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Abstract

We consider a very natural problem concerned with
game manipulation. LetG be a directed graph where
the nodes represent players of a game, and an edge from
u to v means thatu can beatv in the game. (If an
edge(u, v) is not present, one cannot matchu andv.)
Given G and a “favorite” nodeA, is it possible to set
up the bracket of a balanced single-elimination tourna-
ment so thatA is guaranteed to win, if matches occur
as predicted byG? We show that the problem isNP-
complete for general graphs. For the case whenG is
a tournament graph we give several interesting condi-
tions on the desired winnerA for which there exists a
balanced single-elimination tournament whichA wins,
and it can be found in polynomial time.

Introduction
Many championships use a single-elimination (also called
knockout) format: the tournament proceeds in rounds; in
each round players are paired up to play a game; the round
winners move on to the next round, whereas the losers leave
the tournament. This format is very common in sports. It
also appears in the area of voting protocols where it is stud-
ied as the (binary) cup voting rule (Chevaleyre et al. 2007).

How far a particular player can go in a single-elimination
tournament can vary vastly depending on the initial tourna-
ment bracket set-up. This work investigates the extent to
which a tournament designer can influence the final tour-
nament outcome by manipulating the initial brackets. We
focus on the following set-up. Suppose we are to design a
single-elimination tournament for some set of players. For
each pair of players we have some information (obtained
from history or by some other means) about which player
is more likely to win in a match-up between the two. We
have a favorite playerA in mind, and we want to set the
bracket for the tournament so thatA has a very high chance
of winning. We call this problemtournament fixing.

In this paper we consider two versions of the tournament
fixing problem. In both versions we assume knowledge of
the exact outcome of all match-ups between players.

1. In the first version only certain matches between players
are allowed.
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2. In the second version we can match any two players
against each other. This is a well known formulation
of the problem also known asagenda control(Bartholdi,
Tovey, and Trick 1992).

In the first, more general version we show that tournament
fixing is NP-hard;i.e., if P6=NP even if we have perfect in-
formation about the match outcomes, if some players cannot
be matched with each other, it is infeasible to find a winning
bracket layout for a given player.

This problem version is a special case of the following
problem: we are given complete match outcome informa-
tion and in addition, for every pair of players we are given
an integer weight, corresponding to the revenue that would
be generated if the two players are matched in the tourna-
ment. The problem is to find a single-elimination tourna-
ment which maximizes the total tournament revenue. If the
weights capture “interestingness”, the problem is to find the
most interesting single-elimination tournament. This rev-
enue maximization problem has been shown by (Lang et al.
2007) to beNP-hard, and theNP-hardness of general tour-
nament fixing provides an alternative proof of this.

The second version of the problem allows us to relate
single-elimination tournaments toround-robintournaments:
tournaments in which every pair of players has played and
we know the outcome for each pair. Round-robin tourna-
ments are widely studied. A significant body of work con-
cerns the problem of optimally ranking players: finding a
linear order of the players, aranking, which minimizes the
number of pairs(u, v) such thatu beatv butv is beforeu in
the ranking. This objective dates back to Slater (Slater 1961)
and has only recently been provenNP-hard (Alon 2006;
Charbit, Thomasśe, and Yeo 2007). Nevertheless, it has
been shown (Coppersmith, Fleischer, and Rudra 2006) that
the simple heuristic of ranking the players by the number
of matches they have won approximates the optimal ranking
within a factor of5.

Our study uncovers interesting relationships between
round-robin and single-elimination tournaments. For in-
stance, we show that any player that beats a maximal number
of players in a round-robin tournament (and is hence highly
ranked), can win a single-elimination tournament, given the
same match outcomes. We focus on the special case of the
tournament fixing problem in which the favorite node is a
king: for any playerb that it cannot beat, there is some player



that it can beat that beatsb. We give several sufficient con-
ditions for which a king is a single-elimination tournament
winner. One of our results is for the case whenA is a very
strong king: for any playerb thatA cannot beat, there are at
leastlog n players thatA can beat who beatb. We show that
suchsuper-kingscan win a single-elimination tournament,
even though they may only be able to beat very few players
head-to-head. An interesting consequence of this is that any
tournament graph generated using the noisy sampling model
of (Braverman and Mossel 2008) with error rate as low as

Ω(
√

log n
n ) has all its players as potential single-elimination

tournament winners, with high probability. All of our ar-
guments are constructive and allow us to design tournament
brackets efficiently.

