
Hardness for easy 

problems 
An introduction 



The real world and hard problems 

I’ve got data. I want 

to solve this 
algorithmic problem 

but I’m stuck! 

I’m sorry, this 

problem is NP-hard. 

A fast algorithm for it 

would resolve a 

hard problem in 

CS/math.  Ok, thanks, I feel 

better that none 
of my attempts 

worked. I’ll use 

some heuristics. 



The real world and easy problems 

Great news! Your 

problem is in P. 

Here’s an O(n2) 

time algorithm! 

But my data size n 

is huge! Don’t you 

have a faster 

algorithm? Uhm, I don’t know… This is 

already theoretically 
fast… For some reason I 

can’t come up with a 

faster algorithm for it right 
now… 

?!? … Should I wait? 

… Or should I be 
satisfied with 

heuristics? 

I’ve got data. I want 

to solve this 
algorithmic problem 

but I’m stuck! 



In theoretical CS,  

polynomial time = efficient/easy. 

 
 

This is for a variety of reasons.  

E.g. composing two efficient algorithms results in an 
efficient algorithm. Also, model-independence. 

 

However, noone would consider an O(n100) time algorithm 
efficient in practice. 

If n is huge, then O(n2) can also be inefficient. 

 

How do we explain when we are stuck? 

 



The “easy” problems 

 

Let’s focus on O(N2) time 

 

(N- size of the input) 



What do we know about O(N2) time? 

 Amazingly fast algorithms for: 

Classical (almost) linear time: connectivity, planarity, minimum 
spanning tree, single source shortest paths, min cut, topological 
order of DAGs … 

 

 Recent breakthroughs: solving SDD linear systems (m1+o(1), [ST’04] …), 
approx. max flow (m1+o(1), [KLOS’13]), max matching (m10/7, [M’14]), 
min cost flow (~m√n, [LS’14]), … 

 

 Sublinear algorithms/property testing 

 

 Good news: A lot of problems are in close to linear time! 



Hard problems in O(N2) time 

Bad news: on many problems we are stuck: 

 

No N2 -  time algorithms known for: 

Many problems in computational geometry: e.g 

Given n points in the plane, are any three collinear? 

A very important primitive! 

 

 

In general, for many 

problems in P, 

there’s an ``easy’’ 

O(Nc) time solution 

but essentially no 

improvement in 

decades. 



Hard problems in O(N2) time 

Bad news: on many problems we are stuck: 

 

No N2- time algorithm known for: 

Many problems in computational geometry 

Many string matching problems:  

Edit distance, Sequence local alignment, Longest 
common subsequence, jumbled indexing … 

 

 



Sequence alignment 

A fundamental problem from computational biology: 

Given two DNA strings 

ATCGGGTTCCTTAAGGG 

ATTGGTACCTTCAGG 

 

How similar are they? What do they have in common? 

 

Several notions of similarity!  

E.g.  Local alignment, Edit Distance, Longest Common Subsequence 

 

 

 



Longest Common Subsequence 

Given two strings 

ATCGGGTTCCTTAAGGG 

ATTGGTACCTTCAGG 

 

Find a subsequence of both strings of maximum length. 

 

Applications both in comp. biology and in spellcheckers. 



Longest Common Subsequence 

Given two strings 

ATCGGGTTCCTTAAGGG 

AT T GG_TACCTTCA_GG 

 

Find a subsequence of both strings of maximum length. 

 

Applications both in comp. biology and in spellcheckers. 

Solved daily on huge strings!! 



Sequence problems theory/practice 

Fastest algorithm for most sequence alignment variants:  

  O(n2) time on length n sequences 

 

Sequence alignment is run on whole genome sequences.  

Human genome: 3 x 109 base pairs. 

 

A quadratic time algorithm is not fast! 



Hard problems in O(N2) time 

Bad news: on many problems we are stuck: 

 

No N2- time algorithm known for: 

Many problems in computational geometry 

Many string matching problems 

Many graph problems in sparse graphs: e.g.  

Given an n node, O(n) edge graph, what is its diameter?  

Fundamental problem. Even approximation algorithms 
seem hard! 

