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Abstract. We present new techniques for the construction of uniquely repre-
sented data structures in a RAM, and use them to construct efficient uniquely
represented data structures for orthogonal range queries, line intersection tests,
point location, and 2-D dynamic convex hull. Uniquely represented data struc-
tures represent each logical state with a unique machine state. Such data struc-
tures arestrongly history-independent. This eliminates the possibility of privacy
violations caused by the leakage of information about the historical use of the
data structure. Uniquely represented data structures may also simplify the debug-
ging of complex parallel computations, by ensuring that two runs of a program
that reach the same logical state reach the same physical state, even if various
parallel processes executed in different orders during the two runs.

1 Introduction

Most computer applications store a significant amount of information that is hidden
from the application interface—sometimes intentionally but more often not. This infor-
mation might consist of data left behind in memory or disk, but can also consist of much
more subtle variations in the state of a structure due to previous actions or the ordering
of the actions. For example a simple and standard memory allocation scheme that allo-
cates blocks sequentially would reveal the order in which objects were allocated, or a
gap in the sequence could reveal that something was deleted even if the actual data is
cleared. Such location information could not only be derived by looking at the mem-
ory, but could even be inferred by timing the interface—memory blocks in the same
cache line (or disk page) have very different performance characteristics from blocks
in different lines (pages). Repeated queries could be used to gather information about
relative positions even if the cache is cleared ahead of time. As an example of where
this could be a serious issue consider the design of a voting machine. A careless design
might reveal the order of the cast votes, giving away the voters’ identities.

To address the concern of releasing historical and potentially private information
various notions ofhistory independencehave been derived along with data structures
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that support these notions [14, 18, 13, 7, 1]. Roughly, a data structure is history inde-
pendent if someone with complete access to the memory layout of the data structure
(henceforth called the “observer”) can learn no more information than a legitimate user
accessing the data structure via its standard interface (e.g., what is visible on screen).
The most stringent form of history independence,strong history independence, requires
that the behavior of the data structure under its standard interface along with a collec-
tion of randomly generated bits, which are revealed to the observer, uniquely determine
its memory representation. We say that such structures have aunique representation.

The idea of unique representations had also been studied earlier [24, 25, 2] largely
as a theoretical question to understand whether redundancy is required to efficiently
support updates in data structures. The results were mostly negative. Anderson and
Ottmann [2] showed, for example, that ordered dictionaries requireΘ(n1/3) time, thus
separating unique representations from redundant representations (redundant represen-
tations support dictionaries inΘ(log n) time, of course). This is the case even when
the representation is unique only with respect to the pointer structure and not neces-
sarily with respect to memory layout. The model considered, however, did not allow
randomness or even the inspection of secondary labels assigned to the keys.

Recently Blelloch and Golovin [4] described a uniquely represented hash table that
supports insertion, deletion and queries on a table withn items inO(1) expected time
per operation and usingO(n) space. The structure only requiresO(1)-wise indepen-
dence of the hash functions and can therefore be implemented usingO(log n) random
bits. The approach makes use of recent results on the independence required for lin-
ear probing [20] and is quite simple and likely practical. They also showed a perfect
hashing scheme that allows forO(1) worst-case queries, although it requires more ran-
dom bits and is probably not practical. Using the hash tables they described efficient
uniquely represented data structures for ordered dictionaries and the order maintenance
problem [10]. This does not violate the Anderson and Ottmann bounds as it allows
random bits to be part of the input.

In this paper we use these and other results to develop various uniquely repre-
sented structures in computational geometry. We show uniquely represented structures
for the well studied dynamic versions of orthogonal range searching, horizontal point
location, and orthogonal line intersection. All our bounds match the bounds achieved
using fractional cascading [8], except that our bounds are in expectation instead of
worst-case bounds. In particular for all problems the structures support updates in
O(log n log log n) expected time and queries inO(log n log log n + k) expected time,
wherek is the size of the output. They useO(n log n) space and useO(1)-wise inde-
pendent hash functions. Although better redundant data structures for these problems
are known [15, 17, 3] (anO(log log n)-factor improvement), our data structures are the
first to be uniquely represented. Furthermore they are quite simple, arguably simpler
than previous redundant structures that match our bounds.

