Popular Conjectures and Dynamic Problems

Amir Abboud

Stanford University

"Hardness in P" workshop, STOC 15'

This talk:

Overview of recent lower bounds for dynamic problems

→ Simple and powerful proofs

→ Interesting Open Questions.

Dynamic Problems

Dynamic (undirected) Connectivity

Input: an undirected graph G

Updates: Add or remove edges.

Query: Are s and t connected?

Trivial algorithm: O(m) updates.

[Thorup STOC 01']: O(log m (log log m)3) amortized time per update.

[Pătrașcu - Demaine STOC 05']: $\Omega(log m)$ Cell-probe lower bound.

Great!

Dynamic Problems

Dynamic (directed) Reachability

Input: A directed graph G.

Updates: Add or remove edges.

Query:

s,t-Reach: Is there a path from s to t?

#SSR: How many nodes can s reach?

Trivial algorithm: O(m) time updates

Using fast matrix multiplication

[Sankowski FOCS 04'] O(n^{1.57})

Not great.

Best cell probe lower bound still $\Omega(log m)$

Many Examples

Problem	Upper bound	(Unconditional) Lower bound	
s,t-Reach		$\Omega(log~ ext{m})$	
#SSR			
Strongly Connected Components	O(m) or O(n		
Maximum Matching			
Connectivity with node updates	O(m		
Approximate Diameter	O(mn)		

Many successes for the partially dynamic setting and related problems.

Huge gaps - what is the right answer?

This talk:

Much higher lower bounds via the "Hardness in P" approach

3SUM Lower Bounds

<u>Theorem</u> [Pătraşcu STOC10']: The 3-SUM conjecture implies polynomial lower bounds for many dynamic problems.

3-SUM: Given n integers, are there 3 that sum to 0?

The 3-SUM Conjecture: "No O(n^{2-e}) time algorithm"

A very cool series of reductions...

Problem	Upper bound	(3-SUM) Lower bound
s,t-Reach	O(m) or $O(n)$	m
#SSR	O(m) or O(n	
Connectivity with node updates	O(m	

for some a>0

3SUM Lower Bounds

[A-VW FOCS 14'], [Kopelowitz - Pettie - Porat. Arxiv 14']

Optimized Pătrașcu's reductions and added problems to the list

Problem	Upper bound	(3-SUM) Lower bound	
s,t-Reach		m	
#SSR	O(m) or $O(n)$		
Strongly Connected Components	O(m) or O(n		
Maximum Matching			
Connectivity with node updates	O(m		
Approximate Diameter	O(mn)		

Some steps in the reduction are lossy - stuck at $m^{1/3}$.

3SUM might not be the most appropriate...

BMM Lower Bounds

[A-VW FOCS 14']

The BMM conjecture implies tight lower bounds for combinatorial algorithms!

The BMM conjecture:

"No O(n^{3-e}) time combinatorial algorithm for Boolean Matrix Multiplication"

Problem	(combinatorial) Upper bound	(BMM) Lower bound	(3-SUM) Lower bound
#SSR			
Strongly Connected Components	O(100)	m	m
s,t-Reach	O(m)		
Maximum Matching			
Approximate Diameter	O(mn)	m	

Any improvement for these problems will probably have to use fast matrix mult.

OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai - Saranurak STOC 15'] Most BMM lower bounds hold for non-combinatorial algorithms as well, under the Online Matrix Vector Multiplication Conjecture.

More details tomorrow!

Each "lower bound" has different advantages.

APSP Lower Bounds

[A-VW FOCS 14']

The APSP conjecture implies tight lower bounds for some weighted problems.

Different conjectures are better for explaining different barriers

SETH Lower Bounds

[A-VW FOCS 14'] SETH implies very high lower bounds!

Talk outline:

→ Overview

- → Lower bound for dynamic Reachability
 - → Lower bound for dynamic Diameter

→ Conclusions

Single Source Reachability

Input: A directed graph G.

