
Listing Triangles

Andreas Björklund1⋆, Rasmus Pagh2⋆⋆, Virginia Vassilevska Williams3⋆ ⋆ ⋆,
and Uri Zwick4†

1 Department of Computer Science, Lund University, Sweden.
2 IT University of Copenhagen, Denmark.

3 Computer Science Department, Stanford University, USA.
4 Blavatnik School of Computer Science, Tel Aviv University, Israel.

Abstract. We present new algorithms for listing triangles in dense and
sparse graphs. The running time of our algorithm for dense graphs is
Õ(nω + n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)), and the running time of the algo-
rithm for sparse graphs is Õ(m2ω/(ω+1) + m3(ω−1)/(ω+1)t(3−ω)/(ω+1)),
where n is the number of vertices, m is the number of edges, t is the
number of triangles to be listed, and ω < 2.373 is the exponent of fast
matrix multiplication. With the current bound on ω, the running times of
our algorithms are Õ(n2.373+n1.568 t0.478) and Õ(m1.408+m1.222 t0.186),
respectively. We first obtain randomized algorithms with the desired run-
ning times and then derandomize them using sparse recovery techniques.

If ω = 2, the running times of the algorithms become Õ(n2 + nt2/3)
and Õ(m4/3+mt1/3), respectively. In particular, if ω = 2, our algorithm
lists m triangles in Õ(m4/3) time. Pǎtraşcu (STOC 2010) showed that
Ω(m4/3−o(1)) time is required for listing m triangles, unless there exist
subquadratic algorithms for 3SUM. We show that unless one can solve
quadratic equation systems over a finite field significantly faster than
the brute force algorithm, our triangle listing runtime bounds are tight
assuming ω = 2, also for graphs with more triangles.

1 Introduction

Algorithmic problems concerning the set of triangles in a graph have recently
received much attention, due to applications in various kinds of graph analysis
such as the study of social processes [8], community detection [5], and dense
subgraph mining [26]. Many of these problems require the listing of all triangles
in a graph — see [24, 6, 4] for a number of examples.

We consider simple, directed or undirected graphs with n vertices and m
edges. A dense graph may contain Θ(n3) triangles, so in terms of n the worst-case
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complexity of the trivial cubic time algorithm is optimal. However, most graphs
of interest are not dense. In 1978 Itai and Rodeh [13] obtained an algorithm
for listing all triangles in O

(

m3/2
)

, which is always an improvement over the

näıve O
(

n3
)

algorithm. Their algorithm is optimal as a graph with m edges may

contain Ω
(

m3/2
)

triangles.

In this paper we consider output sensitive algorithms for triangle listing,
which run asymptotically faster when the number t of triangles is small, with no

additional assumptions on the input graph. (For example, we do not consider
running time bounds in terms of graph parameters such as arboricity.) Our
approach is to combine known techniques for counting the number of triangles,
using fast matrix multiplication, with algebraic and combinatorial techniques
that allow us to compute the actual triangles. We initially obtain randomized
algorithms which we then derandomize using sparse recovery techniques.

Since our focus is on constants in the exponents of running time, we use Õ (·)
notation to suppress multiplicative factors of size no(1). For dense graphs, our
algorithm runs in Õ

(

nω + n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)
)

time, where ω < 2.373
is the exponent of square matrix multiplication [27, 18]. For sparse graphs, our
algorithm runs in Õ

(

m2ω/(ω+1) +m3(ω−1)/(ω+1)t(3−ω)/(ω+1)
)

time. Under the

assumption ω = 2 algorithms run in Õ
(

n3
)

and Õ
(

m3/2
)

algorithms for every
possible value of t. Our dense and sparse algorithms are inter-dependent. The
dense algorithm performs a sparsifying steps and calls the dense algorithm, while
the sparse algorithm performs a densifying step and calls the dense algorithm.

