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Abstract

In recent years, a new “fine-grained” theory of computational hardness has been developed, based
on “fine-grained reductions” that focus on exact running times for problems. Mimicking NP-hardness,
the approach is to (1) select a key problem X that for some function t, is conjectured to not be solvable
by any O(t(n)1−ε) time algorithm for ε > 0, and (2) reduce X in a fine-grained way to many impor-
tant problems, thus giving tight conditional time lower bounds for them. This approach has led to the
discovery of many meaningful relationships between problems, and to equivalence classes.

The main key problems used to base hardness on have been: the 3-SUM problem, the CNF-SAT
problem (based on the Strong Exponential Time Hypothesis (SETH)) and the All Pairs Shortest Paths
Problem. Research on SETH-based lower bounds has flourished in particular in recent years showing
that the classical algorithms are optimal for problems such as Approximate Diameter, Edit Distance,
Frechet Distance and Longest Common Subsequence.

This paper surveys the current progress in this area, and highlights some exciting new developments.

1 Introduction

Arguably the main goal of the theory of algorithms is to study the worst case time complexity of fundamental
computational problems. When considering a problem P , we fix a computational model, such as a Random
Access Machine (RAM) or a Turing machine (TM). Then we strive to develop an efficient algorithm that
solves P and to prove that for a (hopefully slow growing) function t(n), the algorithm solves P on instances
of size n in O(t(n)) time in that computational model. The gold standard for the running time t(n) is linear
time, O(n); to solve most problems, one needs to at least read the input, and so linear time is necessary.

The theory of algorithms has developed a wide variety of techniques. These have yielded near-linear
time algorithms for many diverse problems. For instance, it is known since the 1960s and 70s (e.g. [143,
144, 145, 99]) that Depth-First Search (DFS) and Breadth-First Search (BFS) run in linear time in graphs,
and that using these techniques one can obtain linear time algorithms (on a RAM) for many interesting graph
problems: Single-Source Shortest paths, Topological Sort of a Directed Acyclic Graph, Strongly Connected
Components, Testing Graph Planarity etc. More recent work has shown that even more complex problems
such as Approximate Max Flow, Maximum Bipartite Matching, Linear Systems on Structured Matrices,
and many others, admit close to linear time algorithms, by combining combinatorial and linear algebraic
techniques (see e.g. [140, 64, 141, 116, 117, 67, 68, 65, 66, 113]).

Nevertheless, for most problems of interest, the fastest known algorithms run much slower than linear
time. This is perhaps not too surprising. Time hierarchy theorems show that for most computational models,
for any computable function t(n) ≥ n, there exist problems that are solvable in O(t(n)) time but are NOT
solvable in O(t(n)1−ε) time for ε > 0 (this was first proven for TMs [95], see [124] for more).

Time hierarchy theorems are proven by the diagonalization method pioneered by Cantor in the 19th
century. Unfortunately, however, these theorems say almost nothing about particular problems of interest.



Consider for instance the ubiquitous Boolean Satisfiability (SAT) problem: given a Boolean expression F
over n variables and Boolean operators AND, OR and NOT, is there a Boolean assignment to the variables
that makes F evaluate to true?

A simple algorithm to solve SAT is to try all possible 2n assignments and evaluate F on each of them.
The runtime depends on how F is represented. In Circuit-SAT, F is given as a (directed acyclic) circuit
with AND, OR and NOT gates, n input gates representing the variables and a designated output gate. The
evaluation of a circuit can be performed in O(m + n) time, where m is the number of gates and wires, by
evaluating its gates in topological order. A much more structured version of SAT is CNF-SAT. Here, F is
given as a Boolean expression in Conjunctive Normal Form (CNF): an AND of m clauses that are ORs of
literals (variables and their negations), i.e. one needs to satisfy every clause by setting at least one literal to
TRUE. A CNF-Formula can be evaluated in O(m + n) time. Regardless, of the representation, Circuit or
CNF, the enumeration of all 2n assignments dominates if m is, say, subexponential.

When the maximum clause length is a constant k, CNF-SAT can be solved in O∗(2n−cn/k) for constant
c independent of n and k (see e.g., [98, 122, 126, 125, 137, 138]). Nevertheless, as k grows, this runtime
approaches 2n, and the exhaustive search algorithm is essentially the best known for general CNF-SAT. For
general Circuit-SAT, there is no better algorithm known than exhaustive search.

A natural question then is, can one prove, for a robust model of computation, that this 2n runtime
dependence is inherent to the problem? Unfortunately, such a result is very far from current techniques in
computational complexity. In fact, it is not even known whether SAT can be solved in linear time!

The only known superlinear runtime lower bounds for SAT are obtained by restricting the algorithms,
for instance, to use only a small amount of space. The best of these is by R. Williams [155] who showed
that if an algorithm running on a RAM uses no(1) space, then it requires at least n2 cos(π/7)−o(1) ≥ Ω(n1.8)
time to solve SAT on n variables. This runtime lower bound is very far from the 2n upper bound, and in
fact, it was shown [51] that this is the best result one can obtain with known techniques.

Since unconditional lower bounds seem so challenging to derive, the computer science community has
long resorted to lower bounds that are conditioned on plausible, but so far unproven hypotheses. One of the
most commonly used hardness hypotheses is P 6= NP. The hypothesis is formally about decision problems —
problems whose outputs are binary — YES or NO. E.g. CNF-SAT is the decision problem that asks whether
the given CNF formula is satisfiable. P is the set of decision problems that can be decided by a polynomial
time algorithm1 on a TM. NP is the set of decision problems that have polynomial time algorithms (on a
TM) that can verify a polynomial sized solution to the instance2: e.g. CNF-SAT is in NP because we can
check in polynomial time if any given Boolean assignment satisfies the formula.

P vs NP asks whether all decision problems that can be verified in polynomial time (in the sense of the
above paragraph), can also be decided in polynomial time. P vs NP is one of the most famous open problems
in computer science. It is one of the Clay Millennium problems. While current techniques seem very far
from resolving this problem, most researchers believe that P 6= NP.

The most fascinating implication of the P 6= NP hypothesis is that many problems such as SAT cannot
be solved in polynomial time. A problem A is NP-hard if every instance of every problem in NP can be
encoded in polynomial time as an instance of A. A problem in NP which is NP-hard is called NP-Complete.

Clearly, if an NP-hard problem has a polynomial time algorithm, then P = NP. Thus, if we assume
that P 6= NP, no NP-hard problem can have a polynomial time algorithm. Starting with the work of Cook
and Levin (who showed that SAT is NP-complete) and Karp (who added 21 more NP-complete problems),

1When we say polynomial, we mean O(nc) for constant c > 0, where n is the size of the input instance.
2More formally, π ∈NP if there is a polynomial time algorithm V such that if x is a YES instance of π, then there is a string y

of size O(|x|c) for some constant c, such that V (x, y) returns YES, and if x is a NO instance, V (x, y) returns NO for all y.
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NP-hardness took off. Now there are many thousands of problems known to be NP-hard.
NP-hardness is arguably the biggest export of theoretical computer science (TCS) to other disciplines. It

is routinely used to explain why it is so hard to find efficient algorithms for problems occurring in practice,
and why one should probably use specialized algorithms and heuristics to solve them.

P and NP are defined for TMs. However, due to polynomial time reductions between computational
models (see [146] for a thorough treatment), whether we consider a TM or RAM in the definition of P
and NP does not actually matter. P vs NP is essentially model-independent. This model-independence was
one of the reasons to focus on polynomial time as a model of efficiency. (Another simple reason is that
polynomials compose into polynomials.) Nevertheless, no-one would argue that all polynomial runtimes
are actually efficient. In fact, for today’s large inputs, even quadratic time is inefficient.

There are many fundamental problems for which the fastest known algorithms run in quadratic time or
slower. A simple example is the Edit Distance problem, with many diverse applications from computational
biology to linguistics: given two strings α and β, over some finite alphabet, what is the smallest sequence
of symbol insertions, deletions and substitutions that can be performed on α to obtain β?

The problem has a long history: a classical dynamic programming algorithm by Wagner and Fisher [152]
runs in O(n2) time, and despite many efforts, the best known algorithm [118] only shaves a log2 n factor.
On inputs where n is in the billions (such as the human genome), quadratic runtime is prohibitive.

Another simple problem, from Computational Geometry, asks for a given set of points in the plane,
are any three colinear; conversely, are the points are in general position. Before running a computational
geometry algorithm, one typically needs to check this important primitive. Unfortunately, the best known
algorithms for this Colinearity question for n points run in n2−o(1), i.e. quadratic time.

There are many such examples within P, from a vast variety of research areas. Why has it been so hard
to find faster algorithms for such problems? Addressing this is impossible using P 6= NP as an assumption:
no problem that is already in P can be NP-Complete, unless P = NP. We need a different approach.

The Fine-Grained Question. Let us delve further into the issue described above. From now on let us fix
the computational model to a word-RAM with O(log n) bit words. Informally, this is a RAM machine that
can read from memory, write to memory and perform operations on O(log n) bit chunks of data in constant
time. We can fix any computational model; we pick the word-RAM because it is simple to work with.

