
Finding Four-Node Subgraphs in Triangle Time

Virginia Vassilevska Williams∗ Joshua R. Wang† Ryan Williams‡ Huacheng Yu§

Abstract

We present new algorithms for finding induced four-node
subgraphs in a given graph, which run in time roughly that of
detecting a clique on three nodes (i.e., a triangle).

• The best known algorithms for triangle finding in an n-
node graph take O(nω) time, where ω < 2.373 is the ma-
trix multiplication exponent. We give a general random-
ized technique for finding any induced four-node subgraph,
except for the clique or independent set on 4 nodes, in
Õ(nω) time with high probability. The algorithm can be
derandomized in some cases: we show how to detect a di-
amond (or its complement) in deterministic Õ(nω) time.
Our approach substantially improves on prior work. For
instance, the previous best algorithm for C4 detection ran
in O(n3.3) time, and for diamond detection in O(n3) time.

• For sparse graphs with m edges, the best known trian-
gle finding algorithm runs in O(m2ω/(ω+1)) ≤ O(m1.41)

time. We give a randomized Õ(m2ω/(ω+1)) time algo-
rithm (analogous to the best known for triangle finding)
for finding any induced four-node subgraph other than C4,
K4 and their complements. In the case of diamond detec-
tion, we also design a deterministic Õ(m2ω/(ω+1)) time al-
gorithm. For C4 or its complement, we give randomized
Õ(m(4ω−1)/(2ω+1)) ≤ O(m1.48) time finding algorithms.
These algorithms substantially improve on prior work. For
instance, the best algorithm for diamond detection ran in
O(m1.5) time.

1 Introduction

A fundamental and extensively studied problem in
graph algorithms is subgraph isomorphism (SI): deter-
mining whether a host graph G contains a copy of a
smaller graph H. SI has two versions: when the copy of
H is required to be induced, and when the copy is not nec-
essarily induced. It is known that induced SI is at least as
hard as non-induced SI1; in this paper, we only consider

∗Computer Science Department, Stanford University. Supported by
a Stanford SOE Hoover Fellowship, NSF Grant CCF-1417238 and BSF
Grant BSF:2012338.

†Computer Science Department, Stanford University. Supported by
a Stanford Graduate Fellowship.

‡Computer Science Department, Stanford University. Supported in
part by a David Morgenthaler II Faculty Fellowship, and NSF CCF-
1212372.

§Computer Science Department, Stanford University. Supported in
part by NSF CCF-1212372.

1To reduce the noninduced version of H-subgraph isomorphism to
the induced version when |H| = k is constant, first randomly partition
the nodes of the input graph G into k parts, and associate part i with node

the induced version.
When the size k of the graph H is allowed to vary

with the size of the input, SI is well-known to be NP-
complete; when k is a fixed constant, SI has a trivial
O(nk) time solution for any H and n-node graph G. In
1978, Itai and Rodeh [IR78] showed that a triangle, i.e. a
clique on 3 nodes, can be found in O(nω) time, where
ω < 2.373 [Vas12, Gal14] is the exponent of square
matrix multiplication over the integers. Building upon
Itai and Rodeh, Nešetřil and Poljak [NP85] showed that
an induced copy of any graph H on k = 3`+ z nodes
in an n-node graph G can be found in O(nz+ω`) time,
thus beating the trivial O(nk) runtime for all k ≥ 3.
Eisenbrand and Grandoni [EG04] used fast rectangular
matrix multiplication to improve the Nešetřil and Poljak
algorithms when k is not divisible by 3.

For small k and certain H, one can find induced copies
of H faster than the above generic runtimes. For instance,
if H is a path on 4 nodes, Corneil et al. [CPS85] showed
that finding an induced copy can be done in linear time,
whereas finding a 4-clique seems to require at least cubic
time in the number of vertices of G, even if ω = 2.

The case k ≤ 3 is relatively well-understood: if H is
not a triangle or its complement (the independent set on
3 nodes), then an induced copy can be found in linear
time. A triangle or its complement can be found either
in O(nω) time using Itai and Rodeh’s algorithm, or in
O(m2ω/(ω+1)) ≤ O(m1.408) time using a clever algorithm
by Alon, Yuster, Zwick [AYZ97]2.

Kloks, Kratsch and Müller [KKM00] studied the case
k = 4. They gave an interesting equivalence: if one can
compute the number of occurrences of any induced sub-
graph on 4 nodes in T (n) time, then the number of oc-
currences of all other 4-node subgraphs on 4 nodes can
also be computed in O(nω + T (n)) time. Kowaluk et
al. [KLL13] generalized this result for k > 4, to show

i of H. If (i, j) is not an edge of H, then for every node u in partition
i and node v in partition j, remove (u,v) if it was an edge. If the new
graph G′ contains an induced copy of H, then G contains a noninduced
one since G is a supergraph of G′. On the other hand, if G contains a
noninduced copy C of H, then with 1/k! probability, each node i of C is
in partition i, and hence in G′, C is an induced copy of H.

2The algorithm of [AYZ97] can count the number of triangles T in
a graph in O(m1.408) time, and the number of independent sets of size 3
in a graph is exactly n(n−1)(n−2)/6−m(n−2)+∑v deg(v)(deg(v)−
1)−T .

that if one knows the number of occurrences of any k-
node induced subgraph, one can compute the number for
all other k-node graphs in time O(nω(d(k−2)/2e,1,b(k−2)/2c)),
where ω(r,s, t) is the exponent of nr×ns×nt matrix mul-
tiplication. Although these two papers did not obtain new
bounds for induced subgraph detection, they introduced
important ideas that were used in much of the later work
on the problem.

