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Abstract

We say an algorithm on n × n matrices with integer entries in [−M,M ] (or n-node graphs with
edge weights from [−M,M ]) is truly subcubic if it runs in O(n3−δ · poly(logM)) time for some δ >
0. We define a notion of subcubic reducibility, and show that many important problems on graphs and
matrices solvable inO(n3) time are equivalent under subcubic reductions. Namely, the following weighted
problems either all have truly subcubic algorithms, or none of them do:

• The all-pairs shortest paths problem on weighted digraphs (APSP).

• Detecting if a weighted graph has a triangle of negative total edge weight.

• Listing up to n2.99 negative triangles in an edge-weighted graph.

• Finding a minimum weight cycle in a graph of non-negative edge weights.

• The replacement paths problem on weighted digraphs.

• Finding the second shortest simple path between two nodes in a weighted digraph.

• Checking whether a given matrix defines a metric.

• Verifying the correctness of a matrix product over the (min,+)-semiring.

• Finding a maximum subarray in a given matrix.

Therefore, if APSP cannot be solved in n3−ε time for any ε > 0, then many other problems also
need essentially cubic time. In fact we show generic equivalences between matrix products over a large
class of algebraic structures used in optimization, verifying a matrix product over the same structure, and
corresponding triangle detection problems over the structure. These equivalences simplify prior work on
subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle
detection algorithms.

Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication
over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection
would imply practical BMM algorithms, among other results. Building on our techniques, we give two
new BMM algorithms: a derandomization of the recent combinatorial BMM algorithm of Bansal and
Williams (FOCS’09), and an improved quantum algorithm for BMM.
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1 Introduction

Many computational problems on graphs and matrices have natural cubic time solutions. For example,
n × n matrix multiplication over any algebraic structure can be done in O(n3) operations. For algebraic
structures that arise in optimization, such as the (min,+)-semiring, it is of interest to determine when we need
only a subcubic number of operations.1 The all-pairs shortest paths problem (APSP) also has an O(n3) time
algorithm on n-node graphs, known for over 40 years [29, 69]. One of the “Holy Grails” of graph algorithms
is to determine whether this cubic complexity is basically inherent, or whether a significant improvement
(say, O(n2.9) time) is possible. (It is known that this question is equivalent to finding a faster algorithm for
(min,+) matrix multiplication [28, 47]). Many researchers believe that cubic time is essentially necessary:
there are n2 pairs of nodes, and in the worst case we should not expect to improve too much on O(n) time
per pair.2 (We should note that a long line of work has produced subcubic algorithms with small poly(log n)

improvements in the running time. This work recently culminated in n3/2Θ(log1/2 n) time algorithms [71, 18]
that “shave” all polylogarithms, unfortunately without giving a truly subcubic solution.)

Related to APSP is the replacement paths problem (RPP): given nodes s and t in a weighted directed
graph and a shortest path P from s to t, compute the length of the shortest simple path that avoids edge e, for
all edges e on P . This problem is studied extensively (cf. [74, 40, 27, 39, 55, 52, 10]) for its applications to
network reliability. A slightly subcubic time algorithm is not hard to obtain from a slightly subcubic APSP
algorithm, but nothing faster than this is known. It does seem that cubic time may be inherent, since for
all edges in a path (and there may be Ω(n) of them) we need to recompute a shortest path. A well-studied
restriction of RPP is to find the second shortest (simple) path between two given nodes s and t. This problem
also has an O(n3) time algorithm, but again nothing much faster is known. Here, the cubic complexity does
not seem to be so unavoidable: we simply want to find a certain type of path between two endpoints. Similarly,
finding a minimum weight cycle in a graph with non-negative weights is only known to be possible in slightly
subcubic time.3

An even simpler example is that of finding a triangle in an edge-weighted graph where the sum of edge
weights is negative. Exhaustive search of all triples of nodes takes about O(n3) time, and applying the best
APSP algorithm makes this n3−o(1) time, but we do not know a truly subcubic algorithm. Recent work has
suggested that this negative triangle problem might have a faster algorithm, since the node-weighted version
of the problem can be solved faster [63, 64, 67, 20, 21]. (In fact the node-weighted version of the problem is
no harder than the unweighted triangle detection problem, which is solvable in O(n2.38) time [36].) Since the
cubic algorithm for negative triangle is so simple, and many restrictions of the problem have faster algorithms,
it would appear that cubic complexity is unnecessary for finding a negative triangle.

We give theoretical evidence that these open algorithmic questions may be hard to resolve, by showing that
they and other well-studied problems are all surprisingly equivalent, in the sense that there is a substantially
subcubic algorithm for one of them if and only if all of them have substantially subcubic algorithms. Compare
with the phenomenon of NP-completeness: one reason P versus NP looks so hard to resolve is that many
researchers working in different fields have all been working on essentially the same (NP-complete) problem,

1Note that in the specific case when the structure is a ring, it is well known that one can solve the problem much faster thanO(n3)
operations [59, 19]. However it is unknown if this fact can be used to compute the matrix product fast on many other important
structures such as commutative semirings.

2Of course, as noted by a referee, a similar heuristic argument would say that n × n matrix multiplication requires Ω(n3) time,
which has long known to be false. One should be careful with intuition.

3Note that if we allowed negative weights, this problem is NP-hard.
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with no concrete resolution of the problem in sight. Our situation is entirely analogous: either these problems
really need essentially cubic time, or we are missing a fundamental insight which would make all of them
simultaneously easier.

Informally, we say that an algorithm on n×nmatrices (or n-node graphs) with entries in {−M, . . . ,M}∪
{−∞,∞} is truly subcubic if it uses O(n3−δ · poly(logM)) time for some δ > 0. In general, poly logM
factors are natural: truly subcubic ring matrix multiplication algorithms (such as Strassen’s) have poly logM
overhead if one counts the bit complexity of operations. We develop subcubic reductions between many
problems solvable in Õ(n3) time, proving Theorem 1.1 below.

Theorem 1.1 The following problems (with weights in {−M, . . . ,M} ∪ {−∞,∞}) either all have truly
subcubic algorithms, or none of them do:

1. The all-pairs shortest paths problem on weighted digraphs (APSP).

2. The all-pairs shortest paths problem on undirected weighted graphs.

3. Detecting if a weighted graph has a triangle of negative total edge weight.

4. Listing up to n3−δ negative triangles in an edge-weighted graph, for a fixed δ > 0.

5. Computing the matrix product over the (min,+)-semiring.

6. Verifying the correctness of a matrix product over the (min,+)-semiring.

7. Checking whether a given matrix defines a metric.

8. Finding a minimum weight cycle in a graph of non-negative edge weights.

9. The replacement paths problem on weighted digraphs.

10. Finding the second shortest simple path between two nodes in a weighted digraph.

11. Finding a maximum subarray of a given matrix.

Note the only previously known equivalence in the above was that of (1),(2) and (5).

Out of the above reductions, only the reduction from (1) to (3) actually introduces a poly(logM) factor in
the running time. We prove that there is in fact a randomized subcubic reduction from (1) to (3) that replaces
the poly(logM) factor with a log n factor and works with high probability (cf. Section 4.3). Therefore, any
O(n3−δ)-time algorithm for one of the above problems can be converted into an O(n3−δ′)-time (randomized)
algorithm for any of the other problems.

An explicit definition of our reducibility concept is given in Section 3. The truly subcubic runtimes may
vary depending on the problem: for example, an Õ(n2.9) algorithm for negative triangle implies an Õ(n2.96)
algorithm for APSP.

Perhaps the most interesting aspect of Theorem 1.1 is that some of the listed problems are decision prob-
lems, while others are functions. Hence to prove lower bounds for these decision problems, it would suffice
to prove them for certain multi-output functions. It is counterintuitive that anO(n2.9) algorithm returning one

3



bit can be used to compute a function returning n2 bits, in O(n2.96) time. Nevertheless, it is possible and in
retrospect, our reductions are very natural.

Subsequently to the conference version of this paper, some more subcubic equivalences to APSP have
been proven. Notably, Abboud, Grandoni and Vassilevska Williams [1] showed that computing the Radius,
Median or (Unique Path) Betweenness Centrality of a graph are all subcubically equivalent to APSP.

A few equivalences in Theorem 1.1 follow from a more general theorem, which can be used to simplify
prior work on all-pairs path problems.

In general we consider (min,�) structures defined over a set R of the form {−M, . . . ,M} ∪ {−∞,∞}
for someM ∈ Z+∪{∞}, together with an operation� : R×R→ R.4 We define a type of (min,�) structure
that we call extended, which allows for an “identity matrix” and an “all-zeroes matrix” over the structure. (For
definitions, see the Preliminaries.) Almost all structures we consider in this paper are extended, including the
Boolean semiring over OR and AND, the (min,max)-semiring, and the (min,+)-semiring. In Section 4 we
prove:

Theorem 1.2 (Informal Statement of Theorems 4.1 and 4.2) Let R̄ be an extended (min,�) structure. The
following problems over R̄ either all have truly subcubic algorithms, or none of them do:

• Negative Triangle Detection. Given an n-node graph with weight function w : V × V → R, find
nodes i, j, k such that w(i, j) ∈ R, w(i, k) ∈ R, w(k, j) ∈ R, and (w(i, k)� w(k, j)) + w(i, j) < 0.

• Matrix Product. Given two n × n matrices A, B with entries from R, compute the product of A and
B over R̄.

• Matrix Product Verification. Given three n × n matrices A, B, C with entries from R, determine if
the product of A and B over R̄ is C.

The relationship between matrix product and its verification is particularly surprising, as n × n matrix
product verification over rings can be done in O(n2) randomized time [11, 31] but it is not known whether
ring matrix multiplication can be reduced to this fast verification. Spinrad [57] (Open Problem 8.2) and
Alon [2] asked if the verification of various matrix products can be done faster than the products themselves.
Our reductions rely crucially on the fact that the addition operation in a (min,�) structure is a minimum.

We have as a consequence of Theorem 1.2:

Theorem 1.3 The following all have truly subcubic “combinatorial” algorithms, or none of them do:

• Boolean matrix multiplication (BMM).

• Detecting if a graph has a triangle.

• Listing up to n3−δ triangles in a graph for constant δ > 0.

• Verifying the correctness of a matrix product over the Boolean semiring.
4An analogous treatment is possible for (max,�) structures. We omit the details, as they merely involve negations of entries.
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The notion of a “combinatorial” algorithm does not have a formal definition. Intuitively, such algorithms
are not only theoretically, but also practically efficient. In the above theorem, by combinatorial we mean
an algorithm with low leading constants. One can verify that the reductions in our paper have low leading
constants and low overhead; hence any simple fast triangle algorithm would yield a simple (and only slightly
slower) BMM algorithm. The relation between BMM and the triangle problem has been investigated by many
researchers, e.g. ([73], Open Problem 4.3(c)) and ([57], Open Problem 8.1).

An extra bullet can be added to Theorem 1.3 relating the above problems to context-free grammar (CFG)
parsing. The CFG parsing problem is to determine whether a given n-symbol string can be generated by
a given CFG of size g. Valiant [61] showed that the problem can be reduced to BMM, showing that any
O(n3−ε) time algorithm for BMM implies an O(gn3−ε) time algorithm for CFG parsing. Lee [42] showed a
converse: that any O(gn3−ε) time algorithm for CFG parsing would imply an O(n3−ε/3) time algorithm for
n × n BMM. The reductions in [61] and [42] are combinatorial algorithms. In this sense, CFG parsing for
constant size grammars can be added to Theorem 1.3.

Using Theorem 1.3, we also show how our techniques can be used to design alternative approaches to
Boolean matrix multiplication (BMM). More concretely, Theorem 1.3 can already yield new BMM algo-
rithms, with a little extra work. First, we can derandomize the recent combinatorial BMM algorithm of
Bansal and Williams [6]:

Theorem 1.4 There is a deterministic combinatorial O(n3/ log2.25 n)-time algorithm for BMM.

Subsequent to our result, there have been two improved combinatorial BMM algorithms, by Chan [17]
and by Yu [75]. The latter constitutes the current fastest algorithm, running in O(n3/ log4 n) time. Yu’s
improvement is partially based on Theorem 6.1 presented here.

The BMM algorithm of [6] uses randomness in two different ways: it reduces BMM to a graph theoretic
problem, computes a pseudoregular partition of the graph in randomized quadratic time, then it uses random
samples of nodes along with the partition to speed up the solution of the graph problem. We can avoid the
random sampling by giving a triangle algorithm with O(n3/ log2.25 n) running time, and applying a stronger
version of Theorem 1.3 that shows an equivalence preserving polylogarithmic factors (see Corollary 4.1). To
get a deterministic triangle algorithm, we show (using a new reduction) that in fact any polynomial time algo-
rithm for computing a pseudoregular partition suffices for obtaining a subcubic triangle algorithm. With this
relaxed condition, we can replace the randomized quadratic algorithm for pseudoregularity with a determin-
istic polynomial time algorithm of Alon and Naor [4]. A similar result holds for APSP: assuming that APSP
requires essentially cubic time, we obtain essentially quadratic time lower bounds for a natural weighted graph
query problem, for any polynomial amount of processing on the graph.

In more detail, for a graph with edge weight function c : E → Z, a price query is an assignment of
node weights p : V → Z. Such a query has a yes answer if and only if there is a (u, v) ∈ E such that
p(u) + p(v) > c(u, v). (Intuitively, the p(v) are “prices” on the nodes, the c(u, v) are costs of producing u
and v, and a price query asks if there is an edge we are willing to “sell” at the prices given by the query.)

Theorem 1.5 Suppose there is a constant k > 0 and a function f(n) such that every n-node edge-weighted
graph can be preprocessed inO(nk) time so that any subsequent price query can be answered inO(n2/f(n))
time. Then, the negative triangle detection problem is solvable in O(n3/f(n1/(2k))) time.

In particular, if the hypothesis above is true for f(n) = 2Ω(logδ n) for some constant δ > 0, then negative
triangle is in n3/2Ω(logδ n) time. Our reduction from APSP to negative triangle is tight in this case and the
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hypothesis would imply that APSP also is in n3/2Ω(logδ n) time. If δ = 1, then APSP is in truly subcubic
time. Subsequent work [71] has in fact shown that the statement is true for δ = 1/2, i.e. that APSP is in
n3/2Ω(

√
logn) time.

We also obtain a new quantum algorithm for BMM in the query complexity setting, improving the previ-
ous best by Buhrman and Špalek [13]:

Theorem 1.6 There is an Õ(min{n1.3L17/30, n1.5L1/4})-query quantum algorithm for computing the prod-
uct of two n× n Boolean matrices, where L is the number of ones in the output matrix.

The first time bound of Theorem 1.6 is obtained by simply applying the best known quantum algorithm
for triangle [45] to our generic matrix product to triangle detection reduction, already improving the previous
best [13] output-sensitive quantum algorithm for BMM. The second time bound is obtained by applying
ideas of Lingas [43, 44]. Our results have recently been improved by Le Gall [41] and Jeffery, Kothari and
Magniez [37].

1.1 A Little Intuition

One of our key observations is the counterintuitive result that subcubic algorithms for certain triangle
detection problems can be used to obtain subcubic matrix products in many forms, including products that are
not known to be subcubic. Let us first review some intuition for why fast triangle detection should not imply
fast matrix multiplication, then discuss how our approach circumvents it. For simplicity, let us focus on the
case of Boolean matrix multiplication (BMM) over OR and AND.

