Orthogonal Vectors
problem does not have a truly sub-quadratic algorithm (Conjecture 1).

Theorem 6. Edit-Distance does not have strongly a subquadratic time algorithm unless Most-Orthogonal Vectors
problem has a strongly subquadratic algorithm.
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Proof. We describe how to change the arguments from [BI15] to get the necessary reduction. We
make all the modifications from the discussion above, as well as the following.

We change g as follows,

g = 0
l1
2
−(1+ r

d
2l0)11+

r
d
2l00

l1
2 0l01l01l01l00l1 .

We replace Lemma 1 from [BI15] with the following lemma.

Lemma 5. If αi1 and βi2 are far vectors, then

EDIT(VG1(αi1),VG2(βi2)) ≤ 2l2 + l + dl0 + k2l0 =: Es.

Proof. We do the same transformations of sequences as in Lemma 1 from [BI15] except that we get
upper bound Es on the cost.

We replace Lemma 2 from [BI15] with the following lemma.

Lemma 6. If αi1 and βi2 are close vectors, then

EDIT(VG1(αi1),VG2(βi2)) = 2l2 + l + dl0 + k2l0 + d =: Eu.

Proof. The proof proceeds along the same lines as the one for Lemma 2 from [BI15].

This finishes the description of the necessary changes.

4.2 Reducing Most-Orthogonal Vectors to DTWD

We are now ready to present our main reduction to DTWD.

Theorem 7. If DTWD over sequences of symbols from an alphabet of size 5 can be solved in
strongly sub-quadratic time, then Most-Orthogonal Vectors can also be solved in truly sub-quadratic
time.

Proof. The main arguments in this proof are provided in Lemmas 7 and 8 below. Here we explain
why these two lemmas complete the proof of our theorem.

Consider arbitrary sequences of symbols, Q1 and Q2. On the one hand, in Lemma 7 we will
show that for a simple transformation f ,

EDIT(Q1, Q2) ≤ DTWD(f(Q1), f(Q2)).

On the other hand, in Lemma 8 below we will show that

EDIT(P ′1, P
′
2) ≥ DTWD(f(P ′1), f(P ′2)),

if P ′1 and P ′2 are the sequences constructed in Theorem 6.
Together, the two inequalities imply that EDIT(P ′1, P

′
2) = DTWD(f(P ′1), f(P ′2)). This implies

that we have the same hardness result for DTWD that we had for Edit-Distance, under the assump-
tion that f is a simple transformation. We will see that f is indeed a very simple transformation,
i.e., f(P ′1) and f(P ′2) can be computed in time O(|P ′1|) and O(|P ′2|).

P ′1 and P ′2 are sequences of symbols over an alphabet of size 4. Transformation f introduce an
extra symbol. Thus, the final sequences will be over an alphabet of size 5.
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For an alphabet Σ, a symbol a 6∈ Σ, a sequence Q = q1q2...qp ∈ Σp of length p, and a vector r
of p+ 1 positive integers, we define the operation

Ara(Q) := ar1q1a
r2q2a

r3 ...arpqpa
rp+1 .

Lemma 7. For any two sequences Q1 ∈ Σm and Q2 ∈ Σn of length m and n, respectively,

EDIT(Q1, Q2) ≤ DTWD(Ar1a (Q1), A
r2
a (Q2))

holds for any two positive integer vectors r1 and r2.

Proof. In this proof, we will use use the following equivalent definition of Edit-Distance that will
simplify the analysis.

Observation 1. [BI15]. For any two sequences x, y, EDIT(x, y) is equal to the minimum, over all
sequences z, of the number of deletions and substitutions needed to transform x into z, and y into
z.

Below we will write A instead of Ara.
We will show how to convert a traversal ofA(Q1) andA(Q2) achieving DTWD cost DTWD(A(Q1), A(Q2)),

into a transformation of Q1 and Q2 into the same sequence. Using Observation 1, we will conclude
that the edit cost of the resulting transformations will be at most DTWD(A(Q1), A(Q2)), which is
what we need to complete the proof.

Consider an optimal DTWD traversal of A(Q1) and A(Q2). At any moment, we say that a
marker in A(Q1) or in A(Q2) is of Σ type iff the symbol it points to is in Σ, i.e., it is not equal to
a. We say that a symbol is of Σ type iff it is in Σ.

From now on we consider only moments during the traversal of A(Q1) and A(Q2) when one or
the other, or both markers change their type. We can assume that, whenever both markers change
their type, it is not the case that before the change, the markers have different type. Indeed, if
this happens, we can replace the simultaneous change of type by two consecutive changes of type,
and this modification will not change the cost. Consider any maximal contiguous subsequence of
the sequence of moments during which only one of the markers changes its type (the marker might
change its type during the subsequence more than one time). We claim that any such contiguous
subsequence of moments must have an even length. Assume that this in not the case and consider
the earliest such subsequence that has an odd length. Consider the type of the markers immediately
before the last moment in the subsequence. Because we considered the first subsequence with an
odd length, and both sequences start with symbols that are not of Σ type, we get that immediately
before the last moment, both markers must have the same type. WLOG, assume that the last
change of type happens to the first marker and note that immediately after the last change the
markers have different type. At the next moment from the sequence, either both markers change
type (which, by our observation that before a simultaneous change of type both markers must of
the same type, is impossible) or only the second marker changes its type. Thus, we have found two
consecutive moments from the sequence of moments in which the type changes, with the following
three properties.

1. None of the two changes of type are simultaneous for both markers;

2. Both changes of type are not made by the same marker;
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3. Before the first change of type, the markers have the same type.

We count DTWD cost of any traversal as follows. Every jump (performed by one of the markers
or performed by both markers simultaneously), contributes 1 to the final cost of the traversal iff
the symbols that the markers point at immediately after the jump are different (contribution is 0
if the symbols are the same). For two symbols x and y, 1x 6=y is equal to 1 if x 6= y and is equal
to 0 otherwise. We set x to be equal to the symbol that the marker that participates in the first
change of type points at after the jump. We set y to be equal to the symbol that the marker that
participates in the second change of type points at after the jump.

The first change of the type contributes 1 to the final cost of DTWD(A(Q1), A(Q2)) (we consider
the corresponding jump to the change of the type and its contribution) and the second change of
the type contributes 1x 6=y to the final cost. We can check that the two changes can be replaced
by a single simultaneous change in both sequences by changing the traversal of A(Q1) and A(Q2)
(the fact that we can to this follows from the definition of A). The simultaneous change costs
1x6=y and, therefore, we decrease the cost of DTWD by 1. This contradicts the assumption that we
consider an optimal traversal. Therefore, the assumption that there exists a maximal contiguous
subsequence of moments during which only one of the markers changes type and the subsequence
is of odd length, is wrong.

Now we can partition the entire sequence of changes of type into two kinds of contiguous
subsequences that do not overlap.

1. A simultaneous change of type by both markers;

2. Two changes of type following one another made by the same marker. None of the two
changes are simultaneous.

We will now show the promised conversion of the DTWD traversal of A(Q1) and A(Q2) into an
Edit-Distance transformation of Q1 and Q2 into the same sequence (as in Observation 1) such that
the cost only decreases. This will finish the proof that EDIT(Q1, Q2) ≤ DTWD(A(Q1), A(Q2)).

We analyze both types of subsequences.

1. From the properties of the partition and the fact that both A(Q1) and A(Q2) start with a
symbol of Σ type, we get that before and after the change of type both markers are of the
same type.

Case 1. Both markers before the simultaneous change are of Σ type. Suppose that the
markers point to symbols x ∈ Σ and y ∈ Σ. In this case we perform substitution of x with y
when transforming Q1 and Q2 into the same sequence.

