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Abstract
Algorithmic research strives to develop fast algorithms for fundamental problems. Despite its
many successes, however, many problems still do not have very efficient algorithms. For years
researchers have explained the hardness for key problems by proving NP-hardness, utilizing
polynomial time reductions to base the hardness of key problems on the famous conjecture P 6=
NP. For problems that already have polynomial time algorithms, however, it does not seem
that one can show any sort of hardness based on P 6=NP. Nevertheless, we would like to provide
evidence that a problem A with a running time O(nk) that has not been improved in decades, also
requires nk−o(1) time, thus explaining the lack of progress on the problem. Such unconditional
time lower bounds seem very difficult to obtain, unfortunately. Recent work has concentrated
on an approach mimicking NP-hardness: (1) select a few key problems that are conjectured to
require T (n) time to solve, (2) use special, fine-grained reductions to prove time lower bounds
for many diverse problems in P based on the conjectured hardness of the key problems. In this
abstract we outline the approach, give some examples of hardness results based on the Strong
Exponential Time Hypothesis, and present an overview of some of the recent work on the topic.
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1 Introduction

The core goal of algorithmic research is to determine how fast computational problems can be
solved in the worst case. Important time hierarchy theorems from complexity theory imply
that (for natural models of computation) for all time-constructible functions T (n), there are
problems that can be solved in T (n) time but not in O(T (n)1−ε) time for ε > 0. The main
challenge is to determine where in this hierarchy various natural and fundamental problems
lie. Throughout the years, many ingenious algorithmic techniques have been developed and
applied to obtain blazingly fast algorithms for many important problems. For instance, many
useful graph problems can be solved in near-linear time (e.g., finding connected components
or computing single source shortest paths). Recent breakthroughs have shown that problems
like graph matching, linear programming and max flow have surprisingly fast algorithms as
well ([48, 44, 45]). Nevertheless, for many other central problems the best known running
times are essentially those of the classical algorithms devised for them in the 1950s and 1960s.
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A prominent example is the CNF-SAT problem: given a boolean formula on n variables
in conjunctive normal form, determine whether it has a satisfying assignment. The naïve
algorithm for the problem is to try all possible 2n assignments to the variables and check
whether they satisfy the clause. This algorithm runs in O∗(2n) time, where O∗ hides
polynomial factors in the number of variables and clauses. When the maximum clause length
is a constant k, CNF-SAT is called k-SAT. This problem can be solved in O∗(2n−cn/k) for
various constants c independent of n and k (e.g., [38, 50, 53, 52, 58, 59]), thus improving over
the 2n running time exponentially. Nevertheless, as k grows, this running time approaches
2n. Thus the naïve algorithm is essentially the best known algorithm for CNF-SAT even
when the clause length is (an arbitrary) constant.

The theory of NP-hardness has been the main tool for explaining why problems such
as CNF-SAT are hard. The seminal result that k-SAT is NP-complete for all k ≥ 3 [43]
implies that if we believe that P 6= NP , k-SAT cannot have a polynomial time algorithm.
NP-hardness however, does not say anything about running times that are not polynomial,
and it seems difficult, if not impossible, to show that the 2n time algorithm for CNF-SAT is
optimal, assuming only P 6= NP . The optimality of the 2n time algorithm for CNF-SAT is
currently only a conjecture, known as the Strong Exponential Time Hypothesis (SETH).

The type of hardness that SETH asserts about CNF-SAT is not unique to NP-hard
problems. Although for the purposes of complexity theory, problems in the class P are
considered “easy”, this is not because anyone believes that running times such as O(n100)
or even O(n3) are efficient. P was initially studied mainly because polynomials have useful
properties, e.g., they are closed under composition and also polynomial running times allow
us model independence. It became interesting to distinguish the problems in P from those
that require superpolynomial time, and questions such as P vs NP emerged.