First, note that triangle detection returns one bit, while BMM returns n2 bits. This seems to indicate
that O(n2.99) triangle detection would be useless for subcubic BMM, as the algorithm would need to be run
Ω(n2) times. Furthermore, BMM can determine for all edges if there is a triangle using the edge, while
triangle detection only determines if some edge is in a triangle. Given our intuitions about quantifiers, it looks
unlikely that the universally quantified problem could be efficiently reduced to the existentially quantified
problem. So there appears to be strong intuition for why such a reduction would not be possible.

However, there is an advantage in calling triangle detection on small graphs corresponding to small sub-
matrices. Let A and B be n×n matrices over {0, 1}. Triangle detection can tell us if A ·B contains any entry
with a 1: Set up a tripartite graph with parts S1, S2 and S3, each containing n nodes which we identify with
the set [n] := {1, . . . , n}. The edge relation for S1 × S2 is defined by A, and the edge relation for S2 × S3 is
defined by B (in the natural way). A path of length two from i ∈ S1 to j ∈ S3 corresponds to a 1 in the entry
(A · B)[i, j]. Therefore, putting all possible edges between S1 and S3, there is a triangle in this graph if and
only if A ·B contains a 1-entry. (Note we are already relying on the fact that our addition operation is OR.)

The above reasoning can also be applied to submatrices A′ and B′, to determine if A′ · B′ contributes a
1-entry to the matrix product. More generally, triangle detection can tell us if a product of two submatrices
contains a 1-entry, among just those entries of the product that we have not already computed. That is, we
only need to include edges between S1 and S3 that correspond to undetermined entries of the product. Hence
triangle detection can tell us if submatrices A′ and B′ have any new 1-entries to contribute to the current
matrix product so far.

On the one hand, if all possible pairs of submatrices from A and B do not result in finding a triangle, then
we have computed all the 1-entries and the rest must be zeroes. On the other hand, when we detect a triangle,
we determine at least one new 1-entry (i, j) in A · B, and we can keep latter triangle detection calls from
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recomputing this entry by simply removing the edge (i, j) between S1 and S3. By balancing the number of
triangle detection subproblems we generate with the number of 1-entries in A ·B, we get a subcubic runtime
for matrix multiplication provided that the triangle algorithm was also subcubic. (In fact we get an output
sensitive algorithm.) With additional technical effort and a simultaneous binary search method, these ideas
can be generalized to any matrix product where “addition” is a minimum operator.

2 Preliminaries

Throughout the paper, for two integers a and b with a < b, we denote by [a, b] the interval of integers
between a and b, i.e. {a, a+ 1, . . . , b}.

Unless otherwise noted, all graphs in the paper are directed, and have n vertices and m edges. Whenever
an algorithm in our paper uses ∞ or −∞, these can be substituted by numbers of suitably large absolute
value. We use ω to denote the smallest real number such that n × n matrix multiplication over an arbitrary
ring can be done in nω+o(1) additions and multiplications over the ring.

Structures and Extended Structures. We give a general definition encompassing all algebraic structures
for which our results apply. Let R be a set of the form [−M,M ] ∪ {−∞,∞}, where M ∈ Z+ ∪ {∞}. We
call M the maxint of R.

A (min,�) structure over R is defined by a binary operation � : R ×R→ R. We use the variable R to
refer to a (min,�) structure. We say a (min,�) structure is extended if R contains elements ε0 and ε1 such
that for all x ∈ R, x� ε0 = ε0 � x =∞ and ε1 � x = x for all x ∈ R. That is, R is extended to include two
additional elements: ε0 which is a type of annihilator, and ε1 which is a left identity. We use the variable R̄
to refer to an extended structure.

The elements ε0 and ε1 allow us to define (for every n) an n×n identity matrix In and a n×n zero matrix
Zn over R̄. More precisely, In[i, j] = ε0 for all i 6= j, In[i, i] = ε1, and Zn[i, j] = ε0 for all i, j. We shall
omit the subscripts of In and Zn when the dimension is clear.

Examples of extended structures R̄ are the (OR,AND) (or Boolean) semiring,5 as well as the (min,max)
and (min,+) semirings 6 (also called subtropical and tropical), and the (min,≤) structure used to solve all
pairs earliest arrivals [62, 68]. An example of a structure that is not extended is the “existence dominance”
structure defined with R = Z ∪ {−∞,∞}, and a� b = 0 if a ≤ b and a� b = 1 otherwise.

Matrix Products Over Structures. The matrix product of two n× n matrices overR is

(A�B)[i, j] = min
k∈[n]

(A[i, k]�B[k, j]).

It is easy to verify that for all matrices A over an extended R̄, I � A = A and Z � A = A � Z = F
where F [i, j] = ∞ for all i, j. The problem of matrix product verification over an extended structure R̄ is
to determine whether mink∈[n](A[i, k]� B[k, j]) = C[i, j] for all i, j ∈ [n], where A,B,C are given n× n
matrices with entries from R. Although it looks like a simpler problem, matrix product verification for the
(min,+) semiring (for instance) is not known to have a truly subcubic algorithm.

5Observe the Boolean semiring is easily embedded into theR-structure withR = [0, 0]∪{−∞,∞}, ε0 =∞ and ε1 = 0, where
x� y = x+ y.

6For the (min,+) semiring whenR is taken to be [−M,M ]∪{−∞,∞} for a finite integerM , we replace + with the� operation
where a� b = a+ b when a+ b ∈ [−M,M ], a� b = −∞ if a+ b < −M and a� b =∞ otherwise.
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Negative Triangles Over Structures. The negative triangle problem over R is defined on a weighted
tripartite graph with parts I, J,K. All edge weights are from R. The problem is to detect if there are
i ∈ I, j ∈ J, k ∈ K so that (w(i, k) � w(k, j)) + w(i, j) < 0. Note that if one negates all weights of
edges between I and J , the condition becomes (w(i, k) � w(k, j)) < w(i, j), and since R is symmetric,
all edge weights are still from R. Thus the negative triangle problem can be equivalently defined with the
condition (w(i, k)� w(k, j)) < w(i, j).

In the special case when � = +, the tripartiteness requirement is unnecessary, and the negative triangle
problem is defined on an arbitrary graph with edge weights from R. This holds for the negative triangle
problem over both the (min,+) and Boolean semirings.

2.1 Prior and Related Work

Matrix Products and Path Problems. Matrix multiplication is fundamental to computer science. The case
of multiplying over a field is well known to admit surprisingly fast algorithms using the magic of subtrac-
tion, beginning with the famous O(nlog2 7) time algorithm of Strassen [59]7. After many improvements on
Strassen’s original result, the current best upper bound on matrix multiplication over an arbitrary field is by
Le Gall [34], very slightly improving upon the looser bound O(n2.373) [72] which together with an inde-
pendent result by Stothers [58, 22] improved on the longstanding bound of O(n2.376) of Coppersmith and
Winograd [19].

Over algebraic structures without subtraction, there has been little progress in the search for truly subcubic
algorithms. These “exotic” matrix products are extremely useful in graph algorithms and optimization. For
example, matrix multiplication over the (max,min)-semiring, with max and min operators in place of plus
and times (respectively), can be used to solve the all pairs bottleneck paths problem (APBP) on arbitrary
weighted graphs, where we wish to find a maximum capacity path from s to t for all pairs of nodes s and
t. Related work [66, 24] has shown that fast matrix multiplication over rings can be applied to obtain a
truly subcubic algorithm over the (max,min)-semiring, yielding truly subcubic APBP. Matrix multiplication
over the (min,+)-semiring (also known as the distance product) can be used to solve all pairs shortest
paths (APSP) in arbitrary weighted graphs [28]. That is, truly subcubic distance product would imply truly
subcubic APSP, one of the “Holy Grails” of graph algorithms. The fastest known algorithms for distance
product are a recent randomized n3/2Ω(log1/2 n)-time solution by Williams [71], a deterministic version with
analogous runtime by Chan and Williams [18], and an Õ(Mnω) algorithm where M is the largest weight in
the matrices, due to Alon, Galil and Margalit [3] (following Yuval [76]). Unfortunately, the latter algorithm
is pseudopolynomial (exponential in the bit complexity), and can only be used to efficiently solve APSP in
special cases such as when the weights in the graph are small [56, 77], or when the weights are on the nodes
instead of the edges [15, 16].

Many over the years have asked if APSP can be solved faster than cubic time. For an explicit reference,
Shoshan and Zwick [56] asked if the distance product of two n × n matrices with entries in {1, . . . ,M} can
be computed in O(n3−δ logM) for some δ > 0. (Note that an APSP algorithm of similar runtime would
follow from such an algorithm.)

Triangles and Matrix Products. Itai and Rodeh [36] were the first to show that triangle detection can be
done with Boolean matrix multiplication.

7Strassen’s algorithm also works over an arbitrary ring.
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The trilinear decomposition of Pan [48, 49] implies that any bilinear circuit for computing the trace of
the cube of a matrix A (i.e., tr(A3)) over any ring can be used to compute matrix products over any ring.
So in a sense, algebraic circuits that can count the number of triangles in a graph can be turned into matrix
multiplication circuits. Note, this correspondence relies heavily on the algebraic circuit model: it is non-black
box in an extreme way. (Our reductions are all black box.)

The k Shortest Paths Problem. A natural generalization of the s, t-shortest path problem is that of returning
the first k of the shortest paths between s and t. In the early 1970s, Yen [74] and Lawler [40] presented an
algorithm which solved this problem for directed graphs with nonnegative edge weights; with Fibonacci
heaps [30] their algorithm runs in O(k(mn+n2 log n)) time. Eppstein [27] showed that if the paths can have
cycles, then the problem can be solved in O(k + m + n log n) time. When the input graph is undirected,
even the k shortest simple paths problem is solvable inO(k(m+n log n)) time [39]. For directed unweighted
graphs, the best known algorithm for the problem is the Õ(km

√
n) time randomized combinatorial algorithm

of Roditty and Zwick [55]. Roditty [51, 52] noticed that the k shortest simple paths can be approximated fast,
culminating in Bernstein’s [10] Õ(km/ε) running time for a (1 + ε)-approximation. When the paths are to be
computed exactly, however, the best running time is still the O(k(mn+ n2 log n)) time of Yen and Lawler’s
algorithm.

Roditty and Zwick [54, 55] showed that the k shortest simple paths can be reduced to k computations
of the second shortest simple path, and so any T (m,n) time algorithm for the second shortest simple path
implies an O(kT (m,n)) algorithm for the k shortest simple paths. The second shortest simple path always
has the following form: take a prefix of the shortest path P to some node x, then take a path to some node y
on P using only edges that are not on P (this part is called a detour), then take the remaining portion of P to
t. The problem then reduces to finding a good detour.

Verifying a Metric. In the metricity problem, we are given an n × n nonnegative matrix A and want to
determine whether it defines a metric space on [n], that is, that A is symmetric, has 0s on the diagonal and
its entries satisfy the triangle inequality. Matrices with this property are called distance matrices, and the
metricity problem just asks whether a given matrix is a distance matrix.

Brickell et al. [12] studied a more general problem, called the metric nearness problem (MNP). MNP is
defined with respect to a matrix norm || · ||, and is as follows: given a nonnegative symmetric n× n matrix D
with 0s on the diagonal, find a distance matrixD′ that is closest toD in the ||·|| norm. Brickell et. al [12] gave
algorithms for MNP for different choices for the norm. Solving the metricity problem is exactly checking the
stopping condition for their algorithms. They showed some connections of MNP to APSP, and asked whether
the metricity problem can be solved faster than APSP. Theorem 4.2 partially answers their question in the
sense that subcubic metricity implies subcubic APSP.

The Maximum Subarray Problem. The Maximum Subarray problem is as follows: given an n×n matrix
A of integers, find i, j, k, l ∈ [n] with i ≤ j, k ≤ l maximizing

∑j
x=i

∑l
y=k A[x, y], that is, find a contiguous

subarray of A of maximum sum.

Bentley [9] introduced the problem in his Programming Pearls column in 1984. An O(n3) time algorithm
for the maximum subarray problem is a simple exercise in divide-and-conquer. Tamaki and Tokuyama [60]
showed how to use the ideas behind the standard divide-and-conquer solution to reduce the problem to
computing the distance product of two matrices. Their reduction implies that if the distance product of
two n × n matrices is in T (n) time, then the Maximum Subarray problem for n × n matrices can be
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solved in time t(n) satisfying the recurrence t(n) ≤ 4t(n/2) + O(T (n)). The recurrence solves to t(n) ≤
O
(∑logn

i=0 4iT (n/2i)
)

. Using this reduction, Tamaki and Tokuyama obtained the first subcubic algorithm for
the problem just by applying the slightly subcubic time algorithms for distance product. Moreover, for all T
for which T (n/2) ≤ T (n)/(4 + ε) for some ε > 0, we get that t(n) ≤ O(T (n)) and hence. the Tamaki and
Tokuyama reduction shows that if distance product is in O(n3−ε) time for some ε > 0, then the Maximum
Subarray problem can also be solved in O(n3−ε) time.

Prior reductions of APSP to other problems. Roditty and Zwick [53] consider the incremental and decre-
mental versions of the single source shortest path problem in weighted and unweighted directed graphs. They
show that either APSP has a truly subcubic algorithm, or any data structure for the decremental/incremental
single source shortest paths problem must either have been initialized in cubic time, or its updates must take
amortized Ω(n2) time, or its query time must be Ω(n). They also give a similar relationship between the
problem for unweighted directed graphs and combinatorial algorithms for BMM.

3SUM and its relatives. In this work, we build a complexity class of hard problems based on the difficulty
of APSP. There is another well-known class of hard problems built around the 3SUM problem: given a set
of numbers, are there three which sum to zero? There is a simple quadratic-time algorithm for this problem,
and it is a major open problem to find a n1.99 time algorithm. Gajentaan and Overmars [33] showed that for
many problems Π solvable in quadratic time, one can reduce 3SUM to Π in such a way that a subquadratic
algorithm for Π implies one for 3SUM. Hence under the conjecture that the 3SUM problem is hard to solve
faster, many other Π are also hard.8

Most reductions showing 3SUM-hardness have been reductions between decision problems. One strength
of our work is that we reduce function problems like APSP to decision problems like negative weight triangle.
A significant advance in the theory of 3SUM-hardness was made by Patrascu [50] who showed how to reduce
3SUM to interesting function problems, such as triangle listing in sparse graphs. At the heart of his results
is a reduction from 3SUM to Convolution-3SUM: given an array A of n numbers, determine if there are i, j
such that A[i] + A[j] = A[(i + j) (mod n)]. Convolution-3SUM has an obvious quadratic-time algorithm:
simply try all pairs i, j!

Theorem 2.1 (Patrascu [50]) If Convolution-3SUM is inO(n2/f2(n·f(n))) time, then 3SUM on n numbers
is in O(n2/f(n)) time.

In the notation of this paper, the above theorem says that 3SUM ≡2 Convolution-3SUM, i.e., the two
problems are subquadratic equivalent.

3 Subcubic Reducibility

Here we formally define the notion of subcubic reducibility used in this paper, and prove a few conse-
quences of it. Recall that an algorithm with oracle access to B has special workspace in memory reserved for
oracle calls, and at any step in the algorithm, it can call B on the content of the special workspace in one unit
of time and receive a solution to B in the workspace.