Instead of fractional cascading our results are based on a uniquely represented data
structure for the ordered subsets problem (OSP). This problem is to maintain subsets
of a totally ordered set under insertions and deletions to either the set or the subsets,
as well as predecessor queries on each subset. Our data structure supports updates or
comparisons on the totally ordered set in expectedO(1) time, and updates or queries



to the subsets in expectedO(log log m) time, wherem is the total number of element
occurrences in subsets. This structure may be of independent interest.

We also describe a uniquely represented data structure for2-D dynamic convex
hull. Forn points it supports point insertions and deletions inO(log2 n) expected time,
outputs the convex hull in time linear in the size of the hull, takes expectedO(n) space,
and uses onlyO(log n) random bits. Although better results for planar convex hull
are known ([6]) , we give the first uniquely represented data structure. Due to space
considerations, the details of our results on horizontal point location and dynamic planar
convex hull appear in the full version of the paper [5].

Our results are of interest for a variety of reasons. From a theoretical point of view
they shed some light on whether redundancy is required to efficiently support dynamic
structures in geometry. From the privacy viewpoint range searching is an important
database operation for which there might be concern about revealing information about
the data insertion order, or whether certain data was deleted. Unique representations
also have potential applications to concurrent programming and digital signatures [4].

2 Preliminaries

Let R denote the real numbers,Z denote the integers, andN denote the naturals. Let[n]
for n ∈ Z denote{1, 2, . . . , n}.

Unique Representation.Formally, anabstract data type(ADT) is a setV of logical
states, a special starting statev0 ∈ V , a set of allowable operationsO and outputsY,
a transition functiont : V × O → V , and an output functiony : V × O → Y. The
ADT is initialized tov0, and if operationO ∈ O is applied when the ADT is in statev,
the ADT outputsy(v,O) and transitions to statet(v,O). A machine modelM is itself
an ADT, typically at a relatively low level of abstraction, endowed with a programming
language. Example machine models include therandom access machine(RAM), the
Turing machineand variouspointer machines. An implementationof an ADTA on a
machine modelM is a mappingf from the operations ofA to programs over the opera-
tions ofM. Given a machine modelM, an implementationf of some ADT(V, v0, t, y)
is said beuniquely represented(UR) if for eachv ∈ V , there is a unique machine state
σ(v) of M that encodes it. Thus, if we runf(O) onM exactly when we runO on
(V, v0, t, y), then the machine is in stateσ(v) iff the ADT is in logical statev.

Model of Computation & Memory allocation.Our model of computation is a unit cost
RAM with word size at leastlog |U |, whereU is the universe of objects under consid-
eration. As in [4], we endow our machine with an infinite string of random bits. Thus,
the machine representation may depend on these random bits, but our strong history
independence results hold no matter what string is used. In other words, a computation-
ally unbounded observer with access to the machine state and the random bits it uses
can learn no more than if told what the current logical state is. We use randomization
solely to improve performance; in our performance guarantees we take probabilities
and expectations over these random bits.

Our data structures are based on the solutions of several standard problems. For
some of these problems UR data structures are already known. The most basic structure



that is required throughout this paper is a hash table with insert, delete and search.
The most common use of hashing in this paper is for memory allocation. Traditional
memory allocation depends on the history since locations are allocated based on the
ordering in which they are requested. We maintain data structures as a set ofblocks.
Each block has its own unique integer label which is used to hash the block into a unique
memory cell. It is not too hard to construct such block labels if the data structures and
the basic elements stored therein have them. For example, we can label points inRd

using their coordinates and if a pointp appears in multiple structures, we can label each
copy using a combination ofp’s label, and the label of the data structure containing that
copy. Such a representation for memory contains no traditional “pointers” but instead
uses labels as pointers. For example for a tree node with labellp, and two children
with labelsl1 and l2, we store a cell containing(l1, l2) at labellp. This also allows
us to focus on the construction of data structures whosepointer structureis UR; such
structures together with this memory allocation scheme yield UR data structures in a
RAM. Note that all of the tree structures we use have pointer structures that are UR, and
so the proofs that our structures are UR are quite straightforward. We omit the details
due to lack of space.