Case 2. Both markers before the simultaneous change are not of Σ type. In this case we
do not have a corresponding substitution or deletion when transforming Q1 and Q2 into the
same sequence.

We see that in both cases the performed actions before (contribution to DTWD(A(Q1), A(Q2)))
and after (contribution to EDIT(Q1, Q2)) the conversion cost the same.

2. Similarly as in the previous kind of subsequence, we conclude that before the first change of
type, the markers are of the same type. We consider both possible cases.

Case 1. Both markers before the first change of type are of Σ type. Suppose that the markers
point to symbols x ∈ Σ and y ∈ Σ. If x 6= y, we perform a substitution of x with y when
transforming Q1 and Q2 into the same sequence. If x = y, we don’t do anything.
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Case 2. Both markers before the first change of type are not of Σ type. WLOG, the first
marker changes the type twice. Before the second change, the first marker points to x ∈ Σ.
We delete x when performing the transformation of Q1 and Q2 into the same sequence.

We can check that in the first case the cost after the conversion can only be smaller than
before the conversion. In the second case the costs before (contribution to DTWD) and after
(contribution to Edit-Distance) the conversion are the same.

From now on, Σ = {0, 1, 2, 3} and a = 4.

Lemma 8. For some vectors r1 and r2 with positive, bounded integer coordinates,

EDIT(P ′1, P
′
2) ≥ DTWD(Ar1(P ′1), A

r2(P ′2)),

where P ′1 and P ′2 are the sequences defined in Theorem 6.

Proof. We use notation from Theorem 6. By A′ we will denote a transformation Ar with ri = 1
for all i.

Let r3 be such that for all k ∈ {1, 2},

Ar3(VG′k(a)) = A′(2T )A′(VGk(a))A′(2T ).

We set
Ar1(P ′1) = A′(3|P

′
2|)Ar

′
1(P1)A

′(3|P
′
2|),

where r′1 is such that

Ar
′
1(P1) =©a1∈A1A

r3(VG′1(a1)).

We set
Ar2(P ′2) = Ar2(P2)

=
(
©2N/2−1
i=1 Ar3(VG′2(f))

) (
©a2∈A2A

r3(VG′2(a2))
) (
©2N/2−1
i=1 Ar3(VG′2(f))

)
.

We will use the following lemma to prove the inequality.

Lemma 9. For vectors α, β ∈ {0, 1}d,

EDIT(VG1(α),VG2(β)) ≥ DTWD(A′(VG1(α)), A′(VG2(β))).

Proof. We consider two cases.
Case 1. The vectors α and β are far. In this case, we traverse the A′(Z1L) part of A′(VG1(α))

while the marker in A′(VG2(β)) stays at the first symbol. Then, we traverse the remaining part
A′(V0RZ2) of A′(VG1(α)) in parallel with A′(VG2(β)). We can check that we achieve DTWD cost
equal to Es = EDIT(VG1(α),VG2(β)).

Case 2. The vectors α and β are close. In this case, we traverse A′(Z1LV0) and A′(VG2(β)) in
parallel. Then, we traverse the A′(RZ2) part of A′(VG1(α)) while the marker at A′(VG2(β)) stays at
the last symbol. We can check that we achieve DTWD cost equal to Eu = EDIT(VG1(α),VG2(β)).
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We are now ready to prove that

EDIT(P ′1, P
′
2) ≥ DTWD(Ar1(P ′1), A

r2(P ′2)).

We are going to show a DTWD traversal of Ar1(P ′1) and Ar2(P ′2) that achieves DTWD cost equal
to EDIT(P ′1, P

′
2). This will imply the inequality and will finish the proof.

We proceed by considering two cases.
Case 1. There are two vectors αi1 and βi2 from their respective sets that are far. We traverse

A′(VG1(αi1)) and A′(VG2(βi2)) as in Lemma 9 achieving cost Es. We traverse the rest of vector
gadgets of Ar

′
1(P1) with their counterparts from Ar2(P ′2) as in Lemma 9. When traversing the

sequences A′(2T ), we do that in parallel. When traversing A′(2T ) in parallel, it contributes nothing
to the DTWD cost.

We traverse the vector gadgets of Ar2(P ′2) that are not traversed yet, as follows. We traverse
the symbols that have Σ type from Ar2(P ′2) with the 3 symbols from Ar1(P ′1) in parallel. We notice
that we can do that in a way so that the 4 symbols never contribute towards the final DTWD cost.
Some of the 3 symbols from Ar1(P ′1) will still remain untraversed. We can traverse them while the
second marker is on the last symbol of Ar2(P ′2) (it does not have Σ type).

By computing the cost of the traversal we get that it is equal to EDIT(P ′1, P
′
2).

Case 2. There is no pair of far vectors. This case is analogous to Case 1. The only difference
is that we do not have two vectors αi1 and βi2 to match. We choose them arbitrarily and then
proceed as in the previous case. This finishes the analysis of this case.

5 Truly subquadratic algorithm for binary DTWD

The first part of this section is a reduction from DTWD on two binary strings to a problem on a
single string of integers.

Theorem 8. Computing DTWD(A,B) of two sequences A,B ∈ {0, 1}n can be reduced to the
following problem: given a sequence of integers of length m ≤ n and an integer k, find a subsequence
of length k that does not use any neighboring integers and such that the sum of integers is minimized.
The integers in the sequence of integers sum up to n.

First, we assume that A 6= 0n. Otherwise, it is trivial to compute DTWD(A,B). Similarly, we
assume that A 6= 1n, B 6= 0n, B 6= 1n.

We begin with some structural properties of an optimum alignment producing DTWD(A,B).
Consider an optimal traversal of A and B. We define a run of 0s (or 1s) of a sequence to be a
contiguous subsequence that cannot be extended by adding an extra symbol. We say that two runs
from different sequences are aligned if, during the traversal, there is a moment when one marker
points to a symbol in one run and the other marker points to a symbol in the other run. Let Ai

denote the i-th run of A and Bi denote i-th run in B.
We will call two runs matched if neither of they are aligned with each other and are not aligned

with any other runs.

Claim 6. We can assume that A and B start with the same symbol, that is, A1 = B1. Similarly,
we can assume the end with the same symbol.
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Proof. We’ll just prove the first statement. The second is symmetric. Assume that this is not the
case. Wlog, A1 = 1 and B1 = 0. Consider the optimal traversal of A and B. Suppose that A1 is
aligned with B2. Let x be the length of B1. Let B′ be sequence B after the removal of B1. Then
DTWD(A,B) = x+DTWD(A,B′). Notice that A and B′ start with the same symbol. Similarly
we can deal with the case when B1 is aligned with A2. It remains to consider the case when the
only run that A1 is aligned with is B1 and the only run B1 is aligned with is A1. We can check
that we can modify the traversal of the sequences without increasing the DTWD cost so that A1

is aligned with B2 (since these are both runs of 1s) and then we can proceed as before. This means
that DTWD(A,B) = min(x+DTWD(A,B′), y +DTWD(A′, B)), where y is the length A1 and
A′ is A without A1, and A and B′ start with the same symbol, and A′ and B start with the same
symbol. This proves the claim.

We now have that A1 = B1 and An = Bn. Now consider an optimal traversal of A and B.

Claim 7. Every run in sequence A is aligned with an odd number of runs in sequence B and every
run in sequence B is aligned with an odd number of runs in sequence A. In particular for any run
of 0s (1s), the first and last runs that the run is aligned with are also runs of 0s (1s).