8Sometimes Π is defined to be 3SUM-hard if “Π is in subquadratic time implies 3SUM is in subquadratic time”. This definition
leaves something to be desired: if 3SUM is in subquadratic time then all problems are 3SUM-hard, and if 3SUM is not in subquadratic
time then no subquadratic problem is 3SUM-hard. Hence the 3SUM-hardness of some problems would depend on the complexity of
3SUM itself. Note this is not the definition of [33] – they give a reducibility notion similar to but weaker than ours.
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Let Σ be an underlying alphabet. We define a size measure to be any function m : Σ? → N ∪ {∞,−∞}.
In this paper, the size measure on n-node weighted graphs with integer weights from [−M,M ] ∪ {−∞,∞}
(or n×nmatrices with entries in this range) is typically taken to be n ·(logM)c for a fixed constant c. That is,
we measure the complexity of a square matrix by its dimension times some polynomial in the bit complexity
of the weights. This notion of measure is easier to understand in the context of the following definition.

Definition 3.1 Let A and B be computational problems with a common size measure m on inputs. We say
that there is a subcubic reduction from A to B if for every constant ε > 0 there are constants δ > 0 and d,
and an algorithm A with oracle access to B, satisfying three properties:

• For every instance x of A, A(x) solves the problem A on x.

• A runs in O(m3−δ) time on instances of size m.9

• For every instance x of A of size m, let mi be the size of the ith oracle call to B in A(x). Then,∑
im

3−ε
i ≤ d ·m3−δ.

We use the notation A ≤3 B to denote the existence of a subcubic reduction from A to B, and define A ≡3 B
if A ≤3 B and B ≤3 A. In such a case we say that A and B are subcubic-equivalent.

There is a natural extension of the concept to O(nq) running times, for any constant q ≥ 1, by replacing
all occurrences of 3 in the above definition with q. For such reductions we denote their existence by A ≤q B,
and say there is a sub-q reduction from A to B, for values of q such as “quadratic”, “cubic”, “quartic”, etc.

First let us observe that the reducibility relation is transitive.

Proposition 1 Let A, B, C be problems so that A ≤q B and B ≤q C. Then A ≤q C.

Proof. By definition, we have:

1. For every ε > 0 there exist constants δ > 0 and dA and an algorithm PA,ε for A that on all instances x
of size n runs inO(nq−δ) time and makes oracle calls toB on instances x1, . . . , xt of sizes |x1|, . . . |xt|
where

∑
i |xi|q−ε ≤ dA · nq−δ.

2. For every ε′ > 0 there exist constants δ′ > 0 and dB and an algorithm PB,ε′ for B that on all in-
stances y of size m runs in O(mq−δ′) time and makes oracle calls to C on instances y1, . . . , yr of sizes
|y1|, . . . , |yr| where

∑
i |yi|q−ε ≤ dB ·mq−δ.

We will show that:

3. For every ε′ > 0 there exist constants δ′′ > 0 and d and an algorithm Pε′ for A that on all instances z of
size n runs inO(nq−δ

′′
) time and makes oracle calls to C on instances z1, . . . , zw of sizes |z1|, . . . , |zw|

where
∑

i |zi|q−ε
′′ ≤ d · nq−δ′′ .

Let ε′ > 0 be given. Consider PB,ε′ and let δ′ > 0 be the value corresponding to ε′, as in 2. Pick ε = δ′.
Consider algorithm PA,ε and let δ > 0 be the value corresponding to ε, as in 1. Replace each oracle call on

9Note that for the size measure n · (logM)c, this translates to n3−δ · (logM)(3−δ)c time.
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an instance xi from algorithm PA,ε running on input x with a call to PB,ε′ on xi. This forms a new algorithm
Pε′ that makes oracle calls to C.

The running time of the Pε′ is

O

(
nq−δ +

∑
i

|xi|q−δ
′

)
.

As we picked ε = δ′,
∑

i |xi|q−δ
′

=
∑

i |xi|q−ε ≤ dA · nq−δ (from 1), and the runtime of Pε′ is O(nq−δ).

From 2, for each xi, the algorithm makes oracle calls to C on instances xi1, . . . , xir where
∑

j |xi,j |q−ε ≤
dB · |xi|q−δ. Hence ∑

ij

|xij |q−ε
′ ≤

∑
i

dB · |xi|q−δ
′

= dB
∑
i

|xi|q−ε ≤ (dAdB)nq−δ,

where the last inequality is from 1. We can set δ′′ = δ and d = dAdB , and so A ≤q C. 2

Corollary 3.1 The relation ≤q is a partial order, and the relation ≡q is an equivalence relation.

Now let us verify that the definition gives us the property we want. In the following, let A and B be
computational problems on n × n matrices with entries in [−M,M ] (or equivalently, weighted graphs on n
nodes).

Proposition 2 If A ≤3 B then a truly subcubic algorithm for B implies a truly subcubic algorithm for A.

Proof. If there is anO(m3−εpoly logM) algorithm forB according to the measurem, then the algorithm
for A in the reduction runs in time O(m3−δ +

∑
im

3−ε
i poly logM) ≤ O(m3−δpoly logM). 2

Strongly Subcubic Reductions. All subcubic equivalences proved in this paper have one additional prop-
erty in their reductions: the number of oracle calls and the sizes of oracle calls depend only on the input, and
not on the parameter ε. (In some other reductions, such as the example below, this is not the case.) Let us
define a reduction with this property to be a strongly subcubic reduction.

Definition 3.2 Let A and B be computational problems with a common size measure m on inputs. We say
that there is a strongly subcubic reduction from A to B if there exists an algorithm A with oracle access to B
and a constant d, satisfying the following properties:

• For every instance x of A, A(x) solves the problem A on x.

• A runs in O(m3−γ) time on instances of size m for some γ > 0 independent of m.

• For every instance x of A of size m, let mi be the size of the ith oracle call to B in A(x). Then, for
every ε > 0, there exists a δ > 0 such that

∑
im

3−ε
i ≤ d ·m3−δ.

We now show that these stronger reductions have the nice quality that, with respect to polylogarithmic (or
even slightly higher) improvements, running times are preserved.

Theorem 3.1 If there is a strongly subcubic reduction from A to B, then
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• If the size measure is m = n(logM)r/3, then for all c > 0, an O(n3(logM)r/(log n + log logM)c)
time algorithm for B implies an O(n3(logM)3r/(log n + log logM)c) time algorithm for A. If the
size measure is n, then an O(n3/ logc n) algorithm for B implies an O(n3/ logc n) algorithm for A.

• If the size measure is n, then for all α > 0, an n3/2Ω(logα n) algorithm for B implies an n3/2Ω(logα n)

algorithm for A.

Proof. First let n be the input size measure. First, we show that∑
i

n3
i ≤ d · n3. (1)

A strongly subcubic reduction gives us a fixed algorithm such that for all sizes n, the number of oracle
calls and the sizes of oracle calls {ni} depend only on the input (and not the parameter ε). Then, for all ε > 0,
there is a δ > 0 satisfying ∑

i

n3−ε
i ≤ dn3−δ < dn3.

Since d, {ni} and n are independent of ε, this means that for every fixed set {ni}, d and n, we can take the
limit on both sides of the above inequality as ε → 0. We obtain that for every n and every set of oracle call
sizes {ni} on an input of size n,

∑
i n

3
i ≤ dn3.

Now consider an algorithm for B that runs in O(n3/ logc n) time. Then an algorithm for A that uses the
reduction calling B as an oracle would run in O(n3−γ +

∑
i n

3
i / logc ni) time for some γ > 0. Let a < δ/3.

Then ∑
i

n3
i / logc ni =

∑
i : ni<na

n3
i / logc ni +

∑
i : ni≥na

n3
i / logc ni,

which is at most

O

n3−δ · n3a +
∑

i : ni≥na
n3
i / logc(na)

 ,

since the number of oracle calls is at most O(n3−δ). The first term is n3−ε′ for some ε′ > 0, by our choice of
a. By (1), we have

O

n3−ε′ +
∑

i : ni≥na
n3
i /(a

c · logc n)

 ≤ O(n3/ logc n).

Suppose now that the input measurem ism = n(logM)r/3. Then, anO(n3(logM)r/(log n+log logM)c)
time algorithm for B is an O(m3/(logm)c) time algorithm for B. By the argument above, using m instead
of n, we obtain that a strongly subcubic reduction with respect to measure m, implies that there is also an
O(m3/(logm)c) time algorithm for A, and hence an O(n3(logM)r/(log n + log logM)c) time algorithm
for A.

For the proof of the second item, suppose the size measure is n and consider an algorithm for B that runs
in n3/2c logα n time. Then an algorithm for A that uses the reduction calling B as an oracle would run in
O(n3−γ +

∑
i n

3
i /2

c logα ni) time for some γ > 0. Similar to above, let a < δ/3 and use that∑
i

n3
i /2

c logα n =
∑

i : ni<na

n3
i /2

c logα ni +
∑

i : ni≥na
n3
i /2

c logα ni ,
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which is at most

O

n3−δ · n3a +
∑

i : ni≥na
n3
i /2

c logα na

 .

The first term is n3−ε′ for some ε′ > 0, and by (1) the second term is O(n3/2ca
α logα n) = n3/2Ω(logα n). 2

It can be shown that strongly subcubic reductions are necessary for Theorem 3.1 to hold. If the sizes
of oracle calls or their number depend on ε, one can find cases where polylog factors are diminished in the
algorithm for A. (In fact, the reduction below of Matoušek is one example.)

Subcubic reductions were certainly implicit in prior work (even in the generic setting we give here), but
have not been studied systematically. For one example, Matoušek [46] showed that computing dominances
in Rn between pairs of n vectors can be done in O(n(3+t)/2) time, where t > ω is any upper bound on
the exponent ω of n × n integer matrix multiplication. For the current best upper bound on the matrix
multiplication exponent ω < 2.373, Matoušek’s algorithm runs in O(n2.687) time. The algorithm works
by making O(n3/2/nt/2) calls to n × n integer matrix multiplication. (Note this is not a strongly subcubic
reduction, since the number of calls depends on t.) Notice that for any t < 3, the running time O(n(3+t)/2) is
truly subcubic. Hence we can say:

Dominances in Rn ≤3 Integer Matrix Multiplication.

Another example is that of 3SUM-hardness in computational geometry, as mentioned in Section 2.1. A proof
that a problem Π is 3SUM-hard implies 3SUM ≤2 Π, but the notion of reduction used in [33] is weaker than
ours. (They only allow O(1) calls to the oracle for Π.)

4 Equivalences Between Problems on Generic Structures

A generic approach to computing fast (min,�) matrix products (for an arbitrary binary operation �)
would be of major interest. Here we prove truly subcubic equivalences between matrix products, negative
triangles, and matrix product verification for (min,�) structures. (For definitions, see the Preliminaries.) For
simplicity, most of our theorems will assume T (n)-time algorithms; they can easily be extended to handle
dependencies on the weights. However, all of the proofs have the property that if the original maximum
weight absolute value was W , then the maximum weight absolute value after the reduction is poly(nW ), and
hence the subcubic reduction properties are preserved.

Reminder of Theorem 1.2 Let R̄ be an extended (min,�) structure. The following problems over R̄ either
all have truly subcubic algorithms, or none of them do:

• Negative Triangle Detection. Given a tripartite n-node graph with node partitions I, J,K and weight
function w : E → R, find nodes i ∈ I, j ∈ J, k ∈ K such that (w(i, k)� w(k, j)) + w(i, j) < 0.

• Matrix Product. Given two n × n matrices A, B with entries from R, compute the product of A and
B over R̄.

• Matrix Product Verification. Given three n × n matrices A, B, C with entries from R, determine if
the product of A and B over R̄ is C.
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4.1 Matrix Product Verification Implies Negative Triangle Detection

We start by showing that matrix product verification can solve the negative triangle problem over any
extended structure R̄ in the same asymptotic runtime. For two problems A and B, we write A ≤3 B to
express that there is a subcubic reduction from A to B. (For formal definitions, see Section 3.)

Theorem 4.1 (Negative Triangle Over R̄ ≤3 Matrix Product Verification Over R̄) Suppose matrix prod-
uct verification over R̄ can be done in time T (n). Then the negative triangle problem for graphs over R̄ can
be solved in O(T (2n)) time.

Proof. From the tripartite graph G = (I ∪ J ∪ K,E) given by the negative triangle problem over R̄,
construct matrices A,B,C as follows. For each edge (i, j) ∈ (I × J) ∩ E set C[i, j] = −w(i, j). Similarly,
for each edge (i, k) ∈ (I × K) ∩ E set A[i, k] = w(i, k) and for each edge (k, j) ∈ (K × J) ∩ E set
B[k, j] = w(k, j). When there is no edge in the graph, the corresponding matrix entry in A or B is set
to ε0 and in C it is set to ∞. The problem becomes to determine whether there are i, j, k ∈ [n] so that
A[i, k]�B[k, j] < C[i, j]. Let A′ be the n× 2n matrix obtained by concatenating A to the left of the n× n
identity matrix I . Let B′ be the 2n × n matrix obtained by concatenating B on top of C. Then A′ � B′ is
equal to the componentwise minimum of A � B and C. One can easily complete A′, B′ and C to be square
2n× 2n matrices, by concatenating:

• an n× 2n matrix of all ε0’s to the bottom of A′,

• a 2n× n matrix of all ε0’s to the right of B′, and

• n columns of all ε0’s and n rows of all ε0’s to the right and bottom of C, respectively.

Notice that all entries of A′, B′, C are from R since R is symmetric and contains ε0, ε1, and ∞. Run
matrix product verification on A′, B′, C. Suppose there are i, j so that mink(A

′[i, k] � B′[k, j]) 6= C[i, j].
Then since

min
k

(A′[i, k]�B′[k, j]) = min{C[i, j],min
k

(A[i, k]�B[k, j])} ≤ C[i, j],

there must exists a k ∈ [n] so that A[i, k] � B[k, j] < C[i, j]. In other words, i, k, j is a negative triangle
over R̄. If on the other hand for all i, j we have mink(A

′[i, k]� B′[k, j]) = C[i, j], then for all i, j we have
mink(A[i, k]�B[k, j]) ≥ C[i, j] and there is no negative triangle. 2

4.2 Negative Triangle Detection Implies Matrix Multiplication

Next we show that from negative triangle detection over a (min,�) structure R, we can obtain the full
matrix product overR. Specifically, we prove the following.

Theorem 4.2 (Matrix Product OverR ≤3 Negative Triangle OverR) Let T (n) be a function so that T (n)/n
is nondecreasing. Suppose the negative triangle problem over R in an n-node graph can be solved in T (n)
time. Then the product of two n×n matrices overR can be performed in O(n2 ·T (n1/3) logW ) time, where
W is the maxint of R.

Before we proceed, let us state some simple but useful relationships between triangle detecting, finding,
and listing.
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Lemma 4.1 (Folklore) Let T (n) be a function so that T (n)/n is nondecreasing. If there is a T (n) time
algorithm for negative triangle detection over R on a graph G = (I ∪ J ∪K,E), then there is an O(T (n))
algorithm which returns a negative triangle overR in G if one exists.

Proof of Lemma 4.1. The algorithm is recursive: it proceeds by first splitting I , J and K each into
two roughly equal parts I1 and I2, J1 and J2, and K1 and K2. Then it runs the detection algorithm on all
8 induced subinstances (Ii, Jj ,Kk), i, j, k ∈ {1, 2}. If none of these return ’yes’, then there is no negative
triangle in G. Otherwise, the algorithm recurses on exactly one subinstance on which the detection algorithm
returns ’yes’. The base case is when |I| = |J | = |K| = 1 and then one just checks whether the three nodes
form a negative triangle in O(1) time. The running time becomes

T ′(n) = 8T (n/2) + T ′(n/2), T ′(1) = O(1).

