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Abstract. We present new techniques for the construction of uniquely repre-
sented data structures in a RAM, and use them to construct efficient uniquely
represented data structures for orthogonal range queries, line intersection tests,
point location, and 2-D dynamic convex hull. Uniquely represented data struc-
tures represent each logical state with a unique machine state. Such data struc-
tures arestrongly history-independenithis eliminates the possibility of privacy
violations caused by the leakage of information about the historical use of the
data structure. Uniquely represented data structures may also simplify the debug-
ging of complex parallel computations, by ensuring that two runs of a program
that reach the same logical state reach the same physical state, even if various
parallel processes executed in different orders during the two runs.

1 Introduction

Most computer applications store a significant amount of information that is hidden
from the application interface—sometimes intentionally but more often not. This infor-
mation might consist of data left behind in memory or disk, but can also consist of much
more subtle variations in the state of a structure due to previous actions or the ordering
of the actions. For example a simple and standard memory allocation scheme that allo-
cates blocks sequentially would reveal the order in which objects were allocated, or a
gap in the sequence could reveal that something was deleted even if the actual data is
cleared. Such location information could not only be derived by looking at the mem-
ory, but could even be inferred by timing the interface—memory blocks in the same
cache line (or disk page) have very different performance characteristics from blocks
in different lines (pages). Repeated queries could be used to gather information about
relative positions even if the cache is cleared ahead of time. As an example of where
this could be a serious issue consider the design of a voting machine. A careless design
might reveal the order of the cast votes, giving away the voters’ identities.

To address the concern of releasing historical and potentially private information
various notions ohistory independencieave been derived along with data structures
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that support these notions [14, 18,13, 7, 1]. Roughly, a data structure is history inde-
pendent if someone with complete access to the memory layout of the data structure
(henceforth called the “observer”) can learn no more information than a legitimate user
accessing the data structure via its standard interfacg What is visible on screen).

The most stringent form of history independerstegng history independencequires

that the behavior of the data structure under its standard interface along with a collec-
tion of randomly generated bits, which are revealed to the observer, uniquely determine
its memory representation. We say that such structures hawigae representation

The idea of unique representations had also been studied earlier [24, 25, 2] largely
as a theoretical question to understand whether redundancy is required to efficiently
support updates in data structures. The results were mostly negative. Anderson and
Ottmann [2] showed, for example, that ordered dictionaries requiré’/?) time, thus
separating unique representations from redundant representations (redundant represen-
tations support dictionaries i@ (logn) time, of course). This is the case even when
the representation is unique only with respect to the pointer structure and not neces-
sarily with respect to memory layout. The model considered, however, did not allow
randomness or even the inspection of secondary labels assigned to the keys.

Recently Blelloch and Golovin [4] described a uniquely represented hash table that
supports insertion, deletion and queries on a table witlems inO(1) expected time
per operation and usin@(n) space. The structure only requir®$1)-wise indepen-
dence of the hash functions and can therefore be implemented@s¢iogn) random
bits. The approach makes use of recent results on the independence required for lin-
ear probing [20] and is quite simple and likely practical. They also showed a perfect
hashing scheme that allows foX(1) worst-case queries, although it requires more ran-
dom bits and is probably not practical. Using the hash tables they described efficient
uniquely represented data structures for ordered dictionaries and the order maintenance
problem [10]. This does not violate the Anderson and Ottmann bounds as it allows
random bits to be part of the input.

In this paper we use these and other results to develop various uniquely repre-
sented structures in computational geometry. We show uniquely represented structures
for the well studied dynamic versions of orthogonal range searching, horizontal point
location, and orthogonal line intersection. All our bounds match the bounds achieved
using fractional cascading [8], except that our bounds are in expectation instead of
worst-case bounds. In particular for all problems the structures support updates in
O(lognloglogn) expected time and queries @(logn loglogn + k) expected time,
wherek is the size of the output. They usgnlogn) space and us€(1)-wise inde-
pendent hash functions. Although better redundant data structures for these problems
are known [15, 17, 3] (a®(log log n)-factor improvement), our data structures are the
first to be uniquely represented. Furthermore they are quite simple, arguably simpler
than previous redundant structures that match our bounds.