There are many important problems within P that have (often brute-force) classical
algorithms running in Õ(nk) time for some constant k,1 but whose running time has not
been improved upon except (possibly) by no(1) factors. Some prominent examples of such
problems from different areas of computer science include: (1) from graph algorithms: the
center of a graph G, i.e., arg minv∈G maxx∈G dist(v,x), can be computed in O(n3) time using
Floyd–Warshall’s classical algorithm for All-Pairs Shortest Paths, and no faster algorithm is
known; (2) from computational biology: given two length n DNA sequences, their longest
common subsequence (LCS) can be computed in O(n2) time using a classical dynamic
programming algorithm, and the fastest known algorithm runs faster but only by logarithmic
factors [49, 17, 37]; (3) from computational geometry, given n points in the plane, one can
determine whether they are in general position with a simple classical algorithm in Õ(n2)
time, and this is the best known, up to no(1) factors.

Unconditional lower bounds seem very difficult to obtain—it is not even known whether
SAT can be solved in linear time. Mimicking NP-hardness, we would like to give evidence
that for problems like the above, the classical algorithms are probably optimal, and that the
polynomial time solvable problem is “hard”. NP-hardness itself seems to have little use in
showing that problems that already have polynomial time algorithms are hard. Instead, a
more fine-grained approach has been used in recent years. In this approach, we pick a widely
believed hypothesis about the time complexity of a key problem, and then use fine-grained
reductions to reduce this key problem to other important problems, giving conditional lower
bounds on how fast these problems can be solved.

1 Here, Õ hides no(1) factors.
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18 Hardness of Easy Problems

2 The key problems

The majority of conditional hardness results for problems within P are based on the conjec-
tured hardness of three problems: 3SUM, All-Pairs Shortest Paths, and CNF-SAT. Since
we are focusing on exact running times, we need to fix the model of computation. Here we
assume that we are working with a Word RAM model with O(logn) bit words.

2.1 3SUM
The 3SUM problem asks to determine whether a given set of n integers contains three integers
a, b, c so that a+b = c. The problem has a simple Õ(n2) time algorithm: sort the integers, and
for every pair a, b, check whether their sum is in the list. Baran, Demaine and Pǎtraşcu [15]
showed that in the Word RAM model with O(logn) bit words, 3SUM can be solved in
O(n3(log logn)2/ log2 n) time, thus obtaining a speed-up2. Chan and Lewenstein [22] showed
that some interesting structured instances of 3SUM can be solved in O(n1.9) time. However,
there are no known O(n2−ε) time (so-called “truly subquadratic”) algorithms for the general
problem for any ε > 0, even when randomization can be used. The lack of progress on the
problem has led to the following conjecture [55, 34].

I Conjecture 1 (No truly subquadratic 3SUM). In the Word RAM model with O(logn)
bit words, any algorithm requires n2−o(1) time in expectation to determine whether a set
S ⊂ {−n3, . . . ,n3} of size n contains three distinct elements a, b, c ∈ S with a+ b = c.

(By standard hashing arguments, one can assume that the size of the integers in the
3SUM instance is O(n3), and so the conjecture is not for a restricted version of the problem.)

The 3SUM conjecture is widely believed, especially in computational geometry. In 1995,
Gajentaan and Overmars [34] formed a theory of “3SUM-hard problems” by showing that
one can reduce 3SUM to many problems in computational geometry and that the conjecture
above implies that none of these problems have truly subquadratic algorithms. One example
of a 3SUM-hard problem is the planar points in general position problem that we mentioned
earlier. Following [34] many other papers proved the 3SUM hardness of geometric problems,
e.g., [30, 47, 31, 11, 32, 13, 24, 16]. Vassilevska Williams and Williams [60, 61] showed that
a certain weighted graph triangle problem cannot be found efficiently unless Conjecture 1
is false, relating 3SUM to problems in weighted graphs. Their work was extended [5] for
other weighted subgraph problems. The 3SUM conjecture has also recently been shown to
imply hardness for various problems on strings such as jumbled indexing [12] and versions of
sequence local alignment [8]. Pǎtraşcu [55] initiated the research of proving lower bounds
on dynamic problems based on Conjecture 1. He showed that for several dynamic problems
Conjecture 1 implies update time lower bounds that are polynomial in the input size, whereas
the best (unconditional) cell probe lower bounds known are polylogarithmic at best. Follow-up
work by [6] extended and tightened Pǎtraşcu’s results.

