
Bounded Dataflow Networks and
Latency-Insensitive Circuits

Muralidaran Vijayaraghavan, and Arvind

Computation Structures Group
Computer Science and Artificial Intelligence Lab

Massachusetts Institute of Technology
{vmurali, arvind}@csail.mit.edu

Abstract—We present a theory for modular refinement of
Synchronous Sequential Circuits (SSMs) using Bounded Dataflow
Networks (BDNs). We provide a procedure for implementing any
SSM into an LI-BDN, a special class of BDNs with some good
compositional properties. We show that the Latency-Insensitive
property of LI-BDNs is preserved under parallel and iterative
composition of LI-BDNs. Our theory permits one to make
arbitrary cuts in an SSM and turn each of the parts into LI-
BDNs without affecting the overall functionality. We can further
refine each constituent LI-BDN into another LI-BDN which may
take different number of cycles to compute. If the constituent LI-
BDN is refined correctly we guarantee that the overall behavior
would be cycle-accurate with respect to the original SSM. Thus
one can replace, say a 3-ported register file in an SSM by a
one-ported register file without affecting the correctness of the
SSM. We give several examples to show how our theory supports
a generalization of previous techniques for Latency-Insensitive
refinements of SSMs.

I. INTRODUCTION

Synchronous designs or clocked sequential circuits are very
rigid in their timing specifications because the behavior of the
system at every clock cycle is specified. Modular refinement of
such systems is difficult; if the timing characteristic of a single
module is changed then the functional correctness of the whole
system has to be re-established. Architects often talk about
the benefits of latency-insensitive or decoupled designs. The
benefits include greater flexibility in physical implementation
because the latency of communication or the number of clock
cycles a particular module takes can be changed without
affecting the correctness of the whole design. Once the overall
design is set up as a collection of latency-insensitive modules,
different people or teams can do refinements of their modules
independently of others. In this paper we will show how a
synchronous specification can be implemented in a latency-
insensitive manner using Bounded Dataflow Networks (BDNs).
In the rest of the paper we will refer to both synchronous speci-
fications and their implementations as Synchronous Sequential
Machines (SSMs).

BDNs are a class of circuits representing dataflow networks
[1], [2] where the nodes of the network are connected by
bounded FIFOs. Nodes can enqueue into a FIFO only when
the FIFO is not full and dequeue from a FIFO only when it
is not empty. In contrast to the cycle-by-cycle synchronous
input-output behavior of an SSM, the behavior of a BDN is

characterized by the sequence of values that are enqueued
in the input FIFOs and the sequence of values that are
dequeued from the output queues. We will define what it
means to implement an SSM as a BDN, and show how a BDN
implementation of an SSM relaxes the timing constraints of
the SSM, while preserving its functionality. The theory which
we have developed can be used to solve several important
implementation problems:
1. The timing-closure problem: Carloni et. al [3]–[6] have
proposed a methodology which provides flexibility in changing
the communication latency between synchronous modules.
Their approach is to start with an SSM and identify some
wires whose latency needs to be changed without affecting the
overall correctness of the SSM. The circuit is essentially cut
in two parts such that the cut includes the wire. Each of these
parts is treated as a black box and a wrapper is created for
each black box. The wrappers contain shift registers (similar to
bounded FIFOs) for each input and output wire, and effectively
allow the wire latencies to be changed without affecting the
overall correctness. We will show that our approach is a
generalization of Carloni’s work in two ways. First, in addition
to changing the latencies of wires, we can change the timing
behavior of any module without affecting the functionality
of the original SSM. Second, we allow arbitrary cuts for
decomposing SSMs while Carloni’s method restricts where
cuts can be made.
2. The multiple FPGA problem: The predominant model
for programming FPGAs is RTL, e.g., Verilog. There are
a number of tools that can generate good implementations
for an FPGA provided the design fits in a single FPGA.
When the design does not fit in a single FPGA then either
the designer modifies the design to reduce its area at the
expense of fidelity with respect to the timing of the original
design or he tries to decompose the design to run on multiple
FPGAs. The latter often involves serious verification issues, in
addition to the timing fidelity issues. The implementation on
multiple FPGAs is not difficult if the design itself is latency
insensitive and the modules that are mapped onto different
FPGAs are connected using latency insensitive FIFOs. BDNs
can be used to implement an SSM in a manner that makes it
straightforward to map the resulting BDN onto a multi-FPGA
platform and preserve its functional and timing characteristics.