Instead of fractional cascading our results are based on a uniquely represented data
structure for the ordered subsets problem (OSP). This problem is to maintain subsets
of a totally ordered set under insertions and deletions to either the set or the subsets,
as well as predecessor queries on each subset. Our data structure supports updates or
comparisons on the totally ordered set in expecdéd) time, and updates or queries



to the subsets in expectédlog log m) time, wherem is the total number of element
occurrences in subsets. This structure may be of independent interest.

We also describe a uniquely represented data structurg-Epidynamic convex
hull. Forn points it supports point insertions and deletion®iflog” n) expected time,
outputs the convex hull in time linear in the size of the hull, takes exp&2ted space,
and uses onlyO(logn) random bits. Although better results for planar convex hull
are known ([6]) , we give the first uniquely represented data structure. Due to space
considerations, the details of our results on horizontal point location and dynamic planar
convex hull appear in the full version of the paper [5].

Our results are of interest for a variety of reasons. From a theoretical point of view
they shed some light on whether redundancy is required to efficiently support dynamic
structures in geometry. From the privacy viewpoint range searching is an important
database operation for which there might be concern about revealing information about
the data insertion order, or whether certain data was deleted. Unique representations
also have potential applications to concurrent programming and digital signatures [4].

2 Preliminaries

LetR denote the real numbei®,denote the integers, afldenote the naturals. Lét]
forn € Z denote{1,2,...,n}.

Unique RepresentationFormally, anabstract data typ€ADT) is a setV of logical
states, a special starting statee V, a set of allowable operatiorf@ and outputsy,

a transition functiort : V' x O — V, and an output functiop : V x O — ). The
ADT is initialized tovg, and if operatiorO € O is applied when the ADT is in state
the ADT outputsy(v, O) and transitions to statév, O). A machine modeM is itself
an ADT, typically at a relatively low level of abstraction, endowed with a programming
language. Example machine models includerdredom access machif®AM), the
Turing machineand variougpointer machinesAn implementatiorof an ADT A on a
machine modeM is a mappingf from the operations afl to programs over the opera-
tions of M. Given a machine modélt, an implementatiorf of some ADT(V, vy, ¢, y)

is said beuniquely represente(UR) if for eachv € V/, there is a unique machine state
o(v) of M that encodes it. Thus, if we ruf(O) on M exactly when we rurO on
(V,vo,t,y), then the machine is in statdv) iff the ADT is in logical statev.

Model of Computation & Memory allocatiorOur model of computation is a unit cost
RAM with word size at leaslog |U|, whereU is the universe of objects under consid-
eration. As in [4], we endow our machine with an infinite string of random bits. Thus,
the machine representation may depend on these random bits, but our strong history
independence results hold no matter what string is used. In other words, a computation-
ally unbounded observer with access to the machine state and the random bits it uses
can learn no more than if told what the current logical state is. We use randomization
solely to improve performance; in our performance guarantees we take probabilities
and expectations over these random bits.

Our data structures are based on the solutions of several standard problems. For
some of these problems UR data structures are already known. The most basic structure



that is required throughout this paper is a hash table with insert, delete and search.
The most common use of hashing in this paper is for memory allocation. Traditional
memory allocation depends on the history since locations are allocated based on the
ordering in which they are requested. We maintain data structures as atdetkd

Each block has its own unigue integer label which is used to hash the block into a unique
memory celllt is not too hard to construct such block labels if the data structures and
the basic elements stored therein have them. For example, we can label pdts in
using their coordinates and if a poimappears in multiple structures, we can label each
copy using a combination g@fs label, and the label of the data structure containing that
copy. Such a representation for memory contains no traditional “pointers” but instead
uses labels as pointers. For example for a tree node with lgpbahd two children

with labelsi; andl,, we store a cell containingl;,l) at labell,. This also allows

us to focus on the construction of data structures wipaseter structures UR; such
structures together with this memory allocation scheme yield UR data structures in a
RAM. Note that all of the tree structures we use have pointer structures that are UR, and
so the proofs that our structures are UR are quite straightforward. We omit the details
due to lack of space.