When faced with a computational problem P , we can usually apply well-known algorithmic techniques
(such as dynamic programming, greedy, divide and conquer etc.) and come up with a simple algorithm that
runs in O(t(n)) time on inputs of size n.

Often this algorithm is obtained by the brute-force approach — enumerate all candidate solutions in a
search space. This is the case for SAT, but also for a large variety of other problems.

Sometimes the simple algorithm is not brute-force but uses textbook techniques in the natural way.
Consider for instance the Longest Common Subsequence problem (LCS), a simplified version of Edit Dis-
tance: given two sequences A and B of length n over an alphabet Σ, determine the maximum length
sequence S that appears in both A and B, with symbols in the same order, but possibly not consecu-
tively. For instance, an LCS of (b, b, c, a, d, e) and (b, d, c, b, e) is (b, c, e). The textbook approach here
is to apply dynamic programming, concluding that LCS((b, b, c, a, d, e), (b, d, c, b, e)) is the longest of
LCS((b, b, c, a, d), (b, d, c, b)) � e, LCS((b, b, c, a, d, e), (b, d, c, b)), and LCS((b, b, c, a, d), (b, d, c, b, e)).
The runtime isO(n2) since throughout the computation, one at most needs to memoize the computed longest
common subsequences of n2 pairs of prefixes. (The textbook algorithm for Edit Distance is similar.)

More often than not, the obtained “textbook” running time seems difficult to improve upon: improve-
ments have been sought after for decades, and the simple algorithm has stood almost unchallenged. We
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mentioned earlier that this is the case for CNF-SAT, Colinearity and Edit Distance. The situation is similar
for LCS and Edit Distance (fastest runtime O(n2/ log2 n) [118] for constant size alphabet and otherwise
O(n2 log logn/ log2 n) [39, 94]), and for a large variety of other problems from all over computer science
and beyond. The central question that needs to be addressed is:

For each of the problems of interest with textbook running time O(t(n)) and nothing much better known, is
there a barrier to obtaining an O(t(n)1−ε) time algorithm for ε > 0?

Relatedly, is the reason for this difficulty the same for all problems of interest?

2 Fine-Grained Complexity (and algorithms).

We would like to mimic NP-Completeness. The approach will be as follows.

1. We will identify some believable fine-grained hardness hypotheses. These will be about specific
conjectured running times for very well-studied computational problems.

2. Using fine-grained reductions we will show that for a problem with textbook running time t(n),
obtaining an O(t(n)1−ε) time algorithm for ε > 0 would violate one or more of the hypotheses. The
reductions we employ cannot be mere polynomial time reductions - they would have to be tailored to
the specific textbook runtime t(n). As we will see, they will differ in other ways as well from most
reductions used in traditional complexity.

We would also like to give equivalences, i.e. to show that problem A with textbook running time a(n)
and problem B with textbook running time b(n) are equivalent in the sense that if A admits an a(n)1−ε time
algorithm for ε > 0, then B admits an b(n)1−ε′ time algorithm for some ε′ > 0. This would mean that the
reason why it has been hard to improve on A and on B is the same.

In the following we will discuss some of the most prominent hardness hypotheses in fine-grained com-
plexity, and the reductions we employ to achieve fine-grained hardness.

2.1 Key Hypotheses

Much of fine-grained complexity is based on hypotheses of the time complexity of three problems: CNF-
SAT, All-Pairs Shortest Paths (APSP) and 3-SUM. Below we will introduce these, and a few more related
hypotheses. There are no known reductions between CNF-SAT, APSP and 3-SUM: they are potentially
unrelated. All hypotheses are about the word-RAM model of computation with O(log n) bit words, where
n is the size of the input.

SETH. Impagliazzo, Paturi and Zane [101] introduced the Strong Exponential Time Hypothesis (SETH)
to address the complexity of CNF-SAT. At the time they only considered deterministic algorithms, but
nowadays it is common to extend SETH to allow randomization.

Hypothesis 1 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0 there exists an integer k ≥ 3
such that CNF-SAT on formulas with clause size at most k (the so called k-SAT problem) and n variables
cannot be solved in O(2(1−ε)n) time even by a randomized algorithm.
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As the clause size k grows, the lower bound given by SETH converges to 2n. SETH also implies that
general CNF-SAT on formulas with n variables and m clauses requires 2n−o(n)poly(m) time.

SETH is motivated by the lack of fast algorithms for k-SAT as k grows. It is a much stronger assumption
than P 6= NP which assumes that SAT requires superpolynomial time. A weaker version, the Exponential
Time Hypothesis (ETH) asserts that there is some constant δ > 0 such that CNF-SAT requires Ω(2δn).

Both ETH and SETH are used within Fixed Parameter and Exponential Time algorithms as hardness
hypotheses, and they imply meaningful hardness results for a variety of problems (see e.g. [72]). Because
we are concerned with tight, fine-grained, runtime bounds, we focus on SETH as opposed to ETH.

3-SUM Hypothesis The 3-SUM problem is as follows: given a set S of n integers from {−nc, . . . nc} for
some constant c, determine whether there are x, y, z ∈ S such that x+ y + z = 0. A standard hashing trick
allows us to assume that c ≤ 3 + δ for any δ > 0.3

Hypothesis 2 (3-SUM Hypothesis). 3-SUM on n integers in {−n4, . . . , n4} cannot be solved in O(n2−ε)
time for any ε > 0 by a randomized algorithm.

The hypothesis was introduced by Gajentaan and Overmars [87, 88] who used it to show that many
problems in computational geometry require quadratic time, assuming that 3-SUM does. Quadratic lower
bounds for 3-SUM are known in restricted models of computation such as the linear decision tree model in
which each decision is based on the sign of an affine combination of at most 3 inputs (see e.g. [82, 79]).
However, in the more general linear decision tree model, Kane et al. [105] show that O(n log2 n) queries
suffice to solve 3-SUM, so that such lower bounds should be taken with a grain of salt.

The 3-SUM problem is very simple and has been studied extensively. The textbook algorithm is a simple
O(n2 log n) time enumeration algorithm: sort S and then for every x, y ∈ S, check if −z ∈ S using binary
search. An O(n2) runtime can be obtained by traversing the sorted order of S in both directions. Baran,
Demaine and Pǎtraşcu [37] improved this running time to O(n2(log log n)2/ log2 n) time. If the input
numbers are real numbers instead of integers (now in the Real-RAM model of computation), Grønlund and
Pettie [104] gave an O(n2(log log n)2/3/ log2/3 n) time algorithm. This runtime was recently improved by
Chan [56] to n2(log log n)O(1)/ log2 n, almost matching the known running time for integer inputs.

All-Pairs Shortest Paths (APSP). The APSP problem is as follows: given an n node graph G = (V,E),
and integer edge weights w : E → {−M, . . . ,M} for some M = poly(n), compute for every u, v ∈ V ,
the (shortest path) distance d(u, v) in G from u to v, i.e. the minimum over all paths from u to v of the total
weight sum of the edges of the path. G is assumed to contain no negative weight cycles.

The textbook algorithm for APSP is the O(n3) time Floyd-Warshall algorithm from the 1960s based on
dynamic programming. Many other algorithms run in the same time. For instance, one can run Dijkstra’s
algorithm from every vertex, after computing new nonnegative edge weights using Johnson’s trick [103].
Following many polylogarithmic improvements (e.g. [86, 54]), the current best APSP running time is a
breakthrough n3/ exp(

√
log n) runtime by R. Williams [159]. Despite the long history, the cubic runtime of

the textbook algorithm has remained unchallenged. This motivates the APSP Hypothesis below, implicitly
used in many papers (e.g. [136]). Its first explicit use as a hardness hypothesis is in [148].

3One can pick a random prime p that is between n and n3+δ . The number of distinct primes in this range that can divide any
particular sum of three input integers is O(1), and hence the total number of distinct primes that can divide the sum of some three
input integers is O(n3). However, there are Ω(n3+δ′) primes in the interval between n and n3+δ , for any 0 < δ′ < δ, and the
probability that p divides one of the sums from S is ≤ O(1/nδ

′
). We can then reduce 3-SUM mod p to three instances of the

original 3-SUM problem with integers in the range {−2p, . . . , p− 1}— checking if x, y, z sum to 0,p or 2p.
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Hypothesis 3 (APSP Hypothesis). No randomized algorithm can solve APSP in O(n3−ε) time for ε > 0 on
n node graphs with edge weights in {−nc, . . . , nc} and no negative cycles for large enough c.

2.2 Fine-grained reductions

Our goal is as follows. Consider problem A with textbook runtime a(n) and problem B with textbook
runtime b(n). Given a supposed O(b(n)1−ε) time algorithm for B for ε > 0, we would like to compose
it with another algorithm (the reduction) that transforms instances of A into instances of B, to obtain an
algorithm for A running in time O(a(n)1−ε′) time for ε′ > 0 (a function of ε).

The most common reductions used in complexity are polynomial time (or sometimes logspace) reduc-
tions. For our purposes such reductions are not sufficient since we truly care about the runtimes a(n) and
b(n) that we are trying to relate, and our reductions need to run faster than a(n) time for sure; merely
polynomial time does not suffice.

