Quadratic Hardness for Sequence Problems

Arturs Backurs (MIT) Piotr Indyk (MIT)

Plan

- Problems:
 - (Discrete) Frechet Distance
 - Edit Distance and LCS
 - Dynamic Time Warping
- Birds eye view on the upper bounds

 Dynamic programming, quadratic time
- Recent conditional quadratic lower bounds
 - Arturs
 Arturs
 Arturs

Piotr

(Discrete) Frechet Distance

[Alt-Godau'95]

- ``Dog walking distance''
 - Smallest length leash that enables dog-walking along two routes

- − Let F= set of monotone functions $[0,1] \rightarrow [0,1]$
- − For two curves P,Q: $[0,1] \rightarrow R^2$:

 $D_{Fr}(P,Q) = min_{f,g \in F} max_{t \in [0,1]} ||P(f(t)) - Q(g(t))||$

- Discrete version:
 - F={f:[0,1] →{1...n}},
 - P,Q: {1...n} → R²

Frechet Distance: Algorithm

- Discrete version:
 - Let F={f:[0,1] →{1...n}},
 - − For two curves P,Q: $\{1...n\}$ → R²:
 - $D_{Fr}(P,Q) = min_{f,g \in F} max_{t \in [0,1]} ||P(f(t)) Q(g(t))||$
- Dynamic programming:
 - A[i,j] = distance between P(1)...P(i) and Q(1) ...Q(j)
 - A[i,j]=max[||P(i)-Q(j)||, min (A[i-1,j-1],A[i,j-1], A[i-1,j])]
- Time: O(n²)
- Can be improved to O(n² log log n/log n) [Agarwal-Avraham-Kaplan-Sharir'12] (also [Buchin-Buchin-Meulemans-Mulzer'14])
- Many algorithms for special cases and variants

Edit distance (a.k.a. Levenshtein distance)

- Definition:
 - x,y two sequences of symbols of length n
 - edit(x,y)=the minimum number of symbol insertions, deletions or substitutions needed to transform x into y
- Example: edit(meaning,matching)=4

- Variants:
 edit'(x,y)=the minimum
 - edit'(x,y)=the minimum number of symbol insertions or deletions needed to transform x into y

5

- edit'(x,y)=2n-2 LCS(x,y)

Computing edit distance

- A simple O(n²) time dynamic programming algorithm [Wagner-Fischer'74]
- Can be improved to O(n²/log n) [Masek-Paterson'80]
- Better algorithms for special cases:[U83,LV85,M86, GG88,GP89,UW90,CL90,CH98,LMS98,U85,CL92,N99,CPSV00,MS00,CM02,BCF08,A K08,AKO10...]
- Approximation algorithm: $(\log n)^{O(1/\epsilon)}$ approx in $O(n^{1+\epsilon})$ time [Andoni-Krauthgamer-Onak'10]

Dynamic Time Warping

- Definition:
 - x, y: two sequences of points of length n
 - $A[i,j] = ||x_i-y_j|| + min(A[i-1,j],A[i-1,j-1],A[i,j-1])$
 - DTW(x,y)=A[n,n]
- Speech processing
- A simple O(n²) time dynamic programming algorithm

What do these problems have in common ?

- Widely used metrics
- Dynamic-programming algorithms with (essentially) quadratic running time
- We have no idea if/how we can do any better

 Plausible explanation: the problems are SETHhard

SETH-hardness

- SETH (Strong Exponential Time Hypothesis).
 SAT problem cannot be solved in 2^{N(1-Ω(1))}·M^{O(1)} time
 - N number of variables
 - M number of clauses

Orthogonal Vectors Conjecture

- Orthogonal Vectors Problem. Given two sets of vectors $A,B \subseteq \{0,1\}^d$, |A| = |B| = n, determine whether there are $a \in A$, $b \in B$ such that $\sum_{i=1}^{d} a^i b^i = 0$
 - Can be solved trivially in O(n²d) time
 - Best known algorithm runs in n^{2-1/O(log c(n))} time, where d=c(n)·log n [Abboud-Williams-Yu'15]
- Conjecture: OVP cannot be solved in n^{2-Ω(1)}·d^{O(1)} time

Quadratic hardness

Theorem*: No n^{2-Ω(1)} algorithm for EDIT, DTW, Frechet distances unless OVC fails [Bringmann'14; Backurs-Indyk'15; Abboud-Backurs-Williams'15; Bringmann-Kunnemann'15]

- Basic approach: reduce OVP to distance computation:
 - $A \subseteq \{0,1\}^d \rightarrow \text{sequence } x, |x| \leq n \cdot d^{O(1)}$
 - $B \subseteq \{0,1\}^d \rightarrow \text{sequence y, } |y| \le n \cdot d^{O(1)}$
 - distance(x,y)=small if exists $a \in A$, $b \in B$ with $\Sigma_i a^i b^i = 0$
 - distance(x,y)=large, otherwise
 - The construction time is $n \cdot d^{O(1)}$