Trees. Throughout this paper we make significant use of tree-based data structures.
We note that none of the deterministic trees (e.g. red-black, AVL, splay-trees, weight-
balanced trees) have unique representations, even not accounting for memory layout.
We therefore use randomized treaps [22] throughout our presentation. We expect that
one could also make use of skip lists [21] but we can leverage the elegant results on
treaps with respect to limited randomness. For aTielet | T'| be the number of nodes

in T, and for a nodey € T, let T,, denote the subtree rooted@tand letdepth(x)

denote the length of the path franto the root ofT.

Definition 1 (k-Wise Independence)Letk € Z andk > 2. A set of random variables
is k-wise independerif any k-subset of them is independent. A farftidyof hash func-
tions from set4 to setB is k-wise independerif the random variables ifh(x)}zca
are k-wise independent and uniform éghwhenh is picked at random frorf.

Unless otherwise stated, all treaps in this paperdstse independent hash functions
to generate priorities. We use the following properties of treaps.

Theorem 1 (Selected Treap Properties [22])Let T' be a random treap om nodes
with priorities generated by as-wise independent hash function from nodegpio
wherep > n3. Then for any: € T,

(1) E[depth(z)] < 2In(n) + 1, so access and update times are expeCédg n)

(2) Pr|T.| =k =01 /k*) forall 1 <k <n

(3) Given a predecessor handle, the expected insertion or deletion tihd js

(4) If the time to rotate a subtree of sizds f(k) for somef : N — R, the total

time due to rotations to insert or delete an eIemeerié%") + X ocken f(k))

k2
in expectation. Thus even if the cost to rotate a subtree is linear in its size (e.g.,
f(k) = O(k)), updates take expectédlog n) time.



Dynamic Ordered DictionariesThe dynamic ordered dictionary problem is to maintain

a setS C U for a totally ordered univers@/, <). In this paper we consider support-

ing insertion, deletion, predecess®r¢d(x, S) = max{e € Sle < x}) and successor
(Succ(z, S) = min{e € Sle > z}). Henceforth we will often skip successor since it

is a simple modification to predecessor. If the keys come from the universe of integers
U = [m] a simple variant of the Van Emde Boats al.structure [26] is UR and supports

all operations irO(log log m) expected time [4] an®(|S|) space. Under the compari-

son model we can use treaps to support all operatioo¥log | S|) time and space. In

both case®)(1)-wise independence of the hash functions is sufficient. We sometimes
associate data with each element.

Order Maintenance. The Order-Maintenanceproblem [10] (OMP) is to maintain a
total orderingL onn elements while supporting the following operations:

e Insertl, y): insert new elemeny right afterx in L.
e Delete(): delete element from L.
e Comparet, y): determine ifz precedeg in L.

In previous work [4] the first two authors described a randomized UR data structure
for the problem that supports compare(t{1) worst-case time and updatesdn1)
expected time. It is based on a three level structure. The top two levels use treaps and
the bottom level uses state transitions. The bottom level contains@fitg log n)
elements per structure allowing an implementation based on table lookup. In this paper
we use this order maintenance structure to support ordered subsets.

Ordered SubsetsThe Ordered-Subsgiroblem (OSP) is to maintain a total orderihg
and a collection of subsets &f denotedS = {Si,..., S} withm = |L| + 37, |S;]
while supporting the OMP operations énand the following ordered dictionary oper-
ations on eacly}.:

e Insert(z, Sk): insertz € L into setS.

e Delete(x, Si): deletex from S.

e Pred(z, Sy): Forx € L, returnmax{e € Sile < z}.
Dietz [11] first describes this problem in the context of fully persistent arrays, and gives
a solution yieldingO(log log m) expected amortized time operations. Mortensen [16]
describes a solution that supports updates to the subsets in expétigdog m) time,
and all other operations i@ (log log m) worst case time, where is the total number
of element occurrences in subsets. In section 3 we describe a UR version.