2.2 All-Pairs Shortest Paths
The All-Pairs Shortest Paths problem (APSP) is as follows: given a directed or undirected
graph with integer edge weights, determine the distances between every pair of vertices in
the graph. Classical algorithms such as Floyd–Warshall’s provide O(n3) running times for

2 When the inputs are real numbers, the problem can also be sped up by a logarithmic factor [42].
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APSP in n-node graphs. For years, researchers obtained larger and larger polylogarithmic
improvements over the cubic running time, until in a breakthrough result Williams [66]
designed an algorithm that runs faster than O(n3/(logn)c) time for all constants c; the
exact running time is n3/ exp(Θ(

√
logn)). Nevertheless, no truly subcubic time (O(n3−ε)

for ε > 0) algorithm for APSP is known. This led to the following conjecture assumed in
many papers, e.g. [57, 63].

I Conjecture 2 (No truly subcubic APSP). There is a constant c, such that in the Word
RAM model with O(logn) bit words, any algorithm requires n3−o(1) time in expectation to
compute the distances between every pair of vertices in an n node graph with edge weights
in {1, . . . ,nc}.

Vassilevska Williams and Williams [63] and Abboud, Grandoni and Vassilevska Willi-
ams [4] showed that many other graph problems are equivalent to APSP under subcubic
reductions, and as a consequence any truly subcubic algorithm for them would violate
Conjecture 2. Some examples of these problems include detecting a negative weight triangle
in a graph, computing replacement paths and finding the radius of a graph. The APSP
conjecture implies strong lower bounds for dynamic problems [57, 6], e.g., for single source
shortest paths even if the algorithm is required to support only insertions and deletions.

2.3 Satisfiability
Here we formally describe the Strong Exponential Time Hypothesis (SETH) that we discussed
in the introduction. Impagliazzo, Paturi, and Zane [39, 40] introduced SETH to address the
question of how fast one can solve k-SAT as k grows. They define:

sk = inf{ δ | there is a O∗(2δn) time algorithm for k-SAT with n variables } .

The sequence sk is clearly nondecreasing. As the best known algorithms for k-SAT have
running times that converge to O∗(2n) as k grows, it is natural to conjecture that limk→∞ sk =
1, which is exactly what SETH hypothesizes.

I Conjecture 3 (SETH). For every ε > 0, there exists an integer k, such that Satisfiability
on k-CNF formulas on n variables cannot be solved in O(2(1−ε)n polyn) time in expectation.

SETH is an extremely popular conjecture in the exact exponential-time algorithms
community. For instance, Cygan et al. [26] showed that the SETH is also equivalent
to the assumption that several other NP-hard problems cannot be solved faster than by
exhaustive search, and the best algorithms for these problems are the exhaustive search
ones. Some other work that proves conditional lower bounds based on SETH for NP-hard
problems includes [26, 20, 29, 46, 28, 67, 54, 25, 27, 33]. SETH has been the basis for many
conditional hardness results for problems in P, including edit-distance [14], LCS [2, 19], graph
diameter [56, 23] and many others.

2.4 Orthogonal Vectors
Many hardness results based on SETH go through an intermediate problem, Orthogonal
Vectors (OV). In this problem, we are given two sets U and V of n vectors each over {0, 1}d
where d = ω(logn), and want to determine whether there are u ∈ U and v ∈ V such that∑d

i=1 ui · vi = 0. An equivalent version of the problem has U = V .

IPEC’15



20 Hardness of Easy Problems

The naïve algorithm for the problem runs in O(n2d) ≤ Õ(n2) time, and the best known
algorithm [10] runs slightly faster, in O(n2−1/O(log(d/ logn))) time. Obtaining a truly sub-
quadratic algorithm for OV has been elusive, and Williams [65] showed that SETH implies
the nonexistence of such an algorithm. (We will see the proof of this later.) No reduction
is known from OV to CNF-SAT, and the OV problem may require essentially quadratic
time even if SETH is false. Thus it is often better to base hardness on the following OV
conjecture.

I Conjecture 4 (OVC). In the Word RAM model with O(logn) bit words, any algorithm
requires n2−o(1) time in expectation to determine whether a set of n vectors over {0, 1}d for
d = ω(logn) contains an orthogonal pair.

2.5 The Small Universe Hitting Set Problem
A version of the Orthogonal Vectors problem is the Small Universe Hitting Set (HS) problem:
given two sets U and V of n sets each over the universe {1, . . . , d} where d = ω(logn),
determine whether there is a u ∈ U that hits every v ∈ V in at least one element. The HS
problem can be described analogously as, given two sets U and V of vectors over {0, 1}d for
d = ω(logn), is there a u ∈ U such that for all v ∈ V , we have

∑d
i=1 ui · vi > 0.

