
Algorithms and Hardness for Diameter in Dynamic Graphs

Bertie Ancona ∗

MIT
Monika Henzinger †

University of Vienna
Liam Roditty ‡

Bar Ilan University

Virginia Vassilevska Williams §

MIT
Nicole Wein ¶

MIT

Abstract

The diameter, radius and eccentricities are natural graph parameters. While these problems have
been studied extensively, there are no known dynamic algorithms for them beyond the ones that follow
from trivial recomputation after each update or from solving dynamic All-Pairs Shortest Paths (APSP),
which is very computationally intensive. This is the situation for dynamic approximation algorithms as
well, and even if only edge insertions or edge deletions need to be supported.

This paper provides a comprehensive study of the dynamic approximation of Diameter, Radius and
Eccentricities, providing both conditional lower bounds, and new algorithms whose bounds are optimal
under popular hypotheses in fine-grained complexity. Some of the highlights include:

• Under popular hardness hypotheses, there can be no significantly better fully dynamic approxima-
tion algorithms than recomputing the answer after each update, or maintaining full APSP.

• Nearly optimal partially dynamic (incremental/decremental) algorithms can be achieved via effi-
cient reductions to (incremental/decremental) maintenance of Single-Source Shortest Paths. For
instance, a nearly (3/2 + ε)-approximation to Diameter in directed or undirected graphs can
be maintained decrementally in total time m1+o(1)

√
n/ε2. This nearly matches the static 3/2-

approximation algorithm for the problem that is known to be conditionally optimal.

1 Introduction

Computing the shortest paths distances between all pairs of vertices in a graph, the All-Pairs Shortest
Paths (APSP) problem, has been studied since the beginning of computer science as a field. Nevertheless, the
fastest known algorithms [29, 23, 22] for APSP in n-vertex m-edge graphs are only slightly faster (by no(1)

factors) than the simple Õ(mn) time1 algorithm running Dijkstra’s algorithm from every vertex2. For dense

∗bancona@mit.edu
†monika.henzinger@univie.ac.at, the research leading to these results has received funding from the European

Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement
No. 340506.
‡liam.roditty@biu.ac.il
§virgi@mit.edu, supported by an NSF CAREER Award, NSF Grants CCF-1417238, CCF-1528078 and CCF-1514339, a

BSF Grant BSF:2012338 and a Sloan Research Fellowship.
¶nwein@mit.edu, supported by an NSF Graduate Fellowship and NSF Grant CCF-1514339
1Õ notation supresses polylogarithmic factors.
2after Johnson’s trick to make the weights nonnegative

1

graphs with small integer weights there are improved algorithms [25, 31] using fast matrix multiplication
[26, 20], but these algorithms are not faster than mn for sparser graphs or when the weights can be large.

There are many important graph parameters that can be easily computed when all the distances are
known. These include the eccentricity of each vertex (the maximum length of a shortest path from the vertex
to another vertex), the graph diameter (the maximum over all eccentricities), the radius (the minimum over
all eccentricities) and many more. These parameters are of particular importance in the analysis of social
networks (e.g. [4]), but also in graphs generated for entities such as images and search queries (and web
pages).

Unfortunately, there are no significantly faster algorithms to compute these parameters than just solving
APSP, and this is far from practical. In many cases the analyzed networks are so large that even enumerating
all pairs of vertices is prohibitively expensive. Thus, obtaining all pairwise distances is essentially impossi-
ble. For graph parameters, on the other hand, the output is a single number; in principle looking at all vertex
pairs might not be necessary, and subquadratic time algorithms (in the number of vertices) might exist for
sparse graphs (whereas quadratic time is necessary for APSP as this is the size of the output). The existence
of such fast algorithms is an important, practically motivated question.

In recent years, much progress has been made in understanding the complexity of graph parameter
computation. Results from fine-grained complexity give that even obtaining a (3/2− ε)-approximation for
graph diameter [24] or radius [3], or a (5/3− ε)-approximation of all eccentricities [9] (for ε > 0) requires
n2−o(1) time even in very sparse graphs, assuming the Strong Exponential Time Hypothesis (SETH) and
related conjectures. Even stronger hardness results were obtained by Backurs et al. [6], altogether showing
that most of the known algorithms for diameter, radius and eccentricities are conditionally optimal.

In addition to computing graph parameters in a static graph, a very natural goal is to maintain estimates
of these parameters in a dynamic graph, where edges are inserted and deleted. In this setting, we would like
to have a fast algorithm which preprocesses the given graph, and builds a data structure which can support
edge updates efficiently and can answer queries about the parameter of interest in the current state of the
data structure. This dynamic version of the problems is even more practically motivated, as real networks
are naturally dynamic.

Unfortunately, the state of the art of dynamic algorithms for graph parameters such as Diameter is
somewhat disappointing. The best known dynamic algorithms either just use the best known dynamic
algorithms for APSP, or recompute the parameter estimate from scratch after each update. This leads to
the following bounds:

(1) Demetrescu and Italiano [11] obtained a fully dynamic exact APSP algorithm with an amortized
update time of Õ(n2) andO(1) query time; this is the best exact dynamic algorithm for the graph parameters
as well. Abboud and Vassilevska W. [2] showed that under SETH, any (4/3 − ε)-approximation fully
dynamic algorithm for diameter (for ε > 0) requires n2−o(1) amortized update or query time even in sparse
graphs. Thus the APSP approach is conditionally optimal for fully dynamic (4/3− ε)-approximate diameter
algorithms. It is unclear however whether a 4/3-approximation with better update time is possible, and
whether the APSP bounds are best for Radius.

(2) By recomputing the parameter estimates after each query, one can maintain a 2-approximation for
Diameter in directed graphs and Radius in undirected graphs in worst case O(m + n) time per update,
and a (2 + ε)-approximation for all Eccentricities in directed graphs for all ε in Õ(m/ε) time per update
using the algorithm of Backurs et al. [6]. One can also maintain a 3/2-approximation for Diameter and
Radius, and a 5/3-approximation of all Eccentricities in worst case time Õ(m3/2) per update using the
algorithms of [24, 9]3. More algorithms follow from the static results of Cairo, Grossi and Rizzi [8]. Can

3An Õ(m
√
n) time running time also exists if a slight additive error is allowed.

2

any of these algorithms be improved or are they conditionally optimal? The only related lower bounds here
are (a) by Henzinger et al. [17] which showed that under the Online Matrix Vector hypothesis (OMv), any
fully dynamic Diameter algorithm that achieves a (2− ε)-approximation for undirected weighted graphs, or
any finite approximation in directed graphs needs n0.5−o(1) amortized update time and (b) by Henzinger et
al. [18] which proved under the combinatorial Boolean Matrix Multiplication conjecture any fully dynamic
Diameter or Eccentricity algorithm that achieves a (4/3−ε)-approximation in undirected unweighted graphs
with n3−o(1) preprocessing time requires n2−o(1) update or query time (and the same result for undirected
weighted graph using the APSP conjecture). While these results give some limitation, they are far from
tight.

The first contributions of our paper are strong conditional lower bounds for fully dynamic graph param-
eter estimation. Our first result is a strengthening of the conditional lower bound for Diameter of [2]: we
increase the approximation ratio from (4/3− ε) to (3/2− ε).

Theorem 1.1. Under SETH, every fully dynamic (3/2 − ε)-approximation algorithm for Diameter with
polynomial preprocessing time requires n2−o(1) amortized update or query time in the word-RAM model
of computation with O(log n) bit words, even for dynamic undirected unweighted graphs that are always
sparse.

The same limitation applies for fully dynamic (5/3 − ε)-approximation algorithms for Eccentricities
with polynomial preprocessing time, and for fully dynamic (3/2− ε)-approximation algorithms for Radius
with polynomial preprocessing time, under the related Hitting Set hypothesis.

These conditional lower bounds imply that the Õ(m3/2) time estimation algorithms that recompute the
answer from scratch are optimal in the sense that any improvement of the approximation factor causes the
update time to grow to n2, and Demetrescu and Italiano’s algorithm achieves Õ(n2) update time even for
the exact maintenance of APSP.

We also show that recomputing a 2-approximation from scratch in linear time is close to optimal under
SETH.

Theorem 1.2. Under SETH, any fully dynamic algorithm with polynomial preprocessing time that can
maintain for ε > 0 any of the following in an n node, m-edge undirected unweighted graph requires either
m1−o(1) amortized update or query time, even when m = Õ(n):

• a (2− ε)-approximation of the eccentricity of a fixed vertex, or

• a (2− ε)-approximation of the Radius, or

• a (2− ε)-approximation of the Diameter.

This result significantly strengthens the OMv based lower bound of [17]: the update time lower bound
is now linear as opposed to

√
n, the result holds for unweighted graphs as well, it also holds for Radius

and single-node eccentricity, and it has implications for partially dynamic algorithms with worst case time
bounds, unlike the one of [17]. Furthermore, the lower bound for the eccentricity of a fixed vertex is tight in
the sense that one can simply recompute the answer exactly from scratch in time O(m).

Much stronger lower bounds are possible for directed graphs. Our first hardness result for directed
graphs is that under SETH and the Hitting Set hypothesis, respectively, nearly quadratic time is needed for
Eccentricities and Radius, even for (2− ε)-approximation. (Recall that for undirected graphs we could only
show this for (3/2− ε)-approximate Radius and (5/3− ε)-approximate Eccentricities.) This means that for
directed graphs, recomputing a 2-approximation from scratch (in linear time) after each update is very much
optimal – for any better approximation one might as well use the exact dynamic APSP algorithms.

3

Theorem 1.3. Every fully dynamic algorithm with polynomial preprocessing time for (2 − ε)-approximate
(for ε > 0) Eccentricities (under SETH) or Radius (under a version of the Hitting Set Hypothesis) in directed,
unweighted graphs with n vertices and m = Õ(n) edges requires amortized update or query time m2−o(1).

Surprisingly, we also show conditionally that no finite 4 approximation can be maintained in sublinear
time. Henzinger et al. [17], building upon [2], showed that any finite approximation for Diameter in directed
graphs requires m0.5−o(1) time under the OMv Hypothesis. We strengthen the lower bound to linear, using
a very natural hypothesis on the complexity of k-Cycle.

All known algorithms for detecting k-cycles in sparse directed graphs with m edges run at best in
time m2−c/k for various small constants c [30, 5, 10], even if you use powerful tools such as fast matrix
multiplication. A natural hypothesis completely consistent with the state of the art of cycle detection is that
one needs m2−f(k)−o(1) time to find a k-cycle, for some continuous (over the reals) f(k) that goes to 0 as k
goes to infinity. Let us call this the k-Cycle Hypothesis. We obtain:

Theorem 1.4. Under the k-Cycle Hypothesis, any fully dynamic algorithm with polynomial preprocessing
time that can maintain a finite approximation for any of the following in an n node,m = Õ(n)-edge directed
unweighted graph requires either m1−o(1) amortized update or query time:

• the eccentricity of a fixed vertex, or

• the Radius, or

• the Diameter.

All known approaches to estimating graph proximity parameters such as the Diameter, at the very least
require maintaining approximate distances from a single node, up to some distance. The conditional lower
bounds above say that even if we only want to maintain an estimate of the largest distance from a fixed node,
and even if that distance is never more than a constant, we still need linear update time. Thus, to have better
than 2 approximations of our undirected distance parameters or any finite approximation in the directed case
that can be maintained in sublinear time we probably need to abandon our need for fully dynamic algorithms.
We thus turn to partially dynamic algorithms that handle either only edge insertions (incremental) or only
edge deletions (decremental).

Our conditional lower bounds for the fully dynamic setting also apply to incremental and decremental
algorithms that have worst case update and query time guarantees. This is due to the nature of our reductions:
they all produce an initial graph on which we perform update stages that only insert or only delete (we can
choose which) a small batch of edges, ask a query and undo the changes just made, returning to the initial
graph. An incremental/decremental algorithm can be used to implement such reductions by performing the
deletions/insertions by rolling back the data structure. Because of this, we have very strong worst case lower
bounds, and it makes sense to focus on amortized guarantees instead.

The strong conditional lower bounds in the static case, imply strong limitations for partially dynamic
algorithms as well. For undirected graphs, these limitations are as follows: Due to [24, 6, 9], under SETH,
every incremental and decremental algorithm for Diameter in n node undirected unweighted graphs requires
total time at least m3/2−o(1) to maintain a (8/5 − ε)-approximation, and at least m2−o(1) total time to
maintain a (3/2 − ε)-approximation for ε > 0 under m = Õ(n) insertions or deletions. For Eccentricities,
the static conditional lower bounds are slightly stronger. For partially dynamic algorithms they imply that
under SETH, for every k ≥ 1, maintaining a ((3k + 2)/(k + 2)− ε)-approximation for ε > 0 requires total

4A finite approximation algorithm is defined as an algorithm that can distinguish whether the value is finite or infinite.

4

time m1+1/k for m = Õ(n) insertions or deletions. For Radius, they just imply that under the Hitting Set
hypothesis [27, 3] maintaining a (3/2−ε)-approximation requires total timem2−o(1) even in a sparse graph.