There are 11 nonisomorphic graphs on 4 nodes: the
clique K4 and its complement the independent set, the
diamond K4− e and its complement, the 4-cycle C4 and
its complement, the paw and its complement, the claw
K1,3 and its complement, and the 4-node path P4. The
best known algorithms for their induced SI problem are
as follows.

As mentioned earlier, Corneil et al. showed that an
induced P4 can be found in O(m+n) time. Olariu [Ola88]
showed that a paw (and hence also its complement) can be
found in O(nω) time. Eisenbrand and Grandoni [EG04]
gave an O(m3/2) time algorithm for induced diamond
detection, improving upon a previous result by [KKM00].
This also implies an O(n3) time algorithm for finding
a co-diamond. Eisenbrand and Grandoni also obtained
an O(min{n3.257,m(ω+1)/2}) runtime for claw detection
and thus also an O(n3.257) runtime for co-claws. To our
knowledge, there are no algorithms that utilize the graph
sparsity to improve the above runtimes for paws, co-paws,
co-diamonds or co-claws.

Our contributions. We focus on the induced sub-
graph isomorphism problem when the pattern graph H has
4 vertices. We develop a general randomized framework
for detecting induced copies and vastly improve upon the
known runtimes for most 4-node graphs. Our results are
summarized in Table 1. We note that although we often
talk about subgraph detection, all our results also apply to
actually returning a subgraph copy, if one exists: if one
can detect a copy of a constant size graph H in time T (n),
one can also use self-reduction3 to find a copy in time
O(T (n) logn).

THEOREM 1.1. Let H be any 4-node graph except for K4
and its complement. Then there is an algorithm that runs
in Õ(nω) time and finds an induced copy of H in any n
node graph G, or determines that no copy exists, with high
probability.

Recall that except for P4, paw and co-paw, all other
4-node H had induced subgraph detection runtimes that

3The self-reduction for returning a subgraph copy using subgraph
detection is as follows: given a graph G on n nodes and a subgraph H
on k nodes, arbitrarily divide G into k+1 sets V1, . . . ,Vk+1 of n

k+1 nodes
each. If the subgraph occurs in G, then it must occur in G[V \Vi] for
some i ∈ {1, . . . ,k+ 1}. This yields a smaller problem on only k

k+1 · n
nodes.

Subgraph Time Reference Our Result
K4 O(n3.257) [EG04]

O(m1.682) [EG04]
diamond O(n3) O(nω)

O(m3/2) [EG04] O(m
2ω

ω+1)

C4 O(n3.257) [EG04] O(nω)

O(m
4ω−1
2ω+1)

paw O(nω) [Ola88]
O(m

2ω
ω+1)

claw O(n3.257) [EG04] O(nω)

O(m
ω+1

2) [KKM00] O(m
2ω

ω+1)
P4 O(n+m) [CPS85]

indep. set O(n3.257) [EG04]
co-diamond O(n3) O(nω)

O(m
2ω

ω+1)

co-C4 O(n3.257) [EG04] O(nω)

O(m
4ω−1
2ω+1)

co-paw O(nω) [Ola88]
O(m

2ω
ω+1)

co-claw O(n3.257) [EG04] O(nω)

O(m
2ω

ω+1)

Table 1: Our results and prior work. The O(n3.257)
runtimes are obtained using the current best algorithm
for the product of an n× n2 by an n2× n matrix by Le
Gall [Gal12].

were at least cubic.
In most cases our framework can be extended to yield

algorithms in terms of the sparsity of G as well.

THEOREM 1.2. Let H be any 4-node graph except for C4,
K4 and their complements. Then there is an algorithm
that runs in Õ(m2ω/(ω+1))≤ O(m1.408) time and finds an
induced copy of H in any m edge graph G, or determines
that no copy exists, with high probability.

For C4 and its complement we obtain a slightly worse
O(m1.48) running time which is the best known runtime
for detecting a not-necessarily induced directed C4 in a
directed graph [YZ04].

Remarkably, our approach also works for graphs H
such as the co-diamond for which it was not known how
to utilize the sparsity of the host graph as graphs as the
co-diamond have very few edges.

Note that the running times in the above theorems
match the best known algorithms for finding a triangle in
an n-node, m-edge G. This is especially remarkable since
for many of these graphs (e.g. claw, diamond and their
complements) one can give an efficient reduction from
triangle detection (see e.g. Floderus et al. [FKLL12]).
These reductions imply that our algorithms are optimal
unless there is a breakthrough on triangle detection. Our
theorems further suggest that the SI problem for all 4
nodes except for K4,P4 and their complements may be
equivalent to triangle detection!

Our framework is based on a variant of polynomial
identity testing, so generically derandomizing our algo-
rithms may be challenging (see section 2). Nevertheless,
we are still able to obtain deterministic algorithms in some
cases.

THEOREM 1.3. Let H be a diamond or its complement.
Then there is a deterministic algorithm that runs in Õ(nω)
time and finds an induced copy of H in any n-node graph
G, or determines that no copy exists.

For the special case of diamond detection, we also
obtain a deterministic O(m1.408) time algorithm.

Comparison with prior work. Kloks et al. introduced
equations where the left hand sides are efficiently com-
putable functions on the adjacency matrix, the right hand
sides are linear combinations of number of occurrences of
induced subgraphs. We use these and more equations in
our algorithms, combined with a novel random sampling
approach. See Section 2 for a description of our tech-
niques.