3 Uniquely Represented Ordered Subsets

Here we describe a UR data structure for the ordered-subsets problem. It supports the
OMP operations ot in expected)(1) time and the dynamic ordered dictionary prob-
lems on the subsets in expect@@log logm) time, wherem = |L| + >°7_, |5;|. We

use a somewhat different approach than Mortensen [16], which relied heavily on the
solution of some other problems which we do not know how to make UR. Our solution

is more self-contained and is therefore of independent interest beyond the fact that it is
UR. Furthermore, our results improve on Mortensen’s results by supporting insertion
into and deletion front. in O(1) instead ofO(log log m) time.



Theorem 2. Letm := |{(x,k) : = € Si}| + |L|]. There exists a UR data structure
for the ordered subsets problem that ué¥sn) space, supports all OMP operations in
expected)(1) time, and all other operations in expectédlog log m) time.

We devote the rest of this section to proving Theorem 2. To construct the data struc-
ture, we start with a URrder maintenanceéata structure oii.,, which we will denote
by D (see Section 2). Whenever we are to compare two elements, we simply. use

We recall an approach used in constructingd], treap partitioning Given a treap
T and an element € T, letitsweightw(z, T') be the number of descendants, including
itself. For a parametey, let L;[T] = {z € T : w(z,T) > s}U{root(T")} be theweight
s partition leadersof 7. For everyx € T let/(z, T) be the least (deepest) ancestor of
x in T that is a partition leader. Here, each node is considered an ancestor of itself. The
weights partition leaders partition the treap intothe sgtg € T : ¢(y,T) =z} : x €
L[T]}, each of which is a contiguous block of keys fram

In the construction of) [4] the elements of the order are treap partitioned twice,
at weights := O(log |L|) and again at weigh® (log log | L|). The partition sets at the
finer level of granularity are then stored in UR hash tables. In the rest of the exposition
we will refer to the treap on all of asT'(D). The set of weight partition leaders of
T(D) is denoted byC[T'(D)], and the treap on these leadersiby.[D]).

The other main structure that we use is a trédapontaining all elements from the
setl = {(z,k) : z € g} U{(x,0) : = € L[T(D)]}. TreapT is partitioned by weight
log m partition leaders. These leaders are labeled with the path from the root to their
node () for left, 1 for right), so that label of each is the binary representation of the
root tov path. We keep a hash tabiethat maps labels to nodes, so that the subtreap of
7 on L[7T] forms atrie. It is important that only the leaders are labeled since otherwise
insertions and deletions would requi®log m) time. We maintain a pointer from each
node of7 to its leader. In addition, we maintain pointers from eack L[T(D)] to
(x,0) € T.

We store each subs#j; in its own treapl, also partitioned by weighbg m lead-
ers. When searching for the predecessofjnof some element, we use7 to find
the leader in T}, of the predecessor af in S;. Once we have, the predecessor of
x can easily be found by searching in th&log m)-size subtree of}, rooted at.

To guide the search faf, we store at each nodeof 7 the minimum and maximum
Ty-leader labels in the subtree rootedvaif any. Since we have multiple subsets we
need to find predecessors in, we actually store at esmappingfrom each subset
S to the minimum and maximum leader 6f, in the subtree rooted at. For effi-
ciency, for each leader € 7 we store a hash tabld,,, mappingk € [¢] to the tuple
(min{u : w € L[T;] and(u, k) € T, }, max{u : u € L][T}] and(u, k) € T, }), ifit
exists. Recalll,, is the subtreap of rooted atv. The high-level idea is to use the hash
tablesH, to find the right “neighborhood” of(logm) elements irfl;, which we will
have to update (in the event of an update to séiy)e or search (in the event of a pre-
decessor or successor query). Since these neighborhoods are stored as treaps, updating
and searching them takes expeat&dog log m) time. We summarize these definitions,
along with some others, in Table 1.

! For technical reasons we includeot(7) in £4[T ensuring thails[T] is nonempty.