Beyond the time restriction, reductions differ in whether they are Karp or Turing reductions. Karp (also
called many-one) reductions transform an instance of A into a single instance of B. Turing reductions are
allowed to produce multiple instances, i.e. oracle calls toB. If we restrict ourselves to Karp-style reductions,
then we wouldn’t be able to reduce a search problem to any decision problem: decision problems return a
single bit and if we only make one oracle call to a decision problem, in general we would not get enough
information to solve the original search problem. We hence use Turing-style reductions.

The most general definition is:

Definition 2.1 (Fine-grained reduction). Assume that A and B are computational problems and a(n) and
b(n) are their conjectured running time lower bounds, respectively. Then we say A (a, b)-reduces to B,
A ≤a,b B, if for every ε > 0, there exists δ > 0, and an algorithm R for A that runs in time a(n)1−δ on
inputs of length n, making q calls to an oracle for B with query lengths n1, . . . , nq, where

q∑
i=1

(b(ni))
1−ε ≤ (a(n))1−δ.

If A ≤a,b B and B ≤b,a A, we say that A and B are fine-grained equivalent, A ≡a,b B.

The definition implies that if A ≤a,b B and B has an algorithm with running time O(b(n)1−ε), then, A
can be solved by replacing the oracle calls by the corresponding runs of the algorithm, obtaining a runtime
of O(a(n)1−δ) for A for some δ > 0. If A ≡a,b B, then arguably the reason why we have not been able to
improve upon the runtimes a(n) and b(n) for A and B, respectively, is the same.

Notice that the oracle calls in the definition need not be independent — the ith oracle call might be
adaptively chosen, according to the outcomes of the first i− 1 oracle calls.

3 Hardness results from SETH.

SETH was first used to give conditional hardness for other NP-hard problems. For instance, Cygan et al. [71]
show that several other problems (such as k-Hitting Set and k-NAE-SAT) are equivalent to k-SAT, in that
an O(2(1−ε)n) time algorithm for ε > 0 for one of them (for all k) would imply such an algorithm for all of
them, and would refute SETH.

The introduction of SETH as a hardness hypothesis for polynomial time problems was initiated by R.
Williams [157]. Among other things, [157] show that the so called Orthogonal Vectors (OV) problem, a
problem in quadratic time, requires quadratic time under SETH. We will describe the reduction shortly.
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Orthogonal Vectors. The OV problem, and its generalization k-OV, form the basis of many fine-grained
hardness results for problems in P.

The OV problem is defined as follows: Let d = ω(log n); given two sets A,B ⊆ {0, 1}d with |A| =
|B| = n, determine whether there exist a ∈ A, b ∈ B so that a · b = 0 where a · b =

∑d
i=1 a[i] · b[i].

The k-OV problem for constant k ≥ 2 is the generalization of OV to k sets: Let d = ω(log n); given k
sets A1, . . . , Ak ⊆ {0, 1}d with |Ai| = n for all i, determine whether there exist a1 ∈ A1, . . . , ak ∈ Ak so
that a1 · . . . · ak = 0 where a1 · . . . · ak :=

∑d
i=1

∏k
j=1 aj [i].

OV is a special case of Hopcroft’s problem: given two sets R and B of n vectors each in Rd, detect
r ∈ R, b ∈ B such that 〈r, b〉 = 0 (an equivalent version that Hopcroft posed is when we are given points
and hyperplanes through the origin, and we want to detect a point lying on one of the hyperplanes). The
fastest algorithms for Hopcroft’s problem for general d run in 2O(d)n2−Θ(d) time [119, 61].

OV is equivalent to the Batch Subset Query problem from databases [133, 91, 20, 120]: given two sets S
and T of sets over [d], check if there is some s ∈ S, t ∈ T such that s ⊆ t. It is also known to be equivalent
to the classical Partial Match problem.

It is not hard to solve k-OV in O(nkd) time by exhaustive search, for any k ≥ 2. The fastest known
algorithms for the problem run in time nk−1/Θ(log(d/ logn)) [17, 57]. It seems that nk−o(1) is necessary. This
motivates the now widely used k-OV Hypothesis.

Hypothesis 4 (k-OV Hypothesis). No randomized algorithm can solve k-OV on instances of size n in
nk−εpoly(d) time for constant ε > 0.

Interestingly, Williams and Yu [161] show that the 2-OV Hypothesis is false when operations are over
the ring Zm, or over the field Fm for any prime power m = pk. In the first case, OV can be solved in
O(ndm−1) time, and in the second case, in O(ndp(k−1) time. Although the problem is easier in these cases,
[161] actually also show that these runtimes cannot be improved very much, unless SETH fails, so there is
still some hidden hardness. Over Z6, it turns out that OV does still require quadratic time under SETH: no
n2−εdod(log d/ log log d) time algorithm ε > 0 can exist.

Gao et al. [90] show that OV is complete for a large class of problems: the class of all first order
properties. They consider properties expressible by a first-order formula with k + 1 quantifiers on a given
structure with m records; checking if any such property holds can easily be done in O(mk) time, and [90]
give an improved mk/2Θ(

√
logm) time algorithm. The completeness of OV is as follows. The First-Order

Property Conjecture (FOPC) [90] asserts that there is some k ≥ 2 s.t. for all ε > 0 there is a first order
property on k + 1 quantifiers that cannot be decided in O(mk−ε) time. [90] show that FOPC is equivalent
to the 2-OV hypothesis.

Here we present Williams’ [157] result that k-OV requires essentially nk time, under SETH. Afterwards
we will see some applications of this result.

Theorem 3.1 ([157]). If k-OV on sets with N vectors from {0, 1}m can be solved in Nk−εpoly(m) time for
any ε > 0, then CNF-SAT on n variables and m clauses can be solved in 2(1−ε′)npoly(m) time for some
ε′ > 0 and SETH is false.

Proof. We present a fine-grained reduction from CNF-SAT to k-OV. Let the given formula F have n vari-
ables and m clauses. Split variables into k parts V1, . . . , Vk on n/k variables each. For every j = 1, . . . k
create a set Aj containing a length m binary vector aj(φ) for every one of the N = 2n/k Boolean assign-
ments φ to the variables in Vj , where

aj(φ)[c] = 0 if the cth clause of F is satisfied by φ, and 1 otherwise.
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The instance of k-OV formed by A1, . . . , Ak has all |Aj | = N = 2n/k.
Suppose that for some a1(φ1) ∈ A1, . . . , ak(φk) ∈ Ak, we have

∑
c

∏
j aj(φj)[c] = 0, then for every

clause c, there is some vector aj(φj) that is 0 in clause c, and hence the Boolean assignment φj to the
variables in Vj satisfies clause c. Thus, the concatenation φ1 � . . . � φk is a Boolean assignment to all
variables V of F that satisfies all clauses. Conversely, if φ satisfies all clauses, then we define φj to be the
restriction of φ to Vj , and we see that

∑
c

∏
j aj(φj)[c] = 0, as every clause must be satisfied by some φj .

If k-OV on k sets of N vectors each in {0, 1}m can be solved in Nk−εpoly(m) time, then CNF-SAT on
n variables and m clauses can be solved in time (2n/k)k−εpoly(m) = 2n−ε

′
poly(m) time for ε′ = ε/k > 0.

This contradicts SETH. �

We note that due to the Sparsification Lemma [101], one can assume that the n-variable `-CNF instance
that one reduces to k-OV hasO(n) clauses. Thus, to refute SETH, one only needs to obtain anNk−εpoly(d)
time algorithm for ε > 0 for k-OV where the dimension d of the vectors is any slowly growing function of
N that is ω(logN), for instance d = log2N .

Besides k-OV, Williams also considers the k-Dominating set problem: for a fixed constant k, given an
n node graph G = (V,E), determine whether there is a subset S ⊆ V of size k so that for every v ∈ V
there is some s ∈ S so that (s, v) ∈ E. Williams ([158], later in [130]) shows via a reduction from CNF-
SAT, k-Dominating set requires nk−o(1) time. The reduction from CNF-SAT to k-OV can be routed through
k-Dominating Set, showing that that problem is in a sense between CNF-SAT and k-OV.

The k-OV problem is the basis for most reductions from CNF-SAT to problems within Polynomial Time.
We will give two examples, and will then give a short summary of most known results.

It is simple to reduce k-OV to (k − 1)-OV: go over all vectors in the first set, and solve a (k − 1)-OV
instance for each. Hence 2-OV is the hardest out of all k-OV problems. Also, k-OV is potentially strictly
harder than SETH. Thus, even if SETH turns out to be false, the k-OV Hypothesis might still hold.

Orthogonal Vectors and Graph Diameter. Arguably the first reduction from SETH to a graph problem
in P is from a paper by Roditty and Vassilevska Williams [135] that considers the Diameter problem: given
an n node, m edge graph G = (V,E), determine its diameter, i.e. maxu,v∈V d(u, v).

For directed or undirected graphs with arbitrary (real) edge weights, the fastest known algorithm for the
Diameter problem computes all the pairwise distances in G, solving APSP. As mentioned earlier, the fastest
known algorithm for APSP in dense graphs runs in n3/ exp(

√
log n) time. For sparser graphs, the fastest

known algorithms run in Õ(mn) time4 [129, 127, 128].
If the graph is unweighted, one can solve Diameter in Õ(nω) time, where ω < 2.373 [150, 111] is

the exponent of square matrix multiplication. If the graph has small integer edge weights in {0, . . . ,M},
Diameter is in Õ(Mnω) time (see e.g. [70]). However, since ω ≥ 2, all known algorithms for Diameter run
in Ω(n2) time, even when the graph is unweighted, and undirected5, and has m ≤ O(n) edges.