The algorithm of Floderus et al. [FKLL13] for sub-
graph detection has a similar flavor to ours. For pattern
graph H and input graph G, they construct a polynomial

such that the polynomial is non-zero modulo some prime
p if and only if there is an induced-H in G. This polyno-
mial can be efficiently evaluated given H and G. By the
polynomial identity testing approach, random evaluations
of the polynomial give the answer with high probability.
With this approach, Floderus et al. were able to obtain
O(n4) time algorithms for many 5-node graphs H.

Using our detection algorithm as a subroutine, we
can improve the results of Floderus et al. for 5 node
subgraphs. For instance, for any 4 node H different from
K4 and its complement, we can get an O(nω+1) algorithm
for detecting an induced H +K1 just by enumerating all
nodes v in the given graph and finding an H in the graph
of nonneighbors of v. We can also get O(nω+1) time
algorithms in the rest of the cases (the chair, 4-pan graphs,
and their complements) with a slightly more involved
procedure.

THEOREM 1.4. There is an O(nω+1) time algorithm for
the induced subgraph isomorphism problem for the fol-
lowing 5-node graphs: H +K1 for any 4-node H except
for K4 and its complement, and for the chair and 4-pan
graphs and their complements.

Finally, our results imply the first subcubic algorithm
for a metric problem called 1/2-hyperbolicity. The hyper-
bolicity of a metric space is a parameter that intuitively
measures how close the metric is to a tree metric. It was
first defined by Gromov [Gro87] in the context of auto-
matic groups. From the hyperbolicity of the shortest paths
metric of a graph one can obtain tight bounds for the worst
case additive distortion of the graph distances when the
graph is embedded into a weighted tree [CD00]. The pa-
rameter finds practical applications in routing [BPK10],
network security [JL02] and other domains.

The shortest-path metric d of a connected graph G
is 1/2-hyperbolic if, and only if, it satisfies d(u,v) +
d(x,y) ≤ max{d(u,x)+ d(v,y),d(u,y)+ d(v,x)}+ 1, for
every 4-tuple u,x,v,y of G. Coudert and Ducoffe [CD14]
show that if one can detect an induced C4 in O(n3−ε) time
for some ε > 0, then one can also determine whether a
graph is 1/2-hyperbolic in O(n3−δ) time for some δ >
0. Together with this reduction, our results immediately
imply the first subcubic algorithm for 1/2-hyperbolicity.
The previous best running time was O(n3.3).

Preliminaries. All graphs in the paper are undirected.
The graphs on 4 nodes are as follows:
• the 4-clique K4 and its complement, 4K1, the inde-

pendent set on 4 nodes,
• the diamond ♦− (also denoted K4− e) and its comple-

ment, the co-diamond, co-♦− (also denoted K2+2K1),
• the 4-cycle C4 and its complement, ||, two indepen-

dent edges (also denoted 2K2 in the literature),

3

• the paw B− and its complement, the co-paw, co-
B−(also denoted P3 +K1),
• the claw K1,3 (>−) and its complement, the co->−,

co-K1,3 (also denoted K3 +K1), and
• the path on 4 nodes P4 which is self-complementary
Let (#H(G)) denote the number of subgraphs in G

isomorphic to H. If G is clear then we may simply
use (#H). For example, (#♦−) denotes the number of
subgraphs isomorphic to a diamond.

A denotes the adjacency matrix for G, and C denotes
the adjacency matrix for the complement of G.

Let ω denote the smallest real number for which
two n × n matrices over the integers can be multi-
plied in nω+o(1) time. Currently it is known that ω <
2.373 [Vas12, Gal14].

As is typical, we will slightly abuse this definition
throughout the paper by writing O(nω) for the runtime to
multiply two n×n matrices. If n×n matrix multiplication
is in O(nω f (n)) time, then all of our running times should
be multiplied by f (n) (which is no(1) by definition).

We note that if a subgraph can be detected in T (n) time,
then a copy of that subgraph can be found in O(T (n) logn)
time.

2 A general randomized method

In this section we will describe the basic idea of our
approach for induced subgraph detection.

Suppose that we would like to detect an induced dia-
mond in a graph G. We will attempt to do a bit more,
and count the number of diamonds in G. One way to do
this would be to iterate through the edges (i, j) and count
the common neighbors of i and j. This would allow us to
count the number of (not necessarily-induced) diamonds:
for any fixed i and j connected by an edge, the number of
diamonds in which i and j are the degree 3 vertices is the
number of pairs of vertices k, l both connected to i, j. The
number of such pairs is exactly the number of common
neighbors of i, j, choose 2.

It is easy to compute the number of common neighbors
of i and j: take the adjacency matrix A of G and square it
in O(nω) time. A2[i, j] is exactly the number of “2-hops”
from i, j, i.e. the number of their common neighbors.
Then ∑(i, j)∈E

(A2[i, j]
2

)
is the number of (not necessarily

induced) diamonds.

In the quantity Q = ∑(i, j)∈E
(A2[i, j]

2

)
, every induced

diamond is counted exactly once, and every 4-clique is
counted six times. So Q equals exactly 6 times the number
of 4-cliques plus the number of induced diamonds. If the
number of induced diamonds in G happened to not be a
multiple of 6, we could take this count modulo 6, and
conclude that there is at least one induced diamond when

the count is nonzero.

It turns out that we can make sure that the number of
induced diamonds is nonzero mod 6, as follows. At the
very beginning, we take a random induced subgraph G′ of
G by removing vertices independently at random. We will
show that if G contains an induced diamond, then in G′

with high probability the number of induced diamonds is
not divisible by 6. Thus we can detect and find a diamond
in G in O(nω) time with high probability.