If T (n) = nf(n) for some nondecreasing function f(n), then T (n) = 2n2 f(n) ≥ 2n2 f(n/2) = 2T (n/2).
Hence, T (n/2i) ≤ T (n)/2i for all positive integers i, and the recurrence above solves to T ′(n) = O(T (n)).
2

It will be useful in our final algorithm to have a method for finding many triangles, given an algorithm
that can detect one. We can extend Lemma 4.1 in a new way, to show that subcubic negative triangle detec-
tion implies subcubic negative triangle listing, provided that the number of negative triangles to be listed is
subcubic.

Theorem 4.3 (Negative Triangle Listing OverR ≤3 Negative Triangle OverR) Let δ > 0 be fixed, and
let ∆ = O(n3−δ). Suppose there is a truly subcubic algorithm for negative triangle detection over R. Then
there is a truly subcubic algorithm which lists ∆ negative triangles over R in any graph with at least ∆
negative triangles.

Proof of Theorem 4.3. Let P be an O(n3−ε logcM) time algorithm for negative triangle over R for
ε > 0 and where M is the maxint of R. Let ∆ = O(n3−δ) for δ > 0. Given a 3n-node tripartite graph
G = (I ∪ J ∪ K,E) with at least ∆ negative triangles over R we provide a procedure to list ∆ negative
triangles overR.

We partition the nodes in I, J,K into ∆1/3 parts, each of size O(n/∆1/3). For all ∆ triples I ′ ⊂ I, J ′ ⊂
J,K ′ ⊂ K of parts, run P in O(∆(n/∆1/3)3−ε logcM) time overall to determine all triples which contain
negative triangles overR.

On the triples which contain negative triangles, we run the following procedure. We begin by creating a
list L0 consisting of all the triples {I ′, J ′,K ′} above with |I ′| = |J ′| = |K ′| = O(n/∆1/3) for which P
determined that they contain a negative triangle overR.

In general, we will iterate through i and build a list Li, for each integer i ranging from 0 to log n
∆1/3 , so

that Li contains a list of disjoint triples {I ′, J ′,K ′} with |I ′| = |J ′| = |K ′| = O(n/(2i∆1/3)) so that each
triple contains a negative triangle over R. In iteration i we will process list Li, building list Li+1 as follows.
Li+1 is initialized to be the empty list. Now we process each triple in Li in turn.

Let {I ′, J ′,K ′} be the next triple in Li to be processed. Split I ′, J ′ and K ′ each into two roughly equal
halves. On each of the 8 possible triples of halves, run P and determine the triples of halves which contain
negative triangles. Place each such triple into the list Li+1. If |Li+1| becomes ≥ ∆, then run the algorithm
from Lemma 4.1 using P on the triples in Li+1 (there are at most ∆ + 7 of them), and return the triangles
found. In this case, one is guaranteed to return at least ∆ (and at most ∆ + 7) different negative triangles
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over R. If on the other hand |Li+1| < ∆, then move on to the next triple in Li looking for more triples of
halves to add to Li+1. If Li becomes empty, then increment i to i + 1 and process Li+1. If i becomes equal
to log n

∆1/3 , then each triple in Li contains exactly 3 nodes, and since the algorithm maintains the invariant
that |Li| < ∆ (otherwise it returns ≥ ∆ triangles), we can return that the instance does not contain at least ∆
triangles. (Alternatively, one can return a maximal subset of the negative triangles in Li.)

For each i, the list Li contains triples that contain O
(

n
2i∆1/3

)
nodes, and each Li has O(∆) triples.

Therefore, for each iteration i, the running time is O
(

∆ · ( n
2i∆1/3 )3−ε logcM

)
. Since ε < 3, the overall

runtime becomes asymptotically

∆
( n

∆1/3

)3−ε
logcM ·

∑
i

(
1

23−ε

)i
= O

(
∆ε/3n3−ε logcM

)
.

When ∆ ≤ O(n3−δ), the runtime is

O(n3−ε+3ε/3−δε/3 logcM) = O(n3−δε/3 logcM),

which is truly subcubic for any ε, δ > 0. 2

Next we show that fast negative triangle detection overR implies a fast algorithm for finding many edge-
disjoint negative triangles over R. Consider a tripartite graph with parts I, J,K. We say a set of triangles
T ⊆ I × J ×K in the graph is IJ-disjoint if for all (i, j, k) ∈ T , (i′, j′, k′) ∈ T , (i, j) 6= (i′, j′).

Lemma 4.2 Let T (n) be a function so that T (n)/n is nondecreasing. Given a T (n) algorithm for negative
triangle detection over R, there is an algorithm A which outputs a maximal set L of IJ-disjoint negative
triangles overR in a tripartite graph with distinguished parts (I, J,K), inO(T (n1/3)n2) time. Furthermore,
if there is a constant ε : 0 < ε < 1 such that for all large enough n, T (n) ≥ T (21/3n)/(2(1− ε)), then there
is an output-sensitive O(T (n/|L|1/3)|L|)-time algorithm.10

In particular, Lemma 4.2 implies that given any graph on n nodes, we can determine those pairs of nodes
that lie on a negative triangle inO(T (n1/3)n2) time. The condition required for the output sensitive algorithm
holds for all subcubic polynomials, but it does not necessarily hold for runtimes of the form n3/f(n) with
f(n) = no(1). In the special case when T (n) is Θ(n3/ logc n) for a constant c, the output sensitive algorithm
only multiplies a log |L| factor to the runtime. Notice also that although we state Lemma 4.2 only for runtimes
in terms of n, one can modify its proof to obtain a similar result for runtimes that also depend on the maxint
of R.

Proof. Algorithm A maintains a global list L of negative triangles overR which is originally empty and
will be the eventual output of the algorithm. Let a be a parameter to be set later. At each point the algorithm
works with a subgraph G̃ of the original graph, containing all of the nodes, all of the edges between I and K
and between J and K but only a subset of the edges between I and J . In the beginning G̃ = G and at each
step A removes an edge from G̃.

Algorithm A starts by partitioning each set I, J,K into na parts where each part has at most dn(1−a)e
nodes each. It iterates through all n3a possible ways to choose a triple of parts (I ′, J ′,K ′) so that I ′ ⊂ I ,
J ′ ⊂ J and K ′ ⊂ K. For each triple (I ′, J ′,K ′) in turn, it considers the subgraph G′ of G̃ induced by

10The condition is satisfied for instance when T (n)/n3−δ is nonincreasing for some δ > 0.
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I ′∪J ′∪K ′ and repeatedly uses Lemma 4.1 to return a negative triangle overR. Each time a negative triangle
(i, j, k) is found inG′, the algorithm adds (i, j, k) to L, removes edge (i, j) from G̃ and attempts to find a new
negative triangle in G′. This process repeats until G′ contains no negative triangles, in which case algorithm
A moves on to the next triple of parts.

Now, let us analyze the running time of A. For a triple of parts (I ′, J ′,K ′) let eI′J ′K′ be the number of
edges (i, j) in I ′×J ′ that are found in the set of I ′J ′-disjoint negative triangles when (I ′, J ′,K ′) is processed
by A. Let T (n) be the complexity of negative triangle detection over R. Then the runtime can be bounded
from above as:

O

 ∑
all n3a triples I′,J ′,K′

(
eI′J ′K′ · T (n1−a) + T (n1−a)

) . (2)

Note that the sum of all eI′J ′K′ is at most n2, since if edge (i, j) ∈ I ′ × J ′ is reported to be in a negative
triangle, then it is removed from the graph. Hence there is a constant c > 0 such that (2) is upper bounded by:

c · T (n1−a) ·
∑

all n3a triples I′,J ′,K′
(eI′J ′K′ + 1) ≤ c · T (n1−a) ·

n3a +
∑

all n3a triples I′,J ′,K′
eI′J ′K′


≤ c · T (n1−a) · (n3a + n2).

Setting a = 2/3, the runtime becomes O(n2T (n1/3)).

To get an output-sensitive algorithm A′, we make the following modification. For all i = 1, . . . , 2 log n,
run algorithm A with a := i/(3 log n). In stage i, stop the algorithm when the list L contains at least 2i

IJ-disjoint negative triangles. Let Li−1 be the list of IJ-disjoint negative triangles found in stage i − 1. If
|L| = |Li−1| then return L; otherwise set Li := L and continue with stage i+ 1.

The runtime of A′ is

log |L|∑
i=1

T (n1−i/(3 logn)) ·

n3i/(3 logn) +
∑

all n3i/(3 logn) triples I′,J ′,K′

(eI′J ′K′)

 ≤
log |L|∑
i=1

(
ni/ logn + 2i

)
· T (n1−i/(3 logn)) = 2

log |L|∑
i=1

2iT (2logn−i/3) = 2

log |L|∑
i=1

2iT (n/2i/3).

Since there is a constant ε < 1 so that for all n, T (n) ≥ T (21/3n)/(2(1−ε)), then for all i, 2iT (n/2i/3) ≤
2i+1(1− ε)T (n/2(i+1)/3) and hence the runtime is bounded by

O

T (n/|L|1/3)|L|
log |L|∑
i=0

(1− ε)i
 = O(T (n/|L|1/3)|L|).

2

We are now ready to prove Theorem 4.2, via a simultaneous binary search on entries of the matrix product.
The “oracle” used for binary search is our algorithm for IJ-disjoint triangles.
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Proof of Theorem 4.2. Let A and B be the given n × n matrices, and let C = A � B be the matrix to
be computed. Let W be the maxint of R. We will binary search on [−W,W ] for the finite entries of C.

We maintain two n× n matrices S and H , initializing them as S[i, j] := −W and H[i, j] := W + 1 for
all i, j ∈ [n]. The algorithm proceeds in iterations. It maintains the invariant that for every i, j ∈ [n], either
C[i, j] ∈ {−∞,∞}, or S[i, j] ≤ C[i, j] < H[i, j], that is, S[i, j] and H[i, j] are a lower and upper bounds
on the finite product entries. The invariant is true at the onset of the algorithm by our initialization.

In each iteration, we create a complete tripartite graph G on partitions I, J and K. The edges of G have
weights w(·) so that for i ∈ I, j ∈ J and k ∈ K, w(i, k) = A[i, k], w(k, j) = B[k, j] and w(i, j) =
−d(S[i, j] +H[i, j])/2e if d(S[i, j] +H[i, j])/2e ≤W and w(i, j) = −∞ otherwise.

Notice that the weights of the edges of G are always in R since we guaranteed that −w(i, j) ≤ W or
w(i, j) = −∞, and in addition, if w(i, j) /∈ {−∞,∞}, we have by the invariant −w(i, j) = d(S[i, j] +
H[i, j])/2e ≥ d(−W + C[i, j])/2e ≥ −W .

Now, using the algorithm from Lemma 4.2 on G, we generate a list L of IJ-disjoint negative triangles
overR for G in O(T (n)) time.

From this we modify S and H as follows. If (i, j) appears in a triangle in L for i ∈ I, j ∈ J , then we set
H[i, j] := −w(i, j) if w(i, j) is finite, and make no changes otherwise. If (i, j) does not appear in a triangle
in L, we set S[i, j] := −w(i, j) if w(i, j) is finite, and make no changes otherwise. Notice that the invariant is
still satisfied. Indeed, if (i, j) appears in L, then there is some k ∈ K for which A[i, k]�B[k, j] < −w[i, j],
and hence in particular, C[i, j] = mink A[i, k]� B[k, j] < −w[i, j]. Otherwise, if (i, j) is not in L, then for
all k ∈ K, A[i, k]�B[k, j] ≥ −w(i, j), and hence in particular C[i, j] ≥ −w(i, j).

We continue iterating until for all i, j,H[i, j] ≤ S[i, j]+1. Each iteration shrinks the interval [S[i, j], H[i, j])
for every i, j roughly in half, except for the special case w(i, j) = −∞ when the interval is not changed.
However, w(i, j) = −∞ if and only if S[i, j] = W and H[i, j] = W + 1, so the loop ending condition
H[i, j] ≤ S[i, j] + 1 is satisfied. Hence the number of iterations is O(logW ).

First we show that we can easily tell whether some C[i, j] is not finite. Notice that for any finite choice
of w(i, j), if C[i, j] = ∞, then (i, j) will not appear in L, and if C[i, j] = −∞, then (i, j) will appear in
L. After the last iteration, if C[i, j] = −∞, then H[i, j] = −W , and if C[i, j] = ∞, then S[i, j] = W
and H[i, j] = W + 1. Thus we can set C[i, j] = −∞ for all i, j with H[i, j] = −W . To determine the
(i, j) with C[i, j] = ∞ we can run one more call to negative triangle detection using w(i, j) = −∞ for all
(i, j). If some (i, j) with S[i, j] = W and H[i, j] = W + 1 is in L, then there exists some k ∈ K such
that w(i, k) � w(k, j) < ∞, and hence C[i, j] = mink w(i, k) � w(k, j) ≤ W . However, by the invariant,
C[i, j] ≥ W and we can conclude that C[i, j] = W . Otherwise if S[i, j] = W and H[i, j] = W + 1 and
(i, j) is not in L, then C[i, j] =∞.

After determining all infinite entries, for all i, j for which −W ≤ S[i, j] ≤ W , we set C[i, j] := S[i, j].
To see that this correctly computes C, notice that after the last iteration the algorithm has determined (by the
invariant) that for every pair of nodes i, j with finite C[i, j], S[i, j] ≤ C[i, j] < H[i, j] ≤ S[i, j] + 1. Since
the finite values C[i, j] are integers, we can safely set C[i, j] := S[i, j] for all (i, j). 2

Corollary 4.1 Suppose the negative triangle problem over R is in O(n3/ logc n) time for some constant c.
Then the product of n×n matrices overR can be done in O((logW )n3/ logc n) time where W is the maxint
of R.

An important special case of matrix multiplication is that of multiplying rectangular matrices. Negative
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triangle detection can also give a speedup in this case as well.

Theorem 4.4 Suppose the negative triangle problem over R is in T (n) time. Let m,n, p be such that mp ≤
n3 and

√
p ≤ m ≤ p2. Then two matrices of dimensions m × n and n × p can be multiplied over R in

O(mp · T (n1/3) logW ) time, where W is the maxint of R.

If T (n) = nc the runtime is O(mp(n)c/3). Notice that if c < 3 and if p = n(3−c)/3, then the runtime
would be O(mn), for all m ∈ [n(3−c)/6, n2(3−c)/3]. That is, for any c < 3, there is some p ≥ nε such that
multiplication ofm×n and n×pmatrices overR can be done optimally, for anym ∈ [

√
p, p2]. Theorem 4.4

follows from a more general lemma:

Lemma 4.3 Let T (n) be a function so that T (n)/n is nondecreasing. Suppose there is a T (n) time algorithm
for negative triangle detection over R in an n node graph. Let W be the maxint of R. Let A be an m × n
matrix overR and letB be an n×p matrix overR, so that their product overR does not contain−∞ entries.
Then:

• There is an algorithm that computes ` finite entries of the product over R of A and B in O(` ·
T ((mnp/`)1/3) logW ) time, whenever ` ≤ m3, n3, p3.

• If there is a constant ε : 0 < ε < 1 such that for all large enough n, T (n) ≥ T (21/3n)/(2(1−ε)), then
there is an O(` ·T ((mnp/`)1/3) logW )-time algorithm for computing the product of A and B overR,
where ` is the number of finite entries in the product matrix, whenever mp ≤ n3 and

√
p ≤ m ≤ p2.