With a simple reduction, [135] show that under SETH, the Diameter problem in undirected unweighted
graphs with n nodes and O(n) edges requires n2−o(1) time. Moreover, their reduction shows that under
SETH, even distinguishing between graphs with Diameter 2 and 3 requires n2−o(1) time, and hence no
3/2− ε approximation algorithm can run in O(n2−δ) time for ε, δ > 0 even on sparse graphs.

Chechik et al. [62] obtained a 3/2-approximation algorithm for Diameter that runs in Õ(m3/2) time in
m-edge graphs; their algorithm was based on a previous Õ(m

√
n) time algorithm from [135] that is a 3/2

4Õ(f(n)) denotes f(n)polylog(n).
5All shortest paths problems, including Diameter, are at least as hard in directed graphs as they are in undirected graphs;

similarly, they are at least as hard in weighted graphs as they are in unweighted graphs, and at least as hard in denser graphs than
they are in sparser graphs.
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(a) Reduction from OV to Diameter 2 vs 3.
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iff a3[p] = a3[q] = 1
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(a′3, (ci, cj))
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and a′2[q] = 1

iff a1[i] = a1[j] = 1
and a2[i] = 1

(a′2, a
′
3)

iff a′3[i] = a′3[j] = 1
and a′2[j] = 1X Y

(b) Reduction from 3-OV to S-T -Diameter 3 vs 7.

Figure 1: Two reductions to Diameter Problems.

approximation when the diameter is divisible by 3 (and slightly worse otherwise). This algorithm is thus in
a sense optimal, under SETH: it runs in truly subquadratic time in sparse graphs, but if one wants to improve
upon the approximation factor even slightly, all of a sudden n2−o(1) time is needed. An Õ(n2) runtime in
sparse graphs is very easy to achieve: just solve APSP by running BFS from every node! Thus, under SETH,
there is essentially nothing more to do besides the easy algorithm, for approximation below 3/2.

Theorem 3.2. If one can distinguish between Diameter 2 and 3 in an undirected unweighted graph with
O(N) nodes and edges inO(N2−ε) time for some ε > 0, then 2-OV on two sets of n vectors in d dimensions
can be solved in n2−εpoly(d) time and SETH is false.

Proof. Suppose we are given an instance of 2-OV, A, B of n vectors each in {0, 1}d, where |A| = |B| = n.
Let’s create a graph G as follows. See Figure 1a.

For every vector a ∈ A, create a node a of G. For every vector b ∈ B, create a node b of G. For every
i ∈ [d], create a node ci. We add two additional nodes x and y.

The edges are as follows. For every a ∈ A and i ∈ [d], if a[i] = 1, add an edge between a and ci in G.
Similarly, for every b ∈ B and i ∈ [d], if b[i] = 1, add an edge between b and ci in G.

The edges incident to x are as follows: (x, a) for every a ∈ A, (x, ci) for every i ∈ [d] and (x, y). The
edges incident to y are as follows: (y, b) for every b ∈ B and (y, ci) for every i ∈ [d] (and (x, y)).

Now, if a ∈ A and b ∈ B are not orthogonal, then there is some i such that a[i] = b[i] = 1, and so
d(a, b) = 2 via the path through ci. Otherwise, if a and b are orthogonal, then there is no such ci and the
shortest a− b path goes through (x, y), and d(a, b) = 3. All nodes in the graph are at distance at most 2 to
x, y, and each ci, and hence the Diameter is 3 if there is an orthogonal pair, and 2 otherwise.

Let N = nd. The number of nodes and edges is at most O(N). If Diameter 2 vs 3 can be solved in
O(N2−ε) time for some ε > 0, then 2-OV is in O((nd)2−ε) ≤ n2−εpoly(d) time for ε > 0. �

By the above result, we get that under the 2-OV Hypothesis, improving upon the approximation factor
of the known Diameter algorithms [135, 62] is impossible without blowing up the running time to n2−o(1).
However, all known 3/2-approximation algorithms run in Õ(n1.5) time in sparse graphs. Can this runtime
be improved? Can it be made linear?

Cairo et al. [52] presented faster approximation algorithms for Diameter. Generalizing [135, 62], they
presented for every integer k ≥ 1, an Õ(mn1/(k+1)) time algorithm that is a 2− 1/2k-approximation to the
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Diameter of undirected graphs (if it is divisible by 2k+1 − 1, and slightly worse otherwise). Unfortunately,
the approximation quality degrades as the runtime decreases. Thus their results do not answer the question
of whether there are faster 3/2-approximation algorithms.

In recent work, Backurs et al. [33] show that unless the 3-OV Hypothesis (and hence SETH) is false,
any 3/2-approximation algorithm to the Diameter in sparse graphs needs n1.5−o(1) time, thus resolving the
question. They also obtain a variety of other tight conditional lower bounds based on k-OV for different k
for graph Eccentricities, and variants of Diameter.

The hardness result for 3/2-approximate Diameter is based on a hardness construction for a slightly
more difficult problem called S-T Diameter. In it, one is given a graph G = (V,E) and two subsets
S, T ⊆ V and is asked to compute DS,T := maxs∈S,t∈T d(s, t), the so called S-T Diameter which is the
largest distance between a node of S and a node of T .

When it comes to exact computation in sparse weighted graphs, S-T Diameter is (n2, n2)-equivalent to
Diameter (see [33]). When it comes to approximation, the problems differ a bit. In linear time, Diameter
admits a 2-approximation, while S-T Diameter admits a 3-approximation. In Õ(m3/2) time, Diameter
admits a 3/2-approximation, whereas S-T Diameter admits a 2-approximation. Thus, the starting point of
the hardness for 3/2-approximate Diameter is a hardness construction for 2-approximate S-T Diameter.

Theorem 3.3 ([33]). Under the 3-OV Hypothesis, no O(N1.5−ε) time algorithm for ε > 0, can distinguish
between S-T Diameter 3 and 7 in graphs with at most N nodes and edges.

Since any 2-approximation algorithm can distinguish between S-T Diameter 3 and 7, the Theorem above
implies that n1.5−o(1) time is needed to 2-approximate the S-T Diameter of a sparse graph. We will present
the proof of Theorem 3.3. To complete the reduction to Diameter, some extra gadgets are needed; these
create a graph in which the Diameter is either 5 or 9 and thus give hardness for 3/2-Diameter approximation.
We refer the reader to the presentation in [33]. Theorem 3.2 and the extension to Theorem 3.3 to Diameter
can be generalized to a reduction from k-OV for arbitrary k to Diameter, thus showing a time/approximation
tradeoff lower bound [33].

Proof Sketch of Theorem 3.3. Let A1, A2, A3 ⊆ {0, 1}d be the n-sets forming the 3-OV instance.
For every pair of vectors a1 ∈ A1, a2 ∈ A2, we create a node (a1, a2) in a set S. For every pair of

vectors a2 ∈ A2, a3 ∈ A3, we create a node (a2, a3) in a set T .
For every node a1 ∈ A1 and every pair of coordinates i, j ∈ [d], create a node (a1, xi, xj) in a set X .

For every node a3 ∈ A3 and every pair of coordinates i, j ∈ [d], create a node (a3, xi, xj) in a set Y .
See Figure 1b. The edges are as follows.
For every i, j ∈ [d], and every a1 ∈ A1, a3 ∈ A3, add an edge between (a1, xi, xj) and (a3, xi, xj); we

get bicliques in X × Y corresponding to each pair of coordinates i, j.
For each (a1, a2) ∈ S, we add an edge to (a1, xi, xj) ∈ X if and only if a1[i] = a1[j] = 1 and a2[i] = 1.

For each (a2, a3) ∈ T , we add an edge to (a3, xi, xj) ∈ Y if and only if a3[i] = a3[j] = 1 and a2[j] = 1.
Suppose that there is no 3-OV solution. Then, for every a1 ∈ A1, a2 ∈ A2, a3 ∈ A3, there exists a

coordinate k such that a1[k] = a2[k] = a3[k] = 1. Consider an arbitrary (a1, a2) ∈ S and (a′2, a3) ∈ T .
There is a coordinate i for which a1[i] = a2[i] = a3[i] = 1 and a coordinate j for which a1[j] = a′2[j] =
a3[j] = 1. By construction, there is an edge between (a1, a2) ∈ S and (a1, xi, xj) ∈ X and between
(a′2, a3) ∈ T and (a3, xi, xj) ∈ Y . Together with the edge between (a1, xi, xj) and (a3, xi, xj), we get that
the distance between (a1, a2) ∈ S and (a′2, a3) ∈ T is 3. Thus the S-T -Diameter is 3.