Trees. Throughout this paper we make significant use of tree-based data structures.
We note that none of the deterministic trees (e.g. red-black, AVL, splay-trees, weight-
balanced trees) have unique representations, even not accounting for memory layout.
We therefore use randomized treaps [22] throughout our presentation. We expect that
one could also make use of skip lists [21] but we can leverage the elegant results on
treaps with respect to limited randomness. For a treeT , let |T | be the number of nodes
in T , and for a nodev ∈ T , let Tv denote the subtree rooted atv, and letdepth(x)
denote the length of the path fromx to the root ofT .

Definition 1 (k-Wise Independence).Letk ∈ Z andk ≥ 2. A set of random variables
is k-wise independentif anyk-subset of them is independent. A familyH of hash func-
tions from setA to setB is k-wise independentif the random variables in{h(x)}x∈A

arek-wise independent and uniform onB whenh is picked at random fromH.

Unless otherwise stated, all treaps in this paper use8-wise independent hash functions
to generate priorities. We use the following properties of treaps.

Theorem 1 (Selected Treap Properties [22]).Let T be a random treap onn nodes
with priorities generated by an8-wise independent hash function from nodes to[p],
wherep ≥ n3. Then for anyx ∈ T ,

(1) E[depth(x)] ≤ 2 ln(n) + 1, so access and update times are expectedO(log n)
(2) Pr[|Tx| = k] = O(1/k2) for all 1 ≤ k < n
(3) Given a predecessor handle, the expected insertion or deletion time isO(1)
(4) If the time to rotate a subtree of sizek is f(k) for somef : N → R≥1, the total

time due to rotations to insert or delete an element isO
(

f(n)
n +

∑
0<k<n

f(k)
k2

)
in expectation. Thus even if the cost to rotate a subtree is linear in its size (e.g.,
f(k) = Θ(k)), updates take expectedO(log n) time.



Dynamic Ordered Dictionaries.The dynamic ordered dictionary problem is to maintain
a setS ⊂ U for a totally ordered universe(U,<). In this paper we consider support-
ing insertion, deletion, predecessor (Pred(x, S) = max{e ∈ S|e < x}) and successor
(Succ(x, S) = min{e ∈ S|e > x}). Henceforth we will often skip successor since it
is a simple modification to predecessor. If the keys come from the universe of integers
U = [m] a simple variant of the Van Emde Boaset. al.structure [26] is UR and supports
all operations inO(log log m) expected time [4] andO(|S|) space. Under the compari-
son model we can use treaps to support all operations inO(log |S|) time and space. In
both casesO(1)-wise independence of the hash functions is sufficient. We sometimes
associate data with each element.

Order Maintenance.The Order-Maintenanceproblem [10] (OMP) is to maintain a
total orderingL onn elements while supporting the following operations:

• Insert(x, y): insert new elementy right afterx in L.
• Delete(x): delete elementx from L.
• Compare(x, y): determine ifx precedesy in L.

In previous work [4] the first two authors described a randomized UR data structure
for the problem that supports compare inO(1) worst-case time and updates inO(1)
expected time. It is based on a three level structure. The top two levels use treaps and
the bottom level uses state transitions. The bottom level contains onlyO(log log n)
elements per structure allowing an implementation based on table lookup. In this paper
we use this order maintenance structure to support ordered subsets.

Ordered Subsets.TheOrdered-Subsetproblem (OSP) is to maintain a total orderingL
and a collection of subsets ofL, denotedS = {S1, . . . , Sq} with m = |L|+

∑q
i=1 |Si|

while supporting the OMP operations onL and the following ordered dictionary oper-
ations on eachSk:
• Insert(x, Sk): insertx ∈ L into setSk.
• Delete(x, Sk): deletex from Sk.
• Pred(x, Sk): Forx ∈ L, returnmax{e ∈ Sk|e < x}.

Dietz [11] first describes this problem in the context of fully persistent arrays, and gives
a solution yieldingO(log log m) expected amortized time operations. Mortensen [16]
describes a solution that supports updates to the subsets in expectedO(log log m) time,
and all other operations inO(log log m) worst case time, wherem is the total number
of element occurrences in subsets. In section 3 we describe a UR version.