For directed graphs, there are stronger lower bounds: maintaining a (2 − ε)-approximation for Radius
and Eccentricities requires total time m2−o(1) under Hitting Set and SETH, respectively [3, 6].

The incremental lower bounds directly follow from the static ones by starting from an empty graph
and inserting edges until we reach the graph from the static construction. The decremental lower bounds
hold since the static lower bound instances are all subgraphs of the same global graph, independent of the
SAT/Hitting Set instance that the reduction is trying to solve; thus we start with the global graph and delete
edges until reaching the graph from the static construction.

A natural question is, are these conditional lower bounds tight? Can one create partially dynamic al-
gorithms that can achieve the same total runtime as the known static approximation algorithms? We give
positive answers to these questions by developing new partially dynamic algorithms that are essentially op-
timal. Our algorithms are actually very efficient reductions to incremental and decremental single source
shortest paths (SSSP), so that any improvement over dynamic SSSP would improve our parameter estima-
tion algorithms.

Let D0 and Df be the initial and final values of the diameter, respectively. Let Tinc(n,m, k, ε) (resp.,
Tdec(n,m, k, ε)) be the total time of an incremental (decremental) approximate SSSP algorithm from source
u that maintains an estimate d′(u, v) for all v such that if d(u, v) ≤ k then (1 − ε)d(u, v) ≤ d′(u, v) ≤
d(u, v). For directed graphs we assume that the approximate SSSP algorithm works in directed graphs,
and for undirected graphs, the SSSP algorithm only needs to work in undirected graphs. Our black-box
reductions can be summarized in the theorem below.

Theorem 1.5. There is a Las Vegas randomized algorithm for incremental (resp., decremental) diameter in
unweighted, directed graphs against an oblivious (resp., adaptive) adversary that given ε > 0, runs in total

time Õ(maxDf≤D′≤D0{Tinc(n,m,D′, ε)
√
n/D′

ε2
}) (resp., Õ(maxD0≤D′≤Df {Tdec(n,m,D′, ε)

√
n/D′

ε2
})) with

high probability, and maintains an estimate D̂ such that 2(1−ε)
3 D− 2

3 ≤ D̂ ≤ D where D is the diameter of
the current graph.

We obtain similar black-box reductions for nearly (5/3 + ε)-approximate Eccentricities and (3/2 + ε)-
approximate Radius in undirected graphs.

Henzinger et al. [15] obtained a ramdomized (1 + ε)-approximate decremental algorithm for SSSP in
undirected unweighted graphs against an oblivious adversary with total expected update time m1+o(1/ε).5

As an immediate corollary we obtain:

Corollary 1.1. There is a Las Vegas randomized algorithm for decremental diameter in unweighted, undi-
rected graphs against an oblivious adversary that given ε > 0, runs in total time m1+o(1/ε)√n/ε2 in ex-
pectation, and maintains an estimate 2(1−ε)

3 D − 2
3 ≤ D̂ ≤ D, where D is the diameter of the current

graph.

Due to lower bounds in the static setting described above, this result is conditionally optimal in terms of
both running time and approximation factor except for a small loss in the approximation factor. A similar
result hold for decremental undirected Radius with a conditionally essentially optimal approximation factor.
A similar result also holds for Eccentricities, which is conditionally essentially optimal in terms of both
running time and approximation factor.

5The exact expected update time of this algorithm is m1+O(log5/4((logn)/ε)/ log1/4 n) logW .

5

For decremental algorithms in directed graphs and for incremental algorithms in undirected or directed
graphs, the best known algorithms for SSSP up to distance k are achieved by the Even and Shiloach Trees
data structure [12], giving amortized update time O(k). 6 Henzinger and King recognized that this data
structure can be extended to directed graphs [14]. As a corollary we obtain:

Corollary 1.2. There is a Las Vegas randomized algorithm for incremental/decremental diameter in un-
weighted, directed graphs that given ε > 0, runs in total time Õ(m

√
nDmax/ε

2) with high probability
where Dmax is the maximum diameter throughout the algorithm, and maintains an estimate D̂ such that
2(1−ε)

3 D − 1 ≤ D̂ ≤ D, where D is the diameter of the current graph. The incremental algorithm works
against an oblivious adversary and the decremental algorithm works against an adaptive adversary.

Similar results hold for Radius and Eccentricities but only for undirected graphs. Recall that static
conditional lower bounds rule out such algorithms in directed graphs.

The algorithms so far are all randomized. We present some deterministic incremental algorithms as well,
again via a reduction to incremental SSSP. Let D0, Df and Tinc(n,m, k, ε) be as before.

Theorem 1.6. There is a deterministic algorithm for incremental diameter in unweighted, directed graphs
that, for any ε with 0 < ε < 2, runs in total time Õ(maxDf≤D′≤D0{(Tinc(n,m,D′, ε) + m)n/(ε2D′)}),
and maintains an estimate D̂ such that (1− ε)D ≤ D̂ ≤ D, where D is the diameter of the current graph.

Using Even and Shiloach trees we obtain as a corollary a deterministic incremental (1+ε)-approximation
algorithm for diameter with total update time Õ(mn/ε2). The running time is essentially tight for ε < 1/2
by the SETH based quadratic lower bound for (3/2−δ)-approximate static diameter [24]. Similar algorithms
with essentially tight running times hold for radius in directed graphs and eccentricities in directed, strongly
connected graphs.

1.1 Our techniques for partially dynamic algorithms
Our partially dynamic nearly 3/2-approximation algorithms for diameter and radius and our nearly 5/3-

approximation algorithm for eccentricities are based on known algorithms in the static setting [24, 9]. These
static algorithms work by carefully choosing a set U of vertices, performing SSSP from every vertex in
U , and showing that at least one of these SSSP instantiations yields a good estimate for the parameter of
interest. The set U is chosen as follows. We pick a random sample S of Θ̃(

√
n) vertices and let w∗ be

the vertex that is farthest from S; that is, w∗ is the vertex that maximizes mins∈S d(w∗, s). Then, letting
N(w,

√
n) be the closest

√
n vertices to w, we set U = S ∪ {w∗} ∪N(w∗,

√
n).

Adapting these static algorithms to the dynamic setting presents two main challenges:
(1) Firstly, given a set S of vertices, the farthest vertex w∗ from S can change over time. We wish to

minimize the total number of vertices that we ever run dynamic SSSP from, as reinitializing dynamic SSSP
from a new vertex is expensive. Suppose we run dynamic SSSP from every vertex in N(w∗,

√
n) at all

times. Then, every time w∗ changes, we must reinitialize the dynamic SSSP data structure from
√
n new

vertices. If w∗ changes frequently, this is prohibitively slow. To overcome this issue, we show that it suffices
to choose a vertex w that approximates w∗ (for a careful notion of approximation); and furthermore, by
doing so we can limit the number of times we choose a new w.

Due to inherent differences between the incremental and decremental settings, we choose w in different
ways in the different settings. In the decremental setting, distances can only increase, so our current choice

6Although it is not published, it is likely that one can do better for undirected incremental graphs. In particular, it is widely
believed that the known decremental SSSP algorithms for undirected graphs can be modified to the incremental setting with the
same running time.

6

ofw can only become a poor approximation forw∗ if d(w∗, S) increases. Then, we use the fact that d(w∗, S)
is monotonically increasing to bound the number of times we need to choose a new w.

The incremental setting is more involved. Since distances can only decrease, our current choice of w
becomes a poor approximation of w∗ if d(w, S) decreases. A challenge arises because unlike d(w∗, S), the
distance d(w, S) does not change monotonically. One can imagine a scenario in which whenever we choose
a new w, an edge is added causing d(w, S) to immediately decrease to 1, which mandates that we choose a
new w. We address this challenge by carefully employing randomness against an oblivious adversary. We
argue that by randomly sampling w from a specifically chosen set of vertices, in expectation it will take a
long time for w to become a poor approximation for w∗.

(2) Secondly, we wish to apply a partially dynamic SSSP algorithm as a subroutine, however the state
of such algorithms is much better for undirected graphs than directed graphs. For instance, for undirected
decremental graphs, there is a randomized (1 + ε)-approximate SSSP algorithm that runs amortized mo(1)

time [15] (and it is believed, but not published, than a similar result is possible for incremental graphs),
while for incremental/decremental directed graphs the best known algorithms for SSSP up to distance k run
in amortized time O(k) [12]. To address this discrepancy, we carefully exploit the fact that longer paths are
easier to hit by randomly sampling: we augment the algorithm with an additional subsampling routine that
quadratically decreases the dependence of the running time on the diameter D.

2 Preliminaries

Let G = (V,E) be a graph, where |V | = n and |E| = m. For every u, v ∈ V let dG(u, v) be the length
of the shortest path from u to v. We omit the subscript when G is clear from context. Let Nout(v, s) (resp.,
Nin(v, s)) be the set of the s closest outgoing (incoming) vertices of v, where ties are broken by taking the
vertex with the smaller ID. The eccentricity ε(v) of a vertex v is defined as maxu∈V d(v, u). The diameter
D of a graph is maxv∈V ε(v). The radius R of a graph is minv∈V ε(v).

2.1 Algorithms
For all of our algorithms for diameter, radius, and eccentricities in undirected graphs as well as diameter

in directed graphs, we assume that the diameter is finite. One can easily check if this is the case by running
a dynamic reachability algorithm from a single vertex.

For our partially dynamic algorithms, we let D0 and Df be the initial and final values of the diameter,
respectively. Similarly, R0 and Rf are the initial and final values of the radius, respectively.

The running times of our randomized algorithms are with high probability, which we take to mean with
probability at least 1 − 1/nc for all constants c. The running times of our algorithms is written in terms of
n and m, which refer to an upper bound on the number of vertices and edges, respectively, over the entire
sequence of updates. That is, for incremental algorithms, the running time is written in terms of the final
values of n and m and for decremental algorithms the running time written is in terms of the initial values
of n and m.

Each of our algorithms is written as a reduction to a black-box incremental or decremental approxima-
tion algorithm for truncated SSSP; that is, SSSP which provides a distance estimate for all nodes whose
distance from the source is at most a given value k. For generality, our algorithms are written for di-
rected graphs and use directed SSSP algorithms, however if the graph is undirected one can simply run
an undirected SSSP algorithm instead. Let out-Ainc(u, k, δ) (resp., out-Adec(u, k, δ)) be an incremental
(resp., decremental) algorithm that maintains for all v an estimate d′(u, v) such that if d(u, v) ≤ k then
(1 − δ)d(u, v) ≤ d′(u, v) ≤ d(u, v). Analogously, let in-Ainc(u, k, δ) (resp., in-Adec(u, k, δ)) be an in-

7

cremental (decremental) algorithm that maintains an estimate d′(v, u) for all v such that if d(u, v) ≤ k
then (1 − δ)d(v, u) ≤ d′(v, u) ≤ d(v, u). We assume that after every update, these algorithms output all
nodes whose distance estimate has changed. Let Tinc(n,m, k, δ) (resp., Tdec(n,m, k, δ)) be the total time of
out-Ainc(u, k, δ) and in-Ainc(u, k, δ) (resp., out-Ainc(u, k, δ) and in-Ainc(u, k, δ)) (or the corresponding
undirected algorithms, depending on the setting).

The running times of our algorithms are written as the maximum of an expression over all values of the
diameterD (or radiusR) throughout the entire sequence of updates. Although the maximum value ofD and
R in a partially dynamic graph either occurs at the beginning or end of the update sequence, the maximum
value of the running time expression could occur for any value of D or R.

Suppose we run in-Ainc, in-Adec, out-Ainc, or out-Adec from a vertex v. Then, let Bout(v, r) be the set
of vertices u with d′(v, u) ≤ r.

For a subset S ⊆ V of vertices and a vertex v ∈ V we define d(S, v) := mins∈S d(s, v). Similarly,
d(v, S) := mins∈S d(v, s). When the algorithms call for an approximation d′(S, v) of d(S, v), we add a
dummy vertex x with an edge to every vertex in S and run out-Ainc (or out-Adec) from x; let d′(S, v) =
d′(x, v) − 1. We define and maintain d′(v, S) analogously by adding a dummy vertex with an edge from
every vertex in S.

Claim 1. For all u /∈ S, (1− 2δ)d(u, S) ≤ d′(u, S) ≤ d(u, S).

Proof. (1 − 2δ)d(u, S) = (1 − 2δ)(d(u, x) − 1) = d(u, x) − δd(u, x) − 1 + δ(2 − d(u, x)) ≤ d(u, x) −
δd(u, x)− 1 = (1− δ)d(u, x)− 1 ≤ d′(u, x)− 1 = d′(u, S) and d′(u, S) = d′(u, x)− 1 ≤ d(u, x)− 1 =
d(u, S). �

For all of our algorithms for diameter and eccentricities, the bulk of the argument is to prove a lemma of
the following form: if one is given values P ′ and ε such that P ′ is at most the true value P of the parameter
of interest, then there is an algorithm that outputs an estimate P̂ such that α(1 − ε)P ′ − β ≤ P̂ ≤ P
for appropriate α and β. In Lemma 2.1, we show that a lemma of the above form suffices to prove our
theorems. (In Lemma 2.1, the number k of parameters is 1 for the case of diameter and n for the case of
eccentricities.) Lemma 2.1 also requires a fast constant-factor approximation for the parameter of interest
in the static setting. Such algorithms exist for directed diameter and eccentricities in near-linear time.