Pǎtraşcu [23] has shown that listing m triangles in a graph with m edges
requires time Ω

(

m4/3−ε
)

, for every ε > 0, unless there exists an algorithm for

3SUM running in O
(

n2−δ
)

time, for some δ > 0. Our algorithm lists m trian-

gles in Õ
(

m2ω/(ω+1)
)

time. With the current bound ω < 2.373, our algorithm

lists m triangles in O
(

m1.408
)

. Interestingly, if ω = 2, the running time becomes

Õ
(

m4/3
)

, essentially matching the conditional lower bound of Pǎtraşcu [23].
Significant improvements of the exponents in our results are therefore unlikely.

The best previously available algorithms for triangle listing that we are aware
of are the O

(

m3/2
)

algorithm of Itai and Rodeh [13], from which it is also easy

to obtain an Õ
(

nω +min(n3, nt, t3/2)
)

algorithm, and an O
(

t1−ω/3nω
)

-time
algorithm that follows from a reduction by Williams and Williams [28, Corollary
G.1] from triangle listing to triangle detection. The running times obtained by
our algorithms improve upon both of the aforementioned prior results for all
values of t.

1.1 Related work

Figure 1 compares the results described above, focusing on worst-case time com-
plexity. For completeness we now describe some other related work that is not
directly comparable to our results.

Quite a bit of work has been done on triangle listing algorithms that perform
well on real-life graphs. The paper of Schank and Wagner [24] contains a good
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Reference Time bounds If ω = 2

Itai and Rodeh [13]
Õ

(

nω +min(n3, nt, t3/2)
)

O

(

m3/2
) Õ

(

n2 +min(nt, t3/2)
)

Williams and Williams [28] Õ

(

nωt1−ω/3
)

Õ

(

n2t1/3
)

Pǎtraşcu [23] Ω̃(min(m4/3, n2, t4/3)) ∗

This paper

Õ

(

nω + n
3(ω−1)
5−ω t

2(3−ω)
5−ω

)

Õ

(

m
2ω
ω+1 +m

3(ω−1)
ω+1 t

3−ω
ω+1

)

Õ

(

n2 + nt2/3
)

Õ

(

m4/3 +mt1/3
)

Fig. 1. Upper and (conditional) lower bounds for listing t triangles in a graph of n
vertices and m edges. The results are stated in terms of the exponent ω of square
matrix multiplication, which is known to be below 2.373 [27]. All bounds hold are
for worst-case graphs and hold for every choice of n,m, t ≥ 1. The rightmost column
highlights the upper bounds that would result if ω = 2. The lower bound by Pǎtraşcu
marked by ∗ relies on the assumption that 3SUM requires Ω̃(n2) time.

overview of various algorithms with O
(

m3/2
)

worst-case running time, and in-
vestigates how well these algorithms perform on graphs from various application
areas, often running much faster than the worst-case analysis would suggest.
One algorithm that is often able to beat the worst-case bound is based on enu-
merating a set of 2-paths where the degree of the middle vertex is no larger than
the degrees of the start and end vertices (this is a simplified version of node-
iterator-core from [24]). Recently, Berry et al. [4] gave a theoretical explanation
why triangle listing is fast for most graphs, even for graphs with a skewed degree
distribution, by studying a class of random graphs.

Recently many authors have studied triangle counting and listing algorithms
for massive graphs, using either external memory [10, 20] or the MapReduce
framework for distributed computation [1]. However, for worst-case graphs these
algorithms all use Ω(m3/2) time, even when the number of triangles is zero.

As mentioned above, Pǎtraşcu [23] showed a link between triangle listing
and the time complexity of 3SUM. Jafargholi and Viola [14] further investigated
this connection, showing that surprising algorithms for 3SUM would lead to
surprising algorithms for triangle listing.

