
Hardness for easy

problems
An introduction

The real world and hard problems

I’ve got data. I want

to solve this
algorithmic problem

but I’m stuck!

I’m sorry, this

problem is NP-hard.

A fast algorithm for it

would resolve a

hard problem in

CS/math. Ok, thanks, I feel

better that none
of my attempts

worked. I’ll use

some heuristics.

The real world and easy problems

Great news! Your

problem is in P.

Here’s an O(n2)

time algorithm!

But my data size n

is huge! Don’t you

have a faster

algorithm? Uhm, I don’t know… This is

already theoretically
fast… For some reason I

can’t come up with a

faster algorithm for it right
now…

?!? … Should I wait?

… Or should I be
satisfied with

heuristics?

I’ve got data. I want

to solve this
algorithmic problem

but I’m stuck!

In theoretical CS,

polynomial time = efficient/easy.

This is for a variety of reasons.

E.g. composing two efficient algorithms results in an
efficient algorithm. Also, model-independence.

However, noone would consider an O(n100) time algorithm
efficient in practice.

If n is huge, then O(n2) can also be inefficient.

How do we explain when we are stuck?

The “easy” problems

Let’s focus on O(N2) time

(N- size of the input)

What do we know about O(N2) time?

 Amazingly fast algorithms for:

Classical (almost) linear time: connectivity, planarity, minimum
spanning tree, single source shortest paths, min cut, topological
order of DAGs …

 Recent breakthroughs: solving SDD linear systems (m1+o(1), [ST’04] …),
approx. max flow (m1+o(1), [KLOS’13]), max matching (m10/7, [M’14]),
min cost flow (~m√n, [LS’14]), …

 Sublinear algorithms/property testing

 Good news: A lot of problems are in close to linear time!

Hard problems in O(N2) time

Bad news: on many problems we are stuck:

No N2 - time algorithms known for:

Many problems in computational geometry: e.g

Given n points in the plane, are any three collinear?

A very important primitive!

In general, for many

problems in P,

there’s an ``easy’’

O(Nc) time solution

but essentially no

improvement in

decades.

Hard problems in O(N2) time

Bad news: on many problems we are stuck:

No N2- time algorithm known for:

Many problems in computational geometry

Many string matching problems:

Edit distance, Sequence local alignment, Longest
common subsequence, jumbled indexing …

Sequence alignment

A fundamental problem from computational biology:

Given two DNA strings

ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

How similar are they? What do they have in common?

Several notions of similarity!

E.g. Local alignment, Edit Distance, Longest Common Subsequence

Longest Common Subsequence

Given two strings

ATCGGGTTCCTTAAGGG

ATTGGTACCTTCAGG

Find a subsequence of both strings of maximum length.

Applications both in comp. biology and in spellcheckers.

Longest Common Subsequence

Given two strings

ATCGGGTTCCTTAAGGG

AT T GG_TACCTTCA_GG

Find a subsequence of both strings of maximum length.

Applications both in comp. biology and in spellcheckers.

Solved daily on huge strings!!

Sequence problems theory/practice

Fastest algorithm for most sequence alignment variants:

 O(n2) time on length n sequences

Sequence alignment is run on whole genome sequences.

Human genome: 3 x 109 base pairs.

A quadratic time algorithm is not fast!

Hard problems in O(N2) time

Bad news: on many problems we are stuck:

No N2- time algorithm known for:

Many problems in computational geometry

Many string matching problems

Many graph problems in sparse graphs: e.g.

Given an n node, O(n) edge graph, what is its diameter?

Fundamental problem. Even approximation algorithms
seem hard!

Hard problems in O(N2) time

Bad news: on many problems we are stuck:

No N2- time algorithm known for:

Many problems in computational geometry

Many string matching problems

Many graph problems in sparse graphs

No N1.5- time algs known for many problems in
dense graphs: diameter, radius, median,
second shortest path, shortest cycle…

N1.5 time
algs exist

i.e. n3

Why are we stuck?

We are stuck on many problems from

different subareas of CS!

Are we stuck because of the same reason?

How do we address this?

How did we address this for the hard problems?

A canonical hard problem

k-SAT

Input: variables x1, … ,xn and a formula

F = C1 C2 … Cm so that each Ci is of the form

{y1 y2 … yk} and i, yi is either xt or xt for some t.

Output: A boolean assignment to {x1,…,xn} that satisfies all the clauses, or NO if
the formula is not satisfiable

Trivial algorithm: try all 2n assignments

Best known algorithm: O(2n-(cn/k)nd) time for const c,d

Why is k-SAT hard?

Theorem [Cook,Karp’72]:

k-SAT is NP-complete for all k ≥ 3.

That is, if there is an algorithm that solves k-SAT instances on
n variables in poly(n) time, then all problems in NP have
poly(N) time solutions, and so P=NP.

k-SAT (and all other NP-complete problems) are
considered hard because fast algorithms for them imply

fast algs for many important problems.