Lemma 2.1. Let π1, π2, . . . , πk be a set of graph parameters (e.g. eccentricities). Suppose there is a static
Õ(T ′(n,m)) time algorithm that gives a constant-factor approximation for all πi.

Let P1, P2, . . . , Pk be the dynamically changing values of π1, π2, . . . , πk, respectively. Suppose there
is an algorithm P that given a partially dynamic graph and values P ′ and ε > 0, runs in total time
T (n,m,P ′, ε) where T is a polynomial, and maintains a set of estimates P̂1 ≤ P1, . . . , P̂k ≤ Pk such
that for all i, if P ′ ≤ Pi, then P̂i ≥ α(1− ε)P ′ − β for constants α and β.

Let Pmin and Pmax be the minimum and maximum respectively over all Pi over the entire sequence of
updates. Then there is an algorithm P ′ that given a partially dynamic graph and ε > 0, runs in total time
Õ(T ′(n,m) + maxPmin≤P ′≤Pmax T (n,m,P ′, ε)/ε) and maintains estimates P̂1, . . . , P̂k such that for all i,
α(1− ε)Pi − β ≤ P̂i ≤ Pi.

Proof. Let ε′ = ε/2. We run ` = Õ(1/ε) instantiations of algorithmP with input valuesP ′ = P ′1, P
′
2, . . . , P

′
`

respectively and ε = ε′. In the next paragraph we will define the P ′i so that P ′0 ≤ Pmin and P ′0 = Ω(Pmin),
P ′` ≥ Pmax and P ′` = O(Pmax), and for all i < `, P ′i = (1 − ε′)P ′i+1. This implies that ` ≤ log 1

1−ε′
n =

Õ(1/ε), so the total running time is Õ(maxP ′0≤P ′≤P ′` T (n,m,P ′, ε)/ε) = Õ(maxPmin≤P ′≤Pmax T (n,m,P ′, ε)/ε).

8

Let Qmin and Qmax be the dynamically changing values of the minimum and maximum (respectively)
of all Pi seen so far. That is, at the end of the update sequence Qmin = Pmin and Qmax = Pmax. To set
the P ′i initially, we run the static constant-factor approximation for all πi from the theorem statement. This
allows us to set the P ′i ’s to satisfy the constraints from the previous paragraph, but with Pmin and Pmax
replaced by the initial values of Qmin and Qmax respectively. Throughout the execution, we maintain the
constraints from the previous paragraph, but with Pmin and Pmax replaced by the current values of Qmin
and Qmax respectively. That is, as Qmin and Qmax change, we may need to add new values P ′i either above
or below the existing values. To do this, we use the algorithm P to dynamically estimate Qmin and Qmax as
follows. We maintain that for all Pi, there exist P ′j , P

′
j+1 such that α(1−ε)P ′j−β ≤ P̂i ≤ α(1−ε)P ′j+1−β.

When this inequality is not true for some Pi, we add new values of P ′j either above or below the existing
values as appropriate to make the inequality true (renumbering the P ′i as appropriate). Given this inequality,
the lemma statement implies that α(1 − ε)P ′j − β ≤ Pi ≤ P ′j+1. Then since P ′j and P ′j+1 differ by only a
factor of (1 − ε′), this gives a constant-factor approximation for Qmin and Qmax, which enables us to set
the P ′i to satisfy the required constraints.

Let P̂ ji be the value P̂i returned by P given the input parameter P ′j . Following every update, for all i,
the return value P̂i for P ′ is maxj P̂

j
i . Fix a point in the sequence of updates and fix an i. We will show that

there exists j such that α(1− ε)Pi − β ≤ P̂ ji ≤ Pi. The second inequality is directly implied by the lemma
statement, so we prove the first. Let j be the largest value such that P ′j ≤ Pi, so (1− ε′)Pi ≤ P ′j . Then the
lemma statement implies that P̂ ji ≥ α(1− ε′)P ′j − β ≥ α(1− ε′)2Pi − β ≥ α(1− ε)Pi − β. �

Lemma 2.2 is analogous to Lemma 2.1, but applies to minimization problems (such as radius) instead
of maximization problems (such as diameter and eccentricities).

Lemma 2.2. Let π1, π2, . . . , πk be a set of graph parameters. Suppose there is a static Õ(T ′(n,m)) time
algorithm that gives a constant-factor approximation for all πi.

Let P1, P2, . . . , Pk be the dynamically changing values of π1, π2, . . . , πk, respectively. Suppose there
is an algorithm P that given a partially dynamic graph and values P ′ and ε > 0, runs in total time
T (n,m,P ′, ε) where T is a polynomial, and maintains a set of estimates P̂1 ≥ P1, . . . , P̂k ≥ Pk such
that for all i, if P ′ ≥ Pi, then P̂i ≤ α(1 + ε)P ′ + β for constants α and β.

Let Pmin and Pmax be the minimum and maximum respectively over all Pi over the entire sequence of
updates. Then there is an algorithm P ′ that given a partially dynamic graph and ε > 0, runs in total time
Õ(T ′(n,m) + maxPmin≤P ′≤Pmax T (n,m,P ′, ε)/ε) and maintains estimates P̂1, . . . , P̂k such that for all i,
Pi ≤ P̂i ≤ α(1 + ε)Pi + β.

Proof. The proof is identical to the proof of Lemma 2.1 except we set ε′ = ε/3 and the last paragraph is
replaced with the following:

Let P̂ ji be the value P̂i returned by P given the input parameter P ′j . Following every update, for all i, the
return value is minj P̂

j
i . Fix a point in the sequence of updates and fix an i. We will show that there exists j

such that Pi ≤ P̂ ji ≤ α(1 + ε)Pi + β. The first inequality is directly implied by the lemma statement, so we
prove the second. Let j be the smallest value such that P ′j ≥ Pi, so P ′j ≤

Pi
1−ε′ . Then the lemma statement

implies P̂ ji ≤ α(1 + ε′)P ′j + β ≤ α(1+ε
′

1−ε′)Pi + β ≤ α(1 + ε)Pi + β. �

2.2 Lower bounds
Let k ≥ 2. The k-Orthogonal Vectors Problem (k-OV) is as follows: given k sets S1, . . . , Sk, where

each Si contains n vectors in {0, 1}d, determine whether there exist v1 ∈ S1, . . . , vk ∈ Sk so that their gen-

9

eralized inner product is 0, i.e.
∑d

i=1

∏k
j=1 vj [i] = 0. The k-OV Hypothesis is that k-OV requires nk−o(1)

time in the word-RAM model of computation with O(log n) bit words, even for randomized algorithms.
The unbalanced version of k-OV has the sets Si potentially have different sizes, |Si| = ni. The unbal-

anced k-OV Hypothesis is that unbalanced k-OV requires (
∏
i ni)

1−o(1) time. When each ni is polynomial
in n, the unbalanced k-OV Hypothesis is known to be equivalent to the k-OV Hypothesis.

R. Williams [28] (see also [27]) showed that if for some ε > 0 there is an nk−εpoly (d) time algorithm
for k-OV, then CNF-SAT on formulas with N variables and m clauses can be solved in 2N(1−ε/k)poly (m)
time. In particular, such an algorithm would contradict the Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi and Zane [19] which states that for every ε > 0 there is a K such that K-SAT on N
variables cannot be solved in 2(1−ε)Npoly N time (say, on a word-RAM with O(logN) bit words) even by
randomized algorithms. Thus SETH implies the k-OV Hypothesis for all constants k. Each of our lower
bounds conditional upon SETH is a reduction from either unbalanced 2-OV or unbalanced 3-OV.

The Hitting Set (HS) problem [3] is as follows: given two sets U and V of n vectors each in {0, 1}d, is
there some u ∈ U so that for all v ∈ V , u · v 6= 0? The HS Hypothesis states that HS requires n2−o(1) time
in the word-RAM model with O(log n) bit words, even for randomized algorithms.

We introduce the unbalanced version of HS, for three unbalanced sets. Unbalanced 3-HS is the problem,
given U, V,W ⊆ {0, 1}d with |U | = n, |V | = na, |W | = nb for constants a, b > 0, are there u ∈ U,w ∈W
so that for all v ∈ V , u · v · w 6= 0? This is in similar spirit to unbalanced 3-OV.

The unbalanced 3-HS Hypothesis is that unbalanced 3-HS requires (|U |·|V |·|W |)1−o(1) = n1+a+b−o(1)

time in the word-RAM model withO(log n) bit words, even for randomized algorithms. Due to its similarity
to 3-OV and the lack of good algorithms, the 3-HS Hypothesis is believable. Refuting it would imply
some very interesting improved algorithms for a balanced variant of Quantified Boolean Formulas with 2
quantifiers [21].

As mentioned in the introduction, the k-Cycle Hypothesis is that in the word-RAM model withO(log n)
bit words, any possibly randomized algorithm needsm2−f(k)−o(1) time to find a k-cycle in anm-edge graph,
for some continuous (over the reals) f(k) that goes to 0 as k goes to infinity. The Hypothesis is completely
consistent with the state of the art k-Cycle algorithms (e.g. [30, 5, 10]).

3 Lower Bounds

3.1 Base graph Gδ and reduction outline
Most of our reductions based on SETH and the 3-HS hypothesis begin with a variation of the same

undirected, unweighted graph Gδ and proceed in the same way. This construction is inspired by that of [2],
which gives a quadratic lower bound for a (4/3 − ε)-approximate diameter. A similar construction is also
used in [1] and [7]. We will describe Gδ and then how we can use Gδ to show lower bounds. In most of our
SETH or 3-HS hypothesis reductions below, we will only describe how the reduction differs.
Gδ Initialization

We will generally assume for the sake of contradiction that a dynamic (α− ε)-approximation algorithm
exists (for the appropriate value of α) for Diameter, Radius, or Eccentricities with preprocessing time nt,
amortized update time n2−ε

′
and query time n2−ε

′
, for positive numbers ε, ε′, and t. We define δ = 1−ε′

t .
Our construction also includes a parameter a that is defined separately for each individual construction such
that the supposed (α− ε)-approximation algorithm may distinguish between the existence or non-existence
of an orthogonal triple or hitting set in each stage.

We begin with an instance of 3-OV or 3-HS with vector sets U , V , and W such that |U | = |V | = N δ

10

and |W | = N1−2δ. We first discard degenerate vectors and coordinates: any coordinates that are 0 for
every vector in U , every vector in V , or every vector in W , and any vectors that are all zeroes. Note that
removing degenerate coordinates does not change the correct output value. If there is a degenerate vector in
a 3-OV instance or in U or W in a 3-HS instance, the correct output value is always “yes”, while if there is
a degenerate vector in V in a 3-HS instance, removing it does not change the correct output value.

The construction of Gδ is shown in Figure 1 and described here. For each coordinate c, create two
nodes, and denote one by cU and the other by cV . We denote the two sets of coordinate nodes by CU and
CV respectively. Next, create a path of length a for each vector u ∈ U ; denote the start by u0 and the end by
ua, and each node at distance i from u0 by ui. We make a similar path for each v ∈ V . Finally, we encode
each vector u ∈ U in the graph by adding a path of length a between ua and cU if u[c] = 1, and encode
each v ∈ V by adding a path of length a between cV and v0 if v[c] = 1.
Stages

We proceed in N1−2δ stages, one for each element w ∈ W . Generally, we will add an edge to Gδ
between cU ∈ CU to cV ∈ CV if w[c] = 1, for all coordinates c. Then, we will make a query to an
algorithm we assume exists for the sake of contradiction. Depending on the result of the query, we will
either detect an orthogonal vector triple or hitting set and halt, or we will undo our edge additions for this
stage and continue to the next w.

Each stage may be modified to be decremental by initializing Gδ with edges between each cU , cV pair
and removing the excess edges during each stage.

Figure 1: Sketch of Gδ construction. Bold edges represent paths, whose labels denote their length.

Analysis
We prove correctness separately for each individual reduction.
The running time analysis is the same for all of the reductions from 3-OV and 3-HS. The preprocessing

time of the algorithm for a graph of size N δ is (N δ)t = N1−ε′ . Each update or query takes amortized
O((N δ)2−ε

′
) time, so after N1−2δ stages wherein we make Õ(1) updates and queries, the total amortized

time is Õ(N1−δε′). This gives an algorithm for 3-OV or 3-HS in Õ(N1−ε′+N1−δε′) = O((|U ||V ||W |)1−ε′′)
for a positive constant ε′′, refuting SETH or the 3-HS hypothesis.