Prior and Related Work. There is considerable prior re-
search on manipulating the outcome of a single-elimination
tournament. Typically, the input to the studied problem is a
tournament graph with probabilities on the edges. One then
seeks to find a single-elimination tournament which maxi-
mizes the probability that a particular node will win. A ma-
jor focus in such research is to maximize the winning proba-
bility of the bestplayer under some assumptions (e.g., (Ap-
pleton 1995; Horen and Riezman 1985)). A common as-
sumption is that the probability of a player beating another
depends on the intrinsic abilities of the players which are
hidden values. Moreover, the probability is monotone in the
sense that every player has a higher probability of beating a
weaker player than a stronger one. With these assumptions
some positive results are possible, especially for small tour-
naments (Appleton 1995; Horen and Riezman 1985). On the
other hand, if the given tournament graph has arbitrary prob-
abilities and one wishes to determine whether a given node
can win a single-elimination tournament with high proba-
bility, then the known results are mostly negative: this gen-
eral problem is known to beNP-hard (Lang et al. 2007;
Hazon et al. 2008). Even in the case when the probabili-
ties are in{0, 1, 1/2}, the problem isNP-hard, as shown by
Vu et al. (Vu, Altman, and Shoham 2008; 2009). The major
open problem is whether tournament fixing for unweighted
tournament graphs isNP-hard.

Tournament manipulation is also studied under the con-
text of voting (Brams and Fishburn 2002; Hemaspaandra,
Hemaspaandra, and Rothe 2007; Lang et al. 2007). In this
context, the candidates are competing in an election based
on majority comparisons along a binary voting tree. In each
comparison, the candidate with fewer votes is eliminated,
and the winner moves on to the next comparison. This set-
ting is essentially a single-elimination tournament, the re-
sult of each match of which is known in advance: the corre-
sponding tournament graph is unweighted. It is known that
if the voting tree has no prescribed structure, then there is
a polynomial time algorithm to decide whether there exists
a voting tree for which a given candidate wins the election.
Finding abalancedvoting tree in polynomial time is a major
open problem and is known in this area as theagenda con-
trol problem (Bartholdi, Tovey, and Trick 1992). (Fischer,
Procaccia, and Samorodnitsky 2009) consider whether (po-

tentially unbalanced) voting trees can be used to always elect
a candidate preferred by close to the majority of voters;i.e.
how well binary tree protocols approximate the Copeland
winner. Fischer et al. give hardness results for deterministic
trees, and show that by randomizing over voting trees one
can obtain much better approximations.

Preliminaries For any graphG = (V,E), n = |V | and
m = |E|, unless otherwise noted. For any nodev ∈ V , let
Nin(v) = {x ∈ V | (x, v) ∈ E} andNout(v) = {x ∈
V | (v, x) ∈ E}. If v ∈ V andS ⊆ V , let Nin,S(v) = {x ∈
S | (x, v) ∈ E} andNout,S(v) = {x ∈ S | (v, x) ∈ E}.
Thelengthof a path in a graph is the number of edges on the
path. Anarborescenceis a rooted tree such that all edges are
directed away from the root. Theheightof an arborescence
is the length of the longest path from the root to a leaf. For
integern ≥ 1, let [n] = {1, . . . , n}. A tournament graphis
a directed graphG = (V,E) such that for every pairu, v ∈
V , exactly one of(u, v) or (v, u) is in E. A nodea in a
directed graphG = (V,E) is a king if for any nodeb ∈
V \ {a}, either(a, b) ∈ E, or there exists a nodec ∈ V with
(a, c) ∈ E and(c, b) ∈ E.

A binomial arborescenceT = (V (T ), E(T )) rooted at
a ∈ V (T ) is defined recursively as follows:
• a single nodea is a binomial arborescence rooted ata;

• if |V (T )| = 2i for somei > 0, thenT is a binomial ar-
borescence ifa has a childb, (i.e., (a, b) ∈ E(T )) such
that if Tb is the subarborescence ofT rooted atb and
Ta = T \ Tb, thenTa andTb are|V (T )|/2 = 2i−1–node
binomial arborescences rooted ata andb respectively.

T = (V (T ), E(T )) is a binomialspanningarborescence for
a graphG = (V,E) if V (T ) = V,E(T ) ⊆ E andT is a
binomial arborescence.