Just as with OV, the fastest known algorithm for HS runs in n2−o(1) time. Similar to
OVC, there is a conjecture concerning the HS problem:

I Conjecture 5 (HSC). In the Word RAM model with O(logn) bit words, any algorithm,
given two sets U and V of n vectors each over {0, 1}d for d = ω(logn), requires n2−o(1) time
in expectation to determine if U contains a vector that is not orthogonal to any vector in V .

We will show that HSC implies OVC and is thus potentially stronger. An example
hardness result based on HSC is that computing the radius of a sparse graph requires n2−o(1)

time. Such a result does not seem to be possible based on OVC.

2.6 Relationships between the conjectures
Besides the reduction from CNF-SAT to OV by Williams [65], there are no known reductions
between the main key problems. Potentially, any subset of the first three key conjectures
could be true while the others are false. Recent work [21] gives evidence that it might be
difficult to reduce these conjectures to one another, showing that if for instance one could
reduce OV to 3SUM or APSP in a tight way, then a nondeterministic version of SETH
would fail. It seems to be difficult to solve SAT quickly even by an algorithm that can
exploit nondeterminism since showing that the formula is unsatisfiable seems to require a
lot of nondeterministic time. Nevertheless, in recent work, Williams [64] has shown that
if the nondeterministic algorithm can use randomness, k-SAT can be solved (for all k), in
O((2− ε)n) time for a constant ε > 0. Derandomizing Williams’ algorithm seems challenging,
however, so that the nondeterministic version of SETH might still hold.

Even though there are no known (tight) reductions between CNF-SAT, 3SUM and APSP,
there are two known problems that one can reduce all three problems to.

The first problem, Matching Triangles, takes as an input an integer ∆, a graph G = (V ,E)
on n nodes, and a coloring of the nodes c : V → {1, . . . ,n}. The problem asks, is there a
triple of colors, a, b, c ∈ {1, . . . ,n}, such that the number of triangles in G that have node
colors a, b, c, is at least ∆.

The second problem, Triangle Collection, takes as an input a graph G = (V ,E) on n
nodes, and a coloring of the nodes c : V → {1, . . . ,n}, and asks whether there there is a
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triple of colors, a, b, c ∈ {1, . . . ,n}, such that there are no triangles in G that have node
colors a, b, c. (An alternative name for this problem might be Triangle-Free Color Triple.)

Both Triangle Collection and Matching Triangles can be solved in O(n3) time by enumer-
ating all triangles in the input graph. A surprising result [9] is that if either of these problems
has an O(n3−ε) time algorithm for ε > 0, then the 3SUM, APSP and SETH conjectures are
all false. The result holds for Matching Triangles even when ∆ is polylogarithmic, and it also
holds for a restricted version of Triangle Collection called Triangle Collection∗. The latter
problem has been used as a basis for hardness for several problems in dynamic algorithms,
such as maintaining the strongly connected components of a graph, and for a few static
problems related to Max Flow.

3 The reductions

To prove tight reductions between the running times for solving problems in P, one cannot
merely use polynomial time reductions since these do not distinguish between different
polynomial running times. Instead, we define fine-grained reductions that for problems A and
B and running times a(n), b(n) imply that an O(b(n)1−ε) time algorithm for B for constant
ε > 0 would imply an O(a(n)1−δ) algorithm for A for constant δ. Notice that we allow δ to
be different from ε. This is fine since we merely want to know when any improvement for B
carries over to some improvement for A. Having δ and ε differ gives us much more freedom
in designing reductions.

An initial attempt would be to say that given an instance of A, the reduction should
transform it into a single instance of B, i.e., giving a many-one reduction. This, however,
limits us quite a bit. For instance, we wouldn’t be able to show that a multi-output problem
such as APSP can be reduced to a decision problem such as whether the radius of the graph
is less than R. Instead, we define the reductions as special Turing reductions, i.e., each
instance of A can be reduced to multiple instances of B.