Tool: poly-time
reductions

Addressing the hardness of easy

problems

1. Identify key hard problems

2. Reduce these to all (?) other hard easy problems

3. Hopefully form equivalence classes

Goal: understand the landscape of polynomial time.

CNF SAT is conjectured to be really hard

Two popular conjectures about SAT [IPZ01]:

ETH: 3-SAT requires 2n time for some > 0.

SETH: for every > 0, there is a k such that k-SAT on n
variables, m clauses cannot be solved in 2(1-)n poly m time.

So we can use k-SAT as our hard problem and ETH or SETH
as the conjecture we base hardness on.

Three more problems we can blame

 3SUM: Given a set S of n integers, are there

 a,b,c 2 S with a+b+c = 0?

Orthogonal vectors (OV): Given a set S of n vectors

 in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0?

 All pairs shortest paths (APSP): given a weighted graph,
find the distance between every two nodes.

3SUM: Given a set S of n numbers, are there

 a,b,c 2 S with a+b+c = 0?

 Easy O(n2) time algorithm

 [BDP’05]: ~n2/log2 n time algorithm for integers

 [GP’14] : ~n2/log n time for real numbers

 Here we’ll talk about 3SUM over the integers

 Folklore: one can assume the integers are in {-n3,…,n3}

3SUM Conjecture: 3SUM on n integers in {-n3,…,n3}

requires n2-o(1) time.

Three more problems we can blame

 3SUM: Given a set S of n integers, are there

 a,b,c 2 S with a+b+c = 0?

Orthogonal vectors (OV): Given a set S of n vectors

 in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0?

 All pairs shortest paths (APSP): given a weighted graph,
find the distance between every two nodes.

Orthogonal vectors (OV): Given a set S of n vectors

in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0?

 Easy O(n2 log n) time algorithm
 Best known [AWY’15]: n2 -(1 / log (d/log n))

 [W’04]: SETH implies the OV Conjecture.

 I’ll prove this to you later

OV Conjecture: OV on n vectors requires n2-o(1) time.

Three more problems we can blame

 3SUM: Given a set S of n integers, are there

 a,b,c 2 S with a+b+c = 0?

Orthogonal vectors (OV): Given a set S of n vectors

 in {0,1}d, for d = O(log n) are there u,v 2 S with u ¢ v = 0?

 All pairs shortest paths (APSP): given a weighted graph,
find the distance between every two nodes.

APSP: given a weighted graph, find the distance
between every two nodes.

Author Runtime Year

Fredman n3 log log1/3 n / log1/3 n 1976

Takaoka n3 log log1/2 n / log1/2 n 1992

Dobosiewicz n3 / log1/2 n 1992

Han n3 log log5/7 n / log5/7 n 2004

Takaoka n3 log log2 n / log n 2004

Zwick n3 log log1/2 n / log n 2004

Chan n3 / log n 2005

Han n3 log log5/4 n / log5/4 n 2006

Chan n3 log log3 n / log2 n 2007

Han, Takaoka n3 log log n / log2 n 2012

Williams n3 / exp(log n) 2014

Classical problem

Long history

APSP Conjecture:
APSP on n nodes
and O(log n) bit
weights requires

n3-o(1) time.

Addressing the hardness of easy

problems

1. Identify key hard problems

2. Reduce these to all (?) other hard easy

problems

3. Hopefully form equivalence classes

 A is (a,b)-reducible to B if

 for every ε>0 ∃ δ>0, and an O(a(n)1-δ) time algorithm

 that transforms any A-instance of size n to B-instances of size

n1,…,nk so that Σi b(ni)
1-ε < a(n)1-δ.

Fine-grained reductions

27

 If B is in O(b(n)1-ε) time,

 then A is in O(a(n)1-δ) time.

 Focus on exponents.

 We can build equivalences.

A theory of hardness for polynomial time.

A

a(n)1-δ

B B B B

Intuition: a(n),b(n) are the naive

runtimes for A and B. A reducible

to B implies that beating the

naive runtime for B implies also

beating the naive runtime for A.

Addressing the hardness of easy

problems

1. Identify key hard problems

2. Reduce these to all (?) other hard easy

problems

3. Hopefully form equivalence classes

Some structure within P

Orthog.

vectors

3SUM APSP

Sparse graph diameter [RV’13], local alignment,

longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS

[ABV’15, BrK’15]…

N2-

N2- ’

In dense graphs:

radius, median,

betweenness

[AGV’15], negative

triangle, second

shortest path,

shortest cycle …

[VW’10], …

N1.5-

n3-

N1.5- ’ n3-

Huge literature in comp.

geom. [GO’95, BH-P98, …]:

Geombase, 3PointsLine,

3LinesPoint, Polygonal

Containment …

String problems: Sequence

local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2-

N2- ’

STUCK

on all 3!

k-SAT
2(1 -)n

[W’04]

Dynamic

problems

[P’10],[AV’14],

[HKNS‘15],

[RZ’04]

Fast OV implies SETH is false [W’04]
F- k-CNF-formula on n vars, m = O(n) clauses*

Split the vars into V1 and V2 on n/2 vars each

For j=1,2 and each partial assignment of Vj create (m+2) length vector v(j,):

 0 1 0 1 0 … … … … 1

0 if satisfies the clause, 1 otherwise for all v(1,)

1 0 0 0 1 … … … … 1

for all v(2,) 0 if satisfies the clause,

1 otherwise

clauses

*By sparsification lemma, any k-CNF

can be converted into a small

number of k-CNFs on O(n) clauses.