Binomial Arborescences and Hardness
Tournament graphs are widely used in the study of round-
robin tournaments. The nodes of a tournament graph typi-
cally represent players, and an edge fromu to v in the graph
states thatu beatsv. We use the same representation. How-
ever, since in our more general formulation of tournament
fixing some match outcomes are not needed, we do not need
an edge between each pair of vertices. Our abstraction of
the tournament fixingproblem (TFP) can be formalized as
follows: Let G = (V,E) be a directed graph onn nodes
such that if(u, v) ∈ E then (v, u) /∈ E. We are given a
nodeA ∈ V and we are asked whether inG there exists a
spanning binomial arborescence rooted atA. If this is the
case, we callA abinomial winnerin G.

Binomial arborescences onn nodes represent single-
elimination tournaments in the following sense: the node
at which the arborescence is rooted is the winner of the tour-
nament and itslog n children are the players the root beats
in the log n rounds; fori = 1, . . . , log n the ith child of the
root hasn/2log n−i+1 descendents, and the subarborescence
rooted at that child inductively represents the subtournament
which that child had to win to get to roundi in which it lost
to the root player. The edge between the root and thelog n-
th child represents the final of the tournament.



TFP is a spanning arborescence isomorphism problem for
directed graphs. A spanning tree isomorphism problem in an
undirectedgraph has the following form: given a fixed prop-
erty P of trees checkable in polynomial time and a graph
G, find a spanning tree ofG satisfyingP . (Papadimitriou
and Yannakakis 1982) gave necessary and sufficient condi-
tions under which a spanning tree isomorphism problem in
an undirectedgraph isNP-complete. Their result implies
that finding a binomial spanning tree in an undirected graph
is NP-hard. The Papadimitriou and Yannakakis construction
does not immediately imply that TFP isNP-complete, as
TFP is a problem ondirectedgraphs. It is possible that their
proofs can be modified to work for rooted arborescences, al-
though we do not know of such a result for directed graphs.
We include a simpleNP-completeness proof for TFP below.
Theorem 1. TFP isNP-complete.

Proof. TFP is clearly inNP. To showNP-hardness, we give
a reduction from Exact Cover by4-Sets which is well known
to beNP-complete (Karp 1972; Garey and Johnson 1979).
A pictorial representation of the reduction appears in Fig-
ure 1. Let(U, {S1, . . . , Sk}) be an instance of Exact Cover
by 4-sets, where|U | = 4n and|Si| = 4 for all i ∈ [k]. The
problem is to determine whether there is a way to pickn
sets fromS which are disjoint and cover all elements ofU .
W.l.o.g. k is a power of2: we can always add copies of the
same setSi to the instance. We will construct an instance
of TFP: a digraphG on 16k nodes, and a nodex1 of G for
which one would need to fix the tournament.

First, create a nodeu for eachu ∈ U , slightly abus-
ing notation. For every setSi = {u1, u2, u3, u4} create
4 nodes,si

1, . . . , s
i
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i
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This creates a binomial arborescenceS̄i of size 4 rooted
at si

1. Further, add edges(si
2, u1), (si
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si
1, u4). This makes(si

1, s
i
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i
4, u1, u2, u3, u4) a bino-

mial arborescence of size8 rooted atsi
1.

Createk − n disjoint binomial arborescences of size4,
T1, . . . , Tk−n, rooted atv1, . . . , vk−n respectively. Add
edges(vi, s

j
1) for all i = 1, . . . , k − n and j = 1, . . . , k.

Then createk disjoint binomial arborescences of size8,
X1, . . . ,Xk, with rootsx1, . . . , xk, respectively. Add edges
(xi, vi) for i = 1, . . . , k − n, and(xj , s

t
1) for j = (k −

n + 1), . . . , k andt = 1, . . . , k. Finally, create a binomial
arborescenceBk on {x1, . . . , xk} rooted atx1. This com-
pletes the construction of graphG. The number of nodes in
G is 4n + 4k + 4(k − n) + 8k = 16k, a power of2.

The construction ensures that for any binomial arbores-
cenceB spanningG:

• for i = 1, . . . , k, S̄i is a subarborescence ofB,
• for i = 1, . . . , k − n, Ti is a subarborescence ofB,
• for i = 1, . . . , k, Xi is a subarborescence ofB,
• Bk is a subarborescence ofB, andB is rooted atx1,
• in B, the elements ofU are partitioned into groups of4

each of which is attached to somēSi forming a binomial
arborescence of size8,

• in B, each subarborescencēSi which does not have ele-
ments ofU attached to it, is linked to someTj to form a
binomial arborescence of size8,
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Figure 1: This is a pictorial description of the reduction from
Exact Cover by4-Sets to TFP.