11

3.2 (3/2− ε)-approximation requires quadratic update time
In this section we give a quadratic lower bound per update for (3/2− ε)-approximation for diameter and

radius, and (5/3− ε)-approximation for eccentricities on undirected, unweighted graphs.
3.2.1 Diameter
Theorem 3.1. Let t, ε, and ε′ be positive constants. SETH implies that there exists no fully dynamic al-
gorithm for (3/2 − ε)-approximate Diameter on undirected, unweighted graphs with n vertices and Õ(n)
edges, which has preprocessing time p(n) = O(nt), amortized update time u(n) = O(n2−ε

′
), and amor-

tized query time q(n) = O(n2−ε
′
).

The same result holds for the incremental and decremental settings but for worst-case update and query
times.

Proof of Theorem 3.1.

Construction

Initialization Let a = d1−2ε8ε e+ 1.
We begin with an instance of 3-OV and construct a graph G by first creating Gδ from section 3.1. We

add two nodes x and y. For each node ua, add a path of length a between x and ua, and for each node v0,
add a path of length a between y and v0.

Stages We proceed in N2−δ stages, one for each element w ∈ W . For the current w, for each coor-
dinate c where w[c] = 1, we add an edge between cU and cV . We then query the diameter of G. We will
show that if there is an orthogonal triple that includes w, then the diameter is least 6a + 1, and otherwise,
the diameter is at most 4a + 1. A (3/2 − ε)-approximation algorithm for diameter distinguishes between
these two cases and can thus detect an orthogonal triple that includes w if one exists. If such an orthogonal
triple is not detected, we undo the edge additions for the stage and continue to the next w.

Figure 2: Sketch of Theorem 3.1 Construction. Bold edges represent paths, whose labels denote their length.

12

Correctness If for the current stage, for all u ∈ U , v ∈ V , u · v · w 6= 0, then for each u, v there exists
a coordinate c such that u[c] = v[c] = w[c] = 1. Thus, for all u and v, d(ua, v0) = 2a + 1. Also, for all
u, u′ ∈ U , d(ua, u′a) ≤ 2a. We note that every vertex in the graph is of distance at most a from some vertex
ua or v0. Thus, the diameter is at most 4a+ 1.

Suppose for the current stage there exist u ∈ U , v ∈ V such that u · v · w = 0. Fix u and v. We claim
that d(u0, va) ≥ 6a + 1. The only paths between u0 and va go through ua and v0. There does not exist a
coordinate such that u[c] = v[c] = w[c] = 1, so every path between ua and v0 must visit a vertex u′a or
v′0 (for u ∈ U , u′ 6= u, v′ ∈ V , v′ 6= v), which are of distance 2a from ua and v0, respectively. Thus,
d(ua, v0) ≥ 4a+ 1 so d(u0, va) ≥ 6a+ 1. �

3.2.2 Radius
Theorem 3.2. Let t, ε, and ε′ be positive constants. The 3-HS hypothesis implies that there exists no fully
dynamic algorithm for (3/2− ε)-approximate Radius on undirected, unweighted graphs with n vertices and
Õ(n) edges, which has preprocessing time p(n) = O(nt), amortized update time u(n) = O(n2−ε

′
), and

amortized query time q(n) = O(n2−ε
′
).

The same result holds for the incremental and decremental settings but for worst-case update and query
times.

Proof of Theorem 3.2.

Construction

Initialization Let a = d1−2ε8ε e+ 1.
We begin with an instance of 3-HS and construct a graph G by first creating two copies of the graph

from Theorem 3.1; call these copies Gleft and Gright. G will be the graph composed of Gleft and Gright,
where for each u ∈ U , we merge the vertex u0left in Gleft with the vertex u0right in Gright.

Stages We proceed in N2−δ stages, one for each element w ∈ W . For the current w, for each coor-
dinate c where w[c] = 1, we add an edge between cU,left and cV,left, and the same edge on the right side.
We then query the radius of G. We will show that if there is a hitting set that includes w, then the radius is
most 4a + 1, and otherwise, the radius is at least 6a + 1. A (3/2 − ε)-approximation algorithm for radius
distinguishes between these two cases and can thus detect a hitting set that includes w if one exists. If such
a hitting set is not detected, we undo the edge additions for the stage and continue to the next w.

Figure 3: Sketch of Theorem 3.2 Construction. Bold edges represent paths, whose labels denote their length.

13

Correctness Suppose there is a hitting set {u,w} for the current stage. We will show that the node u0 is
of distance at most 4a + 1 from every other node. The node u0 can reach all u′a nodes where u′ ∈ U on
either side of the graph in 3a steps, via xleft or xright. Since u and w define the hitting set, u0 has a path of
length 3a+ 1 to all v0 on both sides of the graph, via the nodes for the coordinates equal to 1 in u0, w, and
each v0.

We note that all nodes are at distance a from some node u′a where u′ ∈ U , or some v0 either on the left
or right side of the graph. Thus, the previous paragraph implies that u0 can reach every node in 4a+1 steps.

Suppose there is no hitting set involving w and any u. Fix a side of the graph (we will omit subscripts
left and right). The only paths between u0 and any va go through ua and v0 (on the appropriate side of the
graph). For all u, there exists a v such that there does not exist a coordinate c with u[c] = v[c] = w[c] = 1.
Fix u and v. Every path between ua and v0 must visit some node u′a or some node v′0 (for u ∈ U , u′ 6= u,
v′ ∈ V , v′ 6= v), which are of distance 2a from ua and v0, respectively. Thus, d(ua, v0) ≥ 4a + 1 so
d(u0, va) ≥ 6a+ 1. Thus, all u0 have eccentricity at least 6a+ 1. All other nodes have a higher eccentricity
than some u0, because they must travel via some u0 to the other side of the graph and are thus farther from
u0’s farthest node (of which it has at least one on either side of the graph, by symmetry). Thus, the radius
must be at least 6a+ 1. �

3.2.3 Eccentricities
Theorem 3.3. Let t, ε, and ε′ be positive constants. SETH implies that there exists no fully dynamic algo-
rithm for (5/3 − ε)-approximate all Eccentricities on undirected, unweighted graphs with n vertices and
Õ(n) edges, which has preprocessing time p(n) = O(nt), amortized update time u(n) = O(n2−ε

′
), and

amortized query time q(n) = O(n2−ε
′
).

The same result holds for the incremental and decremental settings but for worst-case update and query
times.

Proof of Theorem 3.3.

Construction

Initialization Let a = 7−6ε
9ε .

We begin with an instance of 3-OV and construct a graph G by first creating Gδ from section 3.1. We
then add a node x, with an edge between x and each node u0 for all u ∈ U .

Stages We proceed in N2−δ stages, one for each element w ∈ W . For the current w, for each coordi-
nate c where w[c] = 1, we add an edge between cU and cV . We then query all eccentricities of G. We will
show that if there is an orthogonal triple u, v, w, then ua will have eccentricity at least 5a + 1; otherwise,
for all u ∈ U , ua will have eccentricity at most 3a + 2. A (5/3 − ε)-approximation algorithm for all ec-
centricities distinguishes between these two cases and can thus detect an orthogonal triple that includes w if
one exists.

If such an orthogonal triple is not detected, we undo the edge additions for the stage and continue to the
next w.

Correctness If for the current stage, for all u ∈ U , v ∈ V , u · v · w 6= 0, then for each u, v there exists a
coordinate c such that u[c] = v[c] = w[c] = 1. Thus, for all u and v, d(ua, v0) = 2a + 1. Also, for each
u, u′ ∈ U , d(ua, u′a) ≤ 2a + 2 via a path through x. We note that all nodes are within distance a of some
node ua or v0, except x which is at most distance a+ 1 from any ua, so the eccentricity of all ua nodes is at
most 3a+ 2.

Suppose for the current stage there exist u ∈ U , v ∈ V such that u · v · w = 0. Fix u and v. We claim
that d(ua, va) ≥ 5a+ 1. Since there is no coordinate c for which u[c] = v[c] = w[c] = 1, the path from ua

14

Figure 4: Sketch of Theorem 3.3 Construction. Bold edges represent paths, whose labels denote their length.

to va must visit some u′a or v′a (for u ∈ U , u′ 6= u, v′ ∈ V , v′ 6= v). This means adding a detour of at least
2a from a direct path of length 3a + 1, giving d(ua, va) ≥ 5a + 1. Thus, the eccentricity of ua must be at
least 5a+ 1. �

3.3 (2− ε)-approximation requires linear update time
In this section we give a linear lower bound per update for (2 − ε)-approximation for diameter, radius,

and fixed-vertex eccentricity.

Theorem 3.4. Let t, ε, and ε′ be positive constants. SETH implies that there exists no fully dynamic al-
gorithm for (2 − ε)-approximate Diameter, Radius, or fixed-vertex Eccentricity on undirected, unweighted
graphs with n vertices and Õ(n) edges, which has preprocessing time p(n) = O(nt), amortized update time
u(n) = O(n1−ε

′
), and amortized query time q(n) = O(n1−ε

′
).

The same result holds for the incremental and decremental settings but for worst-case update and query
times.

Proof of Theorem 3.4.
3.3.1 Construction
Initialization

Let a = d2−ε2ε e+ 1.
We begin with an instance of 2-OV with vector setsU and V of vectors, with |U | = N δ and |V | = N1−δ.

We create a graph G as follows. Add a node s and for each coordinate c, create two paths of length 2a
beginning at s, and denote the endpoints of the paths as cleft and cright.

Next, create two paths of length a for each vector u ∈ U . Denote the endpoints of one path by u0left and
ualeft, and the endpoints of the other by u0right and uaright. Finally, we encode each vector u ∈ U in the graph
by connecting ualeft to cleft with a path of length a if u[c] = 1, and doing the same on the right side of G. If
u has no coordinates equal to 1, then we may report that there is an orthogonal pair and halt; thus there will
be no disconnected nodes in G.

Essentially, we have just created a modified version of Gδ, but we encoded U twice instead of encoding
V .

15

Stages
We proceed in N1−δ stages, one for each element v ∈ V . For the current v, for each coordinate c where

v[c] = 1, we add edges (s, cleft) and (s, cright).
We then query the diameter or the radius of G or the eccentricity of s. We will show that the eccentricity

of s is always equal to the radius, and we will show that if the diameter is least 8a or the radius is at least
4a, then there is an orthogonal pair u, v; otherwise, the diameter is at most 4a + 2 or the radius is at most
2a+ 1. We have set a such that a (2− ε)-approximation algorithm for diameter or radius or eccentricity of s
distinguishes between these two cases and can thus detect an orthogonal pair u, v if one exists. If the query
does not detect such an orthogonal pair, we undo the edge additions for the stage and continue to the next v.

We can modify the stage to be decremental by beginning with edges from s to all nodes cleft and cright,
and removing the excess edges each stage.

Figure 5: Sketch of Theorem 3.4 Construction. Bold edges represent paths, whose labels denote their length.

3.3.2 Analysis
Correctness

We first claim that the node s is always the center of G, so the eccentricity of s and the radius of G
are always equal. Let xright be the node farthest from s on the right side of G. Since the graph is exactly
symmetrical, the counterpart xleft of xright is such that d(s, xright) = d(s, xleft). Any node y to the left of
s must pass through s to reach xright, so y must have a higher eccentricity than s because it is farther from
the node farthest from s. Symmetrically, any node y to the right of s must pass through s to reach xleft, so
y must have a higher eccentricity than s because it is farther from the node farthest from s.

If for the current stage, for all u, u · v 6= 0, then for each u there must be some coordinate c such that
u[c] = v[c] = 1. Then there is a path of length 1 from s to cleft, and a path of length a from cleft to ualeft,
for all u. The same is true on the right side. Then since all nodes except s are of distance at most a from a
node u

′a
left or u

′a
right for some u′ ∈ U , all nodes are accessible in at most 2a + 1 steps from s. This means

that the radius and eccentricity of s is 2a+ 1, and the diameter is at most 4a+ 2.
If for the current stage there is some u such that u · v = 0, then there is no direct path from s to u0 on

either side via a vector coordinate c and ua. A path via a different u′a would be of length at least 4a + 1,

16

because returning to a c′ where u[c′] = 1 would cost an additional 2a from the direct path. The shortest path
would thus be along the length-2a path from s to c′, giving d(s, u0) = 4a. The radius and eccentricity of s
must be at least 4a and diameter must be at least 8a, because d(u0left, u

0
right) = d(s, u0left) + d(s, u0right) =

4a+ 4a = 8a.
Running time

We assume for the sake of contradiction that the algorithm of Theorem 3.4 exists. Let n = N δ be the
size of G. We have that u(n) = q(n) = O((N δ)1−ε

′
). After initialization and |V | = N1−δ stages, the

total update and query time is then at most Õ(N1−δε′). The preprocessing time p(n) for the algorithm on
G is O((N δ)t) = O(N1−ε′). Thus the total time of the algorithm is Õ(N1−ε′ + N1−δε′). This contradicts
SETH, because SETH implies that no algorithm exists for 2-OV in O((|U | · |V |)1−ε′′) = O(N1−ε′′) time
for any ε′′ > 0.