 

 



Hard problems in O(N2) time 

Bad news: on many problems we are stuck: 

 

No N2- time algorithm known for: 

Many problems in computational geometry 

Many string matching problems 

Many graph problems in sparse graphs 

 

No N1.5- time algs known for many problems in 
dense graphs: diameter, radius, median, 
second shortest path, shortest cycle… 

 

N1.5 time 
algs exist 

i.e. n3 



Why are we stuck? 

We are stuck on many problems from 

different subareas of CS! 

 

Are we stuck because of the same reason? 

 

How do we address this? 

How did we address this for the hard problems? 



A canonical hard problem 

k-SAT  

Input: variables x1, … ,xn and a formula 

F = C1  C2  …  Cm so that each Ci is of the form 

{y1  y2  …  yk} and i, yi is either xt or xt for some t. 

 

Output: A boolean assignment to {x1,…,xn} that satisfies all the clauses, or NO if 
the formula is not satisfiable 

 

Trivial algorithm: try all 2n assignments 

Best known algorithm: O(2n-(cn/k)nd) time for const c,d 

 

 

 

 



Why is k-SAT hard? 

Theorem [Cook,Karp’72]:  

k-SAT is NP-complete for all k ≥ 3. 

 

That is, if there is an algorithm that solves k-SAT instances on 
n variables in poly(n) time, then all problems in NP have 
poly(N) time solutions, and so P=NP. 

 

k-SAT (and all other NP-complete problems) are 
considered hard because fast algorithms for them imply 

fast algs for many important problems. 

Tool: poly-time 
reductions 



Addressing the hardness of easy 

problems 

1. Identify key hard problems  

 

2. Reduce these to all (?) other hard easy problems 

 

3. Hopefully form equivalence classes  

 

Goal: understand the landscape of polynomial time. 



CNF SAT is conjectured to be really hard 

 

Two popular conjectures about SAT [IPZ01]: 

ETH: 3-SAT requires 2n time for some  > 0. 

 

SETH: for every  > 0, there is a k such that k-SAT on n 
variables, m clauses cannot be solved in 2(1-)n poly m time. 

 

So we can use k-SAT as our hard problem and ETH or SETH 
as the conjecture we base hardness on. 



Three more problems we can blame 

 3SUM: Given a set S of n integers, are there  

       a,b,c 2 S with a+b+c = 0? 

 

Orthogonal vectors (OV): Given a set S of n vectors  

 in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0? 

     

 All pairs shortest paths (APSP): given a weighted graph, 
find the distance between every two nodes. 

 

     



3SUM:  Given a set S of n numbers, are there  

          a,b,c 2 S with a+b+c = 0? 

 
 Easy O(n2) time algorithm 

 [BDP’05]:  ~n2/log2 n time algorithm for integers 

 [GP’14] : ~n2/log n time for real numbers 

 Here we’ll talk about 3SUM over the integers 

 Folklore: one can assume the integers are in {-n3,…,n3} 

 

 

 
3SUM Conjecture: 3SUM on n integers in {-n3,…,n3} 

requires n2-o(1) time. 



Three more problems we can blame 

 3SUM: Given a set S of n integers, are there  

       a,b,c 2 S with a+b+c = 0? 

 

Orthogonal vectors (OV): Given a set S of n vectors  

 in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0? 

     

 All pairs shortest paths (APSP): given a weighted graph, 
find the distance between every two nodes. 

 

     



Orthogonal vectors (OV): Given a set S of n vectors 

in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0? 

 
 Easy O(n2 log n) time algorithm 
 Best known [AWY’15]: n2 -(1 /  log (d/log n)) 

 

 

 

 

 [W’04]: SETH implies the OV Conjecture.  

 I’ll prove this to you later 

OV Conjecture: OV on n vectors requires n2-o(1) time. 



Three more problems we can blame 

 3SUM: Given a set S of n integers, are there  

       a,b,c 2 S with a+b+c = 0? 

 

Orthogonal vectors (OV): Given a set S of n vectors  

 in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0? 

     

 All pairs shortest paths (APSP): given a weighted graph, 
find the distance between every two nodes. 

 

     



APSP: given a weighted graph, find the distance 
between every two nodes. 