Suppose now that there is a 3-OV solution, a1 ∈ A1, a2 ∈ A2, a3 ∈ A3. Then one can show that
if d((a1, a2), (a2, a3)) ≤ 5, then there is a coordinate i such that a1[i] = a2[i] = a3[i] = 1, giving a
contradiction. Because the graph is bipartite, the distance must be ≥ 7, and we can conclude.
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Thus, the S-T Diameter is 3 if there is no 3-OV solution or≥ 7 if there is one. The number of vertices is
O(n2 +nd2) and the number of edges is O(n2d2). Let N = n2d2. If there is an O(N3/2−ε) time algorithm
distinguishing 3 and 7 for ε > 0, then 3-OV can be solved in n3−2εpoly(d) time. �

Other known hardness results under SETH and k-OV. In recent years, there has been an explosion of
conditional hardness results based on OV and hence SETH:

1. Tight lower bounds for approximating the Graph Diameter and Graph Eccentricities [135, 62, 14, 33].

2. Tight quadratic lower bounds for the Local Alignment problem [15].

3. Tight lower bounds for dynamic problems. The first comprehensive paper to consider multiple
hardness hypotheses to explain the difficulty of dynamic problems was by Abboud and Vassilevska
Williams [13]. Under SETH, the main hardness results concern the following dynamic problems:
maintaining under edge insertions and deletions, the strongly connected components of a graph, the
number of nodes reachable from a fixed source, a 1.3 approximation of the graph diameter, or given
fixed node sets S and T , whether there is a pair of nodes s ∈ S, t ∈ T so that s can reach t.

4. Strong hardness for the All Pairs Max Flow problem [107]: in n node, m edge graphs mn2−o(1) time
is needed. Lower bounds from OV and from Max-CNF-SAT. These results are based on previous
hardness for variants of the Max Flow problem under SETH by Abboud et al. [16].

5. Lower bounds for incremental and decremental Max-Flow [74] following [16] and [13]. This is among
the handful of lower bounds that address amortized runtimes for partially dynamic algorithms. The
prior techniques could only provide worst case lower bounds here.

6. Lower bounds for sensitivity problems. Sensitivity problems are similar to dynamic problems in that
they need to preprocess the input and prepare a data structure that answers queries after some sequence
of updates. The difference is that once the queries are answered, the updates must be rolled back to the
original state of the input. That is, the sensitivity problem is to prepare for any set of small changes and
be able to answer queries on them. [97] give lower bounds under SETH for sensitivity data structures
for graph problems such as answering for any small (constant) size set of edge insertions, approximate
Graph Diameter queries or queries about the number of nodes reachable from a fixed source node.

7. Closest Pair in d-dimensional Hamming Space cannot be solved in n2−ε2o(d) time for ε > 0 [22].
The best algorithm for this problem and several others (e.g. offline bichromatic furthest neighbors) is
by [21] and runs in n2−1/O(c log2(c)) time for d = c log n.

8. Quadratic lower bounds for LCS [4, 48], Edit Distance [30], Frechet Distance [43]. [4] also give an
nk−o(1) lower bound for computing the LCS of k strings for any k ≥ 2.

9. Tight lower bounds for problems like LCS and RNA-Folding where the input strings are represented
as a context free grammar whose only output is the input string [1]. Some of the lower bounds are
also based on Hypotheses about the complexity of k-Clique and k-SUM.

10. Subset Sum on n integers and target T , cannot be solved in T 1−ε2o(n) time for any ε > 0 [6]. Similar
results apply to the Bicriteria Path problem.

11. Tight lower bounds for the Subtree Isomorphism problem: given rooted trees on n total nodes T and
T ′, is T a subtree of T ′? [2] show that truly subquadratic algorithms for the following refute the OV
Hypothesis: for binary, rooted trees, or for rooted trees of depth O(log log n). Conversely, for every
constant d, there is a constant εd > 0 and a randomized, truly subquadratic algorithm for degree-d
rooted trees of depth at most (1 + εd) logd n.
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12. Frechet distance on n-length strings requires n2−o(1) time [43], and is hard to approximate [47, 49].

13. Tight results for regular expression matching ([31, 45]): here one is given a pattern of length m, text
of length n, and the pattern involves concatenation, OR, Kleene star and Kleene plus. Under SETH,
there is a dichotomy of problems (proven for depth 2 by [31] and for > 2 by [45]): either they are
solvable in near-linear time, or they require mn1−o(1) time. There is a single exception: the Word
Break problem solvable in Õ(m+ nm1/3) time [45].

14. Tight lower bounds for problems in model checking: for Büchi objectives [59] and others [60].

15. Tight lower bounds for succinct stable matching [121].

16. Quadratic hardness results for problems in Machine Learning [32].

17. Tight hardness for some one dimensional Dynamic Programming problems [108].

18. Furthest pair in Rd (`2) on n vectors, when d = ω(log log n) requires n2−o(1) time [160]. This is to
be contrasted with Closest Pair in the same dimensions which can be solved in n1+o(1) time.

19. Very strong inapproximability several problems via the introduction of Distributed PCPs for Fine-
Grained Hardness of Approximation [12]: Bichromatic Max-Inner Product on N vectors in {0, 1}d

cannot be approximated better than a factor of 2(logN)1−o(1) if you do not spend N2−o(1) time. Sim-
ilar inapproximability for approximation versions of Subset Query, Bichromatic LCS Closest Pair,
Regular Expression Matching and Diameter in Product Metrics.

4 Hardness results from 3-SUM.

A seminal paper by Gajentaan and Overmars [87, 88] from the 1990s introduces the 3-SUM Hypothesis and
proves that a large set of problems in computational geometry require quadratic time, under this hypothesis:

1. Given a set of points in the plane, decide whether any three are colinear (Colinearity/3 Points on Line).

2. Given a set of lines in the plane, decide whether any three of them pass through the same point (Point
on 3 Lines).

3. Given a set of non-intersecting, axis-parallel line segments, decide whether some line separates them
into two non-empty subsets (Separator).

4. Given a set of (infinite) strips in the plane and a rectangle, decide whether they fully cover the rectangle
(Strips Cover Box).

5. Given a set of triangles in the plane, compute their measure (Triangle Measure).

6. Given a set of horizontal opaque triangles in three dimensional space, a view point p and another
triangle T , decide whether there is a point on T that can be seen from p (Visible Triangle).

7. Given a set of non-intersecting, axis-parallel line segment obstacles in the plane, a rod and a source
and a destination point, decide whether the rod can be moved by translations and rotations from the
source to the destination without colliding with the obstacles (Planar Motion Planning).

8. Given a set of horizontal triangle obstacles in three dimensional space, a vertical rod, and a source
and destination, decide whether the rod can be translated (without rotation) from the source to the
destination without colliding with the obstacles (3D Motion Planning).

12



The notion of 3-SUM hardness reduction used in [87, 88] is more restrictive than the fine-grained re-
duction defined later on. It only allows the creation of O(1) number of instances, each of no more than
linear size. Even though the reduction notion is limited, it is still possible to obtain all of the above hardness
results using more or less simple algebraic transformations. The paper inspired many other 3-SUM hard-
ness results in computational geometry. Some of these include polygon containment [38], testing whether a
dihedral rotation will cause a chain to self-intersect [139] and many others [76, 80, 28, 63, 42, 81, 26, 25, 18].

A transformative paper in 3-SUM research by Pǎtraşcu [131] shows that 3-SUM is equivalent (under
subquadratic reductions) to a slightly simpler looking problem, 3-SUM Convolution: Given three length n
arrays A, B and C of integers, decide whether there exist i, k such that C[k] = A[i] +B[k − i].

Unlike for 3-SUM, O(n2) is the brute-force algorithm runtime for 3-SUM Convolution (for 3-SUM the
trivial runtime is O(n3)). This makes it easier to reduce 3-SUM Convolution to other problems whose best
known algorithm is the brute-force one. Also, because now the search is reduced to finding two indices
i, k, as opposed to searching for a sum of two integers, one can use 3-SUM Convolution in reductions to
problems that are more combinatorial in nature. Pǎtraşcu reduces 3-SUM Convolution to problems such as
Listing Triangles in a graph. He shows that listing up to m triangles in an m-edge graph requires m4/3−o(1)

time under the 3-SUM Hypothesis. This is the first hardness result for a truly combinatorial problem (no
numbers in the instance).

Prior to Pǎtraşcu’s results, there is one other 3-SUM hardness result for a problem outside computational
geometry, by Vassilevska and Williams [147]. They show that under the 3-SUM Hypothesis, the following
Exact Triangle problem requires n2.5−o(1) time on an n node edge-weighted graph G: determine whether
there is a triangleGwhose edge weights sum to 0. Pǎtraşcu’s equivalence between 3-SUM and 3-SUM Con-
volution allows this hardness to be improved to n3−o(1), thus showing that the brute-force cubic algorithm
for the problem might be optimal [151].

After [131] and [151], many other combinatorial problems were proven to be 3-SUM hard: Abboud and
Vassilevska Williams [13] continue Pǎtraşcu’s work, giving lower bounds for many dynamic problems under
the 3-SUM hypothesis. Example graph problems of consideration are to maintain under edge deletions and
insertions: s − t Reach (whether a given fixed source can reach a given fixed destination in a directed
graph), SCC (the strongly connected components of a graph, or even just their number), BPMatch (whether
a bipartite graph as a perfect matching), and many others. Kopelowitz et al. [106] improve Pǎtraşcu’s
reduction to triangle listing and show that the known algorithms for listing triangles in graphs [40] are
optimal if ω = 2 and under the 3-SUM Hypothesis. They also give amortized conditional lower bound for
maintaining a maximum matching in a graph under edge insertions. [15] show that the Local Alignment
requires quadratic time under 3-SUM. The following other problems are also known to be hard under 3-
SUM: jumbled indexing [23], online pattern matching with gaps [24], partial matrix multiplication, and
witness reporting versions of convolution problems [92], and others.