Let H and G be graphs. We want to detect if G contains
an induced copy of H. Our general framework is as
follows:

1. Obtain a subgraph of G by removing vertices inde-
pendently at random with probability 1/2.

2. In T (m,n) time compute a quantity Q that equals the
number of induced H in G′, modulo an particular
integer q.

3. If Q 6= 0 mod q, return that G contains an induced
H, and otherwise, return that G contains no induced
H with high probability.

In Lemma 2.1 below, we will prove the correctness of
step 3 above. The quantity Q depends on each H that we
consider. We will show that for all four-node H different
from K4 and its complement, a quantity similar to step 2
can be computed in O(nω) time, and for all four-node H
different from C4, K4 and their complements, a quantity
S can be computed in O(m1.41) time. For C4 and its
complement, the relevant quantity Q can be computed in
O(m1.48) time.

LEMMA 2.1. Let q≥ 2 be an integer, G,H be undirected
graphs. Let G′ be a random induced subgraph of G such
that each vertex is taken with probability 1

2 , indepen-
dently. If there is at least one induced-H in G, the number
of induced-H in G′ is not a multiple of q with probability
at least 2−|H|.

To prove Lemma 2.1, we need the following variant
of the Schwartz-Zippel-DeMillo-Lipton Lemma [Sch80,
Zip79, DL78] which works over Zm for any integer m.
A multivariate polynomial P(x1, . . . ,xn) over a ring R is
multilinear if all monomials of P have the form cS ∏i∈S xi
for some S ⊆ [n] and some cS ∈ R. Furthermore, a
multilinear polynomial has degree d if all monomials also
satisfy |S| ≤ d.

LEMMA 2.2. Let m ≥ 2 be an integer, and let
P(x1, . . . ,xn) be a non-zero multilinear degree d polyno-
mial over Zm. Then

Pr
(a1,...,an)∈{0,1}n

[P(a1, . . . ,an) 6= 0]≥ 1
2d .

Proof. We start with a simpler fact: let f be a nonzero
multilinear polynomial on n variables over Zm. Then f is
nonzero on at least one of the points in {0,1}n.

The proof is by induction on the number of variables.
Write

f (x1, . . . ,xn) = xn f1(x1, . . . ,xn−1)+ f0(x1, . . . ,xn−1)

where f0 and f1 are multilinear on n−1 variables. Since
f is nonzero, f1 and f0 can’t both be identically zero. If f0
is not the zero polynomial, then set xn = 0; by induction
there is a setting of x1, . . . ,xn−1 from {0,1}n−1 that makes
f0 nonzero. Otherwise, if f0 is the zero polynomial, then
set xn = 1; by induction there is a setting of x1, . . . ,xn−1
from {0,1}n−1 that makes f1 nonzero. In the base case
when n = 0, use the empty assignment since there are no
variables.

Now we assume that P is a nonzero multilinear polyno-
mial of degree d. We’ll reduce to the case of a polynomial
on d variables and apply the above fact.

Choose a nonzero monomial in P(x1, . . . ,xn) of degree
d. It has the form cS ∏i∈S xi for some cS 6= 0, and some
S ⊆ [n] with |S| ≤ d. Imagine that 0/1 values for all x j
such that j /∈ S are fixed in P, but the xi with i∈ S are left as
variables; what remains is a polynomial Q in d variables
of the form

a+ ∑
T⊆S

cT ∏
i∈T

xi,

for some a ∈ Zm and cT ∈ Zm, where cS 6= 0. Note that
Q is not identically zero: to see this, take an inclusion-
minimal T ⊆ S such that cT 6= 0, set xi = 1 for i ∈ T
and xi = 0 otherwise. This is an assignment that makes
Q nonzero.

Hence by our fact, for any 0/1 assignment of the x j
variables with j /∈ S, there is at least one 0/1 setting of the
remaining variables that makes the polynomial nonzero.
Therefore the probability that the polynomial evaluates to
nonzero on a random 0/1 assignment is at least 2n−d/2n =
1/2d . �

Note that the probability lower bound of the lemma
is tight: the degree-d monomial x1 · · ·xd is nonzero over
{0,1} with probability exactly 1/2d .

Now we can prove Lemma 2.1.
Proof of Lemma 2.1. Consider the following degree-|H|
multilinear polynomial:

P(x) = ∑
i1<i2<···<i|H|
is induced-H

xi1xi2 · · ·xi|H|

The number of induced-H in G′ is equal to the evalua-
tion of P on x where xi = 1 if vi is in G′, and xi = 0 oth-
erwise. Taking a randomly induced subgraph G′ is equiv-
alent to doing an evaluation of P over a randomly chosen
assignment in {0,1}|V |.

Since there is at least one induced-H, P is not identi-
cally zero. By Lemma 2.2, with probability at least 2−|H|,
P(x) is not a multiple of q. Therefore the number of
induced-H in G′ is not a multiple of q. �

3 Detection in Dense Graphs

In this section, we strive to apply our general method
to achieve a Õ(nω) time Monte Carlo algorithm.

REMINDER OF THEOREM 1.1. Let H be any 4-node
graph except for K4 and its complement. Then there is an
algorithm that runs in Õ(nω) time and finds an induced
copy of H in any n node graph G, or determines that no
copy exists, with high probability.