Proof. Following the ideas from Theorem 4.2, ` distinct IJ-disjoint negative triangles over R can be
found in

O((`+ a3) · T ((mnp)1/3/a))

time, where a is a bucketting parameter such that a ≤ m,n, p. Since `1/3 ≤ m,n, p in the first bullet of the
theorem, we set a = `1/3 and we get a runtime of O(` · T ((mnp/`)1/3)) for finding ` distinct IJ-disjoint
negative triangles. Armed with this algorithm and given an m × n matrix A and an n × p matrix B over R
with no −∞s, we create the corresponding instance of negative triangle listing as in Theorem 4.2 where the
I×K edge weights are taken from A, the K×J edge weights are taken from B and the I×J weights are all
∞. On this graph we run the IJ-disjoint negative triangles algorithm from above, and determine the indices
of ` finite entries of the product. (Since the product does not contain−∞ entries, all entries that are <∞ will
be finite.)

Now, we start a binary search procedure as follows: for each of the ` finite entries (i, j) that we have found
above, we set S[i, j] = −W,H[i, j] = W + 1, and for all other entries we set S[i, j] = W [i, j] = W + 1.
Then we let the binary search procedure run exactly as in Theorem 4.2, except that in each search we use
the procedure that lists ` IJ-negative triangles. These ` triangles are guaranteed to be the original ` ones,
as any other (i, j) will have w(i, j) set to −∞, and thus no triangles going through (i, j) can be negative.
The number of binary search steps is O(logW ) and each one takes O(` · T ((mnp/`)1/3)) time and we have
proven the first bullet.

To get an output-sensitive algorithm as in the second bullet of the theorem statement, for each i =
1, . . . , log(mp), we set a = 2i/3 and attempt to list 2i negative triangles over R as in the first bullet. One of
these attempts will compute all ` finite entries as there will be some i with 2i ≥ ` > 2i−1. We can run the
algorithm from the first bullet since for each i, 2i ≤ mp ≤ m3, n3, p3. The runtime together with the binary
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search is now
log(mp)∑
i=1

2i · T ((mnp/2i)1/3) logW.

Since there is a constant ε < 1 so that for all n, T (n) ≥ T (21/3n)/(2(1−ε)), then for all i, 2iT ((mnp)1/3/2i/3) ≤
2i+1(1−ε)T ((mnp)1/3/2(i+1)/3) and hence the runtime isO(` ·T ((mnp/`)1/3) logW ), where ` is the num-
ber of finite entries in the output. 2

4.3 Strongly Polynomial Subcubic Reductions

Applying a very useful randomization trick by Chan [14] in a new way, the logarithmic dependence on M
in our generic reductions can be replaced with a polylogarithmic dependence on n. That is, the running time
of our reductions can be made strongly polynomial, independent of the weights. The only reduction we need
to improve is the one from matrix product to negative triangle:

Theorem 4.5 (Matrix Product OverR ≤3 Negative Triangle OverR, Strongly Polynomial) Let T (n) be
a function so that T (n)/n2 is nondecreasing. Suppose the negative triangle problem over R in an n-node
graph can be solved in T (n) time. Then the product of two n × n matrices over R can be computed in
O(n2 · T (n1/3) log n) time, with high probability.

In this section we provide a Monte Carlo algorithm as in the statement of the theorem, however it is not hard
to obtain a Las Vegas algorithm as well.

Fix an instance of negative triangle with node sets I, J,K and weight function w. Let i ∈ I , j ∈ J ,
k ∈ K. Recall that the triple (i, j, k) is a negative triangle iff (w(i, k) � w(k, j)) + w(i, j) < 0. Fix a total
ordering < on the nodes in K in the negative triangle instance. For any i ∈ I, j ∈ J , a node k ∈ K is called a
minimum witness for (i, j) if (i, j, k) is a negative triangle but (i, j, k′) is not a negative triangle for all k′ < k
according to the ordering.

First we show that any superlinear time negative triangle detection algorithm can be converted to a mini-
mum witness negative triangle finding algorithm, running in roughly the same time.

Lemma 4.4 (Minimum Witness Finding From Detection) Let T (n) be a function so that T (n)/n is non-
decreasing. Let A be an algorithm which detects a negative triangle overR in an n-node graph in T (n) time.
Then in O(T (n)) time, given an n-node weighted graph G one can find a single negative triangle (i, j, k)
overR such that k is the minimum witness for pair (i, j), or determine that there is no negative triangle in G
overR.

Proof. If there are only 3 remaining nodes, i ∈ I, j ∈ J, k ∈ K, return {i, j, k) if it forms a negative
triangle over R. Otherwise, |I|, |J |, |K| ≥ 2. Split each part I, J,K into two pieces of roughly n/2 nodes
each, so that K is split into K1, K2 where K1 contains the first half of the nodes of K according to the
ordering, and K2 contains the rest of the nodes of K. Then, for all 8 triples a, b, c ∈ [2]3, use the negative
triangle detection algorithm on the graphs induced by the unions of parts Ia ∪ Jb ∪Kc, in 8T (n/2) time. Let
c ∈ {1, 2} be the smallest index such that at least one of the 4 subgraphs containing Kc contains a negative
triangle over R. If no subgraph contains a negative triangle, then return that there are no negative triangles.
Otherwise, recurse on one of the subgraphs containing Kc which contains a negative triangle overR.

Suppose that the recursive call returns a triangle i ∈ Ia, j ∈ Jb, k ∈ Kc. By induction suppose that k is
the smallest witness in Kc for (i, j). If c = 1, then k must also be the smallest witness for (i, j) in the entire
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Algorithm A(A,B): Choose a random permutation π of [n].
Permute the columns of A and rows of B according to π.
Set H[i, j] := A[i, 1]�B[1, j] for all i, j.
Run FindMinWitness(A,B) for 2C(1 + lnn) times, each time updating the values of H[i, j].

FindMinWitness(A,B): Create an instance of all-pairs minimum witness triangles with node partitions
I, J,K over [n] such that w(i, k) = A[i, k] for i ∈ I, k ∈ K, w(k, j) = B[k, j] for k ∈ K, j ∈ J and
w(i, j) = −H[i, j] for i ∈ I, j ∈ J .
Compute all-pairs minimum witness negative triangles overR in this graph.
For every i, j, we either find the minimum k(i, j) according to π such that (A[i, k(i, j)]�B[k(i, j), j]) <
H[i, j] (the minimum associated with (i, j) changed), or determine that H[i, j] = mink A[i, k]�B[k, j].
For every witness k(i, j), set H[i, j] = (A[i, k(i, j)]�B[k(i, j), j]).

Figure 1: Algorithm for reducing matrix product overR to all-pairs minimum witness triangles overR.

K. If c = 2, since there are no negative triangles with witnesses in K1, k must also be the smallest witness
for (i, j) in the entire K.

The running time recurrence is T ′(n) ≤ 8T (n/2)+T ′(n/2). This solves to T ′(n) = 8
∑logn

i=1 T (n/2i) ≤
O(T (n)) for any superlinear nondecreasing function T (n). 2

Now we show that minimum witnesses for all pairs of nodes can be found efficiently, given a negative
triangle detection algorithm.

Lemma 4.5 (All Pairs Minimum Witness Triangles) Let T (n) be a function so that T (n)/n is nondecreas-
ing. Given a T (n) algorithm for negative triangle detection overR, there is anO(T (n1/3)n2)-time algorithm
Awhich outputs a maximal set of IJ-disjoint negative triangles overR in a tripartite graph with distinguished
parts (I, J,K), so that each of the triangles is a minimum witness triangle.

Proof. Proceed as in Lemma 4.2, with a few changes. Partition I, J,K into na parts of roughly n1−a

nodes each, where the nodes of K are partitioned consecutively in their sorted order. Then, go through the
triples of pieces Ii, Jj ,Kk, but here make sure that all triples containingKk′ with k′ < k are processed before
those containing Kk. For each triple, find a minimum witness triangle with x ∈ Ii, y ∈ Jj , z ∈ Kk, add
xyz to the running list L and remove edge (x, y) from the graph (by setting its weight to∞). Since we are
processing the triples in nondecreasing order of K and z is the minimum witness for (x, y) in Kk, it must
also be the minimum witness in K. As in Lemma 4.2, the number of triangles returned is at most n2, and the
running time is minimized at O(n2T (n1/3)) when a = 2/3. 2

Proof of Theorem 4.5. Let C ≥ 1 be a parameter. We will analyze the algorithm A shown in Figure 1.

It follows from Lemma 4.5 that the running time of A is O(n2T (n1/3) log n). We will now prove that
with probability at least 1− 1/nC , algorithm A outputs the matrix product of A and B overR.

In the call ofA on n×nmatricesA andB,K = {1, . . . , n} is sorted according to π. Fix any i ∈ I, j ∈ J .
Consider iterating through k ∈ {1, . . . , n} in reverse order of π, and let Ti,j be the number of times that the
minimum value of A[i, k]�B[k, j] changes before finally settling on the minimum value. We first show that
E[Ti,j ] ≤ 1 + lnn, using a standard backwards analysis argument.
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Let Yk be an indicator variable which is 1 if and only if (A[i, k]� B[k, j]) < (A[i, k′]� B[k′, j]) for all
k′ > k. E[Yk] is exactly the fraction of permutations over n − k + 1 elements {k, . . . , n} for which k is the
first element, i.e., E[Yk] = ((n− k + 1)− 1)!/(n− k + 1)! = 1/(n− k + 1). Hence

E[Ti,j ] =

n∑
k=1

E[Yk] =

n∑
k=1

1

n− k + 1
≤ 1 + lnn.

Analogous to the standard analysis of treaps (see [25], Problems 1.8 and 2.7), we observe that for a fixed (i, j)
and for all S ⊆ [n],

Pr

[∧
k∈S

Yk

]
≤
∏
k∈S

Pr[Yk = 1].

This follows from the fact that the Yk satisfy a limited independence condition: conditioned on any setting of
values for Yk′ where k′ < k, the probability that Yk = 1 is still 1/(n−k+1). Hence a Chernoff bound applies
to Ti,j , meaning that for sufficiently large C ≥ 1 we have Pr[Ti,j > 2C(1 + lnn)] ≤ e−3 lnn = 1/n3.11

AlgorithmA runs the all pairs minimum witness algorithm (FindMinWitness) for 2C(1 + lnn) times. By
the calculation above, for any fixed (i, j), the probability that the minimum value of A[i, k] � B[k, j] is not
found is at most 1/n3. By the union bound, the probability that some pair (i, j) does not have its minimum
computed is at most n2/n3 = 1/n. Hence with 1− 1/n probability all minima are computed by A. 2

5 Problems Equivalent to All-Pairs Shortest Paths

The goal of this section is to prove Theorem 1.1 from the Introduction.

Reminder of Theorem 1.1 The following problems (with weights in {−M, . . . ,M} ∪ {−∞,∞}) either all
have truly subcubic algorithms, or none of them do:

1. The all-pairs shortest paths problem on weighted digraphs (APSP).

2. The all-pairs shortest paths problem on undirected weighted graphs.

3. Detecting if a weighted graph has a triangle of negative total edge weight.

4. Listing up to n3−δ negative triangles in an edge-weighted graph, for a fixed δ > 0.

5. Computing the matrix product over the (min,+)-semiring.

6. Verifying the correctness of a matrix product over the (min,+)-semiring.

7. Checking whether a given matrix defines a metric.

8. Finding a minimum weight cycle in a graph of non-negative edge weights.

9. The replacement paths problem on weighted digraphs.

10. Finding the second shortest simple path between two nodes in a weighted digraph.

11We thank an anonymous referee for suggesting this analysis; our earlier analysis incurred an extra logn multiplicative factor.
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11. Finding a maximum subarray in a given matrix.

The subcubic equivalence of problems (1), (3), (4), (5) and (6) directly follow from Theorems 4.1, 4.2,
and 4.3. The rest of the equivalences are proved in the following paragraphs. Most of these equivalences use
the negative triangle problem, since it is so easy to reason about.

The equivalence between problems (1) and (2) is probably folklore, but we have not seen it in the literature
so we include it for completeness.

Theorem 5.1 (Undirected APSP ≡3 Directed APSP) Let δ, c > 0 be any constants. APSP in undirected
graphs with weights in [0,M ] is in T (n,M) time if and only if APSP in directed graphs with weights in
[−M,M ] is in T (n,Θ(M)) time.

Proof of Theorem 5.1. Clearly, undirected APSP in graphs with nonnegative weights is a special case
of directed APSP since we can replace each undirected edge by two directed edges in opposite directions. We
show that a truly subcubic algorithm for undirected APSP can be used to compute the (min,+) product of
two matrices in truly subcubic time, and hence directed APSP is in truly subcubic time.

Suppose that there is a truly subcubic algorithm P for undirected APSP. LetA andB be the n×nmatrices
whose (min,+) product we want to compute. Suppose the entries of A and B are in [−M,M ]12. Consider
the edge-weighted undirected tripartite graph G with n-node partitions I, J,K such that there are no edges
between I and K, and for all i ∈ I, j ∈ J, k ∈ K, (i, j) and (j, k) are edges with w(i, j) = A[i, j] + 6M and
w(j, k) = B[j, k] + 6M . Using P , compute APSP in G. Notice that all weights are nonnegative.

Any path on at least 3 edges in G has weight at least 15M , and any path on at most 2 edges has weight at
most 2× 7M < 15M . Hence P will find for every two nodes i ∈ I, k ∈ K, the shortest path between i and
k using exactly 2 edges, thus computing the (min,+) product of A and B. 2

Theorem 5.2 (Metricity ≡3 Negative Triangle) Let T (n,M) be nondecreasing. Then there is an O(n2) +
T (O(n), O(M)) algorithm for negative triangle in n node graphs with weights in [−M,M ] if and only if
there is an O(n2) + T (O(n), O(M)) algorithm for the metricity problem on [n] such that all distances are in
[−M,M ].

Proof of Theorem 5.2. Given an instance D of the metricity problem, consider a complete tripartite
graph G on 3n nodes n nodes in each of the partitions I, J,K. For any i ∈ I, j ∈ J, k ∈ K, define the edge
weights to be w(i, j) = D[i, j], w(j, k) = D[j, k] and w(i, k) = −D[i, k]. A negative triangle in G gives
i ∈ I, j ∈ J, k ∈ K so that D[i, j] +D[j, k]−D[i, k] < 0, i.e. D[i, j] +D[j, k] < D[i, k]. Hence D satisfies
the triangle inequality iff there are no negative triangles in G. Checking the other properties for a metric takes
O(n2) time. This shows that Metricity ≤3 Negative Triangle.

For the opposite direction, let G be a given graph with edge weights w : E → Z such that for all
e ∈ E, w(e) ∈ [−M,M ] for some M > 0. Build a tripartite graph with n node partitions I, J,K and edge
weights w′(·) so that for any i ∈ I, j ∈ J, k ∈ K, w′(i, j) = 2M + w(i, j), w′(j, k) = 2M + w(j, k)
and w′(i, k) = 4M − w(i, k). For all pairs of distinct nodes a, b so that a, b are in the same partition, let
w′(a, b) = 2M . Finally, let w′(x, x) = 0 for all x. Clearly, w′ satisfies all requirements for a metric, except
possibly the triangle inequality. For any three vertices x, y, z in the same partition w′(x, y) + w′(y, z) =
4M > 2M = w′(x, z).