3 Uniquely Represented Ordered Subsets

Here we describe a UR data structure for the ordered-subsets problem. It supports the
OMP operations onL in expectedO(1) time and the dynamic ordered dictionary prob-
lems on the subsets in expectedO(log log m) time, wherem = |L| +

∑q
i=1 |Si|. We

use a somewhat different approach than Mortensen [16], which relied heavily on the
solution of some other problems which we do not know how to make UR. Our solution
is more self-contained and is therefore of independent interest beyond the fact that it is
UR. Furthermore, our results improve on Mortensen’s results by supporting insertion
into and deletion fromL in O(1) instead ofO(log log m) time.



Theorem 2. Let m := |{(x, k) : x ∈ Sk}| + |L|. There exists a UR data structure
for the ordered subsets problem that usesO(m) space, supports all OMP operations in
expectedO(1) time, and all other operations in expectedO(log log m) time.

We devote the rest of this section to proving Theorem 2. To construct the data struc-
ture, we start with a URorder maintenancedata structure onL, which we will denote
by D (see Section 2). Whenever we are to compare two elements, we simply useD.

We recall an approach used in constructingD [4], treap partitioning: Given a treap
T and an elementx ∈ T , let itsweightw(x, T ) be the number of descendants, including
itself. For a parameters, letLs[T ] = {x ∈ T : w(x, T ) ≥ s}∪{root(T )} be theweight
s partition leadersof T 1. For everyx ∈ T let `(x, T ) be the least (deepest) ancestor of
x in T that is a partition leader. Here, each node is considered an ancestor of itself. The
weights partition leaders partition the treap into the sets{{y ∈ T : `(y, T ) = x} : x ∈
Ls[T ]}, each of which is a contiguous block of keys fromT .

In the construction ofD [4] the elements of the order are treap partitioned twice,
at weights := Θ(log |L|) and again at weightΘ(log log |L|). The partition sets at the
finer level of granularity are then stored in UR hash tables. In the rest of the exposition
we will refer to the treap on all ofL asT (D). The set of weights partition leaders of
T (D) is denoted byL[T (D)], and the treap on these leaders byT (L[D]).

The other main structure that we use is a treapT containing all elements from the
setL̂ = {(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (D)]}. TreapT is partitioned by weight
log m partition leaders. These leaders are labeled with the path from the root to their
node (0 for left, 1 for right), so that label of eachv is the binary representation of the
root tov path. We keep a hash tableH that maps labels to nodes, so that the subtreap of
T onL[T ] forms a trie. It is important that only the leaders are labeled since otherwise
insertions and deletions would requireO(log m) time. We maintain a pointer from each
node ofT to its leader. In addition, we maintain pointers from eachx ∈ L[T (D)] to
(x, 0) ∈ T .

We store each subsetSk in its own treapTk, also partitioned by weightlog m lead-
ers. When searching for the predecessor inSk of some elementx, we useT to find
the leader̀ in Tk of the predecessor ofx in Sk. Once we havè, the predecessor of
x can easily be found by searching in theO(log m)-size subtree ofTk rooted at`.
To guide the search for̀, we store at each nodev of T the minimum and maximum
Tk-leader labels in the subtree rooted atv, if any. Since we have multiple subsets we
need to find predecessors in, we actually store at eachv a mappingfrom each subset
Sk to the minimum and maximum leader ofSk in the subtree rooted atv. For effi-
ciency, for each leaderv ∈ T we store a hash tableHv, mappingk ∈ [q] to the tuple
(min{u : u ∈ L[Tk] and(u, k) ∈ Tv}, max{u : u ∈ L[Tk] and(u, k) ∈ Tv}), if it
exists. RecallTv is the subtreap ofT rooted atv. The high-level idea is to use the hash
tablesHv to find the right “neighborhood” ofO(log m) elements inTk which we will
have to update (in the event of an update to someSk), or search (in the event of a pre-
decessor or successor query). Since these neighborhoods are stored as treaps, updating
and searching them takes expectedO(log log m) time. We summarize these definitions,
along with some others, in Table 1.