Alon, Yuster, and Zwick [2] show how to efficiently detect the presence of
small subgraphs in sparse graphs. For triangles they achieve a time bound of
O
(

m2ω/(ω+1)
)

, and the algorithm even allows counting the number of triangles.
The algorithm consists of a densification step that enumerates all 2-paths (i.e.,
paths with two edges) through vertices with degree at most∆, for a parameter∆.
In this way all triangles that contain a vertex of degree at most ∆ are found.
The number of triangles within the set of vertices of degree larger than ∆ is
found by squaring the adjacency matrix, which for every pair of vertices gives

3



the number of 2-paths that connect them. Summing over all edges we get the
number of triangles multiplied by 3.

Many authors have given efficient algorithms for approximately counting the
number of triangles in a graph, see e.g. [16] and its references. Most of these
derive an estimator by some kind of sampling followed by an exact triangle
counting algorithm.

1.2 Our contributions

Our central contribution is a randomized algorithm that lists (with high proba-
bility) all triangles in a graph by alternating two procedures:

– Densifying: Eliminate vertices of low degrees by enumerating all 2-paths
going through them, and

– Sparsifiying: Eliminate edges that are part of few triangles by reporting all
such triangles using sparse signal recovery techniques.

We can derandomize the algorithm at a cost of a factor no(1) in the running
time by using known explicit constructions from the sparse signal recovery lit-
erature. Let ω denote the exponent of square matrix multiplication. In section 3
we show:

Theorem 1 There exists a deterministic algorithm that lists all t triangles in a

graph of n vertices in time Õ
(

nω + n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)
)

.

With the bound ω < 2.373 [27] we get a time bound of O
(

n2.373 + n1.568 t0.478
)

.
In section 3 we also derive the following theorem:

Theorem 2 There exists a deterministic algorithm that lists all t triangles in a

graph of m edges in time Õ
(

m2ω/(ω+1) +m3(ω−1)/(ω+1)t(3−ω)/(ω+1)
)

.

Using the bound on ω as above we get: O
(

m1.408 +m1.222 t0.186
)

. In particular,

listing m triangles in a graph of m edges can be done in time O
(

m1.408
)

.
We note that if ω = 2 the time complexity for listing m triangles reduces

to Õ
(

m4/3
)

, meeting the conditional lower bound of [23] based on hardness of
3SUM. In section 6 we show that unless another seemingly difficult problem
has faster algorithms, namely quadratic systems of equations (QES), our two
runtime bounds are tight also for graphs with more triangles.

QES is defined as follows. Let F be a finite field and |F | its number of
elements. A quadratic equation system over F l is a set of k quadratic equations
in l variables over F . It is easy to see that QES is NP-complete, as for instance
NAESAT easily reduces to it with one equation per clause already over F =
GF (2), and it is a polynomial time task to verify a purported solution.

QES is a well-studied problem. The assumption that QES is intractable even
on average has been used to design several important cryptosystems (e.g. [17,
21]). A faster algorithm for QES would help attack these. Some algorithms that
work well in practice have been designed (see e.g. [15, 7]), though in the worst
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case, these do not improve over the exhaustive search |F |l poly(l, k) time algo-
rithm. It is a big open problem whether one can obtain a substantial improve-
ment (of the form |F |(1−ε)l for some ε > 0) over exhaustive search for QES. We
show that if one could improve upon our triangle listing algorithms (and ω = 2),
then QES does indeed have faster algorithms over any F .

Theorem 3 Suppose that for some ǫ1 ≥ 0, ǫ2 ≥ 0 with ǫ1 + ǫ2 > 0, there exists

an algorithm that lists all t triangles in an m-edge graph in O(m1−ǫ1t(1−ǫ2)/3)
time or in an n-vertex graph in O(n1−ǫ1t(1−ǫ2)2/3) time. Then, for any finite

field F , there exists an |F |(1−δ)l poly(l, k) time algorithm for δ > 0 that solves

l-variate quadratic equation systems with k equations over F l.

The hardness of QES was first used as an assumption to base lower bounds
on by Vassilevska and Williams [25] who showed that a fast enough algorithm
for determining whether an undirected graph with edge weights from some field
F has a k-clique of total weight 0 (over F ) would imply a faster than exhaustive
search algorithm for QES. In spirit, the proof of Theorem ?? is similar to the
proof in [25].