 
Author  Runtime Year 

Fredman n3 log log1/3 n / log1/3 n 1976 

Takaoka n3 log log1/2 n / log1/2 n 1992 

Dobosiewicz n3 / log1/2 n 1992 

Han n3 log log5/7 n / log5/7 n 2004 

Takaoka n3 log log2 n / log n  2004 

Zwick n3 log log1/2 n / log n  2004 

Chan n3 / log n 2005 

Han n3 log log5/4 n / log5/4 n 2006 

Chan n3 log log3 n / log2 n 2007 

Han, Takaoka n3 log log n / log2 n 2012 

Williams n3 / exp( log n) 2014 

Classical problem 

Long history 

APSP Conjecture: 
APSP on n nodes 
and O(log n) bit 
weights requires 

n3-o(1) time. 



Addressing the hardness of easy 

problems 

1. Identify key hard problems  

 

2. Reduce these to all (?) other hard easy 

problems 

 

3. Hopefully form equivalence classes  

 

 



 A is (a,b)-reducible to B if  

  for every ε>0 ∃ δ>0, and an O(a(n)1-δ) time algorithm  

  that transforms any A-instance of size n to B-instances of size 

n1,…,nk so that Σi b(ni)
1-ε < a(n)1-δ. 

 

Fine-grained reductions 

27 

 If B is in O(b(n)1-ε) time,  

 then A is in O(a(n)1-δ) time. 

 Focus on exponents. 

 We can build equivalences. 

A theory of hardness for polynomial time. 
 

A 

a(n)1-δ 

B B B B 

Intuition: a(n),b(n) are the naive 

runtimes for A and B. A reducible 

to B implies that beating the 

naive runtime for B implies also 

beating the naive runtime for A. 



Addressing the hardness of easy 

problems 

1. Identify key hard problems  

 

2. Reduce these to all (?) other hard easy 

problems 

 

3. Hopefully form equivalence classes  

 

 



Some structure within P 

 

Orthog. 

vectors 

3SUM APSP 

Sparse graph diameter [RV’13], local alignment, 

longest common substring* [AVW’14], Frechet 

distance [Br’14], Edit distance [BI’15], LCS 

[ABV’15, BrK’15]… 

N2-  

N2- ’ 

In dense graphs: 

radius, median, 

betweenness 

[AGV’15], negative 

triangle, second 

shortest path, 

shortest cycle … 

[VW’10], … 

N1.5- 

n3-  

N1.5- ’ n3-  

Huge literature in comp. 

geom. [GO’95, BH-P98, …]: 

Geombase, 3PointsLine, 

3LinesPoint, Polygonal 

Containment … 

 

String problems: Sequence 

local alignment [AVW’14], 

jumbled indexing [ACLL’14] 

N2-  

N2- ’ 

STUCK 

on all 3! 

k-SAT 
2(1 - )n 

[W’04] 

Dynamic 

problems 

[P’10],[AV’14],

[HKNS‘15], 

[RZ’04] 



Fast OV implies SETH is false [W’04] 
F- k-CNF-formula on n vars, m = O(n) clauses* 

Split the vars into V1 and V2 on n/2 vars each 

For j=1,2 and each partial assignment  of Vj create (m+2) length vector v(j, ): 

 

 0 1 0 1 0 … … … … 1 

0 if  satisfies the clause, 1 otherwise for all v(1, ) 

1 0 0 0 1 … … … … 1 

for all v(2, ) 0 if  satisfies the clause,  

1 otherwise 

clauses 

*By sparsification lemma, any k-CNF 

can be converted into a small 

number of k-CNFs on O(n) clauses. 



Fast OV implies SETH is false 
 

 0 1 0 1 0 … … … … 1 

0 if  satisfies the clause, 1 otherwise for all v(1, ) 

1 0 0 0 1 … … … … 1 

for all v(2, ) 0 if  satisfies the clause,  

1 otherwise 

Claim:   v(1,) ¢ v(2,) = 0 iff  ¯  is a sat assignment. 

 

N = 2n/2 vectors of dimension O(n) = O(log N) → an OV instance. 

So O(N2 - ) time implies SETH is false. 