1 For technical reasons we includeroot(T ) in Ls[T ] ensuring thatLs[T ] is nonempty.



H hash table mapping labeli ∈ {0, 1}m to a pointer to the leader ofT with labeli
Hv hash table mappingk ∈ [q] to the tuple (if it exists)

(min{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv}, max{u : u ∈ L[Tk] ∧ (u, k) ∈ Tv})
w(x, T ) number of descendants of nodex of treapT

L[T ] weights = Θ(log m) partition leaders of treapT
`(x, T ) the partition leader ofx in T

Tk treap containing all elements of the ordered subsetSk, k ∈ [q]

T (D) the treap onL
T (L[D]) the subtreap ofT (D) on the weights = Θ(log m) leaders ofT (D)

Jx for x ∈ L[T (D)], a treap containing{u ∈ L : `(u, T (D)) = x and∃ i : u ∈ Si}
L̂ the set{(x, k) : x ∈ Sk} ∪ {(x, 0) : x ∈ L[T (D)]}
T a treap storinĝL
Ix for x ∈ L, a fast ordered dictionary [4] mapping eachk ∈ {i : x ∈ Si} to (x, k) in T

Table 1.Some useful notation and definitions of various structures we maintain.

We use the following Lemma to bound the number of changes on partition leaders.

Lemma 1. [4] Let s ∈ Z+ and letT be a treap of size at leasts. Let T ′ be the treap
induced on the weights partition leaders inT . Then the probability that inserting a
new element intoT or deleting an element fromT alters the structure ofT ′ is c/s for
some global constantc.

Note that each partition set has size at mostO(log m). The treapsTk, Jx andT , and
the dictionariesIx from Table 1 are stored explicitly. We also store the minimum and
maximum element of eachL[Tk] explicitly. We use a total ordering for̂L as follows:
(x, k) < (x′, k′) if x < x′ or x = x′ andk < k′.

OMP Insert & Delete Operations:These operations remain largely the same as in the
order maintenance structure of [4]. We assume that whenx ∈ L is deleted it is not in any
setSk. The main difference is that if the setL[T (D)] changes we will need to update
the treaps{Jv : v ∈ L[T (D)]}, T , and the tables{Hv : v ∈ L[T ]} appropriately.

Note that we can easily updateHv in time linear in|Tv| using in-order traversal
of Tv, assuming we can test ifx is in L[Tk] in O(1) time. To accomplish this, for
eachk we can storeL[Tk] in a hash table. Thus using Theorem 1 we can see that all
necessary updates to{Hv : v ∈ T } take expectedO(log m) time. Clearly, updating
T itself requires only expectedO(log m) time. Finally, we bound the time to update
the treapsJv by the total cost to updateT (L[D]) if the rotation of subtrees of sizek
costsk + log m, which isO(log m) by Theorem 1. This bound holds because|Jv| =
O(log m) for anyv, and any tree rotation onT (D) causes at most3s elements ofT (D)
to change their weights leader. Therefore onlyO(log m) elements need to be added or
deleted from the treaps{Jv : v ∈ T (L[D])}, and we can batch these updates in such a
way that each takes expected amortizedO(1) time. However, we need only make these
updates ifL[T (D)] changes, which by Lemma 1 occurs with probabilityO(1/ log m).
Hence the expected overall cost isO(1).

Predecessor & Successor:Suppose we wish to find the predecessor ofx in Sk. (Finding
the successor is analogous.) Ifx ∈ Sk we can test this in expectedO(log log m) time



usingIx. So supposex /∈ Sk. We will first find the predecessorw of (x, k) in T as
follows. (We can handle the case thatw does not exist by adding a special element
to L that is smaller than all other elements and is considered to be part ofL[T (D)]).
First searchIx for the predecessork2 of k in {i : x ∈ Si} in O(log log m) time. If k2

exists, thenw = (x, k2). Otherwise, lety be the leader ofx in T (D), and lety′ be the
predecessor ofy in L[T (D)]. Then eitherw ∈ {(y′, 0), (y, 0)} or elsew = (z, k3),
wherez = max{u : u < x andu ∈ Jy ∪Jy′} andk3 = max{i : z ∈ Si}. Thus we can
find w in expectedO(log log m) time using fast finger search fory′, treap search on the
O(log m) sized treaps in{Jv : v ∈ L[T (D)]}, and the fast dictionaries{Ix : x ∈ L}.