2 Listing light triangles

Let Λ be a parameter. We say that an edge is Λ-light, or just light, if it par-
ticipates in at most Λ triangles, otherwise, it is said to be Λ-heavy. A triangle
is Λ-light if at least one of the edges participating in it is light, otherwise it is
Λ-heavy. In this section we describe a simple randomized algorithm for listing
all Λ-light triangles with high probability. This algorithm is used as a building
block by our algorithms for listing all triangles in dense and sparse graphs.

We include this simple randomized algorithm for completeness. The ideas
behind it have been used before, for instance by Gasieniec et al. [9] who, build-
ing upon work of Aumann et al. [3] showed how to find k witnesses for Boolean
matrix multiplication in Õ

(

n2k + nωk(3−ω−α)/(1−α)
)

time. In Section 4 we de-
scribe a novel deterministic version of the algorithm described in this section
using sparse recovery techniques.

Theorem 4 Let G = (V,E) be a graph on n vertices and let 1 ≤ Λ ≤ n. Then,
all Λ-light triangles in G can be found in Õ

(

nωΛ3−ω
)

time, with high probability.

Proof. We assume, without loss of generality, that V = [n] = {1, 2, . . . , n}. Let A
be the adjacency matrix of the graph. Let Ā be the matrix A in which all the
1s in the k-th column of A are replaced by k, for k ∈ [n]. Let S ⊆ V , let A[∗, S]
denote the matrix obtained from A by selecting the columns whose indices belong
to S. Similarly, let A[S, ∗] denote the matrix obtained by selecting the rows of A
whose indices belong to S. The rectangular Boolean product A[∗, S]A[S, ∗] tells
us, for every i, j ∈ [n], whether there is a path of length 2 from i to j that passes
through a vertex of S. If there is only one such 2-path, then the (i, j)-th entry
of the product Ā[∗, S]A[S, ∗] identifies the k for which (i, k), (k, j) ∈ E.
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Suppose now that (i, j) ∈ E is a Λ-light edge, and let Ti,j = {k ∈ V |
(i, k), (k, j) ∈ E} be the set of ‘mid-points’ of the triangles passing through the
edge (i, j). Note that |Ti,j | ≤ Λ. Let S be a random subset of V of size n/Λ.
Let k ∈ Ti,j . The probability that |S ∩ Ti,j | = 1 is at least 1

Λ (1 −
1
Λ )

Λ−1 ≥ 1
eΛ .

Thus, if we choose O (Λ log n) random subsets of size n/Λ, we can, with high
probability, identify all light triangles.

As each product A[∗, S]A[S, ∗] and Ā[∗, S]A[S, ∗], where |S| = n/Λ, can be
computed in Õ(n2(n/Λ)ω−2) (by decomposing each rectangular matrix product
into square matrix products), the O (Λ log n) products could all be computed in
Õ(nωΛ3−ω) time. ⊓⊔

It is not difficult to convert the algorithm into a Las Vegas algorithm whose
expected running time is Õ(nωΛ3−ω). The idea is to check that each reported
triangle exists, and check for each edge that the number of triangles reported
is correct (by comparing to the number of 2-paths connecting its end points).
As pointed out by [9], using fast rectangular matrix multiplication [11, 19], one
can improve the running time of Theorem 4 to Õ

(

nωΛ(3−α−ω)/(1−α) + Λn2
)

≤

Õ
(

Λn2 + n2.373Λ0.464
)

. Here α > 0.303 is the largest constant such that n ×

nα by nα × n matrices can be multiplied in Õ
(

n2
)

time. This implies slight
improvements of the time bounds in Theorems 1 and 2.