5 Hardness results from APSP.

APSP is now known to be equivalent to many other problems on n node graphs and n× n matrices so that
either all these problems admit O(n3−ε) time algorithms for ε > 0, or none of them do. A partial list of
these equivalent problems is below. The main references are the original paper by Vassilevska Williams and
Williams [148, 149] (bullets 1-9), and also [29] (bullet 9), [9] (bullets 10-12), and [115] (bullet 13).

1. The all-pairs shortest paths problem on weighted digraphs (APSP).

2. Detecting if an edge-weighted graph has a triangle of negative total edge weight (Negative Triangle).
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3. Listing up to n2.99 negative triangles in an edge-weighted graph (Triangle listing).

4. Finding a minimum weight cycle in a graph of non-negative edge weights (Shortest Cycle).

5. The replacement paths problem on weighted digraphs (RP).

6. Finding the second shortest simple path between two nodes in a weighted digraph (2nd Shortest Path).

7. Checking whether a given matrix defines a metric (Metricity).

8. Verifying a matrix product over the (min,+)-semiring (Distance Product Verification).

9. Finding a maximum subarray in a given matrix (Max Subarray).

10. Finding the Median node of a weighted graph (Median).

11. Finding the Radius of a weighted graph (Radius).

12. Computing the Betweenness Centrality of a given node in a weighted graph (BC).

13. Computing the Wiener Index of a weighted graph (Wiener Index).

Some of the equivalences above have been strengthened to preserve sparsity [19, 115] and even the
range of weights [134]. Beyond the above equivalences, there have been multiple APSP-hardness results.
Computing the edit distance between two rooted ordered trees with nodes labeled from a fixed alphabet
(Tree Edit Distance) [44] is known to require cubic time if APSP does. An equivalence with APSP is an
open problem. [13] provided tight hardness for dynamic problems under the APSP Hypothesis. The main
results are for Bipartite Maximum Weight Matching and s-t Shortest Path, showing that the trivial dynamic
algorithms are optimal, unless APSP can be solved faster. For instance, any algorithm that can maintain
the distance in a weighted graph between a fixed source node s and a fixed target t, while supporting edge
deletions, must either perform n3−o(1) time preprocessing, or either the update or the query time must be
n2−o(1) ([13] following [136]). Henzinger et al. [97] give tight lower bounds under the APSP Hypothesis
for sensitivity problems such as answering Graph Diameter or s− t Shortest Path queries for any single edge
failure. Abboud and Dahlgaard [8] gave the first fine-grained lower bound for a problem in planar graphs:
no algorithm for dynamic shortest paths or maximum weight bipartite matching in planar graphs can support
both updates and queries in amortized O(n1/2−ε) time, for any ε > 0, unless the APSP Hypothesis fails.

The main technical hurdle in showing the equivalences and most hardness results above, overcome
by [148], is in reducing APSP to the Negative Triangle Problem. Negative Triangle is a simple decision
problem, and reducing it to the other problems above is doable, with sufficient gadgetry.

Below we will outline the reduction from APSP to Negative Triangle. It is a true fine-grained reduction
— it produces many instances, reducing a function problem to a decision problem.

The first step is to formulate APSP as a problem involving triangles, the All-Pairs Negative Triangles
(APNT) problem defined as follows: given a tripartite graph G with node partitions R, T,C, with arbitrary
edges in R× T, T × C,C ×R, with integer edge weights w(·), for every i ∈ R, j ∈ C, determine whether
there exists a t ∈ T so that w(i, t) + w(t, j) + w(j, i) < 0.

Reducing APSP to APNT (see [148]) is done by using a known equivalence [83] between APSP and
the Distance Product problem of computing a product of two matrices over the (min,+) semiring. Then
Distance Product is solved by using calls to APNT to binary search for the entries in the output matrix.

Now, it suffices to reduce the All-Pairs Negative Triangles problem to just detecting a Negative Trian-
gle. The reduction picks a parameter t = n2/3. Then, it arbitrarily partitions R, T,C into t pieces each
of size roughly n/t: (R1, . . . , Rt), (T1, . . . , Tt), (C1, . . . , Ct). Every negative triangle is in some triple
(Ri, Tj , Ck). We will create Negative Triangle instances for these triples as follows. See Figure 2.

14



R C

T
R1

R2

Rt

...

C1

C2

...

T1

T2

...

Tt

Ct

n/t nodes per group Ri, Cj, Tk

j

i

If subgraph induced by triple has a neg. triangle

through some (i, j), set D[i, j], remove edge (i, j),

and try to find another triangle in the triple.

Otherwise, move on to the next triple.

Number of triples: t3.

If Neg. Triangle is in O(n3−d) time,

APNT is in O((n2 + t3)(n/t)3−d) time.

Number of edge removals: n2.

Figure 2

Create an n×n all 0 matrix D that at the end will have D[i, j] = 1 if and only if there is some ` ∈ T so
that i, `, j is a negative triangle.

Now, for every triple of parts (Ri, Tj , Ck) in turn, starting with (R1, T1, C1), while the subgraph induced
by the triple (Ri, Tj , Ck) contains a negative triangle (this is a call to Negative Triangle), find one such
negative triangle i ∈ R, ` ∈ T, j ∈ C via self-reduction (see [148]). Set D[i, j] = 1 and remove (i, j) from
the entire graph; we do this so that there will be no more negative triangles containing (i, j) in any of the
subsequent Negative Triangle calls. Thus, the number of calls that do find a negative triangle is ≤ n2.

The algorithm keeps calling Negative Triangle on a triple until the triple has no more negative triangles,
and then moves on to the next triple. At the end it just returns D. The number of calls to Negative Triangle
that do not return a negative triangle are bounded by the number of triples which is t3.

The number of calls to Negative Triangle is at most t3 + n2, and each call is on a graph with O(n/t)
nodes. As t = n2/3, we get O(n2) calls to instances of size O(n1/3), i.e. a subcubic fine-grained reduction.

6 Other hypotheses.

Beyond the three main hardness hypotheses, there are several other ones that have come to the forefront of
fine-grained complexity. Again, the model of computation is the word-RAM with O(log n) bit words.

Hitting set. The Hitting Set (HS) problem is as follows: given two sets of vectors S, T ⊆ {0, 1}d for
d = ω(log n), determine whether there is some s ∈ S such that s · t 6= 0 for all t ∈ T , in other words a
vector in S that hits all vectors in T .

Hypothesis 5 (HS Hypothesis [14]). No randomized algorithm can solve HS on n vectors in {0, 1}d in
n2−εpoly(d) time for ε > 0.

To see why this new hypothesis is useful, consider the converse HS: decide whether ∀s ∈ S ∃t ∈ T
such that s · t = 0. This is OV with the first ∃ quantifier replaced with ∀. This quantifier flip allows for
different hardness results to be proven. For instance the Radius Problem asks, given a graph, whether there
exists a vertex c such that for all other vertices v, d(v, c) is most R. The converse asks whether ∀c ∃v such
that d(v, c) > R which is the ∀∃ variant of Diameter, which is ∃∃. While it was not hard to reduce the ∃∃
problem OV to Diameter, reducing it to the ∃∀ Radius seemed problematic. On the other hand, since HS
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has the ∀∃ structure, [14] are able to reduce it Radius, so that Radius on sparse graphs requires n2−o(1) time
under the HS Hypothesis. HS and its hypothesis are also studied in [90].

The HS Hypothesis implies the OV Hypothesis [14, 17], but the reverse is not known to be true.

Hypotheses on the complexity of k-Clique. For a constant k ≥ 3, the k-Clique problem is as follows:
given a graph G = (V,E) on n vertices, does G contain k distinct vertices a1, . . . , ak so that for every i, j,
i 6= j, (ai, aj) ∈ E? Such a k node graph is called a k-clique.

The k-Clique problem can easily be solved in O(nk) time by enumerating all k-tuples of vertices. A
faster algorithm [102, 123] reduces the problem to multiplying square matrices, giving an O(nωk/3) ≤
O(n0.8k) time algorithm when k is divisible by 3. Recall, ω < 2.373 is the exponent of square matrix
multiplication [150, 142, 111]. If k is not divisible by 3, the fastest known algorithm for k-Clique runs
asymptotically in the time to multiply an nbk/3c × ndk/3e matrix by an ndk/3e × nk−bk/3c−dk/3e matrix,
which is no more than O(n2+ωk/3); tighter bounds are known ([110, 69, 89, 100]).

Hypothesis 6 (k-Clique Hypothesis). No randomized algorithm can detect a k-Clique in an n node graph
in O(n

ωk
3
−ε) time for ε > 0.

The Hypothesis is usually used for k divisible by 3. Also, since ω ≥ 2 (one needs to output a matrix
with n2 entries), the hypothesis asserts in particular that k-Clique requires n2k/3−o(1) time.