171978-1-4244-4807-4/09/$25.00 ©2009 IEEE

3. The cycle-accurate modeling of processors on FPGAs:
Our development of BDNs was inspired by HASim [7], [8],
an ongoing project at Intel to develop cycle-accurate FPGA
simulators for synchronous multi-core processors. The goal
is to develop FPGA based simulators that are three orders
of magnitude faster than software simulators of comparable
fidelity. There are similar efforts underway at other institutions
(University of Texas at Austin [9], Berkeley [10] and at IBM
Research). So far the Intel group has demonstrated cycle-
accurate simulators for in-order and out-of-order pipelines
for a single-core with the Alpha ISA. The modules in the
simulator communicate via A-Ports which represent a fixed-
latency communication link. The behavior of the modules is
dictated by the following rule: first, all the input A-Ports are
read; second, the module does some processing; and finally,
all the output A-Ports are written. This rule is identical to
Carloni’s firing rule. In order to avoid deadlocks, an A-
Port network is not allowed to contain 0-latency cycles. This
restriction is similar to Carloni’s restrictions on cuts. Other
groups have experienced deadlocks and have avoided them in
an ad-hoc manner [11]. In our work, we focus on developing
the rules for the behavior of the modules that guarantees the
absence of deadlocks. These rules are captured as restrictions
on BDNs and can be enforced by a tool or by the designer of
the BDN.

The collective experience of aforementioned projects has
shown that one always has to modify the design to implement
it efficiently on FPGAs. Some hardware structures such as
multi-ported register files and content addressable memories
(CAMs) are not well matched for FPGAs. Others, such as
low-latency multiply and divide can take up enormous FPGA
resources. In order to conserve FPGA resources, there is a
need to implement hardware structures which take one cycle
in the target model to take multiple clock cycles on FPGAs by
time-multiplexing the resources. The BDN theory developed
in this paper can help one implement designs to run efficiently
on FPGAs and still be able to reconstruct the timing of the
original model. The problem essentially translates into being
able to make latency-insensitive modular refinements.

As an alternative to starting with a rigid SSM like specifi-
cation, BDNs can also be used to express a design directly.
The specifications of complex synchronous digital systems
have a built-in tension. On one hand one wants precise timing
specifications to study performance but one also wants the
flexibility of changing the timing to study its effect. We think
that the specification of a design in terms of BDNs may help
alleviate this tension and may be a much better starting point
than RTL or other formal and informal ways of describing
SSMs. In this paper, however, we focus exclusively on the nar-
row technical question of implementation of SSMs in terms of
latency-insensitive BDNs such that the timing characteristics
of the original SSM can be reconstructed accurately.

Paper Organization: We give a brief recap of SSMs in
Section II. We then introduce BDNs in Section III. We give
several examples to show what it means for a BDN to im-
plement an SSM. We discuss some of the properties of nodes

Combinational
Logic

...Combinational
Logic

...

...

...

...

O
ut

pu
ts

O
ut

pu
ts

In
pu

ts

Enable

...

In
pu

ts

Fig. 1: Converting a normal SSM into a patient SSM

of BDN networks and also give a procedure to convert any
SSM into a BDN. In Section IV, we discuss LI-BDNs which
are composable, deadlock-free, latency-insensitive implemen-
tations of SSMs. In Section V, we describe a methodology
for developing latency insensitive designs and give examples
modular refinements. We offer some conclusions in Section
VI.

II. SYNCHRONOUS SEQUENTIAL MACHINES

We begin with some definitions and notations.

Definition 1. (Synchronous Sequential Machine (SSM))
An SSM is a network of combinational operators or gates

such as AND, OR, NOT, and state elements such as registers,
provided the network does not contain any cycles which has
only combinational elements.

Notation: I = {I1, I2, . . . , IkI
}, O = {O1, O2, . . . , OkO

} and
s = {s1, s2, . . . , sks

} represent the inputs, outputs and states
(registers) of an SSM, respectively.