H |hash table mapping labgk {0,1}™ to a pointer to the leader @ with label:
H, |hash table mapping € [¢] to the tuple (if it exists)
(min{u : u € L[TK] A (u, k) € T}, max{u : u € L[Tk] A (u, k) € T, })
w(z, T) [number of descendants of nod®f treapT’
L[T] |weights = ©(logm) partition leaders of treay
£(z,T) |the partition leader of in T’
T, |treap containing all elements of the ordered suSgek < [q]
T(D) [the treap orL
T(L[D])|the subtreap df’(D) on the weights = ©(log m) leaders of'(D)
Je |fora € L[T(D)], atreap containingu € L : £(u,T(D)) =z and3i: u € S;}

the set{(z, k) : = € S} U {(2,0) : = € L[T(D)]}

L

T |atreap storind

I, |forz € L, afast ordered dictionary [4] mapping edete {:: z € S;} to (z,k)in T
Table 1. Some useful notation and definitions of various structures we maintain.

We use the following Lemma to bound the number of changes on patrtition leaders.

Lemma 1. [4] Let s € Z* and letT be a treap of size at least LetT” be the treap
induced on the weight partition leaders inT. Then the probability that inserting a
new element int@ or deleting an element froM alters the structure off” is ¢/s for
some global constarat

Note that each partition set has size at m@8bg m). The treapg, J, and7, and
the dictionaried,, from Table 1 are stored explicitly. We also store the minimum and
maximum element of each[T}] explicitly. We use a total ordering fat as follows:
(x, k) < (' k) if x <2’ orz =2 andk < k.

OMP Insert & Delete OperationsThese operations remain largely the same as in the
order maintenance structure of [4]. We assume that wherl. is deleted it is not in any
setS,. The main difference is that if the sé{T(D)] changes we will need to update
the treapgJ, : v € L|T(D)]}, 7, and the table$H, : v € L[T]} appropriately.

Note that we can easily updafé, in time linear in|7,| using in-order traversal
of 7,,, assuming we can test if is in L[T}] in O(1) time. To accomplish this, for
eachk we can storeC[T}] in a hash table. Thus using Theorem 1 we can see that all
necessary updates {d7, : v € 7} take expected (logm) time. Clearly, updating
7T itself requires only expecte@(log m) time. Finally, we bound the time to update
the treapsJ, by the total cost to updaté(L[D]) if the rotation of subtrees of size
costsk + logm, which isO(log m) by Theorem 1. This bound holds becaidg =
O(log m) for anyw, and any tree rotation dfi(D) causes at mosts elements of (D)
to change their weight leader. Therefore onlg (log m) elements need to be added or
deleted from the treaps/, : v € T(L[D])}, and we can batch these updates in such a
way that each takes expected amortizgd ) time. However, we need only make these
updates ifC[T'(D)] changes, which by Lemma 1 occurs with probabidityl / log m).
Hence the expected overall costi$l).

Predecessor & SuccessaBuppose we wish to find the predecessar oof Sy.. (Finding
the successor is analogous.)ylfe Si we can test this in expectéd(log log m) time



using I,. So suppose: ¢ Si. We will first find the predecessas of (x, k) in T as
follows. (We can handle the case thatdoes not exist by adding a special element
to L that is smaller than all other elements and is considered to be pAfZdD)]).
First searchl, for the predecessar, of k in {i : x € S;} in O(loglogm) time. If ky
exists, thenw = (z, ko). Otherwise, ley be the leader of in T'(D), and lety’ be the
predecessor of in L[T(D)]. Then eitherw € {(y’,0),(y,0)} or elsew = (z, k3),
wherez = max{u : u < z andu € J, U J,,} andks = max{i : z € S;}. Thus we can
find w in expected)(log log m) time using fast finger search fof, treap search on the
O(logm) sized treaps if.J, : v € L[T'(D)]}, and the fast dictionarie,, : = € L}.