• eachTj is linked to some arborescenceS̄i to form a bino-
mial arborescence of size8,

• eachXj with j ≤ k−n is linked toTj forming a binomial
arborescence of size16 rooted atxj ,

• eachXj with j > k − n is linked to some arborescence
S̄i which itself is linked to4 elements ofU , so that this
forms a binomial arborescence of size16 rooted atxj .

The above points state that if there is a binomial spanning
arborescenceB in G rooted atx1, then there is an exact
cover of U using the setsSi for which the arborescences
(si

1, s
i
2, s

i
3, s

i
4) are linked to4 elements ofU in B. Vice

versa, if there is an exact coverC = {Si1 , . . . , Sin
}, we

can create a binomial arborescence as follows: for each
Sij

= {u1, u2, u3, u4}, attach the4 nodesu1, u2, u3, u4 to
S̄ij

. Match thek − n setsSi /∈ C to distinct arborescences
Tj and attachS̄i to its correspondingTi. We have a col-
lection of k size8 binomial arborescences. We can attach
each of them to someXt to form k binomial arborescences
of size16. By adding the edges ofBk we obtain a full size
16k binomial arborescence rooted atx1.

It is unclear whether it is possible to modify this proof to
show that TFP isNP-complete for tournament graphs. How-
ever, we can modify it to show such a result for complete
binary arborescences (the proof appears in the full version
of the paper). Binomial arborescences are similar to binary
arborescences in that their height is logarithmic; perhaps
this is an indication that tournament-TFP isNP-complete.
However, binomial spanning arborescences are also similar
to Hamiltonian paths, in that both structures always exist in
a tournament graph. A Hamiltonian path rooted at a given
node in a tournament can be found in polynomial time; per-
haps this is an indication that tournament-TFP is inP.

Theorem 2. Given a tournament graphG and a nodeA,
deciding whether there is a complete binary arborescence
spanningG rooted atA is NP-complete.



When All Matches Are Allowed
In this section we consider the problem of fixing a tourna-
ment when we are allowed to match any pair of players. In
the graph representation we are given a tournament graph
and a nodeA and we need to find a binomial spanning ar-
borescence rooted atA. Here we consider some conditions
under which a king in a tournament graph is a binomial win-
ner. We focus on kings because they are strong players in the
sense that they either have a very high winning record, or can
beat some very highly ranked players. Moreover, for any
graphG, if G contains a binomial spanning arborescence
rooted at a nodeA, then any breadth first search arbores-
cence starting fromA must spanG and must have height
at mostlog n. The simplest nontrivial case for which this
necessary condition is satisfied is whenA is a king.

Tournament graphs are typically used to represent the out-
comes of round-robin tournaments, and the nodes/players
are often ranked by their outdegree, also called score. As
mentioned in the introduction, the outdegree ranking is a
good approximation to the optimal tournament ranking in
the sense that it minimizes (within a constant factor) the
number of matches in which a lower ranked player beat a
higher ranked player. A node which has maximal outdegree,
i.e., outdegree at least as high as that of any other vertex, is
among the top players in the round-robin ranking. We show
that we can design a single-elimination tournament for any
maximal degree node so that it would win given the same
match outcomes. This gives an interesting and intuitive re-
lation between round-robin and single-elimination tourna-
ments – a very strong player should be able to win either.
We give proofs of two more general statements which both
imply the result for maximal degree nodes.

When a node has maximal outdegree, it is also a king in
the tournament graph (this is the usual proof that a king al-
ways exists). Yet a nodeA is also a king if it does not nec-
essarily have maximal outdegree, but for every nodeb that
A cannot beat, the outdegree ofA is at least as large as that
of b. The first statement we prove states that any such node
A is a binomial winner. We note that the above outdegree
condition allows for the outdegree ofA to be as low asn/3.
In contrast, a node with maximal outdegree has outdegree at
leastn/2.

In the second part of this section we show that any king
with outdegree at leastn/2 is a binomial winner. Further-
more, we show that this condition is tight in the sense that
for any n power of2 there exists a tournament graph and
a kingA with outdegreen/2 − 1 such thatA cannot win
any single-elimination tournament. Finally, we turn our at-
tention to very strong kings, called super-kings, and show
that such nodes are binomial winners even if they have low
outdegree (as low aslog n).