Ii(n) represents the value of input Ii during the nth cycle.
I(n) represents the values of all inputs during the nth cycle.
Similarly, Oj(n) represents the value of output Oj during the
nth cycle and O(n) represents the values of all the outputs in
the nth cycle.

s(n) represents the value of all the registers during the nth

cycle. s(1) represents the initial value of all these registers,
i.e., the value of the states during the first cycle.

A. Operational Semantics of SSMs

Assume that the initial values for all the registers of the
SSM are given. An SSM computes as follows: the outputs
of a combinational block at time n ≥ 1 is determined by the
value of its inputs at time n, and the value of a register at time
n is determined by its inputs at time n − 1. Mathematically,
it is assumed that combinational gates compute in zero time.

B. Patient SSMs

We will show later that in order to implement these SSMs
in a latency-insensitive manner, we need a global control over
the update of all the state elements of an SSM. One often
represents registers so that they have a separate enable signals
and the state of the register changes only when the enable
signal is high. We can provide global control over an SSM

172

S

S1

S2...
... ...

...

S1

S2...
... ...

...

(a) Parallel composition of SSMs (S1 + S2)

S

S1... ...S1... ...

Ii Oj Ii Oj

(b) Iterative composition of SSMs ((Ii, Oj) · S1)

Fig. 2: Composition of SSMs

... ...In
pu

ts

O
ut

pu
ts

Patient SSM

Wrapper

Fig. 3: A primitive BDN

by conjoining the enable signal of each register with a global
enable signal. We will call an SSM with such a global enable
as a patient SSM [4]. No state change in a patient SSM can
take place without the global enable signal. Any SSM can be
transformed into a patient SSM as shown in Figure 1.

C. A structural definition of SSMs

Any SSM can be defined structurally in terms of parallel
and iterative compositions of SSMs. The starting point of the
recursive composition is the set of combinational gates, forks
and registers. Since we do not allow pure combinational cycles
in SSMs we need to place some restrictions on the iterative
composition.

Definition 2. (Structural definition of SSMs)
1) Combinational gates, forks and registers are SSMs.
2) If S1 and S2 are SSMs, then so is the parallel compo-

sition of S1 and S2, written as S1 + S2, (Figure 2a).
3) If S1 is an SSM, then so is the (Ii, Oj) iterative

composition of S1 written as (Ii, Oj)·R1, provided there
is no combinational path from Ii to Oj , (Figure 2b).

We will use structural definitions in our proofs.

III. BOUNDED DATAFLOW NETWORKS

A. Preliminaries

Bounded Dataflow Networks (BDNs) are Dataflow Net-
works [1], [2] where nodes are connected by bounded FIFOs
of any size ≥ 1. The nodes of the network, which we refer to

full

value

enq

empty

first

deq

Fig. 4: A FIFO interface

as primitive BDNs, implement SSMs (Figure 3). A FIFO can
be enqueued only when it is not full and dequeued only when
it is not empty (Figure 4). We do not draw the control wires
associated with the FIFOs in figures to avoid unnecessary
clutter. All FIFOs start out empty. At most one node can
enqueue in a given FIFO and at most one node can dequeue
from a given FIFO. BDNs also cannot contain the equivalent
of combinational loops; a restriction that we define formally
later.

Throughout the paper we will make the assumption of
infinite source for each input FIFO and infinite sink for each
output FIFO. The infinite source assumption implies that there
is an infinite supply of inputs and an input FIFO can be
supplied a value whenever it is not full. The infinite sink
assumption implies that whenever a value is present in an
output FIFO it can be dequeued anytime.

Definition 3. (Deadlock-free BDN)
Assuming all input FIFOs are connected to infinite sources

and all outputs are connected to infinite sinks, a BDN is said to
be deadlock-free iff a value is enqueued into each input FIFO
then eventually a value will be enqueued into each output FIFO
and dequeued from each input FIFO.

We now define what it means for a BDN to implement an
SSM.

Notation: Ii(n) represents the nth value enqueued into Ii. I(n)
represents the nth values enqueued into all inputs. Similarly,
Oj(n) represents the nth value enqueued into Oj . O(n)
represents the nth values enqueued into all outputs. n does
not correspond to the nth cycle in the BDN. For example,
values I(n) and I(n + 1) can exist simultaneously in a BDN
unlike an SSM.

Definition 4. (BDN partially implementing an SSM)
A BDN R partially implements an SSM S iff

1) There is a bijective mapping between the inputs of S and
R, and a bijective mapping between the outputs of S and
R.