Proof. Consider a run Ai in A (the statement for B is symmetric). Let Ba and Bb be the first and
last runs in B that Ai is aligned with in the optimum traversal. Wlog Ai is a run of 1s. We’ll show
that wlog Ba and Bb are also runs of 1s. Suppose that Bb is a run of 0s. There are two cases: (1)
Bb is not aligned with Ai+1 (a run of 0s), but then since Ai is not aligned with Bb+1, it must be
that Ai+1 is aligned with Bb+1; (2) Bb is aligned with Ai+1 (and possibly other runs of A). In both
cases, we can improve the traversal by staying at Ai only until run Bb−1 finishes and then letting
the marker jump to Ai+1 and Bb simultaneously.

Similarly, Ba must also be a run of 1s. Hence the number of runs that Ai is aligned with is
odd.

Now we will prove the following lemma:

Lemma 10. Let B have at least as many runs as A. Then wlog in an optimal traversal, every run
of B is aligned with exactly one run of A.

Proof. Consider a run Ai such that Ba1 and Ba2 are the first and last runs that Ai is aligned
with and a2 > a1. Let A` be the last run that Ba2 is aligned with, and suppose that ` > i. If
` − i ≥ a2 − a1, then a better alignment is for all b from 0 to ` − i − 1, match A`−b to Ba2−b and
let the runs that align with Ai be only those from Ba1 to Ba2+i−`. Otherwise, if ` − i < a2 − a1,
then a better alignment is for all b from 0 to a2 − a1 − 1 to match Ba1+b to Ai+b and align Ba2 to
the runs from Ai+a2−a1 to A`.

Thus we can assume that for any run Ai that is aligned with more than one run of B, all the
runs of B aligned with Ai are only aligned with Ai. Similarly, for any run Ba that is aligned with
more than one run of A, all the aligned runs As aligned with Ba are only aligned with Ba. Hence
the traversal looks like a bunch of matches, together with alignments of Ais with some interval of
B runs and disjoint Bas aligned with some interval of A runs disjoint from all others.

Now consider a run Ai that has first and last aligned runs Ba1 and Ba2 with a2 > a1.
Let Ba3 be a run with first and last aligned runs Aj and Ak, where a3 > a2, a3 = a2 + Z (for

Z > 0) and j = i+ Z. Moreover, let all alignments between those of Ai and Ba3 be matches. I.e.,
for all b from 1 to Z − 1, Ba2+b is matched with Ai+b.
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If a2 − a1 ≥ k − j we can improve the traversal by matching Ba3−b with Ak−b for all b from 0
to k− i− 1 and leaving Ai aligned with all runs from Ba1 to Ba3−k+i. With this argument and by
a symmetric one for the case a2 − a1 < k − j, it follows that wlog the optimum traversal has the
following structure: either every run of B is aligned with at most one run of A or every run of A
is aligned with at most one run of B.

From now on we assume that the claims above hold and we’ll complete the proof of Theorem 8.
Suppose now that B has K ≤ 0 more runs than A. Since A and B start and end with the same

symbols, K must be even, so that K = 2k for some k ≥ 0. Let A have r runs.
By Lemma 10, we can assume that each run Ai gets aligned with some interval of runs of B

and no other Aj is aligned with these. Hence, the optimum traversal (wlog) partitions the runs
of B into r contiguous subsets, each starting and ending with the same type of run. The cost of
any traversal that stems from such a partitioning is obtained by taking for each subset starting
and ending with a run of 0s (resp. 1s), the length of all runs of 1s (0s) in the subset None of the
runs whose lengths contribute to the cost are neighboring. The number of contributing runs is
((r + K) − r)/2 = k: (r + K) is the number of runs in B, we subtract r to remove the first run
from each of the subsets in the partition, and from the rest, exactly half are contributing.

Suppose now that we have k nonneighboring runs of sum L. Then if we remove these runs from
B, we get the remaining sequence B′ gets exactly r runs, and its DTWD from A is 0. Using the
same traversal of A and B′ but adding back the removed runs of B, we obtain that the DTWD of
A and B is at most L. This completes the proof.

To obtain our algorithm we will use the following definition and theorem from [CL15].

Definition 9. ([CL15]) The Bounded Monotone (min,+) Convolution Problem: Given two mono-
tone increasing sequences a0, ..., an−1 and b0, ..., bn−1 lying in [O(n)], compute their (min,+) con-
volution s0, ..., s2n−2, where sk = minki=0(ai + bk−i).

Theorem 9. ([CL15]) Given two monotone increasing sequences a0, ..., an−1 ∈ [O(n)] and b0, ..., bn−1 ∈
[O(n)], we can compute their (min,+) convolution in O(n1.859) expected time (or O(n1.864) deter-
ministic time).

Theorem 10. Given sequence of m ≤ n integers such that the sum of integers is n, the minimum
sum of k integers that are 1-separated, can be computed in time O(n1.87).

Proof. We solve this problem recursively. There are two possibilities to consider:

• We can subdivide the given sequence into two contiguous subsequences so that the sum in each
of them is at least n/10. We solve the problem recursively on each of the two subsequences.
The recursion returns four sequences Axy for x, y ∈ {0, ∗}. The t-th entry Axyt (t = 0, 1, 2, 3, ...)
of Axy denote the maximum sum of t integers that are 1-separated from the first sequence
with the following condition. If x = 0, we are not allowed to choose the first entry of the
first sequence. If x = ∗, we are allowed to choose the first entry of the first sequences but we
can also not choose it. Same for y ∈ {0, ∗} except that it is about the last entry of the first
sequence. Similarly, the recursion for the second subsequence returns four sequences Bxy for
x, y ∈ {0, ∗}. Now we want to combine these eight return sequences into four corresponding
the initial sequence (which is a combination of the two subsequences), that is, we want to
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construct four sequences Cxy for x, y ∈ {0, ∗} corresponding to the initial sequence. We can
do that as follows. We compute eight intermediate sequences Dxy, Exy (for x, y ∈ {0, ∗}):

Dxy
t =

t
min
i=0

Ax0i +B∗yt−i,

Exyt =
t

min
i=0

Ax∗i +B0y
t−i.

Notice that we combine the sequences Axy and Bxy in a way so that we don’t choose both
the last integer of the first subsequence and the first integer of the second subsequence. Then
the four sequences Cxy that we want to return can be computed by

Cxyt = min(Dxy
t , E

xy
t ).

Notice that we can compute sequences Dxy, Exy, Cxy in time O(n1.859) by Theorem 9 because
the sequences satisfy the properties as required in Definition 9 as it can be verified.

• The complement of the first possibility. Given that we are in this possibility, it implies that
the sequence has an entry r of value r ≥ 2

3n. As in the previous possibility, we want to
output four sequences Cxy. Given that r is so large, we will not choose r among t integers
that are 1-separated unless m = 2t − 1 because in this case we have to choose every second
element starting from the first. Otherwise, to compute Cxyt for t < (m+ 1)/2, we subdivide
the sequence in to two sequences: the first corresponds to integers to the left from r and the
second one corresponds to integers to the right of r. Notice that we don’t include r in neither
of the two sequences. We solve the problem recursively on the two sequences that gives eight
sequences Axy, Bxy. We combine them into the four sequences Cxy as follows:

Cxyt =
t

min
i=0

Ax∗i +B∗yt−i.

We have the same running time as in the previous possibility.

Now let’s compute the overall running time of the algorithm. In every recursive call we decrease
the size of the problem (the total sum of the integers in the sequence) by a multiplicative factor
1+Ω(1). Therefore, the tree of recursive calls will have depth O(log n). Therefore, the total running
time is O(n1.864) ·O(log n) ≤ O(n1.87).

6 Hardness for k-LCS

In this section we prove Theorem 2, along with another interesting lower bound for a variant of
k-LCS (Theorem 11).

As in the reduction to LCS, it will be much more convenient to reduce to the weighted version
of the problem, defined below, as an intermediate step.