3 Listing all triangles

We next describe two algorithms for listing all triangles in dense and sparse
graphs that use each other as subroutines. We let Dense (n, t) be the algorithm
for listing all triangles in a graph on n vertices containing at most t triangles,
and use D(n, t) to denote the running time of Dense (n, t). Similarly, we let
Sparse (m, t) be the algorithm for listing all triangles in a graph with m edges
(we assume that the graph has no isolated vertices to make m a proper bound
on the size of the graph) containing at most t triangles, and let S(m, t) denote
the running time of Sparse (m, t). We assume that these algorithms receive an
upper bound t on the number of triangles in the input graph. This upper bound
can be computed before calling our algorithms, either in Õ (nω) time, or in
O
(

m2ω/(ω+1)
)

time [2].

Sparse (m, t) works as follows. It chooses a parameter ∆ depending on m
and t. Vertices of degree at most ∆ are said to be low degree vertices. Vertices
of degree greater than ∆ are said to be high degree. The algorithm starts by
finding all triangles that contain a low degree vertex. This can be easily done
in O (m∆) time by examining for every edge incident on a low degree vertex x,
the length 2-paths formed by taking another edge out of x. Once this is done
we can remove all edges incident to low degree vertices. If no edges remain we
stop — otherwise, all remaining triangles, i.e., triangles that only include high
degree vertices can now be found by a call to Dense (2m/∆, t), as there are at
most 2m/∆ high degree vertices. Thus, ignoring constant factors,

S(m, t) ≤ m∆+D(2m/∆, t) . (1)
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Dense (n, t) works as follows. If n < 3, it returns no triangles. Otherwise, it
chooses a parameter Λ depending on n and t. It then finds all Λ-light triangles
in Õ

(

nωΛ3−ω
)

time by Theorem 4 (or its deterministic version from Section 4).
Once this is done we can remove all Λ-light edges. If no edges remain we stop
— otherwise, as there can be at most 3t/Λ Λ-heavy edges, all Λ-heavy triangles
can be found by a call to Sparse (3t/Λ, t). Thus, ignoring no(1) factors,

D(n, t) ≤ nωΛ3−ω + S(3t/Λ, t) . (2)

To analyze the running times of the two algorithms we set

Λ = ⌈max(3, 6n−(ω+1)/(5−ω)t2/(5−ω))⌉, and

∆ = ⌈2max(m(ω−1)/(ω+1), m2(ω−2)/(ω+1)t(3−ω)/(ω+1))⌉.

Suppose first that t ≥ m. Notice that since we never change t and the number
of edges never increases over the recursive calls, if we ever have t ≥ m, we have
t ≥ m in all subsequent calls. We get

∆ = 2m2(ω−2)/(ω+1)t(3−ω)/(ω+1), m∆ = 2m3(ω−1)/(ω+1)t(3−ω)/(ω+1).

Consider the first recursive call to the dense algorithm, and suppose that it was
called on n nodes, where we know that n ≤ 2m/∆. We get the following:

n ≤ 2m/∆ = m(5−ω)/(ω+1)t−(3−ω)/(ω+1).

n(ω+1)/2 ≤ (2m/∆)(ω+1)/2 =

(

m(5−ω)/(ω+1)

t(3−ω)/(ω+1)

)(ω+1)/2

= t · (m/t)(5−ω)/2.

Thus, t/n(ω+1)/2 ≥ (t/m)(5−ω)/2 which is ≥ 1 when t ≥ m, and since Λ =
max{3, 6(t/n(ω+1)/2)2/(5−ω)}, we get that

Λ = 6(t/n(ω+1)/2)2/(5−ω) ≥ 6t/m.

We now get:

nωΛ3−ω = 63−ωn3(ω−1)/(5−ω)t2(3−ω)/(5−ω)

≤ 63−ω(2m/∆)3(ω−1)/(5−ω)t2(3−ω)/(5−ω)

= 63−ωm3(ω−1)/(ω+1)t(3−ω)/(ω+1).