<u>Updates:</u> Add or remove edges.

Query:

#SSR: How many nodes can s reach?

Trivial algorithm: O(m) updates.

OMv lower bound: $\Omega(m^{1/2})$ updates.

Theorem [A. - VW FOCS 14']:

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

Proof outline:

Orthogonal Vectors

(1,0,1,...,0)

(0,0,1,...,1)

Given two lists of n vectors in {0,1}^d is there an orthogonal pair?

dynamic #SSR

#SSR asks how many nodes can s reach?

Graph G on *m=O(nd)* nodes and edges,
O(nd) updates and queries

OVP in **~O(n**^{1.9}) time

O(nd) updates/queries in $^{\sim}O(n^{1.9})$ time

Amortized *O(m^{0.9})* update/query time

(refutes SETH)

 $d=polylog(n), m=^{\circ}O(n)$

Previous talk [Roditty - VW STOC 13']:

If <u>diameter</u> be solved in $O(n^{2-e})$ times, then OVP can be solved in $O(n^{2-e})$ time (and SETH is false).

Orthogonal Vectors

(1,0,1,...,0)(0,0,1,...,1)

Given two lists of n vectors in {0,1}^d is there an orthogonal pair?

(static) diameter

d(a,b) = 2 if not orth.d(a,b)>2 if orth.

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

Proof: Orthogonal Vectors

dynamic #SSR

static: encodes B

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

Proof: Orthogonal Vectors

dynamic #SSR

For each *a_i*:

- 1. add edges s u_i iff $a_i[j]=1$
- 2. ask #SSR(s)

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

Proof: Orthogonal Vectors

dynamic #SSR

add edge $u_j \bullet \longrightarrow \bullet b_i$ iff $b_i[j]=1$

Observation:

 \boldsymbol{s} cannot reach \boldsymbol{b} iff \boldsymbol{a}_i and \boldsymbol{b} are orthogonal.

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

Proof: Orthogonal Vectors

dynamic #SSR

For each *a_i*:

- 1. add edges s u_j iff $a_i[j]=1$
- 2. ask #SSR(s),

if $\langle n + (1s in a_i) \rangle$, output "yes".

3. remove edges and move on to next a_i

If <u>dynamic #SSR</u> can be solved with $O(m^{1-e})$ update and query times, then <u>OVP</u> can be solved in $O(n^{2-e})$ time (and SETH is false).

Proof: Orthogonal Vectors

dynamic #SSR

(0,0,1,...,1)

O(nd) updates, m = O(nd) edges

 $^{\sim}\Omega(m)$ per update!

For each *a_i*:

- 1. add edges s u_j iff $a_i[j]=1$
- 2. ask #SSR(s), and if $\langle n + (1s \text{ in } a_i) \rangle$, output "yes".
- 3. remove edges and move on to next a_i

With additional gadgets, lower bounds for:
Strongly Connected Components
Undirected Connectivity with node updates
and more.

Next: even higher lower bounds!

Dynamic Diameter

Input: an undirected graph G

<u>Updates:</u> Add or remove edges.

Query: What is the <u>diameter</u> of G?

Upper bounds for dynamic All-Pairs-Shortest-Paths:

Naive: ~O(mn) per update.

[Demetrescu-Italiano 03', Thorup 04']: amortized $\sim O(n^2)$.

Theorem [A - VW FOCS 14']:

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

Proof outline:

Three Orthogonal Vectors

(1,0,1,...,0) (0,1,1,...,0) (1,1,1,...,0)

Given three lists of n vectors in {0,1}^d is there an "orthogonal" triple?

dynamic Diameter

d=polylog(n)

<u>Lemma:</u> 3-OVP in $\sim O(n^{3-e})$ time refutes **SETH**

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

Proof outline:

Three Orthogonal Vectors

(1,0,1,...,0)

(0,1,1,...,0)

(1,1,1,...,0)

Given three lists of n vectors in {0,1}^d is there an "orthogonal" triple?

dynamic Diameter

is the diameter 3 or more?