Definition 10 (k-LCS and k-WLCS). An algorithm for k-LCS problem outputs the answer to the
following question. Given k strings of length n over alphabet Σ, what is the length of the longest
sequence that appears in all k strings as a subsequence? In k-WLCS we are also given a scoring
function w : Σ → [K] and the goal is to find the common subsequence X of all k strings that

maximizes the sum
∑|X|

i=1w(X[i]).
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As before, we can think of the common subsequence as a matching of the strings. We can also
adapt the previous proof to show a reduction from the weighted version to the unweighted version.

Lemma 11. Computing the k-WLCS of k strings of length n over Σ with weights w : Σ→ [K] can
be reduced to computing the k-LCS of k strings of length O(Kn) over Σ.

Proof. The proof is similar to the proof of Lemma 2 where we only had two strings, we will only
outline the differences. As before, the reduction maps each symbol ` into an interval of w(`) copies
of the same symbol `. First, we can map a subsequence X of the weighted instance of weight w(X)
into a subsequence of length w(X) of the unweighted instance by mapping each symbol of X into
an interval. Second, we can modify a subsequence of length |X| of the unweighted instance into a
subsequence of length at least |X| which has the property that complete intervals are matched in
the corresponding matching. Once we have this property we can contract each interval back into
the original weighted symbol that generated it and obtain a subsequence of weight at lest |X|. As
before, these modifications can be done by scanning the strings from left to right and repeatedly
converting each matching of parts of intervals into a matching of complete intervals while removing
conflicting matches. Each such modification adds w(`) k-tuples to the matching and removes up
to w(`) previously matched k-tuples. The argument here is similar to the one in Lemma 2, and is
based on the observation that all conflicting k-tuples must come from the same interval in at least
one of the k strings.

6.1 k-Orthogonal-Vectors

We will prove SETH-based lower bounds for problems on k sequences via the orthogonal vectors
problem on k lists (see Lemma 12 below).

Definition 11 (k-Orthogonal-Vectors). Given k lists {αti}i∈[n] (t ∈ [k]) of vectors αti ∈ {0, 1}d,
are there k vectors α1

i1
, α2

i2
, ..., αkik that satisfy,

∑d
h=1

∏
t∈[k] α

t
it

[h] = 0? Any collection of vectors

(αtit)t∈[k] with this property will be called orthogonal.

Definition 12 (k-Most-Orthogonal-Vectors). Given k lists {αti}i∈[n] (t ∈ [k]) of vectors αti ∈ {0, 1}d

and an integer r ∈ {1, 2, ..., d}, are there k vectors α1
i1
, α2

i2
, ..., αkik that satisfy,

∑d
h=1

∏
t∈[k] α

t
it

[h] ≤
r? The LHS of the latter expression will be called the inner product of the k vectors. A collection
of vectors that satisfies the property will be called (r-)far, and otherwise it will be called (r-)close.

Lemma 12. If k-Most-Orthogonal-Vectors on can be solved in T (n, k, d) time, then given a CNF
formula on n variables and M clauses, we can compute the maximum number of satisfiable clauses
(MAX-CNF-SAT), in O(T (2n/k, k,M) · logM) time.

Proof. The proof is generalization of the one for Lemma 1.
Given a CNF formula on n variables and M clauses, split the variables into k sets of size n/k

and list all 2n/k partial assignments to each set. Define a vector v(α) for each partial assignment
α which contains a 0 at coordinate j ∈ [M ] if α sets any of the literals of the jth clause of the
formula to true, and 1 otherwise. In other words, it contains a 0 if the partial assignment satisfies
the clause and 1 otherwise. Now, observe that if αt (t ∈ [k]) is assignment for variables of t-th
set (every set if of size n/k), then the inner product of vectors {v(αt)}t∈[k] (as in definition 12) is
equal to the number of clauses that the assignment (�t∈kαt) does not satisfy. Therefore, to find
the assignment that maximizes the number of satisfied clauses, it is enough to find k vectors αt
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(t ∈ [k]) such that the inner product of vectors {v(αt)}t∈[k] is minimized. The latter can be easily

reduced to O(logM) calls to an oracle for k-Most-Orthogonal-Vectors on k sets of N = 2n/k vectors
each in {0, 1}M with a standard binary search.

6.2 Adapting the reduction

There are two challenges in adapting the hardness proof for problem of computing LCS between
two sequences to the problem of computing LCS between k > 2 sequences: constructing the vector
gadgets, and combining the gadgets in a way that implements a selection-gadget. We will start
with the vector gadgets.

Vector gadgets. We will need symbols a, b, c, d with w(a) = w(b) = w(c) = 1 and w(d) = 4k.
For an integer p ∈ {0, 1, 2, ..., 2k − 1} we define vp ∈ {0, 1}k to be a vector containing the binary
expansion of p, i.e., (vp)t is tth bit in the binary expansion of p, for t ∈ [k]. Let function f satisfy
f(0) = a and f(1) = b. For x ∈ {0, 1}, x := 1− x.

For t-th set of vectors {αti}i∈[n] (t ∈ [k]) and i ∈ [n], and j ∈ [d] we define coordinate gadget

CGt(α
t
i, j) =

{
dcd©2k−2

p=0 (f((vp)t) ◦ d) if (αti)j = 0

dd©2k−2
p=0 (f((vp)t) ◦ d) otherwise.

Claim 8. Let Eco = 2 + 2k · w(d) and Ecn = Eco − 1. For j ∈ [d] and i1, i2, ..., ik ∈ [n],

WLCS(CG1(α
1
i1 , j),CG2(α

2
i2 , j), ...,CGk(α

k
ik
, j)) =

{
Ecn if (αtit)j = 1 for all t ∈ [k],

Eco otherwise.

Proof. The main idea behind the construction of the coordinate gadgets is as follows. Fix j ∈ [d]
and consider a collection of k vectors. Consider the jth coordinate of all the vectors. Let c1, c2, ...,
ck be such that ct is equal to the jth coordinate of the tth vector. Suppose that for the tth sequence
we set the coordinate gadget corresponding to ct to be equal to the following sequence. If ct = 0,
we take binary expansion of the integers from 0 to 2k − 1 and take tth bit from the expansion and
concatenate all 2k bits. If ct = 1, we do the same except we flip all the bits. Now consider the
WLCS between all k sequences defined this way. For now, assume that we do not align symbols
that have different indices, i.e., for two sequences α′ and α′′, we are allowed to align α′[h′] and
α′′[h′′] iff h′ = h′′. (We take care of this assumption below.) We can easily see that the WLCS is
always equal to 2 between the sequences (independently of the values of ct). Now let us modify the
coordinate gadgets as follows. Instead of concatenating the bits corresponding to the integers from
0 to 2k − 1, we concatenate the bits for the integers from 0 to 2k − 2. We can check now that the
WLCS is always equal to 2 except when all the ct bits are equal (i.e., ct = 0 for all t ∈ [k] or ct = 1
for all t ∈ [k]). If all the bits are equal, then the WLCS is equal to 1. We want the construction of
clause gadgets to satisfy the following property. If there exists t ∈ [k] with ct = 0, then the WLCS
is equal to some fixed large value. While, if ct = 1 for all t ∈ [k], then the WLCS should be equal to
some fixed small value. Our current construction almost satisfies this property. We want to modify
the construction so that the value of the WLCS is equal to 2 when ct = 0 for all t ∈ [k]. We can do
that as follows. We take the previous construction and append a special symbol c at the beginning
of the binary sequence if ct = 0. We can check that the construction satisfies the needed property
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under the stated assumption. We proceed by showing that the actual definition of clause gadgets
removes the necessity of the assumption.

We want to match all the d symbols from every sequence, since if we don’t do that we end up
with a WLCS cost that is less than Eco. We proceed by assuming that we match all the d symbols.
We can now check that we have two matches if not all the vectors have a 1 at the jth coordinate,
while we have one match otherwise.