Nodes Stronger than the Nodes that Beat Them.

Theorem 3. Let G = (V,E) be a tournament graph. Let
A ∈ V such that for all v ∈ Nin(A), degout(v) ≤
degout(A). Then one can construct in polynomial time a
binomial spanning arborescence ofG rooted atA.

Proof. Suppose we have partitioned the vertices ofB into
binomial arborescences (of possibly different sizes) rooted
at nodes ofA. Lemma 1 below allows us to do that. Con-
sider the vertices ofA which were not used in creating these
arborescences by the Lemma. Partition these vertices (arbi-
trarily) into sets of sizes powers of2, creating corresponding
binomial arborescences (arbitrarily). Doing this, we parti-
tionA∪B into disjoint binomial arborescences{S1, S2, . . .}
rooted at nodes ofA, each of a size power of2. Now, if
there are two arborescences of the same size2k, link them
by adding the edge between their roots to create a bino-
mial arborescence of size2k+1. Continue doing this until
there is at most one arborescence of each size. Because
|A ∪ B| = 2log n − 1 =

∑log n−1
i=0 2i, there will be a bino-

mial arborescence of size2i for everyi from 0 to log n − 1.
Link the root of each of these arborescences toA. Since the
arborescences are rooted at vertices fromA this will form a
binomial arborescence of sizen rooted atA.

Now it remains to prove Lemma 1. We begin by showing
the claim below.

Claim 1. Let A = Nout(A) andB = Nin(A) in a tourna-
ment graph. Suppose for allb ∈ B, degout(b) ≤ degout(A).
Then∀b ∈ B, degout,B(b) < degin,A(b).

Proof of Claim 1: For any b ∈ B, degout(b) ≤
degout(A). Also,degout(b) = degout,B(b)+ degout,A(b)+
1, degout(A) = |A|, anddegout,A(b) = |A| − degin,A(b).
Hence,1 + degout,B(b) + |A| − degin,A(b) ≤ |A|, and
degout,B(b) < degin,A(b).

Lemma 1. Given nonempty setsA′ ⊆ A andB′ ⊆ B such
that for all b ∈ B′, degout,B′(b) < degin,A′(b), one can
pick a nodea′ ∈ A′ and a subsetS ⊆ Nout,B′(a′) so that

1. |S ∪ {a′}| = 2k for some integerk ≥ 1, and
2. ∀b′ ∈ B′ \ S, degout,B′\S(b′) < degin,A′\{a′}(b

′).

Proof. Since B′ is nonempty and for allb ∈ B′,
degout,B′(b) < degin,A′(b), there exists somea′ ∈ A′

which has an out-neighbor inB′. Pick one sucha′ and let
N = Nout,B′(a′). For some integersk ≥ 1 andr we have
0 ≤ r ≤ 2k − 1 and |N | = 2k − 1 + r ≥ 2r. We can
find a matching inN of size at leastr. Pick a submatch-
ing of sizer, consisting of a setR of r vertices uniquely
pointing to some otherr vertices inN . Let S = N \ R.
Clearly, |S| = 2k − 1 + r − r = 2k − 1, and hence
|S ∪ {a′}| = 2k. We will show that for allb′ ∈ B′ \ S,
degout,B′\S(b′) < degin,A′\{a′}(b

′). Let b′ ∈ B′ \ S. If
b′ /∈ N , then degout,B′\S(b′) < degin,A′\{a′}(b

′) since
degout,B′\S(b′) ≤ degout,B′(b′) < degin,A′(b′). If b′ ∈
N , thendegin,A′\{a′}(b

′) = degin,A′(b′) − 1. Yet, since
b′ ∈ N ∩ {B′ \ S}, we must haveb′ ∈ R, andb′ must
have at least one outneighbor inS. Hencedegout,B′\S(b′) ≤
degout,B′(b′) − 1, and sincedegout,B′(b′) < degin,A′(b′),
degout,B′\S(b′) < degin,A′\{a′}(b

′).

Kings who Beat Half the Players. Suppose now that we
have a king who is not necessarily the strongest player but is



still relatively strong – he can beat at least half of the players.
It is not immediately clear that this king is binomial winner.
In fact, if the king can only beatn2 − 1 players, there are
tournament graphs for which such a king may not be able to
win at all:

Claim 2. For anyn, power of2, there exists a tournament
graph onn nodes with a kingA with outdegreen/2−1 such
that there is no binomial spanning arborescence rooted atA.