Once we have found the predecess@f (z, k) in 7, we search for the predecessor
w’ of z in L]T]. (If w’ does not exist, we simply usein{u € L[T}]}). To find w’,
we first usew to search for a node’, defined as the leadésx, k) would have had in
7, had it been given a priority 6f co. Note that with priority—oo, (z, k) would be the
leftmost leaf of the right subtree af in 7. Hence its leader would either be the leader
of w, or the deepest leader on the leftmost path starting from the right childidénce
u’ can be found in expectad(log log m) time, by binary searching on its label (i.e., if
the label ofw is «, then find the maximurk such thatx - 1 - 0% is an label inf).

Let P be the path from/’ to the root of7. We use the label ai’ and H to binary
search onP for the deepest node € P for whichmin{u : v € L[Ty] and(u, k) €
7.} < z. This take=D(log | P|) = O(loglog m) time in expectation. It # «’/, thenu/’
is in the right subtree of in 7, and(w’, k) is in the left subtree of. So lety; be the left
child of v and note thatv’ = max{u : v € L[T;] and(u, k) € 7,,}, which we can
look up inO(1) time after findingw by usingH,,. Otherwisev = «’. In this case, lookup
a :=min{u : u € L[T}] and(u, k) € 7, } andb := max{u : v € L[T}] and(u, k) €
7.}, find the least common ancestoof {a, b} in Ty, and starting froma searchl}, for
w’. Sincea andb are both descendants of, their distance (i.e., one plus the number
of nodes between them in the order) finis at mosts = ©(logm), and thus their
distance inTy, is at mostO(log m). However, in random treaps the expected length
of a path between nodes at distantes O(log(d)), even if priorities are generated
using only8-wise independent hash functions [22]. Thus we can find expected
O(log log m) time. Notec has at mosO (log” m) descendants betweerandb in T},
since there are at moSk(log m) partition leaders betweenandb and each has at most
O(log m) “followers” in its partition set, and we can find’ in expected) (log log m)
time starting frome. Once we have found/’, the predecessor af in £[T}], we can
simply find the successor of in L[T}], sayw”, via fast finger search, and then search
the subtreaps rooted at andw” for the actual predecessor ofin S, in expected
O(loglogm) time.

OSP-Insert and OSP-Delete: OSP-Delet@nalogous t®@SP-Inserthence we focus
on OSP-Insert Suppose we wish to addto Sy. First, if z is not currently in any sets
{S; :i € [¢]}, then find the leader of in T'(D), sayy, and insert: into J,, in expected
O(loglog m) time. Next, insert: into T}, as follows. Find the predecessoinof = in Sk,
then insert: into T}, in expected)(1) time starting fromw to speed up the insertion.
Find the predecessat’ of (x, k) in T as in the predecessor operation, and insert

(x,k) into 7 usingw’ as a starting point. If neithe€[T}] nor L[T] changes, then
no modifications to{H, : v € L[T]} need to be made. IE[T}] does not change



but £[7] does, as happens with probability(1/log m), we can updatd and{H,, :

v € L[T]} appropriately in expecte®(log m) time. If L[T}] changes, we must be
careful when updatindH, : v € L[T]}. Let £[T}] and £[T},]" be the leaders of
Ty immediately before and after the addition ofto Sy, and let4, := (L[T}] —
L[Ty]") U (L[T]) — L£[Tk]). Then we must updateH,, : v € £L[T]} appropriately for
all nodesv € L[T] that are descendants @f, k) as before, but must also upddig,

for any nodev € L[T] that is an ancestor of some node{ifu, k) : ©v € Ag}. Itis
not hard to see that these latter updates can be daDé€| ity | log m) time. Moreover,
E[|Ax| |z € L[T}]'] = O(1), since|A;| can be bounded by(R + 1), whereR is
the number of rotations necessary to rotagown to a leaf node in a treap @{7;]".
Since it take®( R) time to deleter given a handle to it, from Theorem 1 we easily infer
E[R] = O(1). Since the randomness f&}; is independent of the randomness used for
T, these expectations multiply, for a total expected tim&¢bg m), conditioning on
the fact thatC[T};] changes. Sinc€[T}] only changes with probabilit®)(1/logm),
this part of the operation takes expect@(l ) time. Finally, insert: into I,. in expected
O(loglog m) time, with a pointer tdz, k) in 7.