Proof. We will prove this by providing a series of equa-
tions that will allow us to count the occurrences of specific
subgraphs H mod some number (depending on the sub-
graph). For this proof, since our running time is relative
to n, it suffices to consider only connected four-node sub-
graphs, since we can detect their complements by taking
the complement of the entire graph.

Kloks, Kratsch, and Muller originally provided the
following equations [KKM00]:

∑
(u,v)∈E

(
(A2)u,v

2

)
= 6(#K4)+(#♦−)(3.1)

∑
(u,v)6∈E

(
(A2)u,v

2

)
= (#♦−)+2(#C4)(3.2)

∑
(u,v)∈E

(AC)u,v(CA)u,v = 4(#C4)+(#P4)(3.3)

∑
v∈V

(A3C)v,v = 4(#♦−)+2(#P4)+4(#B−)(3.4)

∑
(u,v)∈E

(
(AC)u,v

2

)
= (#B−)+3(#>−)(3.5)

(Recall that C is the adjacency matrix of the comple-
ment graph.) It is clear that all the LHS quantities can be
computed in O(nω) time. Now, we explain the equality
of each LHS with its respective RHS. For convenience, in
this section we will refer to the four vertices under con-
sideration as u, v, x, and y.

Equation (3.1) counts four vertices when there are
edges between all four vertices except (x,y) which may
be missing. This counts each K4 six times, as each edge
can represent (u,v). It also counts each diamond once,
since only the edge between vertices of degree three can
represent (u,v).

Equation (3.2) counts four vertices when there are
edges between all four vertices except (u,v) which is

5

definitely missing and (x,y) which may be missing. This
counts each diamond once, since only the edge between
vertices of degree two can represent (u,v). It also counts
each square twice, since each nonedge can represent
(u,v).

Equation (3.3) counts four vertices when there are
edges (u,v), (u,x), (y,v), and possibly (x,y). This counts
each square four times, since any edge may represent
(u,v). It also counts each P4 once, since only the edge
between vertices of degree two can represent (u,v).

Equation (3.4) counts four vertices when there are
edges (v,x), (x,y), (y,u), and possibly (v,y) and (x,u).
This counts each diamond four times (twice for each
degree two vertex). It also counts each P4 twice (once
for each degree one vertex). Finally, it counts each paw
four times (twice for the degree one vertex and once for
each degree two vertex).

Equation (3.5) counts four vertices when there are
edges (u,v), (u,x), and (u,y) and possibly (x,y). This
counts each paw once, when the edge on the degree one
node represents (u,v). It also counts each claw three
times, since each edge can represent (u,v).

Now, notice that:

(3.1)≡ (#♦−) (mod 6)

−1
2
(3.1)+

1
2
(3.2)≡ (#C4) (mod 3)

(3.3)≡ (#P4) (mod 4)
(3.5)≡ (#B−) (mod 3)

2
3
(3.1)− 1

3
(3.2)+

1
6
(3.3)− 1

12
(3.4)+

1
3
(3.5)

≡ (#>−) (mod 4)

Hence applying our general framework in Section 2
and Lemma 2.1 allows us to conclude the desired result.
�

4 Detection in Sparse Graphs

In this section, we consider the case of tailoring algo-
rithms for sparse graphs. By being more selective with
our equations, we achieve a Õ(m

2ω
ω+1) time Monte Carlo

algorithm for most subgraphs on four nodes. To show that
these equations can be computed quickly, we will require
the following lemma 4.1.

LEMMA 4.1. There is an algorithm that computes (A2)u,v

for all (u,v) ∈ E in O(m
2ω

ω+1) time.

Proof. Firstly, notice that (A2)u,v when (u,v) ∈ E is the
number of triangles that use edge (u,v). Hence it suffices

to, for each triangle, increment a counter on each of its
edges.

Our strategy is a standard thresholding argument. We
partition the vertex set V into two parts: vertices with
greater than ∆ degree fall into H and all other vertices fall
into L, where ∆ is a constant we choose later to optimize
running time.

Since each high-degree node has greater than ∆ edges
on it, there can be at most 2m

∆
such nodes, since exactly

two nodes are incident to any edge. Using matrix multi-
plication on G |H , we can compute the contribution from
triangles entirely in H in O((m

∆
)ω) time.

Any other triangle to consider must have at least one
low-degree node. We can take care of these by iterating
over all edges e = (u,v). For each low-degree endpoint,
iterate over all other edges on that endpoint and check if
it forms a triangle with e. If so, increment the counter
on all edges of the triangle. To avoid overcounting, we
can increment only when the low-degree endpoint is the
lowest numbered low-degree node in the triangle. Taking
this count takes O(m∆) time.

Finally, we choose ∆ = m
ω−1
ω+1 , resulting in the desired

running time. This completes the proof. �

REMINDER OF THEOREM 1.2. Let H be any 4-node
graph except for C4, K4 and their complements. Then
there is an algorithm that runs in Õ(m1.408) time and
finds an induced copy of H in any m edge graph G, or
determines that no copy exists, with high probability.

Proof. This time, we need to consider every relevant
four-node subgraph, since we can no longer run on the
complement of the graph (this would change the value of
m).

Firstly, there are a number of equations we can com-
pute in O(m) time.

∑
v∈V

(
deg(v)

2

)
(n−1−deg(v))

(4.6)

= 2(#♦−)+4(#C4)+2(#B−)
+2(#P4)+3(#co->−)+(#co-B−)

∑
v∈V

(
deg(v)

3

)
= 4(#K4)+2(#♦−)+(#B−)+(#>−).

(4.7)

These equations count subgraphs that have nodes of
degree two or three, respectively.