Two harder problems are the Min-Weight k-Clique and Exact k-Clique problems. In both problems, one
is given a graph on n vertices and edge weights in {−n100k, . . . , n100k}. In the first, one seeks a k-Clique
that minimizes the total sum of its edge weights. In the second, one seeks a k-Clique with weight sum of
exactly 0. Neither of these problems are known to be solvable in O(nk−ε) time for any constant ε > 0.

Hypothesis 7 (Min-Weight k-Clique Hypothesis). The Min-Weight k-Clique problem on n node graphs
with edge weights in {−n100k, . . . , n100k} requires (randomized) nk−o(1) time.

Hypothesis 8 (Exact k-Clique Hypothesis). The Exact k-Clique problem on n node graphs with edge
weights in {−n100k, . . . , n100k} requires (randomized) nk−o(1) time.

It is known that the Min-Weight k-Clique Hypothesis implies the Exact k-Clique Hypothesis [147].
The version of Min-Weight k-Clique in which the weights are on the nodes, rather than on the edges, can
be solved in the same time as the (unweighted) k-Clique problem [73, 147, 11], so that the Min-Weight
k-Clique Hypothesis does not hold for node-weighted graphs.

Using results from [11] and [157] and the known reduction from k-Clique to k-Dominating Set, one can
show that Exact-Weight and Min-Weight k-Clique are (nk, n2)-reducible to 2-OV, and hence their hypothe-
ses imply the OV Hypothesis [5].

Notably, the Min-Weight 3-Clique problem is equivalent to the Negative Triangle problem and hence
also to APSP, under subcubic fine-grained reductions [148]. Exact 3-Clique is just the Exact Triangle prob-
lem studied by [151]. Exact 3-Clique seems genuinely more difficult than Min-Weight 3-Clique. First,
the latter problem can be solved in n3/ exp(

√
log n) time [159], whereas the fastest algorithm for Exact

3-Clique runs in n3(log log n)2/ log n time [104]. Second, as we mentioned in the section on 3-SUM, Exact
3-Clique requires n3−o(1) under both the 3-SUM and the APSP Hypotheses, whereas Min-Weight 3-Clique
is equivalent to APSP which is not known to be related to 3-SUM and could be potentially easier.

The following tight lower bounds under the k-Clique Hypothesis are known: Context Free Grammar
Recognition for O(1) size grammars, RNA-Folding, and Language Edit Distance require nω−o(1) time [3,
58], and Tree-adjoining grammar parsing [50] requires the unusual running time of n2ω, tight due to [132].
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The following problems have tight conditional lower bounds under the Min-Weight k-Clique Hypothe-
sis: all problems hard under the APSP Hypothesis, the Local Alignment Problem [15], the Viterbi problem
of finding the most likely path in a Hidden Markov Model (HMM) that results in a given sequence of ob-
servations [34], the Maximum Weight Box problem that given weighted points (positive or negative) in d
dimensions, asks to find the axis-aligned box which maximizes the total weight of the points it contains [29].

Recently, the k-Clique and Min-Weight k-Clique Hypotheses have been used to show hardness for
graph problems for almost all sparsities. Recall that under SETH one could show that many problems in
very sparse graphs (with a near-linear number of edges) are hard. On the other hand, the APSP Hypothesis
implied hardness for problems in dense graphs, i.e. when the runtime is measured solely in terms of the
number of vertices. However, neither of these hypotheses seem to address questions such as “Can APSP be
solved in O(n2 + m3/2) time?”. Such a runtime would be consistent with the APSP Hypothesis and with
the fact that in sparse graphs one needs Ω(n2) time to write down the output.

For APSP and many other graph problems on m edges and n vertices, the best known running times
are of the form Õ(mn): APSP, Shortest Cycle, Replacement Paths, Radius, Wiener Index etc. There is no
faster algorithm for any sparsitym. Lincoln et al. [115] address this by showing that for any constant k ≥ 1,
if one assumes the Min-Weight 2k + 1-Clique Hypothesis, then APSP, Shortest Cycle, Replacement Paths,
Radius, Wiener Index etc. require mn1−o(1) time in weighted graphs with m = Θ(n1+1/k) edges. In other
words, for an infinite number of sparsities, mn is the right answer. Under the k-Clique Hypothesis, [115]
provide weaker lower bounds for the same problems in unweighted graphs.

Boolean Matrix Multiplication (BMM). The BMM problem is, given two n × n matrices A and B, to
compute the n×nmatrix C with C[i, j] = ∨ni=1(A[i, k]∧B[k, j]) for all i, j. BMM can be solved using the
known matrix multiplication algorithms over a field by embedding the Boolean semiring into the Rationals.
Thus BMM on n × n matrices is in O(n2.373) time [150, 111]. However, the theoretically fast algorithms
for matrix multiplication are considered inefficient. The desire for more practical algorithms motivates the
notion of “combinatorial” algorithms. This notion is not well-defined, however it roughly means that the
runtime should have a small constant in the big-O, and that the algorithm is feasibly implementable.

There is a “BMM hypothesis” (in quotes as this is not well-defined) asserting that any combinatorial
BMM algorithm requires n3−o(1) time. This is supported by the lack of truly subcubic combinatorial BMM
algorithms: the fastest is by Yu [162] and runs in n3(log log n)O(1)/ log4 n time. The first combinatorial
BMM algorithm is the so called Four-Russians algorithm [27], which was later improved by [55, 36, 162].

The BMM Hypothesis has been used to explain the lack of fast combinatorial algorithms for many
problems: many dynamic problems [13, 136], Context Free Grammar Parsing [112], 2k-Cycle in undirected
graphs [75], etc. Also many fine-grained combinatorial equivalences to BMM are known (e.g. [148]).

Online Matrix Vector Multiplication (OMV). The BMM Hypothesis is unsatisfactory due to the unde-
fined combinatorial notion, and there has been some work to replace it with something else. Henzinger et
al. [96] define the Online Matrix Vector (OMV) hypothesis which makes the BMM hypothesis about an on-
line version of the problem for which even non-combinatorial subcubic algorithms seem out of reach. The
OMV problem is well-studied [154, 41, 109]: given an n × n Boolean matrix, preprocess it so that future
products with arbitrary query n× 1 vectors are efficient.

Hypothesis 9 (OMV Hypothesis). Every (randomized) algorithm that can process a given n × n Boolean
matrix A, and then in an online way can compute the products Avi for any n vectors v1, . . . , vn, must take
total time n3−o(1).
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The best algorithm for OMV is by Larsen and Williams [109] who show that the OMV problem (for n
queries) can be solved in total time n3/ exp(

√
log n) via a reduction to the OV problem. Moreover, [109]

give a cell probe algorithm that can solve the problem using O(n11/4/
√

log n) probes, thus ruling out an
unconditional lower bound for OMV using purely information theoretic techniques.

The OMV Hypothesis is particular suited to proving conditional lower bounds for dynamic problems.
Such lower bounds are known for practically all dynamic problems for which there is a known BMM-based
combinatorial lower bound [96], and many other problems (e.g. [74]).

Nondeterministic Strong Exponential Time Hypothesis (NSETH). Surprisingly, the fastest algorithm
for CNF-SAT on formulas on n variables, even using nondeterminism, still runs in roughly 2n time. This
motivated Carmosino et al. [53] to define the following.

Hypothesis 10 (Nondeterministic Strong Exponential Time Hypothesis (NSETH)). Refuting unsatisfiable
k-CNF formulas on n variables requires nondeterministic 2n−o(n) time for unbounded k.

It is worth noting that NSETH does not allow randomization. In early work, Carmosino et al. also pro-
posed a Merlin-Arthur and Arthur-Merlin SETH that assert that no constant round probabilistic proof system
can refute unsatisfiable k-CNF formulas in 2n−Ω(n) time. Williams [156] shows that these hypotheses are
false in a very strong way, exhibiting proof systems that prove that the number of satisfying assignments of
any given o(n)-depth, bounded-fan-in circuit is a given value, using a proof of length 2n/2poly(n) that can
be verified in 2n/2poly(n) time with high probability, using only O(n) random bits.

The fact that the AM and MA versions of NSETH are false casts doubt on the veracity of NSETH. Nev-
ertheless, disproving NSETH seems challenging. Assuming NSETH, [53] prove that there can be no deter-
ministic reduction from OV to 3-SUM or APSP. This is done by exhibiting fast nondeterministic algorithms
for the latter two problems, whereas OV cannot have a nontrivial nondeterministic refutation algorithm,
under NSETH, via Williams’ [157] reduction from CNF-SAT to OV that we presented earlier.

SETH for other Circuit Satisfiability Problems. As we mentioned in the introduction, CNF places a
restriction on the input of the more general SAT problem. When represented as a circuit, a k-CNF formula
has depth two — it is an AND of ORs. Moreover, due to the Sparsification Lemma of [101], SETH really
concerns the satisfiability problem for depth two circuits of O(n) size. To make SETH more believable, we
can instead consider the satisfiability of less restricted classes of inputs to Circuit SAT.