4 Uniquely Represented Range Trees

Let P = {p1,p2,...,p,} be a set of points ifR¢. The well studiecbrthogonal range
reporting problem is to maintain a data structure while supporting queries which
given an axis aligned bo® in R? returns the points® N B. The dynamic version
allows for the insertion and deletion of points. Chazelle and Guibas [8] showed how
to solve the two dimensional dynamic problem(xilog n loglog n) update time and
O(lognloglogn + k) query time, wheré: is the size of the output. Their approach
used fractional cascading. More recently Mortensen [17] showed how to solve it in
O(logn) update time an@(logn + k) query time using a sophisticated application

of Fredman and Willard's g-heaps [12]. All of these techniques can be generalized to
higher dimensions at the cost of replacing the fisgtr term with alog? ! n term [9].

Here we present a uniquely represented solution to the problem. It matches the
bounds of the Chazelle and Guibas version, except ours are in expectation instead of
worst-case bounds. Our solution does not use fractional cascading and is instead based
on ordered subsets. One could probably derive a UR version based on fractional cas-
cading, but making dynamic fractional cascading UR would require significanfwork
and is unlikely to improve the bounds. Our solution is simple and avoids any explicit
discussion of weight balanced trees (the required properties fall directly out of known
properties of treaps).

Theorem 3. Let P be a set of: points inR?. There exists a UR data structure for the
orthogonal range query problem that us@én log? ! n) space and)(d log n) random
bits, supports point insertions or deletions in expe@it)eétbgd‘1 n-loglogn) time, and
queriesin expecteﬂ)(log”l*1 n -loglogn + k) time, wherek is the size of the output.

If d = 1, simply use the dynamic ordered dictionaries solution [4] and have each
element store a pointer to its successor for fast reporting. For simplicity we describe

2 We expect a variant of Sen’s approach [23] could work.



the two dimensional case. The remaining cases with 3 can be implemented using
standard techniques [9] if treaps are used for the underlying hierarchical decomposi-
tion trees. The description will be deferred to the full paper. We will assume that the
points have distinct coordinate values; thugaif, z2), (y1,y2) € P, thenz; # y; for
all i. (There are various ways to remove this assumption, e.g., the composite-numbers
scheme or symbolic perturbations [9].) We stétén a random treafi” using the or-
dering on the first coordinate as our BST ordering. We additionally gtdrea second
random treafd” using the ordering on the second coordinate as our BST ordering, and
also storeP in an ordered subsets instanbeusing this same ordering. We cross link
these and us@” to find the position of any point we are givenin The subsets ab
are{T, : v € T}, whereT, is the subtree of rooted at. We assign eacff, a unique
integer labek using the coordinates ef so thatT;, is Sy in D. The structure is UR as
long as all of its components (the treap and ordered subsets) are uniquely represented.
To insert a poinp, we first insert it by the second coordinatel/ihand using the pre-
decessor op in 7" insert a new element into the ordered subsets instAndeis takes
O(log n) expected time. We then insertnto 7" in the usual way using its coordinate.
That is, search for wherg would be located iri” were it a leaf, then rotate it up to
its proper position given its priority. As we rotate it up, we can reconstruct the ordered
subset for a node from scratch in time) (|7, |log log n). Using Theorem 1, the over-
all time isO(log nloglog n) in expectation. Finally, we must insertinto the subsets
{T, : v € T andv is an ancestor gf}. This requires expecte@ (loglogn) time per
ancestor, and there are or}(log n) of them in expectation. Since these expectations
are computed over independent random bits, they multiply, for an overall time bound
of O(logn - log log n) in expectation. Deletion is similar.
To answer a queryp,q) € R? x R?, wherep = (p,ps) is the lower left and
q = (q1,q2) is the upper right corner of the bak in question, we first search for
the predecessqr of p and the successaf of ¢ in T (i.e., with respect to the first
coordinate). We also find the predecessbof p and successay’ of ¢ in T” (i.e., with
respect to the second coordinate). Ldbe the least common ancestopdbfindg’ in T,
and let4,, and A, be the paths frorp’ andg’ (inclusive) tow (exclusive), respectively.
Let V' be the union of right children of nodes i, and left children of nodes id,,
and letS = {T, : v € V}. Itis not hard to see that’| = O(logn) in expectation, that
the sets inS are disjoint, and that all points iB are either inlV := A, U {w} U Ay
or in UgesS. ComputelV’s contribution to the answef) N B, in O(|W|) time by
testing each point in turn. Sindg[|W|] = O(logn), this requiresO(logn) time in
expectation. For each subsgte S, find S N B by searching for the successorgf
in S, and doing an in-order traversal of the treaplrstoring.S until reaching a point
larger thary”. This takesO(loglogn + |S N BJ) time in expectation for each € S,
for a total ofO(logn - loglogn + k) expected time.