�

3.4 (2− ε)-approximation in directed graphs requires quadratic update time
In this section we give a quadratic lower bound per update for (2 − ε)-approximation for eccentricities

and (2− ε)-approximation for radius on directed, unweighted graphs.
3.4.1 Eccentricities
Theorem 3.5. Let t, ε, and ε′ be positive constants. SETH implies that there exists no fully dynamic algo-
rithm for (2 − ε)-approximate all Eccentricities on directed, unweighted graphs with n vertices and Õ(n)
edges, which has preprocessing time p(n) = O(nt), amortized update time u(n) = O(n2−ε

′
), and amor-

tized query time q(n) = O(n2−ε
′
).

The same result holds for the incremental and decremental settings but for worst-case update and query
times.

Proof of Theorem 3.5.

Construction

Initialization Let a = d3−3εε e+ 1.
We construct a graph G by first creating Gδ from section 3.1. We then replace the paths between nodes

ua and cU with single directed edges ua → cU , and replace the paths between cV and v0 with single directed
edges cV → v0. Replace undirected edges between ui and ui+1 with ui → ui+1, and do the same for the vi

edges.
We then add two nodes x and y. For each node ua, add edge ua → x, and for each node u0, add x→ u0.

Finally, add directed edges cU → y for all cU ∈ CU , and add a directed path of length a from y to each
cV ∈ CV .

Stages We proceed in N1−2δ stages, one for each element w ∈ W . For the current w, for each
coordinate c where w[c] = 1, we add edge cU → cV . We then query for all eccentricities of G. We will
show that if there is an orthogonal triple that includes w and a vector u ∈ U , then the eccentricity of ua in
G is 2a+ 3; otherwise, the eccentricity of ua is a+ 3. A (2− ε)-approximation algorithm for eccentricities
distinguishes between these two cases and can thus detect an orthogonal triple that includes w if one exists.
If such an orthogonal triple is not detected, we undo the edge additions for the stage and continue to the next
w.

Analysis

17

Figure 6: Sketch of Theorem 3.5 Construction. Bold edges represent directed paths, whose labels denote
their length.

Correctness We first claim that all nodes other than the vi are at most distance a + 3 from all nodes
ua. The nodes on the paths from y to all cV (inclusive) are accessible from each ua via any cU for which
u[c] = 1 in at most a+ 2 steps, and all nodes ui are accessible by each ua in at most a+ 2 steps via x. All
ua may thus also reach all cU in a+ 3 steps via another u′a.

If for the current stage, for all u ∈ U , v ∈ V , u · v ·w 6= 0, then for each u, v there exists a coordinate c
such that u[c] = v[c] = w[c] = 1. Thus, d(ua, vi) = i+ 3 ≤ a+ 3 for all u and v. Thus, the eccentricities
of all ua must be at most a+ 3.

Suppose for the current stage there exists u ∈ U , v ∈ V such that u · v · w = 0. Fix u and v. We claim
that d(ua, va) ≥ 2a + 3. There does not exist a coordinate such that u[c] = v[c] = w[c] = 1, so any path
must either go via x or y. We have d(x, va) ≥ 2a+ 4 and d(y, va) = 2a+ 1, and we also have d(ua, x) = 1
and d(ua, y) = 2, so d(ua, va) = 2a+ 3. �

3.4.2 Radius
Theorem 3.6. Let t, ε, and ε′ be positive constants. The 3-HS hypothesis implies that there exists no fully
dynamic algorithm for (2 − ε)-approximate Radius on directed, unweighted graphs with n vertices and
Õ(n) edges, which has preprocessing time p(n) = O(nt), amortized update time u(n) = O(n2−ε

′
), and

amortized query time q(n) = O(n2−ε
′
).

The same result holds for the incremental and decremental settings but for worst-case update and query
times.

Proof of Theorem 3.6.
3.4.3 Construction
Initialization

Let a = d3−3εε e+ 1.

18

We construct the graph G in the same way as in Theorem 3.5.
Stages

We proceed in N1−2δ stages, one for each element w ∈ W . For the current w, for each coordinate c
where w[c] = 1, we add edge cU → cV . We then query for the radius of G. We will show that if there
is a hitting set with w and u ∈ U , then the radius of G is a + 3; otherwise, the radius is at least 2a + 3.
A (2 − ε)-approximation algorithm for radius distinguishes between these two cases and can thus detect a
hitting set that includes w if one exists. If such a hitting set is not detected, we undo the edge additions for
the stage and continue to the next w.
3.4.4 Analysis
Correctness

All nodes other than the ui and x have infinite eccentricity, so they cannot be the center of G. Each ua

can reach all nodes in ui within distance a+ 2 and the distance from ua to every va is at least a+ 3, so the
farthest node from any ua must be to the right of it. All paths from x or ui for i < a to any node vi must
go through ua for some u, and thus must be farther than ua from the farthest node from ua. Thus, some ua

must be the center.
From section 3.4.1, if for the current stage u participates in a hitting set (i.e., has u[c] = v[c] = w[c] = 1

for all v) then ua has eccentricity a+ 3, and if u participates in an orthogonal triple then ua has eccentricity
at least 2a + 3. Thus, the radius of G is a + 3 if there is a hitting set for the current stage, and it is 2a + 3
otherwise. �

3.5 Finite approximation in directed graphs requires linear update time
In this section we give a linear lower bound for finite approximation of fully dynamic diameter, radius,

and fixed-vertex eccentricity for directed, unweighted graphs.

Theorem 3.7. Let ε be a positive constant. The k-Cycle conjecture implies that there exists no fully dynamic
algorithm for finite-approximate Diameter, Radius, or fixed-vertex Eccentricity on directed, unweighted
graphs with n vertices and Õ(n) edges, which has preprocessing time p(n) = O(n2−ε), amortized update
time u(n) = O(n1−ε), and amortized query time q(n) = O(n1−ε).

Proof of Theorem 3.7.
3.5.1 Construction
Initialization

We begin with an instance of k-Cycle, with directed graphG = (V,E), where |V | = n and |E| = Õ(n).
We make a new graph G′ = (V ′, E′), with two sets of k + 1 copies of V , denoted by {V i

left}ki=0 and
{V i

right}ki=0. G′ also has a node s and nodes tleft and tright. For each directed edge u → v in E, we add
edges uileft → vi+1

left for all i to G′. We do the same on the right side. We also add edges tleft → vleft and
vleft,→ s to G′ for all vleft ∈

⋃
i V

i
left, and do the same on the right side.

Stages
We proceed in n stages, one for each element of V . For the current v, we add edges s → v0left,

s → v0right, v
k
left → t, and vkright → t to G′, then query the Diameter or Radius of G′, or the Eccentricity

of any fixed node in G′. We will show that the eccentricities of all nodes in G′ are finite if and only if v
participates in a k-Cycle. If the queried value is infinite, we remove the edges we added in this stage and
continue to the next v.

19

Figure 7: Sketch of Theorem 3.7 Construction.

3.5.2 Analysis
Correctness

We first claim that if for the current stage that there is a k-Cycle in G beginning and ending with v,
then all eccentricities are finite. There is some cycle p = v, v1, . . . , vk−1, v in G, where (vi, vi+1) ∈ E.
This means that in G′, there is a path p′ = s, v0, v11, . . . , v

k−1
k−1, v

k, t on both the left and right side. By
construction, tleft can reach all nodes vleft and all nodes vleft can reach s, and the same holds on the right
side. Thus, all nodes are at a finite distance from one another via s.

We now claim that if for the current stage there is no k-Cycle, then all eccentricities are infinite. We
note that all nodes on the left side of s must pass through s to reach tright, and all nodes on the right side
of s must pass through s to reach tleft. Thus, if s cannot reach tleft (or symmetrically, tright), then all
eccentricities will be infinite. But we have no k-Cycle in G, so there is no path from v0 to vk on either side
of G′. The only outgoing edges of s are to v0left and v0right, so there is no path from s to t on either side.
Thus all eccentricities must be infinite.

Distinguishing between a finite and infinite Diameter, Radius, or fixed-vertex Eccentricity is sufficient
to distinguish whether all eccentricities are finite or infinite.
Running time

Suppose for the sake of contradiction that the algorithm of Theorem 3.7 exists. The graph G′ has O(n)
nodes and Õ(n) edges. We perform Õ(n) edge updates and n queries, so the total update and query time is
Õ(n2−ε). The preprocessing time is Õ(n2−ε) as well. This contradicts the k-cycle conjecture, which states
that no algorithm exists for k-cycle in O(n2−f(k)−ε

′
) time for any ε′ > 0 and any function f that goes to 0

as k goes to infinity.
�

20

4 Partially dynamic algorithms

4.1 Randomized partially dynamic nearly 3/2-approximation
In this section we present a nearly 3/2-approximation for incremental/decremental diameter, a nearly

3/2-approximation for incremental/decremental radius, and a nearly 5/3-approximation for incremental/
decremental eccentricities, given access to a black-box incremental/decremental approximate SSSP algo-
rithm as specified in the preliminaries.
4.1.1 Diameter
Theorem 4.1. There is a Las Vegas randomized algorithm for incremental (resp., decremental) diameter in
unweighted, directed graphs against an oblivious (resp., adaptive) adversary that given ε > 0, runs in total

time Õ(maxDf≤D′≤D0{Tinc(n,m,D′, ε)
√
n/D′

ε2
}) (resp., Õ(maxD0≤D′≤Df {Tdec(n,m,D′, ε)

√
n/D′

ε2
})) with

high probability, and maintains an estimate D̂ such that 2(1−ε)
3 D− 2

3 ≤ D̂ ≤ D where D is the diameter of
the current graph.

By Lemma 2.1, the following lemma implies Theorem 4.1.

Lemma 4.1. There is a Las Vegas randomized algorithm for incremental (resp., decremental) diameter in

unweighted, directed graphs that given D′, ε > 0, runs in total time Õ
(
Tinc(n,m,D

′, ε)

√
n/D′

ε

)
(resp.,

Õ

(
Tdec(n,m,D

′, ε)

√
n/D′

ε

)
) with high probability, and maintains an estimate D̂ ≤ D such that ifD′ ≤ D

then D̂ ≥ 2(1−ε)
3 D′ − 2

3 where D is the diameter of the current graph. The incremental algorithm works
against an oblivious adversary.

Proof.

Algorithm Let δ = 2ε/11. Throughout the incremental (resp., decremental) algorithm we will run in-
Ainc (in-Adec) and out-Ainc (out-Adec) from carefully chosen sets of vertices. For ease of notation, we let
in-A denote either in-Ainc or in-Adec, depending on the setting, and similarly we let out-A denote either
out-Ainc or out-Adec.

Initialization Let α be such that D′ = Θ(n1−2α). We randomly sample a set S of size Θ(nα log2 n)
so that with high probability, for every vertex v, S hits Nout(v, n

1−α). For the incremental algorithm, since
the adversary is oblivious it is also true that with high probability, for every vertex v, after every update, S
hits Nout(v, n

1−α).
Throughout the entire execution of the algorithm, for all s ∈ S we run in-A(s,D′, δ). Additionally, we

maintain the approximate distance d′(v, S) from every vertex v to S as described in the preliminaries. Let
W be the dynamically changing set of vertices v that satisfy d′(v, S) > D′/3.

Phases The algorithm runs phases. The first phase begins right after initialization. At the beginning
of each phase, we choose a vertex w ∈W if W 6= ∅. The decremental algorithm only has one phase and we
let w be an arbitrary vertex in W . We note that in the decremental setting, distances can only increase so w
never leaves W .

In the incremental setting on the other hand, distances can decrease so vertices can leave W . The
incremental algorithm may have many phases, and at the beginning of each phase, we choose w ∈ W
uniformly at random. The beginning of a new phase is triggered when w leaves the set W .

Throughout the phase, we run out-A(w,D′, δ). Also, we will define a subset S′ ⊆ Bout(w,
D′

3) and
for all s′ ∈ S′, we run in-A(s′, D′, δ). S′ is initially empty and we independently add each vertex in

21

Bout(w,
D′

3) to S′ with probability min{1, log
2 n

δD′ }. In the incremental setting (but not the decremental
setting), Bout(w, D

′

3) can grow, and whenever a vertex u joins Bout(w, D
′

3) we add u to S′ with probability

min{1, log
2 n

δD′ }.
Reinitialization If at any point during the execution of the algorithm, any of the events listed below

occur, we reinitialize the entire algorithm. We will show in the analysis that with high probability we never
reinitialize the algorithm.

• |Bout(w, D
′

3)| > n1−α

• |S′| > n1−α log4 n
δD′

• there is a vertex v ∈ Bout(w, D
′

3) such that d′(v, S′) > δD′.

Query Following each update, the return value D̂ is the maximum distance estimate found over all
instantiations of out-A and in-A. That is, D̂ = max{maxv∈V d

′(w, v),maxv∈V,s∈S∪S′ d
′(v, s)}.

To maintain this value, we maintain the following heaps. For every vertex v that we run out-A (resp.,
out-A) from, we keep a max-heap H(v) that stores for each other vertex u the estimate d′(v, u) (resp.,
d′(u, v)). Let d̂out(v) be the value that H(v) outputs. Additionally we keep a max-heap H which stores
each d̂out(v).