12Infinite edge weights can be replaced with suitably large finite values, WLOG.
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Consider triples x, y, z of vertices so that x and y are in the same partition and z is in a different partition.
We have: w′(x, z) + w′(z, y) ≥ M + M = 2M = w′(x, y) and w′(x, z) − w′(y, z) ≤ 2M = w′(x, y).
Furthermore, if i ∈ I, j ∈ J, k ∈ K, w′(i, k) + w′(k, j) ≥ M + 3M ≥ w(i, j) and w′(i, j) + w′(j, k) ≥
M + 3M ≥ w(i, k).

Hence the only possible triples which could violate the triangle inequality are triples with i ∈ I, j ∈
J, k ∈ K, and w′ is not a metric iff there exist i ∈ I, j ∈ J, k ∈ K such that w′(i, j) + w′(j, k) < w′(i, k).
That is, w′ is a metric if and only if w(i, j) + w(j, k) + w(i, k) < 0 and i, j, k is a negative triangle in G. 2

Theorem 5.3 (Minimum Cycle ≡3 Negative Triangle) If there is a T (n,M) algorithm for finding a min-
imum weight cycle in graphs on n nodes and weights in [1,M ] then there is a T (n,O(M)) algorithm for
finding a minimum weight triangle in n-node graphs with weights in [−M,M ].

It is known that the Minimum-Cycle problem in directed or undirected graphs can be reduced to APSP
via a subcubic reduction. Hence, we get that APSP ≡3 Minimum-Cycle.

Proof. Let G = (V,E) be given with w : E → [−M,M ]. Consider graph G′ which is just G with
weights w′ : E → [7M, 9M ] defined as w′(e) = w(e) + 8M . For any k and any cycle C in G with k
edges, w′(C) = 8Mk + w(C), and hence 7Mk ≤ w′(C) ≤ 9Mk. Hence, all cycles C with ≥ 4 edges have
w′(C) ≥ 28M and all triangles have w′ weight ≤ 27M < 28M . That is, the minimum weight cycle in G′ is
exactly the minimum weight triangle in G. 2

We now prove that the Maximum Subarray problem is equivalent to Negative Triangle. One direction was
already proven by Tamaki and Tokuyama [60]; here we prove the other.

Theorem 5.4 (Maximum Subarray ≡3 Negative Triangle) The negative triangle problem in an n node (tri-
partite) graph with weights in [−M,M ] can be reduced in O(n2) time to the Maximum Subarray problem for
an n× n matrix with entries in [−O(M), O(M)].

Proof. We are given a graph G with three parts A,B,C and edges E ⊆ (A×B) ∪ (B ×C) ∪ (A×C)
with weight function w : E → {−W, . . . ,W} and we are searching for a triangle of negative sum. We will
first turn G into a complete graph by adding each original non-edge (x, y) with weight w(x, y) = 2W . Note
that no original non-edge can be completed to a negative triangle as all other edges have weight ≥ −W . For
the non-edges within A,B and C, make their edge weights slightly higher, 8W . Now we can assume that G is
a complete graph with edge weights in {−M, . . . ,M} between different partitions, and of weight 4M within
the partitions, where M = 2W .

Now we will reduce the negative triangle problem to the following problem: given a complete undirected
graph H with a self-loop at each node and with weights w′ : V × V → {0, . . . , 101M}, find four nodes
i, j, k, l for which w′(i, j) + w′(k, l)− w′(i, k)− w′(j, l) is maximized.

H will contain the node sets A,B,C and a copy A′ of A. Denote the copy in A′ of node a ∈ A with a′.
H is a complete graph on these nodes. The weights w′ are as follows:

• In A × A′ we have weight 0 edges between two copies of the same node and an edge of weight 10M
otherwise, i.e. w′(a, a′) = 0 and w′(a, x) = 10M for all x ∈ A′, x 6= a′.

• For all edges (a, b) ∈ A × B in H , let their weight be w′(a, b) = 100M + w(a, b) (recall, w is the
weight function of G). Similarly, for all (c, a′) ∈ C ×A′, let w′(c, a′) = 100M + w(c, a). Notice that
these edges have weight between 99M and 101M . We call these heavy edges.

25



• For all (b, c) ∈ B × C, set w′(b, c) = w(b, c).

• For all pairs of nodes in A× C and A′ ×B, make their edge w′ weights 50M .

• The edges within A,A′, B, and C come from the original graph G, i.e. for each s, t in A (resp., A′, B,
C), we get an edge (s, t) in A (resp., A′, B, C) of weight 4M .

• Finally, we will add a self-loop at each node, of weight 40M .

Notice that all edge weights w′ above are nonnegative except for w(b, c) for b ∈ B, c ∈ C, in which case they
are ≥ −M , so that all weights are ≥ −M . Also notice that the non-heavy edges have weight ≤ 50M .

Consider now any 4-tuple i, j, k, l of not necessarily distinct nodes in this new graph H and consider
w′(i, j) + w′(k, l)− w′(i, k)− w′(j, l).

If (i, j) and (k, l) aren’t both heavy edges, then w′(i, j) + w′(k, l) ≤ 101M + 50M = 151M and
−w′(i, k) − w′(j, l) ≤ 2M (since all edge weights are ≥ −M ). Thus in this case w′(i, j) + w′(k, l) −
w′(i, k)− w′(j, l) ≤ 153M .

On the other hand, suppose that both (i, j) and (k, l) are heavy edges. First let’s consider the case when
the nodes are not distinct. Then without loss of generality i = k, and w′(i, j)+w′(k, l)−w′(i, k)−w′(j, l) =
w′(i, j) + w′(i, l)− w′(i, i)− w′(j, l) = 160M + w(i, j) + w(i, l)− w′(j, l) ≤ 163M .

The final case is when all four nodes are distinct and both (i, j) and (k, l) are heavy edges. This can
happen in four ways (up to symmetry):

• If i ∈ A, j ∈ B, l ∈ C and k ∈ A′, then w′(i, j) + w′(k, l)− w′(i, k)− w′(j, l) = 200M − w(i, j)−
w(k, l) − w′(i, k) − w(j, l). This equals 200M − w(i, j) − w(j, l) − w(l, i) ≥ 197M when k is the
copy of i ∈ A in A′, and otherwise equals 190M − w(i, j)− w(k, l)− w(j, l) ≤ 193M .

• If i ∈ A, j ∈ B, k ∈ C and l ∈ A′, then w′(i, j) + w′(k, l)− w′(i, k)− w′(j, l) = 100M + w(i, j) +
w(k, l) ≤ 102M .

• If i ∈ A, j ∈ B, k ∈ A, l ∈ B, then w′(i, j) + w′(k, l) − w′(i, k) − w′(j, l) = (200M − 8M) +
w(i, j) + w(k, l) ≤ 196M . (The case i ∈ C, j ∈ A′, k ∈ C, l ∈ A′ is symmetric.)

• If i ∈ A, j ∈ B, l ∈ A, k ∈ B, then w′(i, j) + w′(k, l) − w′(i, k) − w′(j, l) = (200M − 200M) +
w(i, j) + w(k, l)− w(i, k)− w(j, l) ≤ 4M . (The case i ∈ C, j ∈ A′, l ∈ C, k ∈ A′ is symmetric.)

Thus to maximize the quantity w′(i, j) + w′(k, l) − w′(i, k) − w′(j, l), we need to be in the first case
above. More precisely, we get that i ∈ A, j ∈ B, l ∈ C and k ∈ A′, and that k is the copy of i in A′, so that
the maximized quantity is 200M −w(i, j)−w(j, l)−w(l, i) = 200M− (the minimum weight of a triangle).
If there is a negative triangle in particular, we would get a value of > 200M . In other words, the maximum
value is > 200M if and only if the original graph had a negative triangle.

We’ll reduce the above problem to the Maximum Subarray problem.

Let A∗ be the n × n matrix with A∗[i, j] = w′[i, j] for every (i, j) in the above graph (including the
self-loops: A∗[i, i] = 40M ).

Create the n × n matrix D where D(i, j) = A∗[i, j] − A∗[i − 1, j] for all i, j. Then create the matrix
E[i, j] = D[i, j]−D[i, j − 1].
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Consider a submatrix of E from the ath row to the uth row and from the bth column to the vth column.
For any i,

v∑
j=b

E[i, j] = D[i, b]−D[i, b− 1] +D[i, b+ 1]−D[i, b] + . . .+D[i, v]−D[i, v− 1] = D[i, v]−D[i, b− 1].

Then,
∑u

i=a

∑v
j=bE[i, j] = (

∑u
i=aD[i, v])− (

∑u
i=aD[i, b− 1]). Now, for any x,

u∑
i=a

D[i, x] = A∗[a, x]−A∗[a−1, x]+A∗[a+1, x]−A∗[a, x]+. . .+A∗[u, x]−A∗[u−1, x] = A∗[u, x]−A∗[a−1, x],

and so
u∑
i=a

v∑
j=b

E[i, j] = A∗[u, v]−A∗[a− 1, v]−A∗[u, b− 1] +A∗[a− 1, b− 1].

The Maximum Subarray problem for matrix E seeks to maximize the above quantity over all choices of
a, b, u, v. The above quantity is a sum as in the four node problem and what we are maximizing is exactly
what we needed in that problem. Hence, if the maximum subarray of E has sum > 200M then G has a
negative triangle, and otherwise G doesn’t. Thus, we have a subcubic reduction from negative triangle and
hence also APSP to the Maximum Subarray problem. 2

To complete the proof of Theorem 1.1, it remains to show the equivalences of Replacement Paths and
Second Shortest Paths with the other problems.

5.1 Replacement Paths and Second Shortest Paths

The replacement paths and second shortest simple path problems have been known to be closely related
to APSP in an informal sense. For instance, any algorithm for APSP can solve the two problems in asymp-
totically the same time: remove all edges from the shortest path P between s and t and compute APSP in the
remaining graph. This computes the minimum weight detour for all pairs of nodes on P , and so in additional
O(n2) time one can solve both the replacement paths problem, and the second shortest simple path problem.
It was not clear however that the two problems cannot be solved faster than APSP. For instance, Roditty [52]
took his fast approximation algorithms as evidence that the two problems might be easier than APSP. In an
attempt to explain why it has been so hard to find fast algorithms, Hershberger et al. [35] showed that in the
path comparison model of Karger et al. [38] the replacement paths problem needs Ω(m

√
n) time. This bound

does not apply to second shortest path, and is the only known lower bound for these problems.

Here we present a reduction which shows that if the second shortest simple path in a directed graph with
n nodes can be found in time which is truly subcubic in n, then APSP is in truly subcubic time. Thus, the
two problems are equivalent with respect to subcubic algorithms, for dense graphs. Since the second shortest
simple path problem is a special case of the replacement paths problem, our result implies that for dense
graphs the replacement paths problem is equivalent to APSP, with respect to subcubic algorithms.

In the next section we modify the reduction to show that if for some m(n) and nondecreasing f(n)
there is a combinatorial algorithm which runs in O(m(n)

√
n/f(n)) time and computes the second shortest

simple path in unweighted directed graphs, then there is an O(n3/f(n)) combinatorial algorithm for triangle
detection, and hence a corresponding subcubic combinatorial algorithm for BMM. This implies that if there
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Figure 2: The reduction from minimum weight triangle to second shortest simple path for n = 3.

is no truly subcubic combinatorial algorithm for BMM, then in order to improve on the algorithm of Roditty
and Zwick [55], one would need to use algebraic techniques.

Theorem 5.5 (Minimum Triangle ≡3 Second Shortest Simple Path) Suppose there is a T (n,W ) time al-
gorithm for computing the second shortest simple path in a weighted directed graph with n nodes and integer
weights in [0,W ]. Then there is a T (O(n), O(nW )) time algorithm for finding a minimum weight triangle
in an n node graph and integer weights in [−W,W ], anO(n2T (O(n1/3), O(nW )) logW ) time algorithm for
the distance product of two n×nmatrices with weights in [−W,W ], and anO(n2T (O(n1/3), O(n2W )) logWn)
time algorithm for APSP in graphs with integer weights in [−W,W ].

Proof. Let G be an instance of Minimum Triangle with integer weights in [−M,M ]. Without loss of
generality, G has 3 parts U, V, T with no edges within them, and the edges going from U to V , from V to T
and from T to U . Furthermore, again without loss of generality, all edge weights are positive (otherwise add
M + 1 to all edges, so that now the minimum weight triangle has weight 3(M + 1)+ its original weight).
Also without loss of generality, G contains edges between every two nodes ui ∈ U, vj ∈ V , between any two
nodes vj ∈ V and tk ∈ T and between any two nodes tk ∈ T and ui ∈ U (if some edge does not appear, add
it with weight 3M ′+1 whereM ′ = 4M+1 is the current maximum edge weight inG). Note that all of these
transformations increase the maximum weight by at most a constant factor. Let M ′′ be the new maximum
edge weight of G.

Now we will reduce any instance of minimum weight triangle to one of finding the second shortest simple
path. First, create a path on n + 1 nodes, P = p0 → p1 → . . . → pn. For every edge (pi, pi+1) in P , let it
have weight 0. All other edges in the graph we will construct will be positive and hence P will be the shortest
path between p0 and pn.

Create three parts with n nodes each, A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} so that
for each i, j ∈ [n] there is an edge (ai, bj) with weight w(ui, vj) (the weight in G), and an edge (bi, cj) with
weight w(vi, tj); that is, we have created a copy of G except that the edges between T and U are removed (no
edges between C and A).

Let W = 3M ′′ + 1, where recall that M ′′ = O(M) is the maximum edge weight of G. Now, for every
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j > 0, add an edge from cj to pj with weight jW . All these weights are positive and at most nW = O(Mn).

For every i < n and any r ∈ [n], add an edge from pi to ar with weight (n − i − 1)W + w(ci+1, ar).
Since i < n and 0 < w(ci+1, ar) ≤ O(M), these weights are also positive and at most O(Mn).

An example of the full construction appears in Figure 2.

The second shortest path must have the form p0 → . . .→ ps followed by a path of length two from some
ai through a node in B to a node ct in C with t > s, followed by an edge (ct, pt) and then pt → . . . → pn:
we are looking for the shortest detour between a node ps and a node pt on P with t > s.

The weight of a detour between ps and pt going through nodes ai, bj , ct is

(n− s− 1)W + w(cs+1, ai) + w(ai, bj) + w(bj , ct) + tW.

Claim 1 In the graph we have constructed, any optimal detour must have t = s+ 1.

Proof of Claim: Clearly t > s. If t ≥ s+ 2, then the weight of the detour is at least

(n− s− 1 + s+ 2)W + w(cs+1, ai) + w(ai, bj) + w(bj , ct) > (n+ 1)W.

Consider any detour between ps and ps+1, say going through ai, bj , cs+1. Its weight is

(n− s− 1 + s+ 1)W + w(cs+1, ai) + w(ai, bj) + w(bj , cs+1) ≤ nW +W = (n+ 1)W,

since W is greater than three times the largest weight in the graph. 2

Now, the detours between ps and ps+1 have weight nW + w(ai, bj) + w(bj , cs+1) + w(cs+1, ai). In
particular, the shortest detour between ps and ps+1 has weight nW plus the minimum weight of a triangle
containing cs+1. The second shortest path hence has weight exactly nW plus the minimum weight of a
triangle in G. 2

Since the second shortest path problem is a special case of the replacement paths problem, we have:

Corollary 5.1 If the replacement paths problem in graphs with integer weights in [0,M ] is in T (n)poly logM
time then APSP in graphs with integer weights in [−M,M ] is in O(n2T (O(n1/3))poly logM) time.