(3)

Since Λ ≥ 6t/m, we get that 3t/Λ ≤ m/2, and hence S(3t/Λ, t) ≤ S(m/2, t).
By Eq. 1 and Eq. 2 we have

S(m, t) ≤ m∆+ nωΛ3−ω + S(3t/Λ, t)

≤ (2 + 63−ω)m3(ω−1)/(ω+1)t(3−ω)/(ω+1) + S(m/2, t)

≤

⌈logm⌉
∑

i=1

(2 + 63−ω)(m/2i)3(ω−1)/(ω+1)t(3−ω)/(ω+1)

∈ O
(

m3(ω−1)/(ω+1)t(3−ω)/(ω+1)
)

.
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Next assume t < m. We get ∆ = 2m(ω−1)/(ω+1). By the above analysis we
get that Λ ≤ 6(t/m)(5−ω)/2, and so when t < m, we have 3 ≤ Λ ≤ 6. We also
have n ≤ 2m/∆ = m2/(ω+1). By Eq. 1 and Eq. 2 we have

S(m, t) ≤ m∆+ nωΛ3−ω + S(3t/Λ, t)

≤ (2 + 63−ω)m2ω/(ω+1) + S(t, t)

≤ (2 + 63−ω)m2ω/(ω+1) +O
(

t2ω/(ω+1)
)

∈ O
(

m2ω/(ω+1)
)

.

Once we have established the complexity of Sparse (m, t), it is also easy
to establish the complexity of Dense (n, t). There are again two cases. If t ≤
n(ω+1)/2, then 3 ≤ Λ ≤ 6 and the running time is

D(n, t) = O (nω + S(t, t)) = O (nω) .

If t > n(ω+1)/2, then Λ = 6n−(ω+1)/(5−ω)t2/(5−ω) and then

D(n, t) ≤ n3(ω−1)/(5−ω)t2(3−ω)/(5−ω) + S(3t/Λ, t)

≤ (n3(ω−1)t2(3−ω))1/(5−ω) + S((t(3−ω)n(ω+1))1/(5−ω), t)

≤ (n3(ω−1)t2(3−ω))1/(5−ω) + (t3−ωnω+1)3(ω−1)/((ω+1)(5−ω))t(3−ω)/(ω+1)

= O
(

n3(ω−1)/(5−ω)t2(3−ω)/(5−ω)
)

,

as required.

4 Deterministic algorithm

Randomization was only used by the algorithm for listing light triangles.
We now proceed to show how to list all Λ-light triangles. This is achieved

by computing, for every light edge, the list of at most Λ 2-paths connecting its
vertices. Each such list can be thought of as a vector x ∈ {0, 1}n with at most Λ
1s, corresponding to the connecting nodes. Let PΛ denote the set of such vectors
that we would like to compute.

To this end we make use of a sparse recovery matrix T with the following
properties, for some function f(n) = no(1):

– T has d = Θ(Λf(n)) rows.
– The number of non-zero entries in T is at most nf(n).
– For every x ∈ PΛ, we can compute x from Tx in time O (Λf(n)).

Random sparse 0-1 matrices are known to have these properties with high prob-
ability for f(n) = (log n)O(1) (see e.g. [22] for an overview of such constructions),
and there also exist explicit, deterministic constructions with f(n) = no(1) [12].
Let Di denote the diagonal matrix where the jth entry along the diagonal is
equal to Ti,j .
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Let A denote the adjacency matrix of the graph. To find all light triangles
we compute, for i = 1, . . . , d, the matrix product ADiA. If Di has ni non-zero
entries, this reduces to an n-by-ni times ni-by-n matrix product. For every x ∈
PΛ this gives us the vector Tx. Specifically, if x is the set of vertices connecting
vertices a and b, (Tx)i = (ADiA)a,b. This means that we can recover each x ∈ PΛ

in time O (Λf(n)).
The matrix product ADiA can be decomposed into O

(

(n/ni)
2
)

square ma-
trix products, each taking time O (nω

i ). By choice of T we have
∑

i ni ≤ df(n).
So the time for computing all d matrix products is bounded by a constant times

d
∑

i=1

n2nω−2
i ≤ dn2

(

d
∑

i=1

ni/d

)ω−2

≤ dn2(nf(n)/d)ω−2 = nωΛ3−ωf(n)ω−1 .