I Definition 1 (Fine-grained reduction). Let a(n) and b(n) be nondecreasing functions of n.
Problem A is (a, b)-reducible to problem B, denoted as A ≤a,b B, if for every ε > 0, there is
a δ > 0, an algorithm F with access to an oracle to B, a constant d, and for every n ≥ 1 an
integer k(n), such that for every n, the algorithm F takes any instance of A of size n and

F runs in at most d · (a(n))1−δ time,
F produces at most k(n) instances of B adaptively, that is, the jth instance Bj is a
function of {(Bi, ai)}1≤i<j where Bi is the ith instance produced and ai is the answer of
the oracle for B on instance Bi, and
the sizes ni of the instances Bi for any choice of oracle answers ai obey the inequality∑k(n)
i=1 (b(ni))1−ε ≤ d · (a(n))1−δ.

An immediate consequence of the reductions is that improvements over b(n) for B imply
improvements over a(n) for A. More formally, if there is an algorithm for B of running
time c · N1−ε on instances of size N , then composing the algorithm with a fine-grained
(a, b)-reduction from A to B produces an algorithm for A running in time

d · (a(n))1−δ +
k(n)∑
i=1

c · (b(ni))1−ε ≤ d · (c+ 1) · (a(n))1−δ,

where the first summand is for running the reduction algorithm F , and the second summand
is for running the algorithm for B on the instances {Bi}. As c and d are constants, the
running time for A is O(a(n)1−δ).
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22 Hardness of Easy Problems

Notice that by the above definition, the instance sizes may depend on n and ε, and d can
depend on ε, but not on n.

4 Example results

A partial summary of the implications of the main conjectures (3SUM, OV, SETH and
APSP) can be found in Figure 1. Many of the reductions in the known results are quite
intricate. Here we will present a few simple proofs to illustrate the approach.

3SUM k-SAT
∀k = O(1)

OV

APSP

Matching
Triangles

Triangle
Collection*

HS

n3
n3

n3

N2

N1.5

N1.5 N1.5

N2

N2

2n

Dynamic problems
e.g. SCC, Max Matching
[6, 9, 55, 57]

Problems in dense graphs:
Radius, Median,
Negative Triangle,
Replacement paths,

Betweenness centrality ...
[4, 63]

n3 N1.5

Vast collection of problems
in Computational Geometry

(starting with [34])
Sequence problems:
Jumbled indexing [12],
Local alignment [8]

N2

(3/2− ε)
approximate
Diameter [23,56],
LCS [2,19],
Edit distance [14],
Frechet dist. [18] ...

(3/2− ε)-
approximate
Radius [7] ...

N2

N2

Figure 1 Partial summary of the implications of the main conjectures. An arrow from problem A

to problem B, where A has a(n) next to it, B has b(n) next to it, implies that A ≤a,b B. When the
inputs are graphs, n stands for the number of nodes. N always stands for the total input size. When
both n and N are present for a problem, we assume that N = n2; the meaning is that the reductions
are only for dense graphs in which case the input size is quadratic in n. For k-SAT, n denotes the
number of variables. For the dynamic problems, different key problems can be reduced to different
key problems, and the update/query time tradeoffs vary. References are not comprehensive.

We begin with the starting point of many of the reductions from SETH to problems in P.
This is Williams’ reduction from CNF-SAT to OV.

I Theorem 1 (k-SAT ≤2n,n2 OV [65]). For each positive integer k, the k-SAT problem on n
variables is (2n,n2)-reducible to Orthogonal Vectors on n vectors.

Proof. Let F be a k-SAT formula on n variables. Using the sparsification lemma [40], we
can assume that F has m = O(n) clauses, as this only gives a 2αn overhead for arbitrarily
small α > 0. Create two sets U1,U2 of vectors over {0, 1}m. Split the variables into two
sets V1 and V2 of size n/2 each. For each i ∈ {1, 2} and each partial assignment φ to the
variables of Vi, add a vector vi,φ to Ui where vi,φ[c] = 1 if φ does not satisfy clause c. Now,
v0,φ and v1,ψ are orthogonal if and only if for every clause c at least one of φ and ψ satisfies
clause c. Thus, there is an orthogonal pair if and only if φ and ψ together form a satisfying
assignment. The number of vectors in the instances created is N = O(2n/2) and the number
of coordinates is O(n) = O(logN). J

Due to the use of the sparsification lemma, the above reduction produces an exponential
number of instances. However, the instances do not depend on the answers of the OV oracle.
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Below we give a different reduction that is actually adaptive and each new instance depends
on the answers to the previous ones.