Some structure within P 

 

Orthog. 

vectors 

3SUM APSP 

Sparse graph diameter [RV’13], local alignment, 

longest common substring* [AVW’14], Frechet 

distance [Br’14], Edit distance [BI’15], LCS 

[ABV’15, BrK’15]… 

N2-  

N2- ’ 

In dense graphs: 

radius, median, 

betweenness 

[AGV’15], negative 

triangle, second 

shortest path, 

shortest cycle … 

[VW’10], … 

N1.5- 

n3-  

N1.5- ’ n3-  

Huge literature in comp. 

geom. [GO’95, BH-P98, …]: 

Geombase, 3PointsLine, 

3LinesPoint, Polygonal 

Containment … 

 

String problems: Sequence 

local alignment [AVW’14], 

jumbled indexing [ACLL’14] 

N2-  

N2- ’ 

STUCK 

on all 3! 

CNF-SAT 
2(1 - )n 

Dynamic 

problems 

[P’10],[AV’14],

[HKNS‘15], 

[RZ’04] 



Another popular conjecture 

Boolean matrix multiplication (BMM): given two n x n 
boolean matrices A and B, compute their boolean 
product C, where C[i, j] = k (A[i, k]  B[k, j]) 

 

BMM can be computed in O(n) time,  < 2.38. The 
algebraic techniques are not very practical, however. 

The best known ̀ `combinatorial’’ techniques get a runtime 
of at best n3 / log4 n [Yu’15]. 

 

BMM Conjecture:  

Any ``combinatorial’’ algorithm for BMM requires n3-o(1) time. 



BMM conjecture consequences 

 Reductions from BMM are typically used to show that fast 
matrix multiplication is probably required 

 Some implications of the BMM conjecture:  

A triangle in a graph cannot be found faster than in n3-o(1) 

time by any combinatorial algorithm 

 The radius of unweighted graphs requires n3-o(1) time via 
combinatorial techniques 

Maintaining a maximum bipartite matching dynamically with 

nontrivial update times requires fast matrix multiplication 

CFG parsing requires fast matrix multiplication 

… 



Which conjectures are more believable? 

 Besides Ryan’s proof that SETH -> OV Conjecture, there 
are no other reductions relating the conjectures known 

 It could be that one is true while all others are false 

 However: 

 The decision tree complexities of both 3SUM (GP’14) and APSP 
(Fredman’75) are low: n1.5 and n2.5, respectively. This is not known 
for OV. Perhaps this means the OV conjecture is more 

believable? 

OV and APSP both admit better than logarithmic improvements 
over the naïve runtime, 3SUM does not, as far as we know. So 
maybe the 3SUM conjecture is more believable? 

 There are natural problems that 3SUM, APSP and k-SAT 
all reduce to, Matching Triangles & Triangle Collection. 
Amir will talk about them later.  



Some structure within P 

 

Orthog. 

vectors 

3SUM APSP 

Sparse graph diameter [RV’13], local alignment, 

longest common substring* [AVW’14], Frechet 

distance [Br’14], Edit distance [BI’15], LCS 

[ABV’15, BrK’15]… 

N2-  

N2- ’ 

In dense graphs: 

radius, median, 

betweenness 

[AGV’15], negative 

triangle, second 

shortest path, 

shortest cycle … 

[VW’10], … 

N1.5- 

n3-  

N1.5- ’ n3-  

Huge literature in comp. 

geom. [GO’95, BH-P98, …]: 

Geombase, 3PointsLine, 

3LinesPoint, Polygonal 

Containment … 

 

String problems: Sequence 

local alignment [AVW’14], 

jumbled indexing [ACLL’14] 

N2-  

N2- ’ 

k-SAT 
2(1 - )n 

Dynamic 

problems 

[P’10],[AV’14],

[HKNS‘15], 

[RZ’04] 

Triangle 

collection n3-  

2pm 

 

V. 

3pm 

 

Amir 4pm 

 

Piotr 

Arturs 

S-T max flow, dynamic max 

flow, … [AVY’15] 

Monday 

10:15am 

 

Amir 



Plan for the rest of the day: 

 2 pm  Hardness and Equivalences for Graph Problems  

(Virginia)  

 3pm   Hardness for Dynamic Problems  (Amir) 

 4pm   Intro to hardness for sequence problems (Piotr) 

 4:30pm Hardness for sequence problems (Arturs) 

 5pm   Conclusion and future work (Amir) 

THANKS! 