Let e be a symbol with w(e) = 100 · Eco.
For the t-th set of vectors {αti}i∈[n] (t ∈ [k]) and i ∈ [n] we define the vector gadget

VG′t(α
t
i) = e ◦©j∈[d](CGt(α

t
i, j) ◦ e).

Let Eo = (d− r) · Eco + r · Ecn and En = Eo − 1.

Claim 9. For i1, ..., ik ∈ [n],

WLCS(VG′1(α
1
i1),VG′2(α

2
i2), ...,VG′k(α

k
ik

)) =

{
≥ Eo if α1

i1
, α2

i2
, ..., αkik are r-far,

≤ En otherwise.

Proof. As in the proof of Claim 8, we can conclude that in the optimal matching we use all the e
symbols from all the sequences. If this is not so, then the maximum WLCS score is ≤ En.

Using Claim 8 we can check that the WLCS cost is at least Eo, if the vectors α1
i1
, α2

i2
, ..., αkik are

r-far. Also, we can check that, if the vectors are r-close, then the WLCS cost is at most En.

Let f be a symbol with w(f) = En. For a vector α we define

VG1(α) = f ◦VG′1(α),

VGt(α) = VG′t(α) ◦ f,

for t ∈ {2, 3, ..., k}.

Claim 10. For i1, ..., ik ∈ [n],

WLCS(VG1(α
1
i1),VG2(α

2
i2), ...,VGk(α

k
ik

)) =

{
≥ Eo if α1

i1
, α2

i2
, ..., αkik are r-far,

En otherwise.

Proof. If the vectors α1
i1
, α2

i2
, ..., αkik are r-far, we have a WLCS cost of at least Eo as in Claim 9

and we do not use any of the f symbols. We cannot achieve a larger score than E0 by using the f
symbols.

If the vectors are r-close and we do not use any f symbols, the maximum cost is at most En
by Lemma 9. If it is less than that, we can use the f symbols and achieve a score of En. Notice
that, if we use the f symbols, we cannot use any other symbol in any matching.
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Combining the vector gadgets. A very simple padding strategy implies the lower bound for
a variant of k-LCS.

Definition 13 (Local-k-LCS). Given k strings of length n over an alphabet Σ and an integer L,
what is the length of longest sequence X such that there are k substrings of length L, one of each
input string, such that X is a common subsequence of each one of these substrings.

In words, we are looking for substrings of length L for which the LCS score is maximized.

Theorem 11. If Local-k-LCS on strings of length n over an alphabet of size O(1) can be solved in
O(nk−ε) time, for some ε > 0, then SETH is false.

Theorem 11 follows from the following reduction. We note that in the constructed instances,
L is always polylogarithmic in the lengths of the sequences, and therefore the problem can easily
be solved in Õ(nk) time. This problem is closely related to the Normalized-LCS problem which
was studied in [AEP01, EL04] and for which an n2−o(1) lower bound based on SETH was shown in
[AVW14].

Lemma 13. k-Most-Orthogonal Vectors on k lists of N vectors in {0, 1}M can be reduced to Local-
k-LCS on k strings of length 2k ·N ·MO(1) over an alphabet of size O(1).

Proof. We construct k lists of vector gadgets from our k lists of vectors as in the above discussion.
By the reduction of Lemma 11 from WLCS to LCS, we can convert each vector gadget V Gt(α

t) to
a longer string UV Gt(α

t) such that what we proved for WLCS in Claim 10 holds for LCS instead.
Let L be the length of the longest vector gadget UV Gt(α

t) that we create in this process. We also
introduce two new symbols x, y. The first string will be defined as P1 = ©N

i=1(UV G1(α
1
i ) ◦ xL),

while the other k − 1 strings will be Pt = ©N
i=1(UV Gt(α

t
i) ◦ yL), for t = 2 to k. To complete the

reduction, we claim that if the input is a YES instance of k-Most-Orthogonal Vectors, there will be
k substrings of length L with LCS ≥ Eo, namely the k vector gadgets corresponding to the r-far
vectors, while otherwise the maximum score of any k substrings is En. The latter part is implied
by Claim 10 and by noting that the x, y parts can never be matched, and they are long enough to
prevent any substring of length L to contain symbols from more than one vector gadget.

Next, we focus on the classic k-LCS problem and show how to implement the selection-gadget
while making the existence of orthogonal vector influence the LCS in a manageable way. Unfortu-
nately, we are not able to do this without introducing O(k) new symbols to the alphabet.

Our lower bound for k-LCS (Theorem 2) follows from the following reduction.

Lemma 14. For any k ≥ 2, k-Most-Orthogonal Vectors on k lists of n vectors in {0, 1}d can be
reduced to k-LCS on k strings of length kO(k) · n · dO(1) over an alphabet of size O(k).

Before we prove the above lemma, let us discuss how it implies that k-LCS on an alphabet of size
O(k) is W [2] hard. To do this, we give a simple reduction from k-dominating set, a W [2]-complete
problem, to n-dimensional k-Most-Orthogonal Vectors. By Lemma 14 this implies a reduction to
k-LCS on strings of length kO(k)polyn over an alphabet of size O(k).

Lemma 15. k-Dominating Set in a graph on n nodes can be reduced to k-Most-Orthogonal Vectors
on k lists of n vectors in {0, 1}n in O(n2) time. Hence k-LCS on a O(k) size alphabet is W [2]-hard.
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Proof. Let G = (V,E) be an instance of k-Dominating Set. For each node v ∈ V add an n-
dimensional vector vi to each list i of the k lists. vi[u] = 1 if and only if u 6= v and u is not a
neighbor of v. This completes the reduction.

A set of k-Orthogonal vectors v11, . . . v
k
k implies that for all u ∈ V , some vj has vj [u] = 0, and

hence every u ∈ V either is in {v1, . . . , vk}, or u has a neighbor in {v1, . . . , vk}, and {v1, . . . , vk} is
a k-dominating set. (We note that if the vi are not distinct, we can add an arbitrary set of other
nodes to complete the set to k distinct nodes.)

Now we prove Lemma 14.

Proof. We will show a reduction to k-WLCS and use Lemma 11 to conclude the proof.
We construct k lists of vector gadgets from our k lists of vectors as in the above discussion.

Let D be the maximum possible sum of weights of all symbols in any vector gadget, and note
that D = poly(2k, d) and that D > Eo. For i ∈ {2, . . . , k} we will introduce a new symbol 3i
to the alphabet, and set Bk = B = (10kD)2 and for 2 ≤ i ≤ k set w(3i) = Bi = 2k · Bi+1.
Finally, add two new symbols 0, 2 and set w(0) = w(2) = C = 10k2B2. The weights achieve
C >> B2 >> · · · >> Bk = B >> D >> Eo.

Our k strings are defined as follows. For i ∈ [k],

Pi = (3i+1 · · · 3k)Q ◦ (32 · · · 3i) ◦
(
V G′i(f)

)(i−1)N ◦©N
t=1V G

′
i(α

i
t) ◦

(
V G′i(f)

)(i−1)N ◦ (3i+1 · · · 3k)Q

where V G′1(x) = 0 ◦ V G1(x) ◦ 2, V G′i(x) = 0 ◦ V Gi(x) ◦ 2 ◦ (32 · · · 3i) if i ≥ 2, and Q = |Pk|.
The intuition behind this padding is that we want to force any optimal matching to match

all n vector gadgets of the first string to precisely n vector gadgets from each other string. This
is achieved since: if at least one vector gadget from Pi is not matched, we will lose some 0 or 2
symbols that we could have matched, while if more than n vector gadgets are matched, we will
lose at least one 3i symbol. In addition, as long as we match consecutive n intervals from each
string, we will get the same score from the padding, and therefore the optimal matching will be
determined by the existence of an r-far set of vectors. The WLCS will be E if there are no r-far
vectors, and E + 1 if there are, for an appropriately defined E.