Once we have found the predecessorw of (x, k) in T , we search for the predecessor
w′ of x in L[Tk]. (If w′ does not exist, we simply usemin{u ∈ L[Tk]}). To find w′,
we first usew to search for a nodeu′, defined as the leader(x, k) would have had in
T , had it been given a priority of−∞. Note that with priority−∞, (x, k) would be the
leftmost leaf of the right subtree ofw in T . Hence its leader would either be the leader
of w, or the deepest leader on the leftmost path starting from the right child ofw. Hence
u′ can be found in expectedO(log log m) time, by binary searching on its label (i.e., if
the label ofw is α, then find the maximumk such thatα · 1 · 0k is an label inH).

Let P be the path fromu′ to the root ofT . We use the label ofu′ andH to binary
search onP for the deepest nodev ∈ P for which min{u : u ∈ L[Tk] and(u, k) ∈
Tv} < x. This takesO(log |P |) = O(log log m) time in expectation. Ifv 6= u′, thenu′

is in the right subtree ofv in T , and(w′, k) is in the left subtree ofv. So letvl be the left
child of v and note thatw′ = max{u : u ∈ L[Tk] and(u, k) ∈ Tvl

}, which we can
look up inO(1) time after findingv by usingHv. Otherwisev = u′. In this case, lookup
a := min{u : u ∈ L[Tk] and(u, k) ∈ Tv} andb := max{u : u ∈ L[Tk] and(u, k) ∈
Tv}, find the least common ancestorc of {a, b} in Tk, and starting fromc searchTk for
w′. Sincea andb are both descendants ofu′, their distance (i.e., one plus the number
of nodes between them in the order) in̂L is at mosts = Θ(log m), and thus their
distance inTk is at mostO(log m). However, in random treaps the expected length
of a path between nodes at distanced is O(log(d)), even if priorities are generated
using only8-wise independent hash functions [22]. Thus we can findc in expected
O(log log m) time. Notec has at mostO(log2 m) descendants betweena andb in Tk,
since there are at mostO(log m) partition leaders betweena andb and each has at most
O(log m) “followers” in its partition set, and we can findw′ in expectedO(log log m)
time starting fromc. Once we have foundw′, the predecessor ofx in L[Tk], we can
simply find the successor ofw′ in L[Tk], sayw′′, via fast finger search, and then search
the subtreaps rooted atw′ andw′′ for the actual predecessor ofx in Sk in expected
O(log log m) time.

OSP-Insert and OSP-Delete: OSP-Deleteis analogous toOSP-Insert, hence we focus
on OSP-Insert. Suppose we wish to addx to Sk. First, if x is not currently in any sets
{Si : i ∈ [q]}, then find the leader ofx in T (D), sayy, and insertx into Jy in expected
O(log log m) time. Next, insertx into Tk as follows. Find the predecessorw of x in Sk,
then insertx into Tk in expectedO(1) time starting fromw to speed up the insertion.

Find the predecessorw′ of (x, k) in T as in the predecessor operation, and insert
(x, k) into T using w′ as a starting point. If neitherL[Tk] nor L[T ] changes, then
no modifications to{Hv : v ∈ L[T ]} need to be made. IfL[Tk] does not change



butL[T ] does, as happens with probabilityO(1/ log m), we can updateT and{Hv :
v ∈ L[T ]} appropriately in expectedO(log m) time. If L[Tk] changes, we must be
careful when updating{Hv : v ∈ L[T ]}. Let L[Tk] andL[Tk]′ be the leaders of
Tk immediately before and after the addition ofx to Sk, and let∆k := (L[Tk] −
L[Tk]′) ∪ (L[Tk]′ − L[Tk]). Then we must update{Hv : v ∈ L[T ]} appropriately for
all nodesv ∈ L[T ] that are descendants of(x, k) as before, but must also updateHv

for any nodev ∈ L[T ] that is an ancestor of some node in{(u, k) : u ∈ ∆k}. It is
not hard to see that these latter updates can be done inO(|∆k| log m) time. Moreover,
E

[
|∆k| | x ∈ L[Tk]′

]
= O(1), since|∆k| can be bounded by2(R + 1), whereR is

the number of rotations necessary to rotatex down to a leaf node in a treap onL[Tk]′.
Since it takesΘ(R) time to deletex given a handle to it, from Theorem 1 we easily infer
E[R] = O(1). Since the randomness forTk is independent of the randomness used for
T , these expectations multiply, for a total expected time ofO(log m), conditioning on
the fact thatL[Tk] changes. SinceL[Tk] only changes with probabilityO(1/ log m),
this part of the operation takes expectedO(1) time. Finally, insertk into Ix in expected
O(log log m) time, with a pointer to(x, k) in T .

