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This talk:

= Overview of recent lower bounds for dynamic problems

= Simple and powerful proofs

= |[nteresting Open Questions.



Dynamic Problems

Dynamic (undirected) Connectivity

Input: an undirected graph G

Updates: Add or remove edges. @@
S

Query: Are s and t connected?

Trivial algorithm: O(m) updates.
[Thorup STOC 01’]: O(log m (log log m)3) amortized time per update.

[Patrascu - Demaine STOC 057]:

|
Q(/log m) Cell-probe lower bound. Great!



Dynamic Problems

Dynamic (directed) Reachability

Input: A directed graph G.

Updates: Add or remove edges. 5 W’ t
Query:

s,t-Reach: Is there a path from s to t?

#SSR: How many nodes can s reach?

Trivial algorithm: O(m) time updates

Using fast matrix multiplication
[Sankowski FOCS 04’] O(n'~’)

Not great.

Best cell probe lower bound still Q(/log m)



Many Examples

(Unconditional)

Probl U bound
rORIEMm pper botn Lower bound
s,t-Reach
#SSR
O(m) or O(n
Strongly Connected Components
Q(/log m)
Maximum Matching
Connectivity with node updates O(m
Approximate Diameter O(mn)

Many successes for the partially dynamic setting and related problems.

Much higher lower bounds
via the “Hardness in P” approach



3SUM Lower Bounds

Theorem [Patrascu STOC10’]: The 3-SUM conjecture implies
polynomial lower bounds for many dynamic problemes.

3-SUM: Given n integers, are there 3 that sum to 0?

A very cool series of reductions...

“No O(n%¢) time algorithm”

(3-SUM)
Problem Upper bound
= . Lower bound
s,t-Reach
O(m) or O(n
#SSR m
Connectivity with node updates O(m

for some a>0

No poly log updates for Reachability!




3SUM Lower Bounds

[A-VW FOCS 14’], [Kopelowitz - Pettie - Porat. Arxiv 14’]
Optimized Patrascu’s reductions and added problems to the list

Problem Upper bound (3-SUM)
Lower bound
s,t-Reach
#SSR
O(m) or O(n
Strongly Connected Components
m
Maximum Matching
Connectivity with node updates O(m
Approximate Diameter O(mn)

Some steps in the reduction are lossy - stuck at m1/3.

3SUM might not be the most appropriate...




BMM Lower Bounds

[A-VW FOCS 14’]
The BMM conjecture implies tight lower bounds for combinatorial algorithms!

“No O(n3*) time combinatorial algorithm for
Boolean Matrix Multiplication”

(combinatorial) (BMM) (3-SUM)
Problem
Upper bound Lower bound Lower bound
#SSR
Strongly Connected Components
O(m) m
s,t-Reach m
Maximum Matching
Approximate Diameter O(mn) m

Any improvement for these problems will probably have to use
fast matrix mult.



OMv Lower Bounds

[Henzinger - Krinninger - Nanongkai - Saranurak STOC 15’]
Most BMM lower bounds hold for non-combinatorial algorithms as well,
under the

More detalls tomorrow!

3SUM

Reachability

Strongly Connected
Components

BMM

Maximum Matching

\l/

OMv

Each “lower bound” has different advantages.



APSP LLower Bounds

[A-VW FOCS 14’]
The APSP conjecture implies tight lower bounds for some weighted problems.

“No O(n3*) time algorithm for All-Pairs-Shortest-Paths”

s, t-Shortest Path
Weighted Matching

Reachability

APSP

3SUM

BMM

Strongly Connected
Components

\
/

Maximum Matching

OMv

Different conjectures are better for explaining different barriers



SETH Lower Bounds

[A-VW FOCS 14’] SETH implies very high lower bounds!
SETH:
“CNF-SAT cannot be solved in (2-e)" time”

s,t-Shortest Path

APSP

Weighted Matching

3SUM

Reachability

BMM

Strongly Connected
Components

SETH

\
/

Maximum Matching

OMv

: Next:
{ SETH lower bounds §
t with cool proofs!



Talk outline:

= Lower bound for dynamic Reachability
= Lower bound for dynamic Diameter

= Conclusions



Single Source Reachability

Input: A directed graph G.
Updates: Add or remove edges. , W
uery:
*—>
#SSR: How many nodes can s reach?

Trivial algorithm: O(m) updates.
OMVv lower bound: Q(m¥/2) updates.

Theorem [A. - VW FOCS 14’]:
If dynamic #SSR can be solved with update and query times,
then OVP can be solved in time




Theorem [A. - VW FOCS 14’]:
If dynamic #SSR can be solved with O(m’*¢) update and query times,
then OVP can be solved in O(n“¢) time (and SETH is false).

Proof outline:

Orthogonal Vectors dynamic #SSR
(0,0,1,....1) ([ ©001,..1) |

(0,1,1,...,1) (1,0,1,...,1) m
( 1,0,.1",...,0 1111 S
g q ( )

(1,0,1,...,0)

(0,0,1,...,1) #SSR asks how many nodes can s reach?