To make this argument more formal, we can follow the steps in the proof of Lemma 4 for LCS
of two strings. First, we can prove an analog of Claim 5, stating that matching n′ intervals (vector
gadgets) in some Pt for some n′ > n can only contribute up to (n′ − n)(B − 1) to the score. Then,
we observe that by the padding construction, if n′ > n then we will not be able to match at least
(n′−n) of the 3t symbols that we could have matched if n′ was equal to n, which incurs a loss much
greater than (n′ − n)B. Therefore, in an optimal matching, exactly n intervals will be matched in
each sequence, and it is easy to see that the score is then determined by the existence of an r-far
set of vectors.

Let EU = 2C+En and EG = n ·EU +B2 + (2n+ 1) ·
∑k

i=2Bi. The following two lemmas prove
that there is a gap in the WLCS of our k sequences when there is a collection of k vectors that are
r-far as opposed to when there is none.

Lemma 16. If there is a collection of k vectors that are far, then WLCS(P1, . . . , Pk) ≥ EG + 1.

Proof. Let t1, . . . , tk be such that the k vectors (αiti)
k
i=1 are r-far.
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First, match the corresponding gadgets, (V Gi(α
i
ti))

k
i=1, along with the 0 and 2 symbols sur-

rounding each of these gadgets, to get a weight of at least 2C + Eo = 2C + En + 1 = EU + 1, by
Claim 10.

Then, Match the i1−1 vector gadgets (and the surrounding 0, 2 symbols) to the left of V G′1(α
1
t1)

to the i1 − 1 vector gadgets immediately to the left of V G′i(α
i
ti), for every i ∈ {2, . . . , k}, and

similarly, match the n − i1 gadgets to the right. The total additional weight we get is at least
(n− 1) · EU .

Then, note that after the above matches, only (n − 1) out of the (3n + 1) 32-symbols in P2

are surrounded by matched symbols. The remaining (2n + 2) 32-symbols can be matched, giving
an additional weight of (2n+ 2) · B2, as follows: Consider the leftmost matched 0 in P2, call it x,
and assume there are m 32-symbols to the left of it in P2. Match these 32-symbols to the m such
symbols in each other string Pi that appear immediately to the left of the symbol that is matched
our x. By construction, and the fact that m can be at most n, we know that there are enough
matchable 32 symbols in the other strings.

Then, similarly, note that at this point, only 3n out of the (5n + 1) 33-symbols in P3 are
surrounded by matched symbols. The remaining (2n + 1) 33-symbols can be matched, as above,
for an additional weight of (2n + 1) · B3. And in general, we perform this process for i from 2 to
k, and at ith stage, only (2(i− 2)n+ n+ 1− 1) out of the (2(i− 1)n+ n+ 1) 3i-symbols in Pi are
surrounded by matched symbols, and we can match the remaining ones to get an additional weight
of (2n+ 1) ·Bi. Thus, the total contribution of the 3i symbols is B2 +

∑k
i=2(2n+ 1)Bi.

The total weight of our matching is at least EU + 1 + (n− 1) ·EU +B2 + (2n+ 1) ·
∑k

i=2Bi =
EG + 1.

The hard part is upper bounding the score when there is no collection of r-far vectors, and we
will spend the rest of the proof towards this end.

Lemma 17. If there is no collection of k vectors that are far, then WLCS(P1, . . . , Pk) ≤ EG.

Proof. Consider any optimal matching of our k strings. The goal is to bound its score by EG. Our
plan will be to divide the contribution to the score into two: (a) the contribution of the vector
gadgets, and (b) the contribution from the padding, i.e. the 3i symbols. In any matching, there is
a tradeoff between the scores from (a) and (b): the more vector gadgets we align, the fewer 3i’s we
can match, and vice versa. We will prove upper bounds for both contributions and show that they
imply an upper bound of EG on the total score.

We start by formally defining (a) and upper bounding it.
For each string Pi, let si and ti be the first 0 symbol and the last 2 symbol from Pi that are

matched in our optimal matching, if they exist, respectively. A simple observation is that if some
0 symbol is matched in the optimal matching (si exists for all i ∈ [k]), then there must exist some
2 symbol that is also matched: otherwise, match the 2 immediately following that 0 and note that
any conflicting matches must come from inside the vector gadgets and therefore removing all of
them will decrease the score by much less than w(2). Thus, we can define Ni to be the number
of vector gadgets that lie between si and ti, and if such si, ti do not exist, we set Ni = 0. By
construction, Ni ≤ 2(i − 1)n + n, for all i ∈ [k]. Note that (s1, . . . , sk) and (t1, . . . , tk) must be in
our matching.

We will assume that Ni ≥ 1 for all i, since the only other case is that ∀i ∈ [k] : Ni = 0, which
can easily be seen to be sub-optimal: in this case, only 3i symbols are matched, and there cannot be
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more than (2(i−1)n+n+ 1) matched 3i symbols for any i ∈ {2, . . . , k} which implies the following
upper bound on the score:

∑k
i=2(2(i− 1)n+ n+ 1)Bi ≤ 3kn

∑k
i=2Bi ≤ 3knB2 < n · C < EG.

By construction, there are no 3i symbols between s1 and t1, which implies that the matching in
between (s1, . . . , sk) and (t1, . . . , tk) does not contain any 3i symbols. The total contribution of this
part is what we call (a) above. On the other hand, the matching to the left of (s1, . . . , sk) and to the
right of (t1, . . . , tk) cannot contain anything besides 3i symbols: If some symbol σ /∈ {0, 32, . . . , 3k}
appears in Pi before si and is matched, then the 0’s that appear right before the matched σ’s
could have been matched together without any conflicts, which contradicts the optimality of the
matching. An analogous argument shows that ti is to the right of any matched σ /∈ {2, 32, . . . , 3k}.
Thus, the contribution of part (b) only comes from 3i symbols.

This motivates the following definitions. From now on, we will refer to the sequences composed of
the vector gadgets that are surrounded by 0, 2 as “intervals”, i.e. sequences of the form 0◦V Gi(x)◦2.
Consider the substrings between si and ti in each string Pi and remove any 3i symbols in them
- since they are not matched anyway - and note that we obtain a concatenation of Ni intervals.
Moreover, by our assumption that there is no satisfying assignment, we know that for any choice
of one interval from each string, the k-LCS is upper bounded by EU = 2C +En, by Claim 10. The
main quantity we will be interested in is W (L1, . . . , Lk) which is defined to be the maximum score
of a matching of any k strings T1, . . . , Tk such that Ti is the concatenation of Li intervals, and for
any choice of one interval from each Ti, the optimal score is EU . By the symmetry of k-LCS, we
can assume WLOG that L1 ≤ · · · ≤ Lk, and otherwise we reorder. To get the desired upper bound
on W (L1, . . . , Lk) it will be convenient to first upper bound W0(L1, . . . , Lk), which is defined in a
similar way, except that we require the matching to match all 0 and 2 symbols from T1, i.e. the
string string with fewest intervals.

Define EB = 2C +D which is an upper bound on the maximum possible total weight of all the
symbols in an interval. A key inequality, which we will use multiple times in the proof, following
from the fact that the 0/2 symbols are much more important than the rest, is the following.

Fact 1. Our parameters satisfy EB < EU + (B − 1)/(k − 1).

Proof. Follows since (k − 1)(EB − EU ) < (k − 1)D < B, by our choice of parameters.