Analysis

Correctness The return value D̂ is d′(u, v) for some u, v, so D̂ ≤ D. It remains to show that if
D′ ≤ D, then 2(1−ε)

3 D′ − 2
3 ≤ D̂.

Let s∗ and t∗ be the true diameter endpoints.
Case 1: s∗ 6∈ W . Let s ∈ S be such that d′(s∗, s) ≤ D′

3 . Then d(s∗, s) ≤ D′(1
3(1−δ)). Then by the triangle

inequality, d(s, t∗) ≥ D −D′(1
3(1−δ)) ≥ D

′(1− 1
3(1−δ)). Thus, D̂ ≥ d′(s, t∗) ≥ D′(1− δ)(1− 1

3(1−δ)) =

D′(23 − δ).
Case 2: s∗ ∈ W . We don’t explicitly use the fact that s∗ ∈ W ; we just use the fact that w exists. If
d′(w, t∗) ≥ 2D′

3 , then we are done. So suppose otherwise; that is, suppose d′(w, t∗) < 2D′

3 so d(w, t∗) <
D′(2

3(1−δ)).

Consider the shortest path from w to t∗. Let q be the vertex on this path at distance bD′3 c from w. So
d(q, t∗) < D′(2

3(1−δ))−b
D′

3 c ≤ D
′(2

3(1−δ) −
1
3)+ 2

3 . We know that q ∈ Bout(w, D
′

3), so d′(S′, q) ≤ δD′ or

else we would have reinitialized the algorithm. Thus, by Claim 2.1 from the preliminaries, d(S′, q) ≤ δD′

1−2δ .
Let q′ ∈ S′ be a vertex with d(q′, q) ≤ δD′

1−2δ .
By the triangle inequality, d(q′, t∗) ≤ d(q′, q) + d(q, t∗) ≤ D′(δ

1−2δ + 2
3(1−δ) −

1
3) + 2

3 . By the

triangle inequality, d(s∗, q′) ≥ D − D′(δ
1−2δ + 2

3(1−δ) −
1
3) − 2

3 ≥ D′(43 −
δ

1−2δ −
2

3(1−δ)) −
2
3 . Thus,

D̂ ≥ d′(s∗, q′) ≥ D′(1− δ)(43 −
δ

1−2δ −
2

3(1−δ))−
2
3) = D′(4(1−δ)3 − δ(1−δ)

1−2δ −
2
3)− 2

3 .
Setting δ = 2ε/11 completes the proof of correctness.

Running time

Reinitialization We will argue that with high probability, we never reinitialize the algorithm. One
event that triggers algorithm reinitialization is if |Bout(w, D

′

3)| > n1−α. Recall that with high probability,
for every vertex v, S hits Nout(v, n

1−α); this is true for the decremental algorithm only initially, and for the
incremental after every update. By the definition of W , D′/3 < d′(w, S) ≤ d(w, S). Thus, Bout(w, D

′

3)

22

contains no vertices in S. So, with high probability Bout(w, D
′

3) does not contain Nout(v, n
1−α). That

is, with high probability, |Bout(w, D
′

3)| < n1−α. For the decremental algorithm we have shown that this
inequality holds only for the initial graph, however it also holds after every update since |Bout(w, D

′

3)| can
only decrease over time. Thus, for both the incremental and decremental algorithms, with high probability
we never reinitialize the algorithm due to |Bout(w, D

′

3)| > n1−α.

Another event that triggers reinitialization is if |S′| > n1−α log2 n
δD′ . |S′| is a random variable drawn from a

binomial distribution with p = log2 n
δD′ and expected value |Bout(w,

D′
3
)| log2 n

δD′ . We know that |Bout(w, D
′

3)| ≤
n1−α or else we would have reinitialized the algorithm due to the above event. Thus, |S′| ≤ n1−α log4 n

δD′ with
high probability.

The last event that triggers reinitialization is if there is a vertex v ∈ Bout(w, D
′

3) such that d′(v, S′) >

δD′. The expected size of S′ is |Bout(w,
D′
3
)| log2 n

δD′ . Thus, with high probability, for all vertices v ∈
Bout(w,

D′

3), after every update, S′ hits a vertex of distance at most δD′ to v.
We have shown that each of the three events that trigger reinitialization do not occur with high probability

(probability at least 1 − 1/nc for all constants c). Thus, with high probability we never reinitialize the
algorithm.

Running in-A and out-A We will calculate the total number a of vertices that we ever run in-A or
out-A from. Then the total time is Õ(aTinc(n,m,D

′, ε)); maintaining the heaps H(v) and H increases the
running time only by a factor of O(log n).

In the initialization step, we initialize in-A from all Õ(nα) vertices in S as well as a dummy vertex.
Throughout each phase, we run out-A from w and we run in-A from all Õ(n

1−α

εD′) vertices that are added to
S′ during the phase, as well as a dummy vertex.

The decremental algorithm has only one phase. We calculate the number of phases in the incremental
algorithm. The beginning of a new phase is triggered when w leaves the set W . We note that since we are
in the incremental setting, no vertices are added to W during a phase. The sequence of updates dictates if
and when each vertex is removed from W . Each update may trigger any number of vertices to leave W .

Fix a choice of w and let W0 be the set W at the point in time that the algorithm chooses w. We say that
w is a success if at most half of the vertices in W0 leave W after w leaves W . Since w is chosen randomly
and the adversary is oblivious, the probability that w is a success is at least 1/2. Once log2 n choices of w
are successful, then W is empty. Let Y be a random variable defined as the number of times the algorithm
chooses a new w until W is empty. Y is a negative binomial random variable, which implies the following
concentration bound for any constant c: P [Y > 2c log2 n] ≤ exp(−c(1−1/c)

2

2 log2 n). Thus, Y = Õ(1) with
high probability.

Putting everything together, with high probability, a = Õ(nα+ n1−α

εD′) = Õ
(√

n/D′
)

, so the total time

is Õ
(
Tinc(n,m,D

′, ε)

√
n/D′

ε

)
. �

4.1.2 Radius
Our theorems and proofs for radius are analogous to those for diameter, with a number of key differences.

In this section we describe the differences.

Theorem 4.2. There is a Las Vegas randomized algorithm for incremental (resp., decremental) radius in un-

weighted, undirected graphs that given ε > 0 runs in total time Õ(maxRf≤R′≤R0{Tinc(n,m, 2R′, ε)
√
n/R′

ε2
})

(resp., Õ(maxR0≤R′≤Rf {Tdec(n,m, 2R′, ε)
√
n/R′

ε2
})) with high probability, and maintains an estimate R̂

23

such that R ≤ R̂ ≤ (1 + ε)(32R+ 1
2) where R is the radius of the current graph. The incremental algorithm

works against an oblivious adversary.

By Lemma 2.2, the following lemma implies Theorem 4.2.

Lemma 4.2. There is a Las Vegas randomized algorithm for incremental (resp., decremental) radius in

unweighted, undirected graphs that given R′ and ε > 0, runs in total time Õ
(
Tinc(n,m, 2R

′, ε)

√
n/R′

ε

)
(resp., Õ

(
Tdec(n,m, 2R

′, ε)

√
n/R′

ε

)
) with high probability, and maintains an estimate R̂ ≥ R such that if

R′ ≥ R then R̂ ≤ (1 + ε)(32R
′ + 1

2) where R is the radius of the current graph. The incremental algorithm
works against an oblivious adversary.

Proof.

Algorithm The algorithm is identical to the algorithm of Lemma 4.3 except for the following substitutions:

• Set δ = ε/4.

• All instantiations of in-A and out-A are replaced by the corresponding algorithm A for undirected
graphs and the input parameter k is set to 2R′ instead of D′.

• All instances of D′/3 are replaced by R′/2.

• All remaining instances of D′ are replaced by R′.

• The return value R̂ is the minimum eccentricity estimate found over all instantiations of A, with a
correction factor of 1

1−δ . That is, R̂ = 1
1−δ (mins∈S∪S′∪{w}maxv∈V d

′(v, s)). To maintain this value,
we maintain the following heaps. For every vertex v that we run A from, we keep a max-heap H(v)
that stores for each other vertex u the estimate d′(v, u). Let d̂out(v) be the output value of H(v).
Additionally we keep a min-heapH which stores each d̂out(v).

Analysis The running time analysis is identical to that of Lemma 4.3 with the above substitutions. We
present the analysis of correctness.

Let c∗ be a vertex such that ε(c∗) = R. For all s ∈ S ∪ S′ ∪ {w}, let ε′(s) be the estimated eccentricity
maxv∈V d

′(s, v).
The return value R̂ is 1

1−δ (ε′(v)) ≥ ε(v) for some v, so R̂ ≥ R. It remains to show that if R′ ≥ R, then
R̂ ≤ (1 + ε)(32R

′ + 1
2).

Case 1: c∗ 6∈ W . Let s ∈ S be such that d′(c∗, s) ≤ R′

2 . Then d(c∗, s) ≤ R′(1
2(1−δ)). Then by the triangle

inequality, ε(s) ≤ R′(1
2(1−δ)) +R ≤ R′(1

2(1−δ) + 1), so ε′(s) ≤ R′(1
2(1−δ) + 1). Thus, R̂ ≤ 1

1−δ (ε′(s)) ≤
R′(1

1−δ)(1
2(1−δ) + 1)

Case 2: c∗ ∈ W . We don’t explicitly use the fact that c∗ ∈ W ; we just use the fact that w exists. Consider
the shortest path from w to c∗. Let q be the vertex on this path at distance bR′2 c from w. So d(q, c∗) ≤
dR′2 e ≤

R′

2 + 1
2 . We know that q ∈ Bout(w, R

′

2), so d′(S′, q) ≤ δR′ or else we would have reinitialized
the algorithm. Thus, by Claim 2.1 in the preliminaries, d(S′, q) ≤ δR′

1−2δ . Let q′ ∈ S′ be a vertex with
d(q′, q) ≤ δR′

1−2δ .
By the triangle inequality, d(q′, c∗) ≤ d(q′, q)+d(q, c∗) ≤ R′(δ

1−2δ + 1
2)+ 1

2 . By the triangle inequality,
ε(q′) ≤ R′(δ

1−2δ + 1
2)+ 1

2 +R ≤ R′(δ
1−2δ + 3

2)+ 1
2 , so ε′(q′) ≤ R′(δ

1−2δ + 3
2)+ 1

2 . Thus, R̂ ≤ (1
1−δ)ε′(q′) ≤

(1
1−δ)(R′(δ

1−2δ + 3
2) + 1

2).

24

Setting δ = ε/4 completes the proof of correctness.
�

4.1.3 Eccentricities
Our theorems and proofs for eccentricities are analogous to those for diameter, with a number of key

differences. In this section we describe the differences.

Theorem 4.3. There is a Las Vegas randomized algorithm for incremental (resp., decremental) eccentrici-
ties in unweighted, undirected graphs that given ε with 0 < ε < 0.45 runs in total time

Õ(maxRf≤D′≤D0{Tinc(n,m,D′, ε)
√
n/D′

ε2
}) (resp., Õ(maxR0≤D′≤Df {Tdec(n,m,D′, ε)

√
n/D′

ε2
})) with high

probability, and for all v ∈ V maintains an estimate ε̂(v) such that 3(1−ε)
5 ε(v) − 1 ≤ ε̂(v) ≤ ε(v) where

ε(v) is the eccentricity of v in the current graph. The incremental algorithm works against an oblivious
adversary.

By Lemma 2.1, the following lemma implies Theorem 4.2.

Lemma 4.3. There is a Las Vegas randomized algorithm for incremental (resp., decremental) eccentricities

in unweighted, directed graphs that given D′, ε > 0, runs in total time Õ
(
Tinc(n,m,D

′, ε)

√
n/D′

ε

)
(resp.,

Õ

(
Tdec(n,m,D

′, ε)

√
n/D′

ε

)
) with high probability, and for all v ∈ V maintains an estimate ε̂(v) ≤ ε(v)

such that if D′ ≤ ε(v), then ε̂(v) ≥ 3(1−ε)
5 ε(v)− 1. The incremental algorithm works against an oblivious

adversary.

Proof.

Algorithm We run the algorithm from Lemma 4.3 with the following substitutions:

• Set δ = ε/9.

• All instantiations of in-A and out-A are replaced by the corresponding algorithm A for undirected
graphs.

• All instances of D′/3 are replaced by 2D′/5.

• For all s ∈ S ∪ S′ ∪ {w}, let ε′(s) be the estimated eccentricity maxv∈V d
′(s, v). For all v ∈ V ,

the return value is ε̂(v) = maxs∈S∪S′∪{w}{d′(v, s), (1− δ)ε′(s)−
d′(v,s)
1−δ }. To maintain these values,

for every vertex v we keep a max-heapH(v) which stores d′(v, s) and (1− δ)ε′(s)− d′(v,s)
1−δ for each

vertex s that we run A from.

Analysis The running time analysis is identical to that of Lemma 4.3 with the above substitutions. We
present the analysis of correctness. For all v ∈ V , let v′ be the farthest vertex from v. Fix v ∈ V .