Graph G on *m=O(nd)* nodes and edges,
O(nd) updates and queries

3-OVP in **~O(n^{2.9})** time

O(nd) updates/queries in $^{\sim}O(n^{2.9})$ time

Amortized *O(m^{1.9})* update/query time

(refutes SETH)

 $d=polylog(n), m=^{\circ}O(n)$

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

Proof:

Three Orthogonal Vectors

dynamic Diameter

A (0,0,...,1) (0,1,...,1) ... (1,0,...,0) B
(1,0,...,1)
(0,1,...,0)
...
(1,0,...,1)

(1,0,...,1) (0,0,...,1) ... (1,1,...,0)

(1,0,1,...,0) (0,1,1,...,0) (1,1,1,...,0)

add edge $u'_{j} \bullet ---- b_{i}$ iff $b_{i}[j]=1$

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

Proof:

Three Orthogonal Vectors

dynamic Diameter

A (0,0,...,1) (0,1,...,1) ... (1,0,...,0) B
(1,0,...,1)
(0,1,...,0)
...
(1,0,...,1)

(1,0,1,...,0)

(1,1,1,...,0)

(0,1,1,...,0)

(1,0,...,1) (0,0,...,1) ... (1,1,...,0)

 a_1 . b_1 . a_n . b_n

add edge $u'_{j} \bullet b_{i}$ iff $b_{i}[j]=1$

For each *c_i*:

- 1. add edges $u_j \cdot u_j = u_j \quad \text{iff } c_i[j]=1$
- 2. ask Diameter query.

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

 a_n

Proof:

Three Orthogonal Vectors

dynamic Diameter

 b_n

Α (0,0,...,1)(0,1,...,1)(1,0,...,0)

В (1,0,...,1)(0,1,...,0)(1,0,...,1) (1,0,1,...,0)

(1,0,...,1)(0,0,...,1)(1,1,...,0)(0,1,1,...,0)(1,1,1,...,0)

 a_1 b_1 $u_1 ullet$ U_d • (c_i)

add edge iff $b_i[j]=1$

Observation:

The distance from a to b is more than 3 iff a,b,c_i are an orthogonal triple.

(no coordinate with all three 1's)

1.3-approximation for the diameter of a sparse graph under edge updates with amortized $O(m^{2-e})$ updates refutes SETH!

Proof:

Three Orthogonal Vectors

dynamic Diameter

A (0,0,...,1)(0,1,...,1)(1,0,...,0)

(1,0,...,1)(0,1,...,0)(1,0,...,1)

(1,0,1,...,0)

(0,1,1,...,0)

(1,1,1,...,0)

В

(1,0,...,1)(0,0,...,1)(1,1,...,0)

*a*₁ • b_1 $u_1 ullet$ U_d • (c_i) a_n b_n

O(nd) updates, m = O(nd) edges

 $\sim \Omega(n^2)$ per update!

For each c_i:

- 1. add edges $u_i \cdot u_i'$ iff $c_i[j]=1$
- 2. Query. If Diameter > 3, output "yes".
- 3. remove edges and move on to next c_i

Conclusions:

Very high lower bounds for fundamental problems

After identifying the conjecture, the proofs are very simple!

Many interesting open questions...

Open: Lower bound for decremental reachability

[Henzinger-Krinninger-Nanongkai ICALP 15']: $O(mn^{9/10})$ total update time.

Lower bound for worst case updates:

Barrier for better lower bounds: the incremental case is O(m)

Open: Explain the gaps between randomized and deterministic upper bounds.

"deterministic conjectures" might be needed

Tomorrow: Lower bounds with much better guarantees!

[A-VW-Yu STOC 15']

Even if *at least one* of APSP, 3SUM, SETH is true, then Single Source Reachability requires linear updates!

Thanks for listening!

More reductions after coffee!