Claim 11. For any integers 1 ≤ L1 ≤ . . . ≤ Lk, we can upper bound W0(L1, . . . , Lk) ≤ L1 · EU +
(Lk − L1) · (B − 1).

Proof. Let T1, . . . , Tk be any k sequences with L1, . . . , Lk intervals, respectively, that satisfy the
assumption in the definition of W0. Consider an optimal matching of the k sequences in which all
the 0 and 2 symbols of T1 are matched and we will upper bound its weight EF by L1 ·EU + (Lk −
L1) · (B− 1), which will prove the claim. Note that in such a matching, for any i ∈ {2, . . . , k}, each
interval of T1 must be matched completely within one or more intervals of Ti, and each interval of
Ti has matches to at most one interval from T (otherwise, it must be the case that some 0 or 2
symbol in T1 is not matched).

We upper bound the weight of the matching by considering two kinds of intervals in T1 and
upper bounding their contributions. Let x be the number of intervals of T1 that contribute at most
EU to the weight of our optimal matching, and call the other (L1 − x) intervals “full”. Note that
any full interval must be matched to a substring of Ti, for some i ∈ {2, . . . , k}, that contains at
least two intervals for the following reason. The 0 and 2 symbols of the interval of T1 must be
matched, and, if the matching stays within a single interval of Ti, for all i ∈ {2, . . . , k}, and has
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more than EU weight, then we have a contradiction to the assumption that no k intervals, one
from each string, can have a k-LCS score greater than EU . Thus, we have x intervals consuming at
least 1 interval from every Ti, and we have (L1−x) full intervals consuming at least 1 interval from
every Ti and at least 2 intervals from some Ti. Using the fact that the total number of intervals in
T2, . . . , Tk is L2 + · · ·+ Lk ≤ (k − 1)Lk, we get the condition,

(k − 1) · x+ k · (L1 − x) ≤ (k − 1)Lk.

We can now give an upper bound on the weight of our matching, by summing the contributions of
each interval of T1: There are x intervals contributing ≤ EU weight, and there are (L1−x) intervals
with unbounded contribution, but we know that even if all the symbols of an interval are matched,
it can contribute at most EB. Therefore, the total weight of the matching can be upper bounded
by

EF ≤ (L1 − x) · EB + x · EU
We claim that no matter what x is, as long as the above condition holds, this expression is less
than L1 · EU + (Lk − L1) · (B − 1).

To maximize this expression, we choose the smallest possible x that satisfies the above condition,
since EB > EU , which implies that x = max{0, kL1 − (k − 1)Lk}.

First, consider the case where Lk ≥ L1 · k
k−1 , and therefore x = 0, which means that all the

intervals of T1 might be fully matched. Using Fact 1 and that Lk − L1 ≥ L1/(k − 1), we get the
desired upper bound:

EF ≤ L1 · EB ≤ L1 · (EU + (B − 1)/(k − 1)) ≤ L1 · EU + (Lk − L1) · (B − 1).

Now, assume that Lk < L1 · k
k−1 , and therefore x = kL1− (k− 1)Lk. In this case, when setting

x as small as possible, the upper bound becomes:

EF ≤ ((k−1)Lk− (k−1)L1) ·EB +(kL1− (k−1)Lk) ·EU = L1 ·EU +(k−1)(Lk−L1) · (EB−EU ),

which, by Fact 1, is less than L1 · EU + (Lk − L1) · (B − 1).

We are now ready to upper bound the more general W (L1, . . . , Lk).

Claim 12. For any integers 1 ≤ L1 ≤ . . . ≤ Lk, we can upper bound W (L1, . . . , Lk) ≤ L1 · EU +
(Lk − L1) · (B − 1).

Proof. We will prove by induction on ` ≥ k that: for all 1 ≤ L1 ≤ . . . ≤ Lk such that L1+· · ·+Lk ≤
`, W (L1, . . . , Lk) ≤ L1 · EU + (Lk − L1) · (B − 1).

The base case is when ` = k and L1 = · · · = Lk = 1. Then W (1, . . . , 1) = EU , by the assumption
on the strings in the definition of W , and we are done.

For the inductive step, assume that the statement is true for all `′ ≤ ` − 1 and we will prove
it for `. Let L1, . . . , Lk be so that 1 ≤ L1 ≤ · · · ≤ Lk and L1 + · · · + Lk = ` and let T1, . . . , Tk be
sequences with a corresponding number of intervals. Consider the optimal (unrestricted) matching
of T1, . . . , Tk, denote its weight by EF . Our goal is to show that EF ≤ L1 ·EU + (Lk−L1) · (B−1).

If every 0/2 symbol in T1 is matched, then, by definition, the weight cannot be more than
W0(L1, . . . , Lk), and by Claim 11 we are done. Otherwise, consider the first unmatched 0/2 symbol
in T1, call it x, and there are two cases.
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The x = 0 case: If x is the first 0 in T1, then for some i ∈ {2, . . . , k}, the first 0 in Ti must
be matched to some 0 after x (otherwise we can a 0 to the matching without violating any other
matches) which implies that none of the symbols in the interval starting at x can be matched, since
such matches would be in conflict with the match that contains this first 0. Otherwise, consider the
2 that appears right before x, call it y, and note that it must be matched, to some 2-symbols yi in
Ti for every i ∈ {2, . . . , k}, by our choice of x as the first unmatched 0/2 symbol in T1. Now, there
are two possibilities: either for some i ∈ {2, . . . , k}, our yi is the very last 2 in Ti, and there are
no more intervals in Ti after this match, or for some i ∈ {2, . . . , k}, the 0 right after yi is already
matched to some 0 in T1 that is after x (from a later interval in T1). Note that in either case, the
interval starting at x (and ending at the 2 after it) is completely unmatched in our matching.

Let T ′1 be the sequence with (L1−1) intervals which is obtained from T1 by removing the interval
starting at x. The weight of our matching will not change if we look at it as a matching between
T2, . . . , Tk and T ′1 instead of T1, which implies that EF ≤W (L−11, L2, . . . , Lk). Using our inductive
hypothesis we conclude that EF ≤ (L1−1)·EU +(Lk−L1+1)·(B−1) ≤ L1 ·EU +(Lk−L1)·(B−1),
since EU > B, and we are done.

The x = 2 case: The 0 at the start of x’s interval must have been matched to some 0-symbols
xi from each string Ti. For each i ∈ {2, . . . , k}, let zi be the 2 at the end of xi’s interval. Note that
for at least one i ∈ {2, . . . , k}, zi must be matched to some w = 2 in T1 after x, since otherwise,
we can add (x, z2, . . . , zk) to the matching, gaining a cost of C, and the only possible conflicts we
would create will be with matches containing symbols inside the xi → zi interval (that are not 0 or
2), for some i ∈ {2, . . . , k}, or inside x’s interval, and if we remove all such matches, we would lose
weight of at most (EB − 2C) which is much smaller than the gain of C from the new 2 we matched
- implying that our matching could not have been optimal. Let j ∈ {2, . . . , k} be the index of this
string, so that in Tj , both xj and zj are matched. Therefore, there are c ≥ 2 intervals in T1 that are
matched to a single interval in Tj : all the intervals starting at the 0 right before x and ending at w
are matched to the xj → zj interval. Let T ′1 be the sequence obtained from T1 by removing all these
c intervals and let T ′j be the sequence obtained from Tj by removing the xj → zj interval. Similarly,
define T ′i for every i ∈ [k]− {1, j} to be the sequence obtained from Ti by removing all the ci ≥ 1
intervals starting at xi and ending at the 2 that is matched with zj . Our matching can be split
into two parts: a matching of T ′1, . . . , T

′
k, and the matching of the xj → zj interval to the removed

intervals. The contribution of the latter part to the weight of the matching can be at most the weight
of all the symbols in an interval, which is EB. Consider the new sequences T ′1, . . . , T

′
k and note

that: for each i, Ti contains no more than Li − 1 intervals while the sequence with fewest intervals
has no more than L1 − c which is the number of intervals in T ′1. Thus, by definition, we know that
any matching of T ′1, . . . , T

′
k can have weight at most W (L1 − c, . . . , Lk − 1), and by the inductive

hypothesis, we can upper bound W (L1− c, . . . , Lk− 1) ≤ (L1− c) ·EU + (Lk− 1−L1 + c) · (B− 1).
Summing up the two bounds on the contributions, we get that the total weight of the matching is
at most:

EF ≤ EB+(L1−c)·EU+(Lk−L1+c−1)·(B−1) ≤ L1·EU+(Lk−L1)·(B−1)+(c−1)·(B−1)+EB−c·EU

However, note that EB < 1.1EU and that (c − 1.1)EU > 10(c − 1.1)B > (c − 1)B, which implies
that EF can be upper bounded by L1 · EU + (Lk − L1) · (B − 1), and we are done.