First we show that ε̂(v) ≤ ε(v). If ε̂(v) = d′(v, s) for some s then it is clear that ε̂(v) ≤ ε(v). Otherwise,
from the expression of the return value, for some s, ε̂(v) ≤ (1 − δ)ε′(s) − d′(v,s)

1−δ ≤ ε(s) − d(v, s) ≤
d(v, s′) ≤ ε(v). It remains to show that if D′ ≤ ε(v), then 3(1−ε)

5 ε(v)− 1 ≤ ε̂(v).
Case 1. v′ 6∈ W . Let s ∈ S be such that d′(v′, s) ≤ 2D′/5. Then d(v′, s) ≤ D′

5(1−δ) . By the triangle

inequality, d(v, s) ≥ ε(v) − d(v′, s) ≥ ε(v) − 2D′

5(1−δ) ≥ ε(v)(1 − 2
5(1−δ)). Then, ε′(v) ≥ d′(v, s) ≥

ε(v)(1− δ)(1− 2
5(1−δ)) = ε(v)(3/5− δ).

25

Case 2. v′ ∈ W . We don’t explicitly use the fact that v′ ∈ W ; we just use the fact that w exists. If
d′(w, v) ≥ 3ε(v)

5 , then we are done. So suppose otherwise; that is, suppose d′(w, v) < 3ε(v)
5 so d(w, v) <

3ε(v)
5(1−δ) . Consider the shortest path from w to v. Let q be the vertex on this path at distance b2D′5 c from w.

So d(q, v) < 3ε(v)
5(1−δ) − b

2D′

5 c ≤
3ε(v)
5(1−δ) −

2D′

5 + 4
5 . We know that q ∈ Bout(w, 2D

′

5), so d′(S′, q) ≤ δD′ or

else we would have reinitialized the algorithm. Thus, by Claim 2.1 in the preliminaries, d(S′, q) ≤ δD′

1−2δ .
Let x ∈ S′ be a vertex with d(q, x) ≤ δD′

1−2δ .

Recall from the description of the return value that ε̂(v) ≥ (1−δ)ε′(x)− d′(v,x)
1−δ ≥ (1−δ)2ε(x)− d(v,x)

1−δ .

By the triangle inequality, ε(x) ≥ d(x, v′) ≥ ε(v)−d(v, x). So, ε̂(v) ≥ (1−δ)2(ε(v)−d(v, x))− d(v,x)
1−δ ≥

(1− δ)2ε(v)− d(v, x)((1− δ)2 + 1
1−δ).

By the triangle inequality, d(x, v) ≤ d(x, q) + d(q, v) ≤ δD′

1−2δ + 3ε(v)
5(1−δ) −

2D′

5 + 4
5 ≤ ε(v)(δ

1−2δ +
3

5(1−δ) −
2
5) + 4

5 .

Combining the previous two paragraphs, we have ε̂(v) ≥ ε(v)((1 − δ)2 − (δ
1−2δ + 3

5(1−δ) −
2
5)((1 −

δ)2 + 1
1−δ))− 1.

One can verify that for all δ < 0.05, (1− δ)2 − (δ
1−2δ + 3

5(1−δ) −
2
5)((1− δ)2 + 1

1−δ) ≥ 3(1− 9δ)/5.
Thus we can set δ = ε/9 and obtain the result.

�

4.2 Deterministic incremental (1 + ε)-approximation
In this section we present a deterministic incremental (1 + ε)-approximation for diameter, radius, and

eccentricities in directed graphs. The algorithm for eccentricities only works for strongly connected graphs.
4.2.1 Diameter
Theorem 4.4. There is a deterministic algorithm for incremental diameter in unweighted, directed graphs
that, for any ε with 0 < ε < 2, runs in total time Õ(maxDf≤D′≤D0{(Tinc(n,m,D′, ε) + m)n/(ε2D′)}),
and maintains an estimate D̂ such that (1− ε)D ≤ D̂ ≤ D, where D is the diameter of the current graph.

By Lemma 2.1, the following lemma implies Theorem 4.4.

Lemma 4.4. There is a deterministic algorithm for incremental diameter in unweighted, directed graphs
that, given a parameterD′, for any ε with 0 < ε < 2, runs in total time Õ((Tinc(n,m,D

′, ε)+m)n/(εD′)),
and maintains an estimate D̂ ≤ D such that if D′ ≤ D then D̂ ≥ (1− ε)D′, where D is the diameter of the
current graph.

Proof.
The basic idea for the proof is that it is possible deterministically to pick a set of center nodes, to

estimate the in-eccentricity of each of the centers (i.e. for each center c, maxv∈V d(v, c)) by running in-A
and to return the maximum values of these estimates. Let s∗ and t∗ be vertices such that d(s∗, t∗) = D. Let
I be the set of nodes that can reach t∗ by a path of length at most εD. Then for every vertex x ∈ I it must
hold that d(s∗, x) ≥ (1− ε)D. Thus, x has in-eccentricity at least (1− ε)D. Hence, we will chose centers
in such a way that it is guaranteed that one of the nodes in I is a center. Since we do not know t∗, we pick
a set of centers such that for every node we can guarantee that it has distance at most εD from a center. The
proof below uses this basic idea, but it slightly more complicated as the SSSP data structure that we use as
subroutine only gives approximate distances.

26

Algorithm Let ε′ = ε/2. When we run in-Ainc from a vertex v, we also keep a max-heap H(v) that
stores for each other vertex u the estimate d′(u, v) returned by the algorithm and which outputs the value
d̂in(v) = maxu d

′(u, v). Additionally we keep a max-heap H which stores for each center v the value
d̂in(v). This heap is updated whenever d̂in(v) changes for any center v.

Our deterministic algorithm is a derandomized version of the following randomized Monte-Carlo algo-
rithm: Pick a set S of Cn log n/(ε′D′) random nodes (for a suitable constant C), which are called centers
and for each center c, run in-Ainc(c,D′, ε′). Output as D̂ the maximum over all nodes v ∈ S of d̂in(v).

For the correctness of this algorithm we have to show that (i) D̂ ≤ D and (ii) if D′ ≤ D then D̂ ≥
(1 − ε)D′. (i) D̂ ≤ D follows from the fact that every value d̂in(v) represents the length of an actual path
in G. (ii) By a standard Chernoff bound one can show that whp for every pair of vertices (u,w) there exists
a center v that lies on the shortest path from u to w such that d(v, w) ≤ ε′D′. This implies that whp there
exists a center v∗ that lies on the shortest path from s∗ to t∗ such that d(v∗, t∗) ≤ ε′D′, where s∗ and t∗ are
vertices with d(s∗, t∗) = D. It follows that whp d(s∗, v∗) ≥ D − ε′D′. Note that D′ ≤ D implies that whp
d(s∗, v∗) ≥ D′(1− ε′). Since we run in-Ainc from v∗ and D̂ ≥ d̂in(v∗) it follows that whp D̂ ≥ (1− ε)D′,
which is the bound we needed to show. We run O(n/(ε′D′)) = O(n/(εD′)) instantiations of algorithm
in-Ainc, which gives a total time of Õ(Tinc(n,m,D

′, ε)n/(εD′)).
We now show how to pick centers in a deterministic way such that for every vertex u, there exists a

center v such that d(v, u) ≤ ε′D′, which derandomizes the above algorithm. Our construction is similar to
the deterministic center construction in [16].

Let Out(v, γ,H) = {x ∈ H, dH(v, x) ≤ γ} be the set of nodes that vertex v can reach in at most γ
steps in H .

Initialization We construct a set S of vertices, called centers, as follows:

1. Set G′ = G.

2. Repeatedly add to S a node v of G′ with |Out(v, ε′D′/2, G′)| ≥ bε′D′/2c and remove from G′ all
nodes x in Out(v, ε′D′/2, G′), labeling each of them with their center v. The procedure stops when
for every vertex v in G′ it holds that |Out(v, ε′D′/2, G′)| < bε′D′/2c.

3. Determine the set A of source nodes u of G′ (i.e. vertices with indegree 0) and for each source u store
the center label of one of the in-neighbors w of u in G as value c(u). (Since G is strongly connected,
u must have at least one in-neighbor in G and since u is a source in G′, this in-neighbor must have
been removed from G′ and, thus, be labeled.)

4. Repeatedly remove a node u from A, label all nodes in Out(u, n,G′) with c(u) and remove them
from G′. The procedure stops when A is empty.

Edge insertion We run the algorithm in-Ainc for every center and update them and the corresponding
heaps after each edge insertion in G.

Query The algorithm returns the maximum value inH.

Analysis

Correctness We first show that for every vertex u ofG there exists a center v such that d(v, u) ≤ ε′D′,
i.e. v has a path of length at most ε′D′ to u.

Claim 2. After every edge update there exists for every vertex u of G a center v such that d(v, u) ≤ ε′D′.

27

Proof. We first argue that the claim holds after the initialization. For the vertices x that receive their center
label in Step 2 the claim holds as all these vertices belong to the set Out(v, ε′D′/2, G′) of some center v
and G′ is a subgraph of G. Now all nodes that are not labeled in Step 2, belong to G′ in Step 3 and, thus,
must belong to Out(u, n,G′) for some source node u in A. Hence, it will be labeled by a center during Step
4. We now show that this label also fulfills the condition of the claim.

For every source u in A in Step 3 of the initialization it holds that |Out(u, ε′D′/2, G′)| < bε′D′/2c
which implies that for all vertices x in G′ either dG′(u, x) < bε′D′/2c or dG′(u, x) =∞. This implies that
in Step 3 of the initialization Out(u, n,G′) = Out(u, ε′D′/2 − 1, G′). Let v be the value of c(u) as set
in Step 3. It follows that u has an edge from a vertex w that received v as center label in Step 2. With the
previous argument this implies that dG(v, u) ≤ dG(v, w) + 1 ≤ ε′D′/2 + 1 and, thus, that for all nodes z in
Out(u, ε′D′/2− 1, G′) it holds that dG(v, z) ≤ dG(v, u) + dG′(u, z) ≤ ε′D′/2 + 1 + ε′D′/2− 1 = ε′D′.

Thus, the claim holds after initialization. Note that edge insertions cannot decrease distances between
nodes and, thus, the claim continues to hold throughout the algorithm. �

The remainder of the correctness argument is identical to that of the randomized algorithm that we have
derandomized.

Running time

Claim 3. There are O(n
εD′) centers.

Proof. Centers are only created in Step 2 of the initialization. When a vertex v becomes a center, it holds
that |Out(v, ε′D′/2, G′)| ≥ ε′D′/2. Assign the nodes that are in Out(v, ε′D′/2, G′) at this point in time to
v. Note that these nodes are not assigned to any other center as they are removed from G′ as soon as they
are assigned to v. Thus we uniquely assigned to each center at least ε′D′/2 = Ω(εD′) vertices of G, which
implies that there are O(n

εD′) centers. �

Recall that m be the number of edges in the initial graph. We first show how to implement Step 2 of the
initialization in time O(nmεD′). More specifically, we show that the time spent to find a new node to add to S
or to determine that there are no further suitable nodes takes time O(m). We test the vertices of V in some
fixed order (say in order of increasing ID) whether they can be added to S. Assume the last test that added
a vertex to S was the t-th test. At that time we set a counter at every node in G′ to 0. Then we perform BFS
(using only out-edges) from an arbitrary node v of G′. If |Out(v, ε′D′/2, G′)| ≥ ε′R′/2 then we add v to
S, otherwise we store |Out(v, ε′D′/2, G′)| as counter at v and start a new BFS. However, this and all later
BFS traversals do not recursively call themselves on nodes with non-zero counter: Let y be a node at which
a BFS started. If the BFS reaches a node x with non-zero counter, it does not explore the outcoming edges
of x. Instead it uses the counter of x to update its internal variable that stores the number of nodes that can
be reached from y and continue the BFS by a backtracking step. When the BFS of y has terminated, we test
|Out(y, ε′D′/2, G′)| and proceed with y as with v before. If all nodes of G′ have been explored and none
was added to S, the loop in Step 1 ends. Note that in this way every edge in G′ is traversed at most once
and then either a new node is added to S or Step 2 terminates. Together with Claim 3 it follows that Step 2
takes time O(nmεD′).

The other steps of the initialization can be implemented in time O(m) each. Thus the total time for
initialization apart from the time spent for initializing the in-Ainc data structures is O(nmεD′).

The total time for initializing and maintaining the in-Ainc data structures is O(Tinc(n,m,D
′, ε) n

εD′).
Maintaining the heaps H(v) and the global heap H increases the running time only by a factor of O(log n)
as the number of heap operations is at most linear in O(Tinc(n,m,D

′, ε) n
εD′). To summarize, the total time

for the algorithm is O((Tinc(n,m,D
′, ε) log n+m) n

εD′). �

28

4.2.2 Radius
Theorem 4.5. There is a deterministic algorithm for incremental radius in unweighted, directed graphs that,
for any ε with 0 < ε < 2, runs in total time Õ(maxRf≤R′≤R0{(Tinc(n,m, 2R′, ε) +m)n/(ε2R′)}+mn),
and maintains an estimate R̂ such that R ≤ R̂ ≤ (1 + ε)R, where R is the radius of the current graph. For
strongly connected graphs, the additive factor of mn in the time is not necessary.