I Theorem 2 (HS ≤n2,n2 OV [10, 7]). Small-Universe Hitting Set on n vectors is (n2,n2)-
reducible to Orthogonal Vectors on n vectors.

Proof. Let U , V be an instance of HS where |U | = |V | = n. Let s be a parameter to be
set later. Partition U into s sets U1, . . . ,Us of size at most dn/se ≤ 2n/s each. Similarly,
partition V into V1, . . . ,Vs of size ≤ 2n/s.

Now, for every choice of i, j ∈ {1, . . . , s} in turn: while (Ui,Vj) contains an orthogonal
pair (u, v), remove u from U (and hence from all Uk) and ask about (Ui,Vj) again; if no
orthogonal pair is found, continue to the next choice of (i, j).

If at the end of this procedure U contains some u, then u must be nonorthogonal to all
vectors in V , and hence the HS instance is a “yes” instance. Otherwise, if U is empty, then
every u ∈ U was orthogonal to some v ∈ V and the HS instance is a “no” instance.

The running time is as follows: every call to the OV problem either returns an orthogonal
pair (u, v) or determines that no such pair exists in Ui × Vj . The number of times an
orthogonal pair can be returned is at most n since when (u, v) is discovered, u is removed
from U . On the other hand, each (Ui,Vj) instance can be a “no”-instance of OV at most
once, so that the number of calls that return a “no” is at most s2. Thus, if we set s =

√
n,

the number of instances created of OV is at most 2n and their sizes are all at most 2
√
n.

Hence, for every ε > 0, there is a fine-grained reduction that creates at most 2n instances
whose sizes ni obey

∑2n
i=1 n

2−ε
i ≤ 4

∑2n
i=1 n

1−ε/2 = 8n2−ε/2. The reduction only does simple
partitioning of the instance and removals from U , and hence runs in O(n2−ε/2) time. J

Finally, we give a reduction from OV to the problem of approximating the diameter of a
sparse graph, i.e., the largest distance. There is a 3

2 -approximation algorithm for diameter
that runs in Õ(n3/2) time in n-node, Õ(n)-edge graphs [56, 23]. In such graphs, the diameter
can computed exactly in Õ(n2) time by computing APSP. The theorem below shows that,
assuming OVC (or SETH), if you want a ( 3

2 − ε)-approximation, you might as well compute
all pairwise distances in the graph.

I Theorem 3 (OV ≤n2,n2 (3/2 − ε)−Diameter [56]). Orthogonal Vectors on n vectors is
(n2,n2)-reducible to distinguishing between diameter 2 and 3 in a graph with n nodes and
O(n) edges.

Proof. Let U ,V be an instance of OV. For each u ∈ U create a node u (abusing notation)
and for each v ∈ V create a node v. For each coordinate c, create a node c. For any vector
node x (in U or V ), add an edge from x to any coordinate node c if and only if x[c] = 1. Add
two extra nodes a and b with an edge between them. Add an edge from all u ∈ U to a and
from b to all v ∈ V . Now, all pairs of nodes except those in U × V are at distance at most 2.
Two nodes u ∈ U and v ∈ V are at distance 2 if there is some c for which u[c] = v[c] = 1,
and are at distance 3 otherwise, via (a, b). Thus the diameter is 3 if there is an orthogonal
pair and is 2 otherwise. J

5 Some open problems

5.1 Connections to exact exponential-time algorithms
Many problems in P have fine-grained reductions from CNF-SAT. There are other NP-
hard problems, however, that are not known to be equivalent (in the fine-grained sense) to
CNF-SAT.

IPEC’15



24 Hardness of Easy Problems

What problems in P do other NP-hard problems reduce to?

Recent work by Abboud et al. [1] gives fine-grained reductions from k-Clique (for any
constant k) to two problems in cubic time, CFG recognition and RNA folding. When k is
divisible by 3, the fastest known algorithm for k-Clique runs in nωk/3+o(k) time [51] where
ω < 2.373 is the matrix multiplication exponent [62, 35]. Via the reduction from [1], the
conjecture that this algorithm is optimal implies nω−o(1) conditional lower bounds for both
RNA folding and CFG recognition. Valiant showed in the 1970s that the latter problem
can be solved in O(nω) time, and hence this running time is tight assuming the k-clique
conjecture.