Corollary 5.2 Replacement Paths ≡3 APSP.

6 Boolean Matrix Multiplication and Related Problems

In this section, we describe several applications of our techniques to the problem of finding fast practical
Boolean matrix multiplication algorithms, a longstanding challenge in graph algorithms. (For more back-
ground on this problem, see the Preliminaries.)

As a direct consequence of Theorems 4.2, 4.1 and 4.3 we obtain:

Theorem 6.1 The following either all have truly subcubic combinatorial algorithms, or none of them do:

1. Boolean matrix multiplication (BMM).

2. Detecting if a graph has a triangle.
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3. Listing up to n2.99 triangles in a graph.

4. Verifying the correctness of a matrix product over the Boolean semiring.

Theorem 6.2 For every constant c, the problems listed in Theorem 6.1 either all have combinatorial algo-
rithms running in O(n3/ logc n) time, or none of them do.

Another immediate corollary of Theorem 4.3 is an efficient triangle listing algorithm:

Corollary 6.1 There is an algorithm that, given ∆ and a graph G on n nodes, lists up to ∆ triangles from G
in time O(∆1−ω/3nω) ≤ O(∆0.21n2.38).

Note when ∆ = n3, one recovers the obvious O(n3) algorithm for listing all triangles, and when ∆ =
O(1), the runtime is the same as that of triangle detection.

6.1 Output-Sensitive BMM

Lemma 4.3 can be applied to show that in the special case of BMM, there is an improved randomized
output-sensitive algorithm:

Theorem 6.3 Let T (n) be a function so that T (n)/n is nondecreasing. Let L ≥ n log n. Suppose there is
a T (n) time algorithm for triangle detection in an n node graph. Then there is a randomized algorithm R
running in time

Õ(n2 + L · T (n2/3/L1/6)),

so that R computes the Boolean product C of two given n × n matrices with high probability, provided that
C contains at most L nonzero entries. When T (n) = O(n∆) for some 2 ≤ ∆ ≤ 3, the runtime becomes
Õ(n2∆/3L1−∆/6).

Proof. The algorithm uses ideas from a paper by Lingas [43, 44]. Lingas showed how to reduce,
in O(n2 log n) time, computing the Boolean matrix product of two n × n matrices to computing O(log n)
Boolean matrix products of an O(

√
L) × n by an n × O(

√
L) matrix and 2 output-sensitive Boolean matrix

products of an O(
√
L)× n by an n× n matrix.

The conditions of Lemma 4.3 require that L ≤ n3, L3/2 and that n
√
L ≤ L3/2, n3. The first condition is

clearly met since L ≤ n2 and the second condition is met since L ≥ n log n.

Using Lemma 4.3 we get an asymptotic runtime of

n2 log n+ log n · L · T (n1/3) + L · T (n2/3/L1/6).

Since T (n) is nondecreasing and since L ≤ n2, we get that T (n2/3/L1/6) ≥ T (n1/3) and hence we can
bound the runtime by O((n2 + L · T (n2/3/L1/6)) log n).

If T (n) = O(n∆) for some 2 ≤ ∆ ≤ 3 and L ≥ n we have L · (n2/3/L1/6)∆ ≥ n2. Hence the runtime
is just Õ(n2∆/3L1−∆/6). 2

6.2 Second Shortest Paths and BMM

Similar to the case of APSP, we can prove a close relationship between BMM and finding the second
simple shortest path between two given nodes in an unweighted directed graph. The relationship naturally
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extends to a relationship between BMM and RPP in unweighted directed graphs. The theorem below shows
that in the realm of combinatorial algorithms, Roditty and Zwick’s [54, 55] algorithm for the second shortest
simple path problem in unweighted directed graphs would be optimal, unless there is a truly subcubic combi-
natorial algorithm for BMM. Furthermore, any practical improvement of their algorithm would be interesting
as it would imply a new practical BMM algorithm.

Theorem 6.4 Suppose there exist nondecreasing functions f(n) and m(n) with m(n) ≥ n, and a combina-
torial algorithm which runs in O(m(n)

√
n/f(n)) time and computes the second shortest simple path in any

given unweighted directed graph with n nodes and m(n) edges. Then there is a combinatorial algorithm for
triangle detection running in O(n3/f(n)) time. If f(n) = nε for some ε > 0, then there is a truly subcubic
combinatorial algorithm for BMM.

Proof. Suppose we are given an instance of triangle detection G = (V,E) where V is identified with [n].
Let L be a parameter. Partition V into n/L buckets Vb = {bL+ 1, . . . , bL+ L} of size L.

We will create n/L instances of the second shortest simple path problem. In instance b (for b ∈ {0, . . . , n/L−
1), we will be able to check whether there is a triangle going through a node in bucket Vb.

Fix some b. First, create a path on L+ 1 nodes, P = p0 → p1 → . . .→ pL.

In our construction we will make sure that P is the shortest path from p0 to pL. The second shortest path
would have to go from p0 to some ps using P , then take a detour (say of length d) to pt with t > s, and then
take P from pt to pL. The length of the second shortest path would then be

L− t+ s+ d = L+ d+ (s− t).

Create three parts, A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cL} so that for each i, j ∈ [n]
there is an edge (ai, bj) iff (i, j) ∈ E and for every i ∈ [n], j ∈ [L], there is an edge (bi, cj) iff (i, bL+j) ∈ E.

Now, for every j > 0, add a path Rj of length 2j from cj to pj , adding 2j new nodes.

For every i < L add a path Qi of length 2(2L − i), ending at some node qi (thus adding 4L − 2i new
nodes). The overall number of new nodes is at most 4L(L+ 1).

For every r ∈ [n] and i < L, add an edge from qi to ar iff (bL+ i+ 1, r) ∈ E.

Now, any simple path from p0 to pL which uses nodes from A,B or C must go through one of the paths
Qi, and hence has length at least 2(2L− L+ 1) = 2(L+ 1) > L+ 1. Hence P is the shortest path between
p0 and pL.

The second shortest path must have the form p0 → . . .→ ps followed by a detour to pt for t > s, followed
by pt → . . . → pL. The detours between ps and pt look like this: take path Qs from ps to qs, then a path of
length 3 through some ai through a node in B to a node ct in C with t > s, and then taking path Rt to pt. The
length of the detour is

dst = 2(2L− s) + 3 + 2t = 4L+ 3 + 2(t− s).

The length of the full path is
L+ dst + (s− t) = 5L+ 3 + (t− s).

Hence the closer s and t are, the shorter the path.

Now, G has a triangle (i, j, bL + s) going through Vb iff there is a path with detour between ps−1 and ps
going through Qs−1, ai, bj , cs, Rs. Its length is 5L + 4. For any s, t with t ≥ s + 2, the length of the path
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with detour between ps and pt is at least 5L+ 3 + 2 > 5L+ 4. Hence the shortest that a second shortest path
can be is 5L+ 4. It is exactly of this length (and goes between some ps and ps+1) iff there is a triangle going
through Vb. Computing the length of the second shortest simple path then will tell us whether the original
graph has a triangle going through Vb.

Each of the n/L graphs (for each setting of b) has O(n + L2) nodes and O(n2) edges. For L = Ω(
√
n)

the graph has O(L2) nodes and O(n2) edges.

Suppose that for some nondecreasing m(N) and f(N) there is an O(m(N)
√
N/f(N)) combinatorial

algorithm for the second shortest simple path in directed unweighted graphs. Then, let L be such that m(n+
4L(L+ 1)) = O(n2). One can find a triangle using a combinatorial algorithm in time

O(n/L · (n2L)/f(L2)) = O(n3/f(L2)) ≤ O(n3/f(n)).

If f(n) is a polynomial, then there is a truly subcubic combinatorial algorithm for BMM. 2

6.3 Two New BMM Algorithms

Our results allow us to provide two new algorithms for BMM, relying on the relationship between BMM
and triangle detection.

6.3.1 Output-Sensitive Quantum BMM

In the theory of quantum computing there are many fantastic results. One of these is that a triangle in
a graph on n nodes can be found using only Õ(n1.3) queries to the graph [45]. Recently, Buhrman and
Špalek [13] studied the problem of verifying and computing matrix products using a quantum algorithm,
also in the query complexity setting, where the operations counted are the queries to the matrix entries.
Among other nice results, their paper showed an Õ(n1.5

√
L)-query output-sensitive algorithm for computing

the Boolean matrix product of two n × n matrices, where L is the number of ones in the output matrix.
Lemma 4.2 is a black box reduction which implies an improved algorithm by plugging in Magniez, Santha
and Szegedy’s [45] query-efficient triangle algorithm. Our results have been recently improved by Le Gall [41]
and Jeffery, Kothari and Magniez [37]. The latter authors showed that the quantum query complexity of BMM
is Θ̃(n

√
L).

Lemma 6.1 There is an Õ(n1.3L17/30)-query quantum algorithm for computing the Boolean matrix product
of two n× n matrices, where L is the number of ones in the output matrix.

Notice that since L ≤ n2, we always have n1.3L17/30 � Õ(n1.5
√
L).

Proof of Lemma 6.1. Let A and B be the given Boolean matrices. Consider a tripartite graph with
partitions I, J,K so that for i ∈ I and j ∈ J , (i, j) is an edge iff A[i, j] = 1, for j ∈ J, k ∈ K, (j, k)
is an edge iff B[j, k] = 1, and (i, k) is an edge for all i ∈ I, k ∈ K. Note this graph does not need to
be created explicitly; whenever the algorithm needs to query if (a, b) is an edge in the graph, it can just
query A and B, and any output it has already produced. Then, in the output-sensitive part of the proof of
Lemma 4.2, we can just use T (n) = Õ(n1.3) given by the algorithm of [45]. Notice that the condition of
the lemma is satisfied for T (n) = Õ(n1.3). Hence we obtain an algorithm with quantum query complexity
Õ(n1.3L1−1.3/3) = Õ(n1.3L17/30). 2

Using an algorithm by Lingas [44] that we also utilize in Theorem 6.3, the query complexity of the
problem can be shown to be Õ(n1.5L1/4) which is an improvement for allL ≥ n12/19. We prove Theorem 1.6.
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Reminder of Theorem 1.6 There is an Õ(min{n1.3L17/30, n1.5L1/4})-query quantum algorithm for com-
puting the Boolean matrix product of two n×n matrices, where L is the number of ones in the output matrix.

Proof. Lingas [44] shows that repeating the following approach O(log n) times computes BMM with
high probability, provided the number of ones in the output is ≤ L:

1. Pick a random permutation of the rows of A and columns of B, and contract each consecutive block of
L1/2 rows ofA or columns ofB into a “superrow” (or “supercolumn”) which is just the componentwise
OR of the corresponding rows or columns.

This part can be computed using nL1/2 Grover searches that find a 1 among n/L1/2 entries. This takes
nL1/2

√
n/L1/2 queries altogether, resulting in a query complexity of O(n1.5L1/4).

2. Compute BMM on the resulting L1/2×n by n×L1/2 matrices, also extracting witnesses, and then for
each 1 in the output, find the lexicographically first nonzero entry in the original instance that lies in the
corresponding superrow and supercolumn.

All of these operations can be performed classically. The matrix product part does not require any
extra queries to the input. The rest of the computation needs at most L(n/L1/2) extra queries to the
input, since the number of nonzero entries in the collapsed instance is still at most L, and recovering
a real nonzero entry for a collapsed nonzero (i, j) with witness k can be done by just going through
the n/L1/2 rows corresponding to superrow i and the n/L1/2 columns corresponding to supercolumn
j until the first entry x and first entry y are found such that A[x, k] = B[k, y] = 1.

2

6.4 Polynomial Preprocessing and Faster Combinatorial BMM

The divide-and-conquer ideas in our theorems are admittedly quite simple, but they are also powerful.
It is evident that these ideas are useful for solving function problems via algorithms for related decision
problems. These ideas can also be applied to greatly relax the conditions needed to achieve faster algorithms
for the decision problems themselves. Williams [70] showed that it is possible to preprocess a graph in
O(n2+ε) time (for all ε > 0) such that queries of the form “is S an independent set?” can be answered
in O(n2/ log2 n) time. This data structure can be easily used to solve triangle detection in O(n3/ log2 n),
by simply querying the neighborhoods of each vertex. Bansal and Williams [6, 7] show that every graph
can be (randomly) preprocessed in O(n2+ε) time so that any batch of O(log n) independent set queries can
be answered in O(n2/ log1.25 n) (deterministic) time. This implies an O(n3/ log2.25 n) randomized triangle
detection algorithm. A major limitation in this approach to fast triangle detection is that the preprocessing
time apparently must be subcubic. In fact, this subcubic requirement is the only reason why Bansal and
Williams’ preprocessing algorithm needs randomization. It turns out that in fact any polynomial amount of
preprocessing suffices:

Theorem 6.5 Suppose there are k, c > 0 such that every n-node graph can be preprocessed in O(nk) time
so that all subsequent batches of log n independent set queries S1, . . . , Slogn can be answered together
in O(n2/ logc n) time. Then triangle detection (and hence Boolean matrix multiplication) is solvable in
O(n3/ logc+1 n) time.
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That is, in order to attain better combinatorial algorithms for BMM, it suffices to answer independent set
queries quickly with any polynomial amount of preprocessing. Theorem 6.5 holds for both randomized and
deterministic algorithms: a deterministic preprocessing and query algorithm results in a deterministic BMM
algorithm. The idea behind the proof of Theorem 6.5 resembles a method by Andersson and Thorup [5] for
converting polynomial space static search data structures into linear space dynamic ones.

Proof of Theorem 6.5. Let a = 1/(2k). Divide the n nodes of the graph into n1−a parts, each part
having at most na + 1 nodes each. For each pair i, j of parts, let Gi,j = (Vi,j , Ei,j) be the subgraph of G
restricted to the nodes in parts i and j. Preprocess Gi,j for independent set queries in O(nak) time. This stage
takes O(n2(1−a)+ak) ≤ n2−1/k+1/2 ≤ O(n2.5) time.

To determine if G has a triangle, partition the set of nodes of G into at most 1 + n/ log n groups of
log n nodes each. For each group v1, . . . , vlogn and all pairs of indices i, j = 1, . . . , n1−a, query N(v1) ∩
Vi,j , . . . , N(vlogn) ∩ Vi,j for independence. If some query answers “no” then report that there is a triangle;
if all queries answer “yes” over all nodes then report that there is no triangle. This stage takes O(n/ log n ·
n2(1−a) · n2a/(a logc n)) ≤ O(n3/ logc+1 n) time. 2

Theorem 6.5 makes it easy to give derandomized versions of Bansal and Williams’ algorithms, since there
are deterministic polynomial time algorithms for the problems they need to solve, just not subcubic ones.

Reminder of Theorem 1.4 There is a deterministic combinatorial algorithm for BMM running inO(n3/ log2.25 n)
time.

Proof of Theorem 1.4. We will show that there is a deterministic combinatorial O(n3/ log2.25 n) time
algorithm for triangle finding. By Corollary 4.1, this yields a deterministic combinatorial O(n3/ log2.25 n)
time algorithm for BMM.