Based on Lemma 4.1, the following equations can be

computed in O(m1.408) time:

∑
(u,v)∈E

(deg(u)−1)(deg(v)−1)− (A2)u,v

(4.8)

= 12(#K4)+6(#♦−)+4(#C4)+2(#B−)+(#P4)

∑
v∈V

(A3)v,v(deg(v)−2) = 12(#K4)+4(#♦−)+(#B−)
(4.9)

∑
v∈V

(A3)v,v(n−deg(v)) = 2(#♦−)+2(#B−)+3(#co->−)
(4.10)

∑
(u,v)∈E

(
n−deg(u)−deg(v)+(A2)u,v

2

)(4.11)

= 2(#||)+(#co-♦−)

∑
(u,v)∈E

(
(A2)u,v

2

)
= 6(#K4)+(#♦−)

(4.12)

Equation (4.8) counts four vertices when there are edges
between (u,v), (u,x), (v,y) and possibly any other edge.
This counts a 4-clique twelve times (twice for each edge),
a diamond six times (once for each edge except twice for
the edge between two degree-three vertices), a square four
times (once for each edge), a paw two times (once for each
edge between a degree two vertex and the degree three
vertex), and a P4 once (for the edge between degree two
vertices).

Equation (4.9) counts four vertices when there are
edges between (v,x), (x,y), (y,v), (u,v) and possibly any
of the remaining edges. This counts a paw once (for the
degree three vertex). It also counts a diamond four times
(twice for each degree three vertex), and a four-clique
twelve times (four times for each degree three vertex).

Equation (4.10) counts four vertices when there are
edges between (v,x), (x,y), (y,v), not one between (u,v)
and possibly any of the remaining edges. This counts
an independent triangle and node once (for each of the
triangle’s vertices). It also counts each paw two times
(once for each degree two vertex). Finally, it counts each
diamond twice (once for each degree two vertex).

Equation (4.11) counts four vertices when there is an
edge between (u,v) and possily one between (x,y). This
counts two independent edges twice, as each edge can
represent (x,y). It also counts each independent edge and
two nodes once.

Equation (4.12) is the same as in the previous section.

The following inequalities combined with Lemma 2.1
allow us to conclude the desired result:

(4.12)≡ (#♦−) (mod 6)
(4.9)≡ (#B−) (mod 4)

(4.7)+(4.9)≡ (#>−) (mod 2)
(4.8)≡ (#P4) (mod 2)
(4.10)≡ (#co-B−) (mod 2)

(4.6)+(4.10)≡ (#co->−) (mod 2)
(4.11)≡ (#co-♦−) (mod 2)

�

We now produce an algorithm for C4 and two indepen-
dent edges detection. We rely on a generalization of a
result by Yuster and Zwick [YZ04]. They show that not
necessarily induced C4 can be detected in o(m1.48) time,
and we show that their method can be extended to count
as well. This produces another equation for us to use:

LEMMA 4.2. Given an m-edge graph, the quantity
3(#K4)+(#♦−)+(#C4) can be computed in O

(
m

4ω−1
2ω+1

)
=

o(m1.48) time.

Proof. It suffices to compute the number of (not necessar-
ily induced) C4 in the graph, as this is exactly the above
count. Below we show how to compute twice this number.
To obtain the claim, we divide the count by 2.

We partition the vertex set V into three parts via
thresholding; vertices with greater than ∆ degree fall into
H, vertices with degree greater than

√
∆ and at most ∆

fall into M, and all other vertices fall into L. We choose
∆ = m

2ω−2
2ω+1 to balance the running times.

We consider which set each vertex of the C4 is in: there
are less than 34 different cases. For each configuration of
C4, we count it separately. It falls into one of the following
five nonoverlapping cases.

Case I: All vertices in H
First, we use matrix multiplication on the adjacency ma-
trix of G |H . Since there at most 2m

∆
of these, this runs

in O((2m
∆
)ω) time. Then we iterate over pairs of vertices

(u,v) in H, adding 1
2

((A|2H)u,v
2

)
to our count of C4.

Case II: Two opposite vertices in M∪L
For every vertex v ∈ M ∪L, increment the count of each
pair of its neighbors. Then iterate over pairs of vertices,
looking at their count c. If both vertices in the pair are
in M ∪ L, then add 1

2

(c
2

)
to our count of C4. Otherwise,

add
(c

2

)
to our count of C4. Note that doing this avoids

overcounting in the case where all four nodes were in
M∪L. This case runs in O(m∆) time.

Case III: Three vertices in H
From the two cases above, we know the number of H

7

witnesses between any pair of H nodes, as well as the
number of M ∪ L witnesses. As before, we enumerate
over pairs of vertices (u,v) in H, adding the product of
these witness counts to our count of C4. This case runs in
O((2m

∆
)ω +m∆) time.

Case IV(a): Two consecutive vertices in H, two
consecutive vertices in M∪L, at least one in M
For this case, we will iterate over a vertex in M and a
vertex in H. We will compute a witness in H for this
pair via a rectangular matrix multiplication, and a witness
in M ∪L as in case II. We then add the product of these
witness counts to our count of C4. As before, this case
runs in O(ω(2m

∆
, 2m

∆
, 2m√

∆
)+m∆) time.

Case IV(b): Two consecutive vertices in H, two
consecutive vertices in L
In this case, we can throw out M entirely. We will focus
on finding a three-hop path from a H node to another H
node that goes through two nodes in L. We do this by
enumerating over the center edge between two L nodes
and iterating over all pairs of edges on one endpoint and
edges on the other endpoint. We then iterate over pairs of
nodes in H that have an edge between them and increment
our count of C4 by the number of paths found between the
pair. This runs in O(m∆).