2) The output histories of S and R matches whenever the
input histories matches, i.e.,

∀n > 0,

I(k) for S and R matches (1 ≤ k ≤ n)
⇒O(j) for S and R matches (1 ≤ j ≤ n)

Definition 5. (BDN implementing an SSM)
A BDN R implements an SSM S iff R partially implements

S and R is deadlock-free.

Note that there may be many BDNs which implement the
same SSM.

One often thinks of a large SSM in terms of a composition
of smaller SSMs. We will first tackle the problem of imple-
menting an SSM as a single BDN node and then later discuss
the parallel and iterative compositions of BDNs in a manner
similar to the composition of SSMs (Section II-C).

173

f
a

b

c

(a) SSM for a Gate

f

a

b

c

rule GateOutC
when (¬a.empty ∧ ¬b.empty ∧ ¬c.full)
⇒ c.enq(f(a.first, b.first)); a.deq; b.deq

(b) BDN for a Gate

f value
first

first

not-full
not-empty

not-empty
deq

deq
enq

(c) The synchronous circuit implementing the BDN gate

Fig. 5: SSM and a BDN for a Gate

B. Definition and Operational semantics of primitive BDNs

We specify the semantics of primitive BDNs (and later, of
all BDNs) using rules or guarded atomic actions [12], [13].
Given a set of state elements (e.g., registers, FIFOs), a rule
specifies a guard, i.e., , a predicate, and the next values for
some of the state elements. Execution of a rule means that
if the guard is true then the specified state elements can be
updated. However, it is not necessary to execute a rule even
if its guard is true. Several rules can be used to describe the
behavior of one BDN. Rules are atomic in the sense that when
a rule is executed, all the state elements whose next state
values the rule specifies must be updated before any other
rule that updates the same state can be executed. The behavior
of a BDN described using rules can always be explained in
terms of some sequential execution of rules. Algorithms and
tools exist to synthesize the set of atomic rules into efficient
synchronous circuits [14].

We next show BDN implementations of some SSMs.

C. Examples of primitive BDNs

1) Gate: Figure 5b shows a primitive BDN to implement
the SSM gate shown in Figure 5a. f is a combinational circuit.
The primitive BDN must consume an input value from each
input FIFO before producing an output in its output FIFO.
The behavior of the gate is defined formally using the rule
which says that the rule can execute only when neither input
FIFO is empty and the out FIFO is not full. When the rule
executes it dequeues one input from each of the input FIFO
and enqueues the value f(a1, b1) in the output FIFO. All
this testing and updates have to be performed atomically. The
reader can test that this primitive BDN definition implements
the gate correctly according to Definition 5.

a

b

c

(a) SSM for a Fork

a
b

c
rule ForkOutBAndC
when (¬a.empty ∧ ¬b.full ∧ ¬c.full)
⇒ b.enq(a.first); c.enq(a.first); a.deq

(b) BDN for a fork

a

b

c

bDone

cDone

rule ForkOutB
when (¬a.empty ∧ ¬b.full ∧ ¬bDone)
⇒ b.enq(a.first); bDone ← True

rule ForkOutC
when (¬a.empty ∧ ¬c.full ∧ ¬cDone)
⇒ c.enq(a.first); cDone ← True

rule ForkFinish
when (¬a.empty ∧ bDone ∧ cDone)
⇒ bDone ← False; cDone ← False; a.deq

Initial
bDone ← False; cDone ← False

(c) Another BDN for a fork

Fig. 6: SSM and BDNs for a fork

ra b
r(0) = r0

(a) SSM for a register

r
a

bDone

b

rule RegOutB
when (¬b.full ∧ ¬bDone)
⇒ b.enq(r); bDone ← True

rule RegFinish
when (¬a.empty ∧ bDone)
⇒ r ← a.first; a.deq

bDone ← False
Initial
r ← r0; bDone ← False

(b) BDN for a register

Fig. 7: SSM and BDN for a register

A circuit to implement this rule is shown in Figure 5c.
Notice this whole circuit is itself an SSM, and can be generated
by the Bluespec compiler from the atomic rule specification.
Whenever we talk about an SSM corresponding to a BDN, we
mean the SSM a BDN implements, and not the SSM which is
the synchronous implementation of the BDN.