Consider a Boolean function f on n bit inputs for which we want to prove satisfiability. It is not hard
to see that any algorithm whose only access to f is by querying the value of f on various inputs, must
spend Ω(2n) time to check if there is an n-bit x for which f(x) = 1. A clever algorithm would do more
than query the function. It would attempt to analyze f to decrease the runtime of SAT. How much power
algorithms have to analyze f depends crucially on the representation of f . It is impossible for a black box
representation, and it is quite trivial if f is given as a DNF formula (ORs of ANDs of literals).

For each class C of representations, we can define the corresponding C-SETH that states that SAT with
a representation from C cannot be solved in O(2(1−ε)n) time for ε > 0.

C-SETH for k-CNF Formulas as k grows is just SETH. NC-SETH on the other hand asserts that SAT of
polynomial size, polylogarithmic depth circuits requires 2n−o(n) time. NC circuits are much more powerful
than CNF Formulas. They can perform most linear algebraic operations, and they can implement cryp-
tographic primitives like One Way Functions and Pseudorandom Generators, for which the ability to hide
satisfiability is crucial.
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C-SETH was defined by Abboud et al. [10] who gave fine-grained lower bounds for sequence alignment
problems such as Edit Distance, Frechet Distance, LCS. For instance, these problems on n length sequences
require n2−o(1) time unless NC-SETH fails, thus replacing the prior SETH hardness results with NC-SETH
hardness. The results of [10] also imply that a truly subquadratic algorithm for any of these problems would
imply novel circuit lower bounds for classes such as ENP. More surprisingly, if these problems can be solved
in O(n2/ logc n) time for all constants c, then NTIME[2O(n)] does not have non-uniform polynomial-size
log-depth circuits. Hence, shaving all polylogs over the textbook quadratic runtime would result in a major
advance in complexity theory.

Two Problems Harder than CNF-SAT, 3-SUM and APSP. The search for more believable hypotheses
than SETH, and the APSP and 3-SUM Hypotheses motivates the following more believable conjecture: “At
least one of SETH, the APSP Hypothesis and the 3-SUM Hypothesis is true.”

To prove hardness under this conjecture, one would have to perform three reductions (from k-SAT, APSP
and from 3-SUM) instead of just one; this can be cumbersome. It is also not apriori clear that any natural
problems are hard under all three conjectures. Abboud et al. [16] define two simple combinatorial problems
and reduce k-SAT, APSP and 3-SUM to them. The goal is then to use these as the basis of hardness.

The first problem is Triangle Collection: Given a graph G = (V,E) with node colors c : V →
{1, . . . , n}, decide whether there exist colors c1, c2, c3 ∈ {1, . . . , n} such that there are NO triangles u, v, w
in G (i.e. (u, v), (v, w), (w, u) ∈ E), such that c(u) = c1, c(v) = c2, c(w) = c3.

The second problem is Matching Triangles: Given a graph G = (V,E) with node colors c : V →
{1, . . . , n} and an integer ∆, decide whether there exist colors c1, c2, c3 ∈ {1, . . . , n} such that there are at
least ∆ triangles u, v, w in G (i.e. (u, v), (v, w), (w, u) ∈ E), such that c(u) = c1, c(v) = c2, c(w) = c3.

Abboud et al. [16] show that if either Triangle Collection or Matching Triangles on n node graphs
admit an O(n3−ε) time algorithm for any ε > 0, then all three of SETH, the APSP Hypothesis and the
3-SUM Hypothesis are false. In fact, this is true for a restricted version Triangle Collection∗ of Triangle
Collection that is easier to work with, and [16] give conditional hardness under it for several dynamic graph
problems under edge insertions and deletions such dynamic Max Flow, or maintaining the number of nodes
reachable from a fixed source node. Dahlgaard [74] gave conditional lower bounds for approximating the
graph Diameter both statically and dynamically, under the Triangle Collection∗ hypothesis. Hence many
problems are known to be difficult under all three main hypotheses.

7 Further Applications of Fine-grained Complexity.

The fine-grained approach has found applications in many other areas of TCS:

• FPT in P. Parameterized complexity strives to classify problems according to their time complexity
as a function of multiple parameters of the input or output. This is a different way to classify problems
on a finer scale. It is particularly interesting for NP-hard problems.

A problem is FPT with respect to a set of parameters if it can be solved in time f(k1, . . . , kt)poly(n)
on inputs of size n and parameters set to k1, . . . , kt; here f can be any computable function. FPT
problems can be solved in polynomial time when the parameters are constant; this can often make
NP-hard FPT problems tractable. Parameterized complexity has identified many problems that are
FPT and has developed a theory to explain which problems are likely not to be FPT (see e.g. [84, 72]).

Abboud et al. [14] consider a notion of FPT for polynomial time problems: Fixed Parameter Sub-
quadratic (FPS)– parameterized problems that admit algorithms running in time f(k)n2−ε for ε > 0
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on inputs of size n and parameter(s) set to k, for some computable function f . [14] show that the Di-
ameter and Radius problems in graphs with parameter treewidth are FPS. They also give conditional
lower bounds on the function f for these problems. Their work was continued by Fomin et al. [85]
who added fixed parameter results for other polynomial time problems. Notice that parameterized
algorithms have long been used within Algorithms: e.g. for graph problems, runtimes are often mea-
sured in terms of both the number of edges and the number of vertices. Abboud et al. [14] are the first
to give fine-grained conditional lower bounds for parameterized polynomial time solvable problems.

• Unconditional CONGEST Lower Bounds. Abboud et al. [7] consider the CONGEST model in dis-
tributed computing in which processors are n nodes in a graph, and computation proceeds in rounds
in which every processor can send O(log n) bits of information to all adjacent processors. [7] (see
also [46]) show how to convert some conditional lower bounds based on the OV Hypothesis to un-
conditional lower bounds in the CONGEST model. For instance, they show that in the CONGEST
model, any algorithm that can compute a 3/2 − ε approximation to the diameter of the graph of a
5/3− ε approximation to the eccentricities for any ε > 0 needs Ω(n) rounds of communication.

The basic idea in [7] is that OV is equivalent to Set Disjointness which has an unconditional Θ(n)
lower bound in communication complexity. The proofs show that any Diameter or Eccentricities
protocol that takes too few rounds is solving Set Disjointness with too little communication.

• Fine-Grained Cryptography. Two papers begin the study of creating cryptographic primitives from
fine-grained assumptions. Degwekar et al. [77] develop cryptographic protocols secure against ad-
versaries that are at most as powerful as low circuit classes within P such as NC1 — this is more
fine-grained but does not address runtime. More recently, [35], provide several problems that are
provably hard on average, under SETH or the 3-SUM or APSP Hypotheses. Then they use these
problems to construct a Proof of Work scheme. They leave as an open problem to develop more
cryptographic primitives, such as One Way Functions, from fine-grained assumptions.

• Fine-Grained Time/Space Tradeoffs for Algorithms. Besides considering the runtime as the main
measure of complexity, one can also consider the space usage. Lincoln et al. [114] study the
time/space tradeoffs of 3-SUM, building on prior work by Wang [153]. Besides developing new
algorithms, [114] show that the 3-SUM hypothesis is equivalent to the following hypothesis: There is
some δ > 0, such that every algorithm that usesO(n0.5+δ) space, needs n2−o(1) time to solve 3-SUM.

This makes the 3-SUM Hypothesis look even more plausible as it only applies to space bounded
algorithms. Also, one might conceivably be able to prove it unconditionally: restricting the space
usage has been sufficient to prove unconditional lower bounds for SAT, among other problems [155].

• Fine-Grained Time/Space Tradeoffs for Data Structures. Goldstein et al. [93] define various data
structure variants of 3-SUM, BMM and Directed Reachability, formulate novel conjectures and show
consequences for the time/space tradeoffs for various data structure problems.

• Fine-Grained Complexity in the I/O Model. Demaine et al. [78] initiate the study of the I/O
model from the perspective of fine-grained complexity. The paper proposes plausible I/O hardness
hypotheses, and uses these, together with fine-grained I/O reductions, to show that many known I/O
upper bounds are tight. For instance, the best known upper bound on the I/O complexity of LCS is
tight under one of the assumptions. Finally, they prove an analogue of the Time Hierarchy Theorem
in the I/O model.

Fine-grained complexity is a growing field and we hope that its ideas will spread to many other parts of
TCS and beyond.
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paths and unit capacity minimum cost flow in õ (m10/7 log W) time (extended abstract). In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 752–771, 2017.

[68] Michael B. Cohen, Aleksander Madry, Dimitris Tsipras, and Adrian Vladu. Matrix scaling and
balancing via box constrained newton’s method and interior point methods. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17,
2017, pages 902–913, 2017.

[69] D. Coppersmith. Rectangular matrix multiplication revisited. Journal of Complexity, 13:42–49, 1997.

[70] M. Cygan, H. N. Gabow, and P. Sankowski. Algorithmic applications of baur-strassen’s theorem:
Shortest cycles, diameter and matchings. In Proc. FOCS, 2012.

[71] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as cnf-sat. ACM
Trans. Algorithms, 12(3):41:1–41:24, May 2016.

[72] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

[73] A. Czumaj and A. Lingas. Finding a heaviest triangle is not harder than matrix multiplication. In
Proc. SODA, pages 986–994, 2007.

[74] Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to diameter.
In 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, pages 48:1–48:14, 2016.

[75] Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Morten Stöckel. Finding even cycles faster via
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