As in [YZ04], the slowest case above takes
O(m

4ω−1
2ω+1) = o(m1.48). Then we sum up all these counts to

get the number of (not necessarily induced) C4, and there-
fore get 6(#K4)+2(#♦−)+2(#C4), as desired. �

COROLLARY 4.1. There is an algorithm that runs in
Õ
(

m
4ω−1
2ω+1

)
= o(m1.48) time and finds an induced copy of

C4 in any m edge graph G, or determines that no copy
exists, with high probability.

Proof. We take the equation produced by Lemma 4.2 and
subtract equation (4.12) from the proof of Theorem 1.2.
This is congruent to (#C4) modulo three, and we apply
Lemma 2.1 to finish. �

5 Deterministic Diamond Detection

In this section, we give a deterministic algorithm for
diamond detection. We utilize the following observation
concerning diamond-free graphs:

LEMMA 5.1. (KLOKS, KRATSCH, MÜLLER 1995) A
graph G = (V,E) is diamond-free if and only if for all
v ∈V , G[N(v)] is a disjoint union of cliques.

THEOREM 5.1. Given a graph G = (V,E), there is an
algorithm that either outputs a diamond or certifies that
the graph is diamond-free, in Õ(nω) time.

The remainder of this section gives the proof of this
theorem. We use Lemma 5.1, trying to either verify
that the neighborhood of each node is a disjoint union of
cliques, or find a diamond in the process. Our algorithm
attempts to partition the neighborhood of each node into a
disjoint union of cliques.

Each neighborhood N(v) begins in a single block, and
the algorithm continually refines the partition. Finally, the
final partitions are verified against the actual graph.

For convenience, we will split each edge (u,v)∈E into
two directed edges, (u,v) and (v,u). We will use (u,v) to
analyze the neighborhood of u only; this splitting allows
us to process all vertices in parallel. The algorithm toggles
these edges on and off in order to determine how to refine
partitions.

If G[N(v)] is actually a disjoint union of cliques, then
our algorithm maintains the invariant that at least one
edge from v to a node in each of the maximal cliques in
G[N(v)] remains on. As a measure of progress, for any
current partition block B which is for the neighborhood of
v, we define Φv(B) to be the number of edges from v to
B that are currently on, i.e. |{u ∈ B | (v,u) is on}|. Notice
that if G[N(v)] is actually a disjoint union of cliques and
Φv(B) = 1, then B must contain a single disjoint clique,
due to the invariant.

We claim Algorithm 1 has the desired properties.
Running Time:

Computing any C j for j ∈ {0, . . . ,dlogne} takes O(nω)
time, so they take O(nω logn) time in total.

The map M can just be a two-dimensional array of
partitions, so it has constant time access (this only takes
O(n2) space, since the total number of elements over
all partitions is O(n2) as well). It suffices to store each
partition as a linked list of linked lists.

Refining the partitions is dominated by the matrix
multiplications, which we have already accounted for.

Finally, in order to verify each partition, we check the
graph for cliques. Notice that in a diamond-free graph, all
the cliques must be edge-disjoint. If C1 and C2 share some
edge (u,v) and there is an x ∈C1 \C2 and an y ∈C2 \C1,
then (x,u,y,v) forms a diamond. If one of the cliques is
a strict subset of the other, then the smaller clique has
too few nodes for the number of witnesses on each of its
edges. Hence the algorithm can memoize which cliques
are actually in the graph, and verify the correctness of all
cliques in amortized O(n2) time. The only other case is
where two cliques share an edge, but we have already
shown that this edge must be in a diamond.

If there is a diamond, the algorithm finds one of its
degree-three vertices and can hence just search for a P3 in
a neighborhood. But this takes only O(n+m) time.

The total running time is Õ(nω), as desired.

DetectDiamond(G):
Let the adjacency matrix of G be A, and compute
C0← (A2 +A).
for v ∈V do

Divide N(v) into sets Sv,i based on the value in C0
of each neighbor’s edge, i.e. for each u ∈ N(v)
where C0[v,u] = i, add u to Sv,i.

Initialize a map M from (v, i) to a partition of Sv,i,
where all partitions begin with all elements of Sv,i in a
single block. There is no map entry for empty Sv,i
(and in these cases (v, i) is not a valid key).
Set all edges to on.
for j = 1, . . . ,dlogne do

foreach partition block B in some M[(v, i)] do
Arbitrarily pick half the edges from v to B
that are currently on and turn them off;

Construct the adjacency matrix A j from on-edges.
Set C j← A jA+A j.
foreach partition block B in some M[(v, i)] do

Refine the vertices u ∈ B based on C j[v,u]
into blocks that have the same value.
If a block B′ was created of vertices u that
have C j[v,u] = 0, then revert all edges from v
to u ∈ B′ to their state before this iteration.

for valid map keys (v, i) do
for partition block B of M[(v, i)] do

if B∪{v} is not an (i+1)-clique then
Search G[N(v)] for a P3 = (x,y,z).
return Diamond (v,x,y,z).

return G is diamond-free.

Correctness:

LEMMA 5.2. If G[N(v)] is a disjoint union of cliques,
then after each iteration, every maximal clique in G[N(v)]
has at least one on-edge from v. Additionally, each
iteration decreases maxB Φv(B) by at least a factor of 2.