Given two lists of n vectors in {0,1}°

. . Graph G on m=0(nd) nodes and edges,
is there an orthogonal pair?

O(nd) updates and queries

O(nd) updates/queries

_ | Amortized O(m®?) |
. in~0O(n'?) time %

. update/query time §

; OVP in ~“O(n*?) time |

(refutes SETH) |
d=polylog(n), m=~0(n)



Previous talk [Roditty - VW STOC 13]:
If diameter be solved in times,
then OVP can be solved in time

Orthogonal Vectors (static) diameter

7 ~ ) X
(0,0,1,...,1) _(0,0,1,..,1) /\ \ / /\

(0,1,1,...,1) (1,0,1,...,1)

[(1,0,.1,...,0)3 (111..1) aef ‘@ e b
(1,0,1,...,0) U /

(0,0,1,...,1)

Given two lists of n vectors in {0,1}¢
is there an orthogonal pair? d(a,b) =2 if

d(a,b)>2 if orth.




Theorem [A. - VW FOCS 14’]:

If dynamic #SSR can be solved with update and query times,
then OVP can be solved in time
Proof: :
Orthogonal Vectors dynamic #SSR
d1 b * bl
(0,0,1,...,1) (0,0,1,...,1) 1 P
(0,1,1,...,1) (1,0,1,...,1) .
2 | (1,01,..,0) 33 | S . °
(1,0, ,...,O) / \
(0,0,1,...,1) dynamic: \
will encode A T " b
static:
encodes B

bi =(1,0,1,0,0)




Theorem [A. - VW FOCS 14’]:

If dynamic #SSR can be solved with O(m’*¢) update and query times,
then OVP can be solved in O(n“¢) time (and SETH is false).

Proof:

!1 (0,0,1,...,1)

(0,1,1,...,1)

a | (1,01,..,0)

Orthogonal Vectors

(0,0,1,..1) | b1
(1,0,1,...,1)

(1L11,.1) |
n

(1,0,1,...,0)
(0,0,1,...,1)
4 A
add edge
Uj ° > D,
iff bi[j]=1
\_ J

dynamic #SSR

For each a;:
1. add edges

2. ask #SSR(s)

S




If dynamic #SSR can be solved with

Th

eorem [A. - VW FOCS 14’]:

update and query times,

then OVP can be solved in time
Proot: Orthogonal Vectors dynamic #SSR
a1 b * bs
(0,0,1,...,1) (0,0,1,..,1) | P1
mp| (011,..1) (1,0,1,...,1) -
2. | (1,0,1,..,0) (L1,,2) | b S . -
(1,0,1,...,0)
(0,0,1,...,1)
° bn
4 ) :
add edge Observation:
uj . > b s cannot reach b iff a; and b are orthogonal.
iff bi[j]=1
- J




If dynamic #SSR can be solved with O(m’*¢) update and query times,
then OVP can be solved in O(n“¢) time (and SETH is false).

Theorem [A. - VW FOCS 14’]:

Proof:

Orthogonal Vectors dynamic #SSR
a1 | (0,0,1,...,1) (0,01,..,1) | b1 P
mp| (011,..1) (1,0,1,...,1)
a. | (1,0,1,..,0) (TR (. s( . ) .
di
(1,0,1,...,0) T
(0,0,1,...,1) \
For each a;:
- ) 1. add edges s »e y; iff aifj]=1
el Gelye 2. ask #SSR(s),
uj ° >e bl . . o ’)
£ biil=1 if <n+ (1sin a;), output “yes”.
I il]]=
9 J y 3. remove edges and move on to next a;




Theorem [A. - VW FOCS 14’]:
If dynamic #SSR can be solved with O(m’*¢) update and query times,
then OVP can be solved in O(n“¢) time (and SETH is false).

Proot: Orthogonal Vectors dynamic #SSR
ai b * bs
(0,0,1,...,1) (0,0,1,..,1) | P2 P
mp| (011,..1) (1,0,1,...,1) o
2. | (1,0,1,..,0) (1L11,.1) | S . L
n (ai)
(1,0,1,...,0) T
(0,0,1,...,1) \
° bn

For each a;:

,' O(hd)updates, ,

: J 1.add edges s ° >e U; iff aifj]=1
'm = O(nd) edges

2. ask #SSR(s),
and if <n + (1sin a;), output “yes”.

~C2(m) per update! 3. remove edges and move on to next a;




With additional gadgets, lower bounds for:
Strongly Connected Components
Undirected Connectivity with node updates
and more.

Next: even higher lower bounds!



Dynamic Diameter

Input: an undirected graph G
Updates: Add or remove edges. W
Query: What is the diameter of G?

Upper bounds for dynamic All-Pairs-Shortest-Paths:
Naive: ~O(mn) per update.
[Demetrescu-Italiano 03’, Thorup 04’]: amortized ~0(n?).

Theorem [A - VW FOCS 14’]:
for the of a under with
amortized updates refutes SETH!