Proof. Consider the following graphG and king nodeA:
let A be the out-neighborhood ofA and letB be the in-
neighborhood ofA, so that|A| = n

2 − 1 and|B| = n
2 . Let

a′ ∈ A be a node so thata′ beats every node inB. This
makesA a king. If x ∈ A \ {a′}, then every nodeb ∈ B
beatsx. The edges withinA andB are arbitrary.

Then the only way for a binomial spanning arborescence
T to be rooted atA is if all nodes ofB are in the subarbores-
cence rooted ata′: an elementb ∈ B can only be beaten by
another element ofB, or bya′. However,|B ∪ {a′}| > n/2
and hence the height of the subarborescence ofT rooted at
a′ is at leastlog n. This means that this subarborescence is
the entireT andT cannot be rooted atA.

We now show that if a king can beat at least half of the
players then he is a binomial winner. This result is tight by
Claim 2.

Theorem 4. LetA be a king in ann-node tournament graph
G so thatoutdeg(A) ≥ n/2. ThenA is a binomial winner,
and a binomial spanning arborescence rooted atA can be
found in polynomial time.

Proof. The proof will proceed by induction onn. The base
case isn = 2 and then it is trivially true. We will keep the
invariantI that if N players are left in the tournament,A
is one of these players andA is a king with outdegree at
leastN/2 in the induced tournament graph. The induction
hypothesis forn is that if I holds for a nodeA in a tourna-
ment graphG′ on n/2 nodes, thenA is a binomial winner
in G′. The proof will proceed by fixing a match-up for the
first round of the tournament and showing thatI holds for
the first round winners andA.

Let A = Nout(A) andB = Nin(A). If B is empty, we
are done:A will win any tournament. Otherwise, in Round
1 create a maximal matchinḡM from A to B, and letK
be all elements ofA in M̄ ; k = |M̄ | = |K| ≤ |B|. The
matchingM̄ ensures that all elements ofK survive round1.

For the rest of the|B| − k elements ofB, pick any max-
imum matchingM of them;|M | = ⌊ |B|−k

2 ⌋. We will show
thatA \K is nonempty and we can pick an elementa′ from
it and match it withA, so thatA survives round1. For this
it suffices to show that|A| − k ≥ 1.

If |B| − k is odd, there is one elementb′ of B which
remains unmatched. We will show thatA \ (K ∪ {a′}) is
nonempty if|B| − k is odd, and hence there is at least one
elementa′′ which we can match withb′. For this it suffices
to show that|A| − k − 1 ≥ 1 if |B| − k is odd.

There is an even number of remaining unmatched ele-
ments ofA asn is even. Pick any matching on them. This
completes round1. Note thatA and all elements ofK are

winners in this round, and henceA remains a king. We must
show two things:

1. |A| − k ≥ 1, and if |B| − k is odd,|A| − k − 1 ≥ 1,
2. the number of elements inA which survive round1 is at

leastn/4.

First, |A| + |B| = n − 1 is odd, and hence|B| is even
iff |A| is odd. Hence,|B| − k is odd iff |A| − k − 1 is odd.
Moreover,k ≤ |B| ≤ |A| − 1 as |A| ≥ n/2, and hence
|A| − k − 1 ≥ 0 and|A| − k ≥ 1. If |B| − k is odd, then
|A| − k − 1 ≥ 1 since|A| − k − 1 is odd. We are done with
part1 above.

The number of elements inA which survive round1 is at
leastk+ |A|−k−1

2 if |B|−k is even andk+ |A|−k−2
2 if |B|−k

is odd. This number is always⌊ |A|+k−1
2 ⌋. Sincek ≥ 1, at

least⌊ |A|
2 ⌋ ≥ ⌊n

4 ⌋ = n
4 elements ofA survive round1.

After this round we have a tournament onn/2 elements in
whichA is a king with outdegree at leastn/4. By induction,
A is a binomial winner.

Super-Kings. We now define asuper-kingin a tourna-
ment graph as a nodeA with the constraint that for any
b ∈ Nin(A), |Nin,Nout(A)(b)| ≥ log n.

Theorem 5. Let G be a tournament graph and letA be a
super-king inG. ThenA is a binomial winner inG.