The first inequality uses Jensen’s inequality and the fact that nω−2
i is concave

(since ω − 2 ∈ [0; 1]). The second inequality uses our bounds on d and
∑

i ni.
Similarly to our randomized algorithm, the deterministic algorithm can be im-
proved to have runtime Õ

(

nωΛ(3−α−ω)/(1−α) + Λn2
)

using rectangular matrix
multiplication.

5 Listing some triangles

If a graph contains T triangles and we are only required to list t of them, then an
improved running time can be obtained as follows. First assume that the given
graph is tripartite by creating three copies of each vertex v, vI in partition I, vJ
in partition J and vK in partition K. Then each edge (u, v) appears 6 times, once
for each pair of copies of u and v in different partitions. Each triangle appears 6
times as well, so it suffices to list 6t triangles in this new graph. Suppose now that
we want to list t triangles in a tripartite graph with T > t triangles. We design
a recursive algorithm as follows. Split I, J,K into 2 parts of n/2 nodes each,
I1, I2, J1, J2,K1,K2. Count the triangles in each of the 8 subgraphs induced by
Ii∪Jj ∪Kk, and recurse on the part that has the most triangles. At some point,
the number of triangles in the part Ii ∪ Jj ∪Kk with most triangles will be < t,
and at this point we no longer recurse, but use our triangle listing algorithm on
the current subgraph G′. We know that when we recursed on G′, it had at least t
triangles, but since each of the 8 triples of subgraphs of G′ have < t, then G′

has < 8t triangles. Consider now the number of nodes of G′. Suppose that it is
3n/2j for some j, and we have done j recursive steps to find G′. In each step
the number of triangles goes down by at most a factor of 8, so G′ has at least
T/8j triangles. Yet, G′ has < 8t triangles, and hence 8j+1 > T/t, and hence the
number of nodes in G′ is O(n/(T/t)1/3). We thus get a running time of

Õ



nω +

(

(

t

T

)1/3

n

)3(ω−1)/(5−ω)

t2(3−ω)/(5−ω)



 .

Using a similar idea, combined with an approach from [14], we can also get an
improvement for sparse graphs (in terms of m).
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6 Consequences of faster triangle listing

In this section we prove Theorem 3. We show that if one could improve upon
our triangle listing algorithms (and ω = 2), then QES does indeed have faster
algorithms over any F .

Let F be a finite field and q = |F | its number of elements. Assume that
there is no q(1−ǫ3)l poly(l, k) time algorithm for any ǫ3 > 0 that solves l-variate
QES on k equations. Given an instance to QES on l variables with k equations
x′Qix+ Eix+ Si = 0 over F , where Qi are l × l matrices, Ei are 1× l vectors,
and Si are scalars, we will show how one can use triangle listing to solve it. Much
as Pǎtraşcu [23] did for 3SUM, we use hashing as a filter to find the solutions to
QES. We construct h hashed projections of the equations x′Aix+Bix+Ci = 0
for i = 1, 2, . . . , h where

Ai =

k
∑

j=1

Ri(j)Qj , Bi =

k
∑

j=1

Ri(j)Ej , Ci =

k
∑

j=1

Ri(j)Sj

for a random Ri ∈ F k (for a vector R we write R(j) to address its jth element).
The hashed QES (A,B,C) has the following relations to the original QES:

– Every solution to (Q,E, S) is a solution also to (A,B,C).
– Every non-solution to (Q,E, S) is a solution to (A,B,C) with prob. q−h.

This means that if (Q,E, S) has s solutions, (A,B,C) has at most 2 · ql−h +
s solutions with probability at least 1/2 by the linearity of expectation and
Markov’s inequality. We can assume that s < qǫ3l since if not we can use another
algorithm in parallel that simply guesses an assignment and verifies it, which runs
in expected time O(ql/s).