Williams [65] gave a fine-grained (cn,nk)-reduction from any 2-CSP, i.e., any constraint
satisfaction problem with at most two variables per constraint (such as MAX-CUT or MAX-
2-SAT) to k-Clique for any constant k ≥ 3. Here cn represents the brute-force running time
for the 2-CSP problem, and for MAX-CUT and MAX-2-SAT, c = 2. Since one can find
a triangle (i.e., a 3-clique) in a graph in O(n2.373) time [41], this immediately gave faster
than brute-force algorithms for these problems. Due to Williams’ reduction, one can view
the result of Abboud et al. [1] as reducing any 2-CSP to CFG recognition and RNA folding.
The fine-grained reduction implies that any improvement over the current algorithms for
the latter two problems would improve upon the best known algorithms for solving 2-CSPs.
What other problems can one reduce 2-CSPs to? What can we reduce Set Cover, TSP, etc.
to?

5.2 Connections to fixed parameter tractability
The fixed parameter tractability community studies which NP-hard problems, when para-
meterized by some parameter k of the input, can be solved in f(k) polyn time, where n is
the size of the input. The idea is that while we believe that NP-hard problems cannot be
solved in polynomial time, the hardness can be pushed into some parameter k, so that for all
constant values of k, the running time is the same polynomial, independent of k. In a sense,
f(k) can be thought of as the constant factor overhead in the running time.

This idea does not have to be restricted to NP-hard problems. Consider a problem
that can be solved in O(nc) time for some constant c and is believed to also require nc−o(1)

time. Then, we can ask, for what parameters k is this problem in f(k)nc−ε time for ε > 0?
This question was asked independently by Giannopoulou et al. [36] and Abboud et al. [7].
Giannopoulou et al. consider the Longest Path on interval graphs that is known to be solvable
in O(n4) time. They show that when parameterized by the vertex deletion number k to
proper interval graphs, the problem has an O(k9n) time algorithm. Abboud et al. explored
the diameter problem in sparse graphs which is solvable in O(n2) time. They developed
a fixed parameter subquadratic 2O(t log t)n time algorithm, where t is the treewidth of the
input graph, also showing an almost matching lower bound, under SETH.

Under what parameters are APSP, 3SUM, OV in fixed-parameter linear time?

The above question is of course interesting for all hard problems in P.
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55 Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proceedings
of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachu-
setts, USA, 5-8 June 2010, pages 603–610, 2010.

56 L. Roditty and V. Vassilevska Williams. Fast approximation algorithms for the diameter
and radius of sparse graphs. In Proceedings of the 45th annual ACM symposium on Sym-
posium on theory of computing, STOC ’13, pages 515–524, New York, NY, USA, 2013.
ACM.

57 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Algorithms - ESA
2004, 12th Annual European Symposium, Bergen, Norway, September 14-17, 2004, Pro-
ceedings, pages 580–591, 2004.

58 Ingo Schiermeyer. Solving 3-satisfiability in less than 1.579n steps. In Computer Science
Logic, 6th Workshop, CSL ’92, San Miniato, Italy, September 28 - October 2, 1992, Selected
Papers, pages 379–394, 1992.

59 Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 410–414, 1999.

60 Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted
subgraphs. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 455–464, 2009.

61 V. Vassilevska Williams and R. Williams. Finding, minimizing, and counting weighted
subgraphs. SIAM J. Comput., 42(3):831–854, 2013.

62 Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, pages 887–898, 2012.

63 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 645–654,
2010.

64 R. Williams. Personal communication, 2015.



V.V. Williams 29

65 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005.

66 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
664–673, 2014.

67 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1867–1877, 2014.

IPEC’15


	Introduction
	The key problems
	3SUM
	All-Pairs Shortest Paths
	Satisfiability
	Orthogonal Vectors
	The Small Universe Hitting Set Problem
	Relationships between the conjectures

	The reductions
	Example results
	Some open problems
	Connections to exact exponential-time algorithms
	Connections to fixed parameter tractability