Proof. Let B be some block before the iteration which is
contained in Sv,i. We want to show that any new block B′

generated from B must have Φv(B′)≤Φv(B)/2.
There are two cases:
Case 1: B′ has C j[v,u]> 0, that is every clique in B′ has

the same positive number of edges on from v. In this case,
all edges from v to B′ are not deleted in this iteration. We
keep Φv(B)/2 edges in total. So Φv(B′)≤Φv(B)/2.

Case 2: B′ has C j[v,u] = 0, that is all edges from v to
cliques in B′ are deleted. In this case, at the end of the
iteration, we are going to revert all edges from v to B′ to
the state before the iteration. All edges from v to B′ after
the reversion are edges deleted in this iteration. There are
at most Φv(B)/2 of them. So Φv(B′)≤Φv(B)/2.

In both cases, we have Φv(B′) ≤ Φv(B)/2. Therefore,
each iteration decreases maxBΦv(B) by a factor of 2.
Also, the second case above guarantees that after every
iteration, every maximal clique mush have some on-edges
from v. This proves the lemma. �

By the lemma, after dlogne iterations (note that the
maximum potential for any starting block is n), all N(v)
separate into blocks of potential one (and hence in a
diamond-free graph, consist of exactly a single maximal
clique). Hence a diamond-free graph G passes verifica-
tion.

However, if G is not diamond-free, there must be some
v for which G[N(v)] is not a disjoint union of cliques. It
is impossible for the algorithm to properly partition this
neighborhood into a disjoint union of cliques. If it uses
edges that are not there, then one of the cliques it finds
will be missing an edge (and a diamond will be searched
for around v). Conversely, finding a clique guess missing
an edge implies that G[N(v)] was not a disjoint union of
cliques (if it was, it would have been split correctly). If
some edge (u,w) is not placed into a clique for G[N(v)],
then the clique that u is in must have a node that u is not
connected to (since (u,w) increases u’s witnesses count
in C0). Either way, the algorithm will be able to find a
diamond.

This completes the proof.

Acknowledgments. We would like to thank the
anonymous reviewers for their comments, and Uri Zwick
for telling us about Gromov hyperbolicity and its relation-
ship to induced C4-detection.

9

References

[AYZ97] N. Alon, R. Yuster, and U. Zwick. Finding and
counting given length cycles. Algorithmica, 17:209–223,
1997.

[BPK10] M. Boguna, F. Papadopoulos, and D. Krioukov. Sus-
taining the internet with hyperbolic mapping. Nature
Communications, 1(62), 2010.

[CD00] V. Chepoi and F. Dragan. A note on distance approx-
imating trees in graphs. European Journal of Combina-
torics, 21(6):761–766, 2000.

[CD14] D. Coudert and G. Ducoffe. On the recognition of
C4-free and 1/2-hyperbolic graphs. Technical report, RR-
8458, INRIA, 2014.

[CPS85] D. Corneil, Y. Perl, and L. Stewart. A linear recogni-
tion algorithm for cographs. SIAM Journal on Computing,
14(4):926–934, 1985.

[DL78] Richard A. DeMillo and Richard J. Lipton. A proba-
bilistic remark on algebraic program testing. Inf. Process.
Lett., 7(4):193–195, 1978.

[EG04] F. Eisenbrand and F. Grandoni. On the complexity of
fixed parameter clique and dominating set. Theor. Comp.
Sci., 326(1-3):57–67, 2004.

[FKLL12] Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas,
and Eva-Marta Lundell. Induced subgraph isomorphism:
Are some patterns substantially easier than others? In
COCOON, pages 37–48, 2012.

[FKLL13] Peter Floderus, Miroslaw Kowaluk, Andrzej Lingas,
and Eva-Marta Lundell. Detecting and counting small
pattern graphs. In ISAAC, pages 547–557, 2013.

[Gal12] François Le Gall. Faster algorithms for rectangular
matrix multiplication. In FOCS, pages 514–523, 2012.

[Gal14] François Le Gall. Powers of tensors and fast matrix
multiplication. In ISSAC, pages 296–303, 2014.

[Gro87] M. Gromov. Hyperbolic groups. Essays in Group
Theory, 8:75–263, 1987.

[IR78] A. Itai and M. Rodeh. Finding a minimum circuit in a
graph. SIAM J. Computing, 7(4):413–423, 1978.

[JL02] E. Jonckheere and P. Lohsoonthorn. A hyperbolic
geometric approach to multipath routing. In Conference
on Control and Automation, 2002.

[KKM00] T. Kloks, D. Kratsch, and H. Müller. Finding and
counting small induced subgraphs efficiently. Inf. Proc.
Letters, 74(3-4):115–121, 2000.

[KLL13] Miroslaw Kowaluk, Andrzej Lingas, and Eva-Marta
Lundell. Counting and detecting small subgraphs via
equations. SIAM J. Discrete Math., 27(2):892–909, 2013.

[NP85] J. Nešetřil and S. Poljak. On the complexity of
the subgraph problem. Comment. Math. Univ. Carolin.,
26(2):415–419, 1985.

[Ola88] Stephan Olariu. Paw-free graphs. Information Pro-
cessing Letters, 28(1):53 – 54, 1988.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. J. ACM, 27(4):701–
717, 1980.

[Vas12] Virginia Vassilevska Williams. Multiplying matrices
faster than Coppersmith-Winograd. In STOC, pages 887–
898, 2012.

[YZ04] Raphael Yuster and Uri Zwick. Detecting short di-
rected cycles using rectangular matrix multiplication and
dynamic programming. In Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’04, pages 254–260, 2004.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse
polynomials. In EUROSAM, pages 216–226, 1979.