By Lemma 2.2, the following lemma implies Theorem 4.5.

Lemma 4.5. There is a deterministic algorithm for incremental radius in unweighted, directed graphs that,
given a parameterR′, for any εwith 0 < ε < 2, runs in total time Õ((Tinc(n,m, 2R

′, ε)+m)n/(εR′)+mn),
and maintains an estimate R̂ ≥ R such that if R′ ≥ R then R̂ ≤ (1 + ε)R′, where R is the radius of the
current graph. For strongly connected graphs, the additive factor of mn in the time is not necessary.

Proof.
The basic idea for the proof of the lemma is that it is possible deterministically (1) to pick a set of center

nodes, (2) to compute the eccentricity of each of the centers and (3) to return the minimum values of these
eccentricities. Let s∗ be a vertex with ε(s∗) = R. We note that in this proof we do not refer to s∗ as the
center — instead a center is a node in the set chosen in step (1) above. Note that s∗ has a path to every node
of length at most R. Let I be the set of nodes that can reach s∗ by a path of length at most εR. Then for
every vertex x ∈ I it must hold that x has to every other node a path of length at most (1 + ε)R and, thus,
x has an eccentricity of at most (1 + ε)R. Hence, we will chose centers in such a way that it is guaranteed
that one of the nodes in I is a center. In reality, the proof of correctness is slightly more complicated as the
SSSP data structure that we use as subroutine only gives approximate distances.

Although our goal for choosing centers is essentially the same as that for diameter, we cannot directly
apply the algorithm from diameter because step 3 assumes the graph is strongly connected. For diameter, we
can assume that the graph is strongly connected because if it is not then the diameter is infinite. In contrast,
the radius of a directed graph that is not strongly connected can be finite.

We can bypass this issue by using an algorithm for picking centers similar to that from the diameter
algorithm, but only running this algorithm on the strongly connected component (SCC) that contains s∗.
This SCC may grow so we also need to dynamically augment the set of centers.

Algorithm We run a deterministic incremental algorithm that maintains SCCs as a subroutine. An algo-
rithm of Haeupler, Sen, and Tarjan [13] does this in total time O(m3/2).

We let a top SCC be the SCC that can reach all vertices in the graph. Note that there are either 0 or 1
top SCCs. Given the vertices in the top SCC (if it exists), we also maintain the graph H induced by these
vertices. (This is simple: whenever a vertex is added to the top SCC we iterate through its incident edges
to see which are to or from a vertex in the top SCC, and after each edge insertion we check whether both
of its endpoints are in the top SCC.) We note that all vertices not in H have infinite eccentricity, so if H is
nonempty, then H must contain the vertex v for which ε(v) = R.

Let ε′ = ε/2. When we run algorithm out-Ainc from a vertex v, we also keep a max-heap H(v) that
stores for each other vertex u the estimate d′(v, u) returned by the algorithm and which outputs the value
d̂out(v) = maxu d

′(v, u)/(1 − ε′). Additionally we keep a min-heap H which stores for each center v the
value d̂out(v). This heap is updated whenever d̂out(v) changes for any center v.

Initialization We deterministically choose the centers in exactly the same way as for diameter, except
D′ is replaced with R′.

29

Edge insertion If at least one new vertex has been added to H as a result of the edge insertion, we
update the set of centers as follows. We simply rerun the center picking algorithm described in the running
time analysis for diameter using the graph H as input. That algorithm tests the vertices in increasing order
of ID whether they can be added to S; before running it we change the IDs of the vertices newly added to
H so that they are tested after all of the old vertices. This way, the new set of centers is a superset of the old
set of centers.

Then, for every center c, we run the algorithm out-Ainc(c, 2R′, ε′) and update the corresponding heaps.

Queries The algorithm returns the minimum value inH.

Analysis

Correctness By an identical proof to Claim 2 (with D′ replaced by R′), after every edge update there
exists for every vertex u in H a center v such that d(v, u) ≤ ε′R′. Recall that s∗ is in H .

Now the correctness proof proceeds as follows: Recall that we aim to show that (i) R̂ ≥ R and (ii) if
R′ ≥ R, then R̂ ≤ (1 + ε)R′.

(i) For each center v the value d̂out(v) = maxu d
′(v, u)/(1 − ε′) ≥ ε(v) and the algorithm outputs

minv∈S d̂out(v). Then R = minx ε(x) ≤ minv∈S ε(v) ≤ minv∈S d̂out(v)/(1− ε′) = R̂.
(ii) Let s∗ be a vertex with ε(s∗) = R and let v∗ be a center with d(v∗, s∗) ≤ ε′R′. Note that ε(s∗) = R

implies ε(v∗) ≤ ε(s∗) + ε′R′ = R + ε′R′. If R′ ≥ R, it follows that ε(v∗) ≤ (1 + ε′)R′. As the value
R̂ returned by a query is minv∈S d̂out(v)/(1 − ε′), it follows that R̂ ≤ ε(v∗)/(1 − ε′) ≤ 1+ε′

1−ε′R
′. Setting

ε′ = ε/2 completes the correctness proof.

Running time An identical argument to that of diameter (with D′ replaced by R′) shows that with-
out the SCC algorithm and the algorithm for updating centers upon edge insertion, the running time is
Õ((Tinc(n,m, 2R

′, ε) +m)n/(εR′)). The SCC algorithm runs in time O(m3/2). The algorithm for updat-
ing centers runs in time O(m) from the running time analysis for diameter. New vertices are added to H at
most n times, so the total time for updating centers isO(mn). Thus, the total time is Õ((Tinc(n,m, 2R

′, ε)+
m)n/(εR′) +mn). �

4.2.3 Eccentricities
Theorem 4.6. There is a deterministic algorithm for incremental eccentricities in unweighted, directed,
strongly connected graphs that, for any ε with 0 < ε < 2, runs in total time
Õ(maxRf≤D′≤D0{(Tinc(n,m,D′, ε) +m)n/(ε2D′)}), and for all v ∈ V maintains an estimate ε̂(v) such
that (1− ε)ε(v) ≤ ε̂(v) ≤ ε(v) where ε(v) is the eccentricity of v in the current graph.

By Lemma 2.1, the following lemma implies Theorem 4.6.

Lemma 4.6. There is a deterministic algorithm for incremental eccentricities in unweighted, directed,
strongly connected graphs that, given a parameter D′, for any ε with 0 < ε < 2, runs in total time
Õ((Tinc(n,m,D

′, ε) + m)n/(εD′) + mn), and for all v ∈ V maintains an estimate ε̂(v) ≤ ε(v) such
that if D′ ≤ ε(v), then ε̂(v) ≥ (1− ε)ε(v).

Proof.
The basic idea for the proof of the lemma is that it is possible deterministically (1) to pick a set of center

nodes, (2) to compute the distance from every vertex to each of the centers and (3) to return for each vertex
v the maximum distance from v to a center. Fix v and let v′ be the farthest vertex from v. Let I be the set
of nodes that can reach v′ by a path of length at most ε(ε(v)). Then for every vertex x ∈ I it must hold that
d(v, x) ≥ (1− ε)ε(v). Hence, we will chose centers in such a way that it is guaranteed that one of the nodes
in I is a center. In reality, the proof of correctness is slightly more complicated as the SSSP data structure
that we use as subroutine only gives approximate distances.

30

Algorithm Let ε′ = ε/2. For every vertex v we keep a max-heap H(v) that stores for each center u the
estimate d′(v, u) returned by the algorithm in-Ainc.

Initialization We deterministically choose the centers in exactly the same way as for diameter

Edge insertion Then, for every center c, we run the algorithm in-Ainc(c,D′, ε′) and update the corre-
sponding heaps.

Queries Given a query for ε(v), the algorithm returns the maximum value inH(v).

Analysis

Correctness By an identical proof to Claim 2, after every edge update there exists for every vertex u
a center v such that d(v, u) ≤ ε′D′. Fix v and let v′ be such that d(v, v′) = ε(v)

Now the correctness proof proceeds as follows: Recall that we aim to show that (i) ε̂(v) ≤ ε(v) and (ii)
if D′ ≤ ε(v), then ε̂(v) ≥ (1− ε)ε(v).

(i) The return value d̂out(v) is for some u, d′(v, u) ≤ d(v, u) ≤ ε(v).
(ii) Let v∗ be a center with d(v∗, v′) ≤ ε′D′. So, if D′ ≤ ε(v) then d(v∗, v′) ≤ ε′(ε(v)). Then by the

triangle inequality, d(v, v∗) ≥ (1− ε′)ε(v). Thus, d′(v, v∗) ≥ (1− ε′)2ε(v). As the value ε̂(v) returned by
a query is maxu∈S d

′(v, u), it follows that ε̂(v) ≥ (1− ε′)2ε(v). Setting ε′ = ε/2 completes the correctness
proof.

Running time An identical argument to that of diameter shows that the running time is
Õ((Tinc(n,m,D

′, ε) +m)n/(εD′)). �

Acknowledgements The authors would like to thank Roei Tov for discussions.

References

[1] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distributed distance
computations, even in sparse networks. In International Symposium on Distributed Computing, pages
29–42. Springer, 2016.

[2] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower bounds for
dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443, 2014.

[3] Amir Abboud, Virginia Vassilevska Williams, and Joshua R. Wang. Approximation and fixed param-
eter subquadratic algorithms for radius and diameter in sparse graphs. In Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 377–391, 2016.

[4] R. Albert, H. Jeong, and A.L. Barabasi. Diameter of the world wide web. Nature, 401:130 – 131,
1999.

[5] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica, 17:209–
223, 1997.

[6] Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein. Towards
tight approximation bounds for graph diameter and eccentricities. In Proceedings of STOC’18, page
to appear, 2018.

31

[7] Karl Bringmann and Sebastian Krinninger. A note on hardness of diameter approximation. Information
Processing Letters, 133:10–15, 2018.

[8] Massimo Cairo, Roberto Grossi, and Romeo Rizzi. New bounds for approximating extremal distances
in undirected graphs. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 363–376, 2016.

[9] Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert Endre Tarjan, and Virginia
Vassilevska Williams. Better approximation algorithms for the graph diameter. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014, pages 1041–1052, 2014.

[10] Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. Graph pattern detection:
Hardness for all induced patterns and faster non-induced cycles. In STOC, page to appear, 2019.

[11] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest paths.
Journal of the ACM, 51(6):968–992, 2004. Announced at STOC’03.

[12] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal of the ACM, 28(1):1–4,
1981.

[13] Bernhard Haeupler, Siddhartha Sen, and Robert E Tarjan. Incremental topological ordering and strong
component maintenance. arXiv preprint arXiv:0803.0792, 2008.

[14] Monika Henzinger and Valerie King. Fully dynamic biconnectivity and transitive closure. In Sympo-
sium on Foundations of Computer Science (FOCS), pages 664–672, 1995.

[15] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source short-
est paths on undirected graphs in near-linear total update time. In Symposium on Foundations of
Computer Science (FOCS), pages 146–155, 2014.

[16] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dynamic approximate all-pairs
shortest paths: Breaking the O(mn) barrier and derandomization. SIAM Journal on Computing,
45(3):947–1006, 2016. Announced at FOCS’13.

[17] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. Unifying
and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjec-
ture. In Symposium on Theory of Computing (STOC), pages 21–30, 2015.

[18] Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams. Conditional
Hardness for Sensitivity Problems. In Christos H. Papadimitriou, editor, 8th Innovations in Theoretical
Computer Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings in Infor-
matics (LIPIcs), pages 26:1–26:31, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

[19] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity? J.
Comput. Syst. Sci., 63(4):512–530, 2001.

[20] François Le Gall. Powers of tensors and fast matrix multiplication. In International Symposium on
Symbolic and Algebraic Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303,
2014.

32

[21] Moshe Lewenstein, Seth Pettie, and Virginia Vassilevska Williams. Open problems from Dagstuhl
seminar 16451: Structure and hardness in P, 2016.

[22] S. Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theor. Comput. Sci.,
312(1):47–74, 2004.

[23] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-weighted undirected graphs.
SIAM J. Comput., 34(6):1398–1431, 2005.

[24] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the diameter and
radius of sparse graphs. In Proceedings of the 45th annual ACM symposium on Symposium on theory
of computing, STOC ’13, pages 515–524, 2013.

[25] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput. Syst.
Sci., 51(3):400–403, 1995.

[26] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. In Proceed-
ings of the forty-fourth annual ACM symposium on Theory of computing, pages 887–898. ACM, 2012.

[27] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In
Proceedings of the International Congress of Mathematicians, page to appear, 2018.

[28] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput.
Sci., 348(2–3):357–365, 2005.

[29] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium on Theory of
Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 664–673, 2014.

[30] R. Yuster and U. Zwick. Detecting short directed cycles using rectangular matrix multiplication and
dynamic programming. In Proc. SODA, pages 247–253, 2004.

[31] Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal
of the ACM, 49(3):289–317, 2002. Announced at FOCS’98.

33