Fast OV implies SETH is false

 0 1 0 1 0 … … … … 1

0 if satisfies the clause, 1 otherwise for all v(1,)

1 0 0 0 1 … … … … 1

for all v(2,) 0 if satisfies the clause,

1 otherwise

Claim: v(1,) ¢ v(2,) = 0 iff ¯ is a sat assignment.

N = 2n/2 vectors of dimension O(n) = O(log N) → an OV instance.

So O(N2 -) time implies SETH is false.

Some structure within P

Orthog.

vectors

3SUM APSP

Sparse graph diameter [RV’13], local alignment,

longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS

[ABV’15, BrK’15]…

N2-

N2- ’

In dense graphs:

radius, median,

betweenness

[AGV’15], negative

triangle, second

shortest path,

shortest cycle …

[VW’10], …

N1.5-

n3-

N1.5- ’ n3-

Huge literature in comp.

geom. [GO’95, BH-P98, …]:

Geombase, 3PointsLine,

3LinesPoint, Polygonal

Containment …

String problems: Sequence

local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2-

N2- ’

STUCK

on all 3!

CNF-SAT
2(1 -)n

Dynamic

problems

[P’10],[AV’14],

[HKNS‘15],

[RZ’04]

Another popular conjecture

Boolean matrix multiplication (BMM): given two n x n
boolean matrices A and B, compute their boolean
product C, where C[i, j] = k (A[i, k] B[k, j])

BMM can be computed in O(n) time, < 2.38. The
algebraic techniques are not very practical, however.

The best known ̀ `combinatorial’’ techniques get a runtime
of at best n3 / log4 n [Yu’15].

BMM Conjecture:

Any ``combinatorial’’ algorithm for BMM requires n3-o(1) time.

BMM conjecture consequences

 Reductions from BMM are typically used to show that fast
matrix multiplication is probably required

 Some implications of the BMM conjecture:

A triangle in a graph cannot be found faster than in n3-o(1)

time by any combinatorial algorithm

 The radius of unweighted graphs requires n3-o(1) time via
combinatorial techniques

Maintaining a maximum bipartite matching dynamically with

nontrivial update times requires fast matrix multiplication

CFG parsing requires fast matrix multiplication

…

Which conjectures are more believable?

 Besides Ryan’s proof that SETH -> OV Conjecture, there
are no other reductions relating the conjectures known

 It could be that one is true while all others are false

 However:

 The decision tree complexities of both 3SUM (GP’14) and APSP
(Fredman’75) are low: n1.5 and n2.5, respectively. This is not known
for OV. Perhaps this means the OV conjecture is more

believable?

OV and APSP both admit better than logarithmic improvements
over the naïve runtime, 3SUM does not, as far as we know. So
maybe the 3SUM conjecture is more believable?

 There are natural problems that 3SUM, APSP and k-SAT
all reduce to, Matching Triangles & Triangle Collection.
Amir will talk about them later.

Some structure within P

Orthog.

vectors

3SUM APSP

Sparse graph diameter [RV’13], local alignment,

longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS

[ABV’15, BrK’15]…

N2-

N2- ’

In dense graphs:

radius, median,

betweenness

[AGV’15], negative

triangle, second

shortest path,

shortest cycle …

[VW’10], …

N1.5-

n3-

N1.5- ’ n3-

Huge literature in comp.

geom. [GO’95, BH-P98, …]:

Geombase, 3PointsLine,

3LinesPoint, Polygonal

Containment …

String problems: Sequence

local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2-

N2- ’

k-SAT
2(1 -)n

Dynamic

problems

[P’10],[AV’14],

[HKNS‘15],

[RZ’04]

Triangle

collection n3-

2pm

V.

3pm

Amir 4pm

Piotr

Arturs

S-T max flow, dynamic max

flow, … [AVY’15]

Monday

10:15am

Amir

Plan for the rest of the day:

 2 pm Hardness and Equivalences for Graph Problems

(Virginia)

 3pm Hardness for Dynamic Problems (Amir)

 4pm Intro to hardness for sequence problems (Piotr)

 4:30pm Hardness for sequence problems (Arturs)

 5pm Conclusion and future work (Amir)

THANKS!