Theorem [A - VW FOCS 147]:
1.3-approximation for the diameter of a

amortized O(m”¢) updates refutes SETH!

under edge updates with

Proof outline:

Three Orthogonal Vectors

(0,0,...,1)
(0,1,...,1)

r

N
Ik(l,O,...,O)J

(1,0,..,1)
)

(1,0,...,1)

(1,0,...,1)
(0,0,...,1)

I{(l,l.,....,oq

Given three lists of n vectors in {0,1}¢

(1,0,1,...,0)
(0,1,1,...,0)
(1,1,1,...,0)

is there an “orthogonal” triple?

=polylog(n)

dynamic Diameter

P




Theorem [A - VW FOCS 147]:
1.3-approximation for the diameter of a under edge updates with

amortized O(m”¢) updates refutes SETH!

Proof outline:

Three Orthogonal Vectors dynamic Diameter
(0,0,..,1) | | (1,0,...,2) (1,0,...,1)
01,1 | [ (01,.0)| |(00,.1)
I[(l,O,...,O)j (1,0,...,1) I[(l,l,...,oq S
(1,0,1,...,0)
(0,1,1,...,0) is the diameter 3 or more?
(1,1,1,..,0)

Graph G on m=0(nd) nodes and edges,

Given three lists of n vectors in {0,1} O(nd) updates and queries

is there an “orthogonal” triple?

O(nd) updates/queries

_ | Amortized O(m??) |
. in~0(n*’) time %

. update/query time |

| 3-OVP in ~0(n*?) time ¢

(refutes SETH) |
d=polylog(n), m=~0(n)



Theorem [A - VW FOCS 147]:
1.3-approximation for the diameter of a

amortized O(m”¢) updates refutes SETH!

under edge updates with

Proof:
Three Orthogonal Vectors
A B C
0,0,..,1) | | (1,0,.,2) | | (1,0,..,2)
(0,1,...,1) (0,1,...,0) (0,0,...,1)
(1,0,...,0) (1,0,...,1) (1,1,...,0)

(1,0,1,...,0)
(0,1,1,...,0)
(1,1,1,...,0)

add edge

’

uije

e b

iIff bi[j]=1

di

dn

dynamic Diameter

e by
\ /

\ Ui : / °
u o
/ d T \
| bl 1"
static: :
encodes A static.
encodes B



Theorem [A - VW FOCS 147]:

for the of a under with
amortized updates refutes SETH!
Proof: .
Three Orthogonal Vectors dynamic Diameter
A B C
(0,0,...,1) (1,0,...,1) (,0,...,1) ai e .
(011/'";1) (011;10) (010111) . / .
(1,0,...,0) (1,0,...,1) (1,1,...,0) . .
(1101 1---10) \
(011) I'"IO) \
(1,1,1,...,0) an .
For each ¢;:

add edge
U’j * I of

1. add edges uj° ‘u’j iff

2. ask Diameter query.
iff bi[j]=1




Theorem [A - VW FOCS 147]:

for the of a under with
amortized updates refutes SETH!
Proof: .
Three Orthogonal Vectors dynamic Diameter
A B C
(010;"-)1) (110 ----- 1) (110111) al ° ° bl
(01,..,1) | | (0,1,..0) | |(00,.,1) . —
(1,0,...,0) (1,0,...,1) (1,1,...,0) . .
(1101 1---10) \
(011) I'"IO) \
(1,1,1,...,0) an * b,

add edge
U’j * ¢ b

iIff bi[j]=1

Observation:
The distance from a to b is more than 3 iff
a,b,c; are an orthogonal triple.

(no coordinate with all three 1°s)



1.3-approximation for the diameter of a

Theorem [A - VW FOCS 147]:
under edge updates with
amortized O(m”¢) updates refutes SETH!

Proof: .
Three Orthogonal Vectors dynamic Diameter
A B C
(0,0,.,1) | | (1,0,.,2) | | (3,0,...,2) ai e
03,.,1) | | (0,1,..,0) | | (00,..,1) . —
(1,0,.,0) | | (1,0,.,2) | | (1,1,...,0) .
(1,0,1,...,0) (i) T
Ci
(0,1,1,...,0)
(1,1,1,...,0) an \
S For each Ci.
i O(nd) updates, !
1. add edges uj° *u’j iff cifj]=1

~C2(n?) per update!

im = O(nd) edges

2. Query. If Diameter > 3, output “yes”.

3. remove edges and move on to next ¢;




Conclusions:

Very high lower bounds for fundamental problems
After identifying the conjecture, the proofs are very simple!

Many interesting open questions...



Open: Lower bound for decremental reachability

add, query, remove (and repeat)

add, query, “backtrack” (and repeat) * b

Barrier for better lower bounds: the incremental case is O(m)



Open: Explain the gaps between randomized and
deterministic upper bounds.

“deterministic conjectures” might be needed



Tomorrow:
Lower bounds with much better guarantees!

[A-VW-Yu STOC 15]
Even if at least one of APSP, 3SUM, SETH is true,
then Single Source Reachability requires linear updates!



Thanks for listening!

More reductions after coffee!