We next construct a graphG that has a triangle for each solution to (A,B,C).
Let a be a parameter to be fixed later. The vertex set is the union of three sets:

– V1 has one vertex labeled (φ1) for each assignment φ1 to the first l − 2a
variables, in total ql−2a vertices.

– V2 has one vertex labeled (φ2, H2) for each combination of an assignment
φ2 to the next a variables xl−2a+1, . . . , xl−a and a vector H2 in Fh, in total
qa+h vertices.

– V3 has one vertex labeled (φ3, H3) for each combination of an assignment φ3

to the last a variables xl−a+1, . . . , xl and a vector H3 in Fh, in total qa+h

vertices.

We let 0k denote the assignment of k variables to the value 0. The edges are:

– (φ1) and (φ2, H2) has an edge iff the assignments x = φ1φ20l−a and y =
φ102a to the variables give x′Aix+Biy + Ci = −H2(i), i.e. we consider the
contribution where we use all quadratic terms associated with the vertices
and the linear term associated with the first one. There are ql−a edges.

10



– (φ2, H2) and (φ3, H3) has an edge iff the assignments x = 0l−2aφ2φ3 and
y = 0n−2aφ20a to the variables give x′Aix+Biy+Ci = H2(i)−H3(i). There
are q2a+h edges.

– (φ3, H3) and (φ1) has an edge iff the assignments x = φ10aφ3 and y = 0n−aφ3

to the variables give x′Aix+Biy + Ci = H3(i). There are q2a+h edges.

A triangle in the graph corresponds to a solution to (A,B,C) since on the
left side we count each term exactly once, and on the right hand side H2 and H3

are counted twice with opposite signs and cancel.
We can use our triangle listing algorithm on G to solve (Q,E, S): for each

found triangle (φ1), (φ2, H2), (φ3, H3) we verify if x = φ1φ2φ3 is also a solution
to (Q,E, S). To arrive at the lower bound, we note that the graph G has

– ql−2a + 2 · qa+h vertices.
– ql−a + 2 · q2a+h edges.
– 2 · ql−h + s < 2 · ql−h + qǫ3l < 2 · ql−h+ǫ3l triangles with probability 1/2.

We set a = (l − h)/3 to get m = 3 · q2l/3+h/3and n = 3ql/3+2h/3. By varying h
we can control the number of triangles w.r.t. m and n.

Now assume there is a O(m1−ǫ1t(1−ǫ2)/3) time algorithm for triangle listing
for some t ≥ m. With our bounds on m and t we get

O
(

ql−ǫ1(2l/3+h/3)−ǫ2(l/3−h/3+ǫ3l)+ǫ3l
)

time. For small enough constant ǫ3 we get a contradiction of the assumption
of non-existence of any O(q(1−ǫ3)l) time algorithm for QES. If we instead as-
sume a n1−ǫ1t(1−ǫ2)2/3 time algorithm for triangle listing for some t, we get
O
(

ql−ǫ1(l/3+2h/3)−ǫ2(2l/3−2h/3+ǫ3l)+ǫ3l
)

time, also a contradiction.
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discussed the ideas leading to this paper. We thank Eric Price and Jelani Nelson
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23. Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc.
of 42nd STOC, pages 603–610, 2010.

24. Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles
in large graphs, an experimental study. In Experimental and Efficient Algorithms,
pages 606–609. Springer, 2005.

25. V. Vassilevska and R. Williams. Finding, minimizing, and counting weighted sub-
graphs. In Proc. STOC, pages 455–464, 2009.

26. NanWang, Jingbo Zhang, Kian-Lee Tan, and Anthony KH Tung. On triangulation-
based dense neighborhood graph discovery. Proc. VLDB Endowment, 4(2):58–68,
2010.

27. Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-
winograd. In Proc. of 44nd STOC, pages 887–898, 2012.

12



28. Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In Proc. IEEE Foundations of Computer
Science (FOCS), pages 645–654, 2010.

13