5 Horizontal Point Location & Orthogonal Segment Intersection

Let S = {(x;,2,y:;) : © € [n]} be a set ofn horizontal line segments. In theori-
zontal point location problerwe are given a point#, ) and must findz,z’,y) € S
maximizingy subject to the constraints < & < 2’ andy < §. In the relatedbrthog-



onal segment intersection probleme are given a vertical line segment (z,y,y’),
and must report all segments Fintersecting it, namely{(z;,z},v;) : =; < z <
z} andy < y; < y'}. In the dynamic version we must additionally support updatés to
As with the orthogonal range reporting problem, both of these problems can be solved
using fractional cascading and in the same time boundsk[8} (1 for point location
and is the number of lines reported for segment intersection). Mortensen [15] improved
orthogonal segment intersection@glog n) updates an® (log n + k) queries.

We extend our ordered subsets approach to obtain the following results for horizon-
tal point location and range reporting.

Theorem 4. Let S be a set of, horizontal line segments iR2. There exists a uniquely
represented data structure for the point location and orthogonal segment intersection
problems that use®(n logn) space, supports segment insertions and deletions in ex-
pectedD(log n-loglog n) time, and supports queries in expectedog n-log log n+k)

time, wherek is the size of the output. The data structure uUSé®g n) random bits.

6 Uniquely Represented 2-D Dynamic Convex Hull

Using similar techniques we obtain a uniquely represented data structure for maintain-
ing the convex hull of a dynamic set of poinfs ¢ R2. Our approach builds upon

the work of Overmars & Van Leeuwen [19]. Overmars & Van Leeuwen use a standard
balanced BSTI" storing S to partition points along one axis, and likewise store the
convex hull ofT;, for eachv € T in a balanced BST. In contrast, we use treaps in both
cases, together with the hash table in [4] for memory allocation. Our main contribution
is then to analyze the running times and space usage of this new uniquely represented
version, and to show that even using ollogn) random bits to hash and generate
treap priorities, the expected time and space bounds match that of the original version
up to constant factors. Specifically, we prove the following.

Theorem 5. Letn = |S|. There exists a uniquely represented data structure for 2-D
dynamic convex hull that supports point insertions and deletiod¥Ing? n) expected
time, outputs the convex hull@(k) time, wherek is the size of the convex hull, requires
O(n) space in expectation, and uses o6lflog n) random bits.

7 Conclusions

We have introduced uniquely represented data structures for a variety of problems in
computational geometry. Such data structures represent every logical state by a unique
machine state and reveal no history of previous operations, thus protecting the privacy
of their users. For example, our uniquely represented range tree allows for efficient or-
thogonal range queries on a database containing sensitive information (e.g., viral load in
the blood of hospital patients) without revealing any information about what order the
current points were inserted into the database, whether points were previously deleted,
or what queries were previously executed. Uniquely represented data structures have
other benefits as well. They make equality testing particularly easy. They may also sim-
plify the debugging of parallel processes by eliminating the conventional dependencies
upon the specific sequence of operations that led to a particular logical state.
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