4 Uniquely Represented Range Trees

Let P = {p1, p2, . . . , pn} be a set of points inRd. The well studiedorthogonal range
reportingproblem is to maintain a data structure forP while supporting queries which
given an axis aligned boxB in Rd returns the pointsP ∩ B. The dynamic version
allows for the insertion and deletion of points. Chazelle and Guibas [8] showed how
to solve the two dimensional dynamic problem inO(log n log log n) update time and
O(log n log log n + k) query time, wherek is the size of the output. Their approach
used fractional cascading. More recently Mortensen [17] showed how to solve it in
O(log n) update time andO(log n + k) query time using a sophisticated application
of Fredman and Willard’s q-heaps [12]. All of these techniques can be generalized to
higher dimensions at the cost of replacing the firstlog n term with alogd−1 n term [9].

Here we present a uniquely represented solution to the problem. It matches the
bounds of the Chazelle and Guibas version, except ours are in expectation instead of
worst-case bounds. Our solution does not use fractional cascading and is instead based
on ordered subsets. One could probably derive a UR version based on fractional cas-
cading, but making dynamic fractional cascading UR would require significant work2

and is unlikely to improve the bounds. Our solution is simple and avoids any explicit
discussion of weight balanced trees (the required properties fall directly out of known
properties of treaps).

Theorem 3. Let P be a set ofn points inRd. There exists a UR data structure for the
orthogonal range query problem that usesO(n logd−1 n) space andO(d log n) random
bits, supports point insertions or deletions in expectedO(logd−1 n · log log n) time, and
queries in expectedO(logd−1 n · log log n + k) time, wherek is the size of the output.

If d = 1, simply use the dynamic ordered dictionaries solution [4] and have each
element store a pointer to its successor for fast reporting. For simplicity we describe

2 We expect a variant of Sen’s approach [23] could work.



the two dimensional case. The remaining cases withd ≥ 3 can be implemented using
standard techniques [9] if treaps are used for the underlying hierarchical decomposi-
tion trees. The description will be deferred to the full paper. We will assume that the
points have distinct coordinate values; thus, if(x1, x2), (y1, y2) ∈ P , thenxi 6= yi for
all i. (There are various ways to remove this assumption, e.g., the composite-numbers
scheme or symbolic perturbations [9].) We storeP in a random treapT using the or-
dering on the first coordinate as our BST ordering. We additionally storeP in a second
random treapT ′ using the ordering on the second coordinate as our BST ordering, and
also storeP in an ordered subsets instanceD using this same ordering. We cross link
these and useT ′ to find the position of any point we are given inD. The subsets ofD
are{Tv : v ∈ T}, whereTv is the subtree ofT rooted atv. We assign eachTv a unique
integer labelk using the coordinates ofv, so thatTv is Sk in D. The structure is UR as
long as all of its components (the treap and ordered subsets) are uniquely represented.

To insert a pointp, we first insert it by the second coordinate inT ′ and using the pre-
decessor ofp in T ′ insert a new element into the ordered subsets instanceD. This takes
O(log n) expected time. We then insertp into T in the usual way using itsx coordinate.
That is, search for wherep would be located inT were it a leaf, then rotate it up to
its proper position given its priority. As we rotate it up, we can reconstruct the ordered
subset for a nodev from scratch in timeO(|Tv| log log n). Using Theorem 1, the over-
all time isO(log n log log n) in expectation. Finally, we must insertp into the subsets
{Tv : v ∈ T andv is an ancestor ofp}. This requires expectedO(log log n) time per
ancestor, and there are onlyO(log n) of them in expectation. Since these expectations
are computed over independent random bits, they multiply, for an overall time bound
of O(log n · log log n) in expectation. Deletion is similar.