Proof. Let A = Nout(A) and letB = Nin(A). We will
proceed by induction. Ifn = 1 we are done. Otherwise if
n ≥ 2, notice that|A| ≥ log n ≥ 1. Pick any nodea′ ∈ A
and match it withA. Now, create a maximum matchingM
from A \ {a′} to B. The number of remaining unmatched
nodes isn − 2 − 2|M |, which is even, hence we can pick
some perfect matchingM ′. Call the final matchingN =
{(A, a′)} ∪ M ∪ M ′.

Consider the setS of n/2 nodes which are sources inN .
If b ∈ S ∩ B, then |Nin,A(b) \ S| ≤ 1. This is since if
a′′ ∈ (Nin,A(b) \ S) anda′′ 6= a′, then after the creation of
M , a′′ was unmatched. Furthermore, sinceb ∈ S, b must
have been unmatched after the creation ofM . This is a con-
tradiction to the maximality ofM . Thus, everyb in the new
inneighborhood ofA has at leastlog n − 1 = log(n/2) in-
neighbors inA. The theorem follows by induction onn.

The Braverman–Mossel Noisy Sampling Model. The
following model was proposed in (Braverman and Mossel
2008). We are given a parameterq < 1/2 and an ordered
list of n players,v1, . . . , vn which represents a sorted order
of the players by theirintrinsic abilities. The parameterq
represents a noise rate. A tournament graphTq is generated
as follows: for every pair of nodesvi, vj with j > i indepen-
dently at random one places an edge(vi, vj) with probability
1 − q, and with probabilityq the reverse edge(vj , vi). The
smallerq is, the closerTq is to a transitive tournament; the
largerq is, the closerTq is to a completely random tourna-
ment. Here we show thatq can be very small and stillevery
player inTq is a binomial winner, with high probability. In



other words, almost all tournaments generated in this model
(for slightly largeq) can be fixed for any player.1

Theorem 6. Let q > 4
√

log n
n . Then with high probability,

all nodes in a random tournamentTq generated using the
Braverman–Mossel model are binomial winners.2

Proof. Let q = c ·
√

log n
n−1 for somec > 4. We show that

with high probability all nodes inTq are super-kings. Let
V = {v1, . . . , vn}. Call a nodev “bad” if either

• degout(v) ≤ (c log n)/q, or
• degout(v) > (c log n)/q and there exists some nodeb 6= v

such that|Nin,Nout(v)(b)| < log n.

Let U = V \ {v}. Let ui be theith node ofU . Let
Zi be an indicator variable which is1 if (v, ui) is an edge
and0 otherwise. ThenPr[Zi = 1] ≥ q. Let Z =

∑

i Zi;
Z = degout(v). ThenE[Z] =

∑

i E[Zi] ≥ q(n − 1) =

c
√

(n − 1) log n. By a Chernoff bound:

Pr[Z ≤ (c log n)/q] ≤ e−E[Z](1−(c log n)/(qE[Z]))2/2 ≤

e−(c(1−1/c)2/2)
√

(n−1) log n = 1/2Ω(
√

n log n).

Now fix someb. We are interested in the probability
that b has< log n inneighbors fromNout(v), given that
degout(v) > (c log n)/q. Consider the random variable
Y = degin,Nout(v)(b) =

∑

u∈Nout(v) Yu, whereYu is 1

iff (u, b) is an edge. Pr[Yu = 1] ≥ q and soE[Y ] =
q degout(v) > c log n. Again by a Chernoff bound:

Pr[Y < log n] ≤ Pr[Y < (1/c)E[Y ]] ≤

e−(1−1/c)2/2E[Y ] ≤ 1/nc(1−1/c)2/(2 ln 2).

LetC = −2+c(1−1/c)2/(2 ln 2). By a union bound, the
probability thatv is bad is at most1/2Ω(

√
n log n) +1/nC+1.

The probability that there exists a badv is at most

1/2Ω(
√

n log n) + 1/nC ≤ O(1/nC).

Hence with probability at least1 − O(1/nC) all nodes are
super-kings.C is at least(c − 4)/(2 ln 2), and soC > 0 for
anyc > 4.
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1This result crucially relies on knowing the match outcomes
beforehand: for any tournament bracket that we pick before the
coin flips,vn has only aqlog n chance of winning the tournament
which is at most1/poly(n) even whenq = Θ(1).
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