We now turn to bounding (b). Recall the definition of Ni above, as the number of intervals
from Pi that are matched. Let us also define xi− as the number of 3i symbols from Pi that appear
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before si and are matched in our optimal matching, and define xi+ to be the number of such
3i symbols that appear after ti. Then, the contribution of (b) to the score can be bounded by∑k

i=2(xi− + xi+)Bi. A simple but key observation is the following.

Claim 13. For every i ∈ {2, . . . , k},

xi− + xi+ ≤ 2(i− 1)n+ n+ 2−
i−1∑
j=2

(xj− + xj+ − 1)−Ni

Proof. Focus on Pi and note that there are only (2(i− 1)n+ n+ 1) 3i-symbols in it. To make the
counting easier, let us define a set U that is initially empty, and we will add unmatchable 3i symbols,
from Pi, to U . In the end, we will argue that |U |+ xi− + xi+ must be at most (2(i− 1)n+ n+ 1).

First, we add the (Ni − 1) 3i symbols that lie between si and ti to U , since those are clearly
unmatchable.

Second, we will focus on the prefix of Pi that ends at si, call it Qi. For 2 ≤ j < i, note that
there must be xj− 3j-symbols in Qi that are matched and let qj be the first such 3j symbol. Since
qj is matched to the first 3j symbol in Pj that is matched, and that in Pj there are no 3h symbols,
for any h > j between that 3j symbol and sj , we can conclude that: for any j < h < i, all the xh−
3h-symbols in Qi that are matched are in the subsequence of Qi starting at qh and ending at qj .
In fact, this implies that all the xh− 3h-symbols in Qi that are matched are in the subsequence of
Qi starting at qh and ending right before qh−1. Thus, for each 2 ≤ h < i, we can add xh− new 3i
symbols to our unmatchable U - the ones in the latter subsequence.

Finally, we focus on the suffix of Pi that starts at ti, and using a similar reasoning we conclude
that for each 2 ≤ h < i, we can add (xh+ − 1) new 3i symbols to our unmatchable U .

Thus, we conclude that (Ni−1) +
∑i−1

j=2(xj−+xj+−1) +xi−+xi+ ≤ (2(i−1)n+n+ 1), which
proves the claim.

For any fixed values for N1, . . . , Nk satisfying 1 ≤ Ni ≤ 2(i − 1)n + n, we can compute the
largest possible contribution of part (b). Since if i < j then Bi is much larger than Bj , the optimal
score is achieved when setting (xi−+xi+) to be as large as possible, regardless of the 3j symbols we
make unmatchable for j > i. That is, we claim that the optimal score is achieved when each of the
inequalities in Claim 13 are saturated, i.e. xi−+xi+ = 2(i−1)n+n+2−

∑i−1
j=2(xj−+xj+−1)−Ni.

This is true, since if any inequality is not saturated, say for i, then we can always add at least
one 3i symbol to the matching (gaining Bi weight) and remove at most one 3j symbol for each
j ∈ {i+1, . . . , k} (losing less than (k−1)Bi+1 < Bi weight) and obtain a valid matching with larger
cost, contradicting the optimality of our matching. Therefore, the number of matched 3i symbols
is precisely,

xi− + xi+ = 2(i− 1)n+ n+ 2−
i−1∑
j=2

(xj− + xj+ − 1)−Ni.

We can now formally analyze the tradeoff between (a) and (b), and prove that the optimal
matching matches exactly n intervals from each sequence.

Claim 14. In the optimal matching, N1 = · · · = Nk = n.
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Proof. Assume for contradiction that the claim does not hold, and we are in one of the two cases.
Case 1: For some i ∈ [k], Ni > n. In this case, we consider any matching in which N ′i = n

intervals are matched in Pi, and in which the xi−, xi+ values are chosen optimally for all i ∈
{2, . . . , k}. Let Nm = minkj=1Nj . Clearly, the number of 3m symbols in the new matching is at
least (xm−+xm+ +(Nm−n)), i.e. increased by (Nm−n). Thus, in the contribution of part (b), we
have gained a weight of at least (Nm−n)Bm. To bound the loss in part (a), let Nmin = minkj=1Nj

and note that Nm ≤ n. The new contribution of part (a) is at least n · EU , while in the original
matching, the contribution was at most Nmin · EU + (Nm − Nmin) · (B − 1). Since EU > B, the
latter expression is maximized when Nmin is as large as possible, i.e. Nmin = n, and we can
upper bound it by n · EU + (Nm − n) · (B − 1). In total, the loss in part (a) is no more than
n ·EU − n ·EU + (Nm− n) · (B− 1) which is much less than (Nm− n)Bm, which is a contradiction
to the optimality of our matching.

Case 2: For all i ∈ [k], Ni ≤ n, but for some i ∈ [k], Ni < n. In this case, we consider any
matching in which N ′i = n intervals are matched in Pi, and in which the xi−, xi+ values are chosen
optimally for all i ∈ {2, . . . , k}. Clearly, for each i ∈ {2, . . . , k} the number of 3i symbols in the new
matching is at least (xi−+xi+− i(n−Ni)), i.e. decreased by no more than i(n−Ni). Thus, in the
contribution of part (b), we have lost a weight of at most

∑k
i=2 i(n−Ni)Bi < kB2

∑k
i=2(n−Ni),

but we have gained a larger weight, in part (a), as we show below.
Let Nm = minkj=1Nj and note that maxkj=1Ni ≤ n. By Claim 12, the part (a) contribution for

the original matching had weight at most Nm ·EU+(n−Nm)·(B−1), where Nm ≤ Ni. On the other
hand, in the new matching, at least n intervals are matched from each string, and therefore the
contribution is at least n·EU . Thus, in part (a) we gain at least n·EU−Nm ·EU−(n−Nm)·(B−1) =
(n − Nm)(EU − B + 1), which is larger than kB2

∑k
i=2(n − Ni) ≤ kB2(k − 1)(n − Nm) since

EU > C > k2B2.

Finally, after we proved that N1 = · · · = Nk = n, we know the exact contribution of both
parts: For part (b), by Claim 13 and the optimality conditions on the xi−, xi+ values, we get that
x2− + x2+ = 2n+ 2 and for i ∈ {2, . . . , k} we have xi− + xi+ = 2n+ 1, and the total contribution
is exactly B2 + (2n + 1) ·

∑k
i=2Bi. For part (a), by Claim 12, the total contribution is n · EU .

Combined, the total score of our optimal matching is exactly n ·EU +B2 +(2n+1) ·
∑k

i=2Bi = EG.

Note that the length of the sequences is O(n·dO(1)) while the largest weight used is O(kO(k)dO(1))
and thus Lemma 11 implies the claimed bound.
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