To answer a query(p, q) ∈ R2 × R2, wherep = (p1, p2) is the lower left and
q = (q1, q2) is the upper right corner of the boxB in question, we first search for
the predecessorp′ of p and the successorq′ of q in T (i.e., with respect to the first
coordinate). We also find the predecessorp′′ of p and successorq′′ of q in T ′ (i.e., with
respect to the second coordinate). Letw be the least common ancestor ofp′ andq′ in T ,
and letAp′ andAq′ be the paths fromp′ andq′ (inclusive) tow (exclusive), respectively.
Let V be the union of right children of nodes inAp′ and left children of nodes inAq′ ,
and letS = {Tv : v ∈ V }. It is not hard to see that|V | = O(log n) in expectation, that
the sets inS are disjoint, and that all points inB are either inW := Ap′ ∪ {w} ∪ Aq′

or in ∪S∈SS. ComputeW ’s contribution to the answer,W ∩ B, in O(|W |) time by
testing each point in turn. SinceE[|W |] = O(log n), this requiresO(log n) time in
expectation. For each subsetS ∈ S, find S ∩ B by searching for the successor ofp′′

in S, and doing an in-order traversal of the treap inD storingS until reaching a point
larger thanq′′. This takesO(log log n + |S ∩ B|) time in expectation for eachS ∈ S,
for a total ofO(log n · log log n + k) expected time.

5 Horizontal Point Location & Orthogonal Segment Intersection

Let S = {(xi, x
′
i, yi) : i ∈ [n]} be a set ofn horizontal line segments. In thehori-

zontal point location problemwe are given a point(x̂, ŷ) and must find(x, x′, y) ∈ S
maximizingy subject to the constraintsx ≤ x̂ ≤ x′ andy < ŷ. In the relatedorthog-



onal segment intersection problemwe are given a vertical line segments = (x, y, y′),
and must report all segments inS intersecting it, namely{(xi, x

′
i, yi) : xi ≤ x ≤

x′i andy ≤ yi ≤ y′}. In the dynamic version we must additionally support updates toS.
As with the orthogonal range reporting problem, both of these problems can be solved
using fractional cascading and in the same time bounds [8] (k = 1 for point location
and is the number of lines reported for segment intersection). Mortensen [15] improved
orthogonal segment intersection toO(log n) updates andO(log n + k) queries.

We extend our ordered subsets approach to obtain the following results for horizon-
tal point location and range reporting.

Theorem 4. LetS be a set ofn horizontal line segments inR2. There exists a uniquely
represented data structure for the point location and orthogonal segment intersection
problems that usesO(n log n) space, supports segment insertions and deletions in ex-
pectedO(log n·log log n) time, and supports queries in expectedO(log n·log log n+k)
time, wherek is the size of the output. The data structure usesO(log n) random bits.

6 Uniquely Represented 2-D Dynamic Convex Hull

Using similar techniques we obtain a uniquely represented data structure for maintain-
ing the convex hull of a dynamic set of pointsS ⊂ R2. Our approach builds upon
the work of Overmars & Van Leeuwen [19]. Overmars & Van Leeuwen use a standard
balanced BSTT storingS to partition points along one axis, and likewise store the
convex hull ofTv for eachv ∈ T in a balanced BST. In contrast, we use treaps in both
cases, together with the hash table in [4] for memory allocation. Our main contribution
is then to analyze the running times and space usage of this new uniquely represented
version, and to show that even using onlyO(log n) random bits to hash and generate
treap priorities, the expected time and space bounds match that of the original version
up to constant factors. Specifically, we prove the following.

Theorem 5. Let n = |S|. There exists a uniquely represented data structure for 2-D
dynamic convex hull that supports point insertions and deletions inO(log2 n) expected
time, outputs the convex hull inO(k) time, wherek is the size of the convex hull, requires
O(n) space in expectation, and uses onlyO(log n) random bits.

7 Conclusions

We have introduced uniquely represented data structures for a variety of problems in
computational geometry. Such data structures represent every logical state by a unique
machine state and reveal no history of previous operations, thus protecting the privacy
of their users. For example, our uniquely represented range tree allows for efficient or-
thogonal range queries on a database containing sensitive information (e.g., viral load in
the blood of hospital patients) without revealing any information about what order the
current points were inserted into the database, whether points were previously deleted,
or what queries were previously executed. Uniquely represented data structures have
other benefits as well. They make equality testing particularly easy. They may also sim-
plify the debugging of parallel processes by eliminating the conventional dependencies
upon the specific sequence of operations that led to a particular logical state.
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