The preprocessing algorithm of Bansal and Williams (Theorem 5.1 in [6]) proceeds by finding an ε-
pseudoregular partition (in the sense of Frieze and Kannan [32]) in O(n2) randomized time. The resulting
independent set query algorithm answers O(log n) independent set queries in O(n2/ log1.25 n) time and is
completely deterministic. Alon and Naor [4] give a deterministic polynomial time algorithm for computing
an ε-pseudoregular partition, which works for all ε ≤ c/

√
log n for a fixed constant c > 0. By replacing the

randomized preprocessing with the algorithm of Alon and Naor, and applying the reduction of Theorem 6.5,
the algorithm is obtained. 2

Using the connection between negative triangle and APSP, we can identify a natural query problem on
weighted graphs for which nontrivial solutions would give faster APSP algorithms. On a graph with an edge
weight function c : E → Z, define a price query to be an assignment of node weights p : V → Z, where the
answer to a query is yes if and only if there is an edge (u, v) ∈ E such that p(u) + p(v) > c(u, v). Intuitively,
think of p(v) as a price on node v, the edge weight c(u, v) as the cost of producing both u and v, and we wish
to find for a given list of prices if there is any edge we are willing to “sell” at those prices.

Reminder of Theorem 1.5 Suppose there is a constant k > 0 and a function f(n) such that every n-node
edge-weighted graph can be preprocessed in O(nk) time so that any subsequent price query can be answered
in O(n2/f(n)) time. Then, the negative triangle detection problem is solvable in O(n3/f(n1/(2k))) time.

If the hypothesis of the theorem is true for f(n) = 2Ω(logδ(n)) for some δ > 0, then our results also imply
that APSP is solvable in n3/2Ω(logδ(n)) time (by Theorem 4.5). To some, the contrapositive of Theorem 1.5
may be more interesting: assuming that APSP needs Ω(n3/f(n)) time, there is a super-polynomial time lower
bound on the preprocessing time needed for efficiently answering price queries.
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Proof. (Sketch) In Theorem 6.5 (and [6]), faster solutions for the independent set query problem (with
polynomial preprocessing) are shown to imply faster triangle detection. The key observation here is that the
price query problem is the analogue of the independent set query problem, for finding negative weight trian-
gles. More precisely, given any weighted graph on nodes {v1, . . . , vn} and weight function w, the existence
of a negative weight triangle can be determined from n price queries q1, . . . , qn, one for each node, where the
price on node vj in qi is−w(vi, vj). Obtaining a yes answer to the price query qi is equivalent to the existence
of an edge (vj , vj) such that (−w(vi, vj)) + (−w(vi, vk)) > w(vj , vk), which is equivalent to the existence
of a negative weight triangle through vi. This already shows that a subcubic time preprocessing algorithm for
answering price queries in subquadratic time implies subcubic-time negative triangle detection. By applying
the same divide-and-conquer preprocessing idea as Theorem 6.5, we find that any polynomial-time algorithm
for preprocessing graphs for price queries implies a subcubic-time algorithm for preprocessing graphs for
price queries (with asymptotically the same query time). 2

7 A Simplified View of All-Pairs Path Problems and Their Matrix Products

In this section we consider various algebraic structures other than the (min,+) and Boolean semirings.
We relate their matrix products and respective triangle problems, showing how several prior results in the area
can be simplified in a uniform way.

Existence-Dominance. The dominance product of two integer matrices A and B is the integer matrix C
such that C[i, j] is the number of indices k such that A[i, k] ≤ B[k, j]. The dominance product was first
studied by Matoušek [46] who showed that for n×nmatrices it is computable inO(n(3+ω)/2). The existence-
dominance product of two integer matrices A and B is the Boolean matrix C such that C[i, j] = 0 iff there
exists a k such that A[i, k] ≤ B[k, j]. This product was used in the design of the first truly subcubic algorithm
for the minimum node-weighted triangle problem [63, 67]. Although the existence-dominance product seems
easier than the dominance product, the best known algorithm for it actually computes the dominance product.

The existence-dominance product is defined over the (min,�) structure for which R = Z ∪ {−∞,∞}
and a � b = 0 if a ≤ b and a � b = 1 otherwise. The corresponding negative triangle problem, the
dominance triangle problem, is defined on a tripartite graph with parts I, J,K. The edges between I and
J are unweighted, and the rest of the edges in the graph have real weights. The goal is to find a triangle
i, j, k ∈ I × J ×K such that w(i, k) ≤ w(k, j).

Minimum Edge Witness. The minimum edge witness product is defined over a restriction of the (min,�)
structure over R = Z ∪ {∞,−∞}, where � = × is integer multiplication. For an integer matrix A and a
{0, 1}matrixB, the (i, j) entry of the minimum edge witness productC ofA andB is equal to mink(A[i, k]×
B[k, j]). This product is important as it is in truly subcubic time iff APSP on node-weighted graphs is in truly
subcubic time. Chan [15, 16] used this relation to obtain the first truly subcubic runtime for node-weighted
APSP.

The negative triangle problem corresponding to the minimum edge witness product is again the domi-
nance triangle problem. Hence, by Theorem 4.2 we can conclude that a truly subcubic algorithm for the
dominance triangle problem (such as Matoušek’s algorithm for the dominance product) implies truly sub-
cubic node-weighted APSP. That is, we get an alternative subcubic algorithm for node-weighted APSP as a
byproduct, although it is a bit slower than the best known. To obtain his algorithm for node-weighted APSP,
Chan [16] gave a completely new algorithm for minimum edge witness product with exactly the same runtime
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as Matoušek’s dominance product algorithm.

(Min-≤). The (min,≤) structure is defined overR = Z∪{∞,−∞}, where the binary operation≤ on input
a, b returns b if a ≤ b and∞ otherwise. The first author showed [62, 68] that the (min,≤) matrix product is
in truly subcubic time iff the all pairs minimum nondecreasing paths problem (also called earliest arrivals)
is in truly subcubic time. The first truly subcubic runtime for the product, O(n2+ω/3), was obtained by the
present authors and R. Yuster [65, 66]. The techniques of Duan and Pettie [24] also imply an O(n(3+ω)/2)
algorithm.

The negative triangle problem over (min,≤) is the following nondecreasing triangle problem: given a
tripartite graph with partitions I, J,K and real edge weights, find a triangle i ∈ I, j ∈ J, k ∈ K such that
w(i, k) ≤ w(k, j) ≤ w(i, j).

Both known algorithms for this problem follow from the algorithms for (min,≤)-product [65, 66, 24] and
are somewhat involved. Below we give a simpler O(n3/2

√
T (n)) algorithm, where T (n) is the best runtime

for finding a triangle in an unweighted graph. If matrix multiplication is used, the runtime is the same as in
Duan-Pettie’s algorithm, O(n(3+ω)/2). Furthermore, the algorithm can actually be applied O(log n) times to
obtain another Õ(n(3+ω)/2) algorithm for the (min,≤)-product.

Theorem 7.1 (Nondecreasing Triangle ≤3 Triangle) If a triangle in an unweighted graph can be found in
T (n) time, then a nondecreasing triangle can be found in O(n3/2

√
T (O(n))) time, and (min,≤) product is

in O(n3/2
√
T (O(n)) log n) time.

Proof. We are given a weighted tripartite graph with partitions I , J , K and are looking for a triangle
i ∈ I, j ∈ J, k ∈ K such that w(i, k) ≤ w(k, j) ≤ w(i, j).

Begin by sorting all the edges in the graph, breaking ties in the following way: edges from I × J are
considered bigger than edges from K × J of the same weight which are considered bigger than edges from
I ×K of the same weight; within I × J or J ×K or I ×K equal edges are arranged arbitrarily.

Let t be a parameter. For every vertex v in J or K, consider the sorted order of edges incident to v and
partition it into at most n/t buckets of t consecutive edges each and at most one bucket with ≤ t; let Bvb
denote the b-th bucket for node v. For each edge (x, v) such that v is in J or K and (x, v) is in Bvb, go
through all edges (v, y) in Bvb and check whether x, v, y forms a nondecreasing triangle. This takes O(n2t)
time.

Partition the edges of the graph by taking O(n/t) consecutive groups of ≤ nt edges in the sorted order
of all edges. Let Gg denote the g-th such group. For each g, consider all buckets Bvb of vertices v in J or
K such that there is some edge (v, x) ∈ Bvb ∩ Gg. There can be at most 4n such buckets: there are at most
n+ nt/t = 2n buckets completely contained in Gg and at most 2n straddling Gg– at most one per vertex per
group boundary.

Create a tripartite graph Hg for each g as follows. Hg has partitions HI
g , H

J
g and HK

g . HI
g has a node for

each i ∈ I . For S ∈ {J,K}, HS
g has a node for each node bucket Bvb such that Bvb ∩ Gg 6= ∅ and v ∈ S.

Therefore Hg has ≤ 9n nodes.

The edges of Hg are as follows. For all Bjb ∈ HJ
g and Bkb′ ∈ HK

g , (Bjb, Bkb′) is an edge if (j, k) is an
edge and it is in Bjb ∩Bkb′ . For i ∈ HI

g and Bjb ∈ HJ
g , (i, Bjb) is an edge in Hg iff (i, j) ∈ E and there is a

bucket b′ < b such that (i, j) ∈ Bjb′ . For i ∈ HI
g and Bkb ∈ HK

g , (i, Bkb) is an edge in Hg iff (i, k) ∈ E and
there is a bucket b′ > b such that (i, k) ∈ Bkb′ .

36



Any triangle i, Bjb, Bk,b′ in Hg corresponds to a nondecreasing triangle i, j, k in G. If a nondecreasing
triangle i, j, k of G is not contained in any Hg, then for some b either both (i, j) and (j, k) are in Bjb or both
(i, k) and (j, k) are in Bkb, both cases of which are already handled.

The runtime is O(n2t+ T (9n) · n/t). Setting t =
√
T (9n)/n, the time becomes O(n3/2

√
T (9n)). 2

Min-Max. The subtropical semiring (min,max) is defined over R = Z ∪ {∞,−∞}. The (min,max)
matrix product was used by the present authors and R. Yuster [66] to show that the all pairs bottleneck paths
problem is in truly subcubic time. The current best algorithm for the problem runs in O(n(3+ω)/2) time by
Duan and Pettie [24]. The (min,max) product is an important operation in fuzzy logic, where it is known as
the composition of relations ([26], pp.73).

The negative triangle problem over (min,max) is the following IJ-bounded triangle problem. Given a
tripartite graph with partitions I, J,K and real weights on the edges, find a triangle i ∈ I, j ∈ J, k ∈ K
such that both w(i, k) ≤ w(i, j) and w(j, k) ≤ w(i, j), i.e. the largest triangle edge is in I × J . We
note that any algorithm for the nondecreasing triangle problem also solves the IJ-bounded triangle problem:
any IJ-bounded triangle appears as a nondecreasing triangle either in the given graph, or in the graph with
partitions J and K swapped. Hence a corollary to Theorem 7.1 is that an IJ-bounded triangle can be found
in O(n3/2

√
T (n)) time, where T (n) is the runtime of a triangle detection algorithm for unweighted graphs.

8 Extension to 3SUM

Finally, we describe an application of the ideas in this paper to the 3SUM problem: given three lists A,
B, C of n integers each, are there a ∈ A, b ∈ B, and c ∈ C such that a+ b+ c = 0? The All-Integers-3SUM
problem looks like a strict generalization of 3SUM: given three lists A, B, C of n integers each, output the
list of all integers a ∈ A such that there exist b ∈ B, c ∈ C with a+ b+ c = 0. We can prove a subquadratic
equivalence between 3SUM and All-Integers-3SUM.

Theorem 8.1 (All-Integers 3SUM ≡2 3SUM) All-Ints 3SUM is in truly subquadratic time iff 3SUM is in
truly subquadratic time.

Proof. One direction is obvious. For the other, we use a randomized hashing scheme proposed by
Dietzfelbinger [23] and used by Baran, Demaine and Patrascu [8], which maps each distinct integer to one of√
n buckets.13 For each i ∈ [

√
n], let Ai, Bi, and Ci be the sets containing the elements hashed to bucket i.

The hashing scheme has two nice properties:

1. for every pair of bucketsAi andBj there are two buckets Ckij0 and Ckij1 (which can be located inO(1)
time given i, j) such that if a ∈ Ai and b ∈ Bj , then if a+ b ∈ C then a+ b is in either Ckij0 or Ckij1 ,

2. the total number of elements which are mapped to buckets containing at least 3
√
n elements is O(

√
n)

in expectation.

After applying the hash function to all elements, we process all elements that get mapped to large buckets
(those with size > 3

√
n). Without loss of generality, suppose such an element is a ∈ A. Then for all elements

b ∈ B, we check whether a+ b ∈ C. This takes O(n1.5) time overall in expectation.
13The scheme performs multiplications with a random number and some bit shifts, hence we require that these operations are not

too costly. We can ensure this by first mapping the numbers down to O(logn) bits, e.g., by computing modulo some sufficiently
large Θ(logn) bit prime.
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The remaining buckets Ai, Bi, Ci for all i ∈ [
√
n] contain O(

√
n) elements each. In particular, we have

reduced the original problem to 2n subinstances of 3SUM ((Ai, Bj , Ckijb) for b = 0, 1).

Now for each of these 2n subinstances in turn, call the detection algorithm. We can assume WLOG that
the detection algorithm actually returns a triple a ∈ Ai, b ∈ Bj , c ∈ Ckijb such that a + b + c = 0 (if it does
not, we can recover a, b, c using a simple self-reduction). For each triple (a, b, c) detected, remove a from Ai
and record that a is in a 3SUM. Try to find a new 3SUM in the subinstance. When the current subinstance
contains no more solutions, move to the next subinstance.

Assuming that there is an O(n2−ε) time algorithm for 3SUM, the running time from this portion of the
reduction becomes asymptotically

(n+ 2n) ·
(√
n
)2−ε

= O(n2−ε/2).

Therefore All-Ints-3SUM can be solved in O(n1.5 + n2−ε/2) time. 2

Theorem 8.1 shows how subquadratic algorithms for 3SUM actually imply subquadratic algorithms for
an apparently harder function problem (detecting 3-SUM solutions for all integers in the set). This should
be contrasted with Patrascu’s surprising subquadratic equivalence between 3SUM and the apparently easier
function problem Convolution-3SUM discussed in Section 2.1. Both reductions use the same hash family, but
they are applied in different ways.

9 Conclusion

We have explored a new notion of reducibility which preserves truly subcubic runtimes. Our main con-
tributions are subcubic reductions from important function problems (such as all-pairs paths and matrix prod-
ucts) to important decision problems (such as triangle detection and product verification), showing that sub-
cubic algorithms for the latter entail subcubic algorithms for the former. We have shown that these reductions
and the ideas behind them have many interesting consequences.

We conclude with three open questions arising from this work:

1. Does O(n3−δ) negative triangle detection imply O(n3−δ) matrix product (over any R)? Note we can
currently show that O(n3−δ) negative triangle implies O(n3−δ/3) matrix product.

2. Does a truly subquadratic algorithm for 3SUM imply truly subcubic APSP? It is quite possible that
truly subquadratic 3SUM implies truly subcubic negative triangle, which would answer the question.

3. Is there a truly subcubic algorithm for minimum edge-weight triangle? Although this question has been
asked in prior work, clearly it takes on much greater importance now that we know it is equivalent to
asking for a variety of subcubic algorithms for several fundamental path problems. We feel that if there
are truly subcubic algorithms for APSP, they will likely be found by studying the “simpler” minimum
edge-weight triangle problem.

Acknowledgments. The authors thank the anonymous referees for their insightful and detailed comments,
and Laszlo Kozma for suggesting to study the Maximum Subarray problem in this context.
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