2) Fork: Figure 6a shows an SSM fork and Figures 6b
and 6c show two different primitive BDNs that implement the
fork. The rule for the fork in Figure 6b will not execute if

174

either of the output forks is full. While the rules for the fork
in Figure 6c can enqueue in either of the output forks as and
when that output becomes non-full. The Done flags ensure
that enqueuing in each output FIFO can happen only once for
each input and the input can be dequeued only when both the
outputs have accepted the input.

Each of these primitive BDNs implements the SSM fork
correctly but exhibit different operational properties - for
example the fork in Figure 6c can tolerate more slack and
may result in better performance.

3) Register: Figure 7a shows an SSM register and Fig-
ure 7b shows a primitive BDN that implements it. In the
primitive BDN, the value in input a is written into register
r and consumed only after the output b has accepted the
previous value in the register.

In an SSM, at every clock cycle all the state elements in the
SSM get updated, and all the output values are obtained. We
can see in the above examples that the clock cycle of the SSM
is transformed into dequeue of all the inputs and enqueue of all
the outputs in a primitive BDN, and the state elements in the
primitive BDN corresponding to the SSM are updated exactly
once during this period. This ensures that each primitive BDN
in the examples implements the corresponding SSM according
to Definition 5.

We will later describe a procedure to implement any SSM
as a primitive BDN.

D. Properties of primitive BDNs

We have already seen that several different primitive BDNs
can implement an SSM. Besides their differences in perfor-
mance, these primitive BDNs behave differently when com-
posed with other BDNs to form larger BDNs. We illustrate
this via some examples.

1) The No-Extraneous Dependency (NED) property: Fig-
ure 8 shows an SSM and four different primitive BDN
implementations for the SSM. Implementation #1 is perhaps
the most straightforward; it waits for all the inputs to become
available and all the output FIFOs to have space and then
simultaneously produces both outputs and consumes both
inputs. Contrast this with implementation #2 which is most
flexible operationally; for each output it only waits for the
inputs actually needed to compute that output. It dequeues the
inputs after both the outputs have been produced. We need
the Done flags to ensure that each output is produced only
once for each set of inputs. Implementations #3 and #4 are
variants of this and contain some extraneous input or output
dependencies as compared to implementation #2. For example,
implementation #3 unnecessarily waits for the availability
of input a to produce output d while implementation #4
unnecessarily waits for the availability of space in output FIFO
d to produce output c.

Such extraneous dependencies can create deadlocks when
this primitive BDN is used as a node in a bigger BDN. Con-
sider the composition shown in Figure 9b which implements
the SSM shown in Figure 9a which can be formed by connect-
ing d to a in Figure 8a. The BDN in Figure 9b will deadlock if

a

b

c

d

f

(a) An example SSM

fa

b

c

d

cDone

dDone

(b) Figure for BDN implementations #1 to #4
rule Out

when (¬a.empty ∧ ¬b.empty ∧ ¬c.full ∧ ¬d.full)
⇒ c.enq(f(a.first, b.first));

d.enq(b.first); a.deq; b.deq

(c) BDN implementation #1 (Does not use Done registers)
rule OutC
when (¬a.empty ∧ ¬b.empty ∧ ¬c.full ∧ ¬cDone)
⇒ c.enq(f(a.first, b.first)); cDone ← True

rule OutD
when (¬b.empty ∧ ¬d.full ∧ ¬dDone)
⇒ d.enq(b.first); dDone ← True

rule Finish
when (¬a.empty ∧ ¬b.empty ∧ cDone ∧ dDone)
⇒ a.deq; b.deq; cDone ← False; dDone ← False

Initial
cDone ← False; dDone ← False

(d) BDN implementation #2
rule OutD

when (¬b.empty ∧ ¬a.empty ∧ ¬d.full ∧ ¬dDone)
⇒ d.enq(b.first); dDone ← True

(e) BDN implementation #3 (Same as #2 except for rule OutD
rule OutC

when (¬a.empty ∧ ¬b.empty ∧
¬c.full ∧ ¬cDone ∧ ¬d.full)

⇒ c.enq(f(a.first, b.first)); cDone ← True

(f) BDN implementation #4 (Same as #2 except for rule OutC)

Fig. 8: An example to illustrate the NED property

a

b

c

d

f

(a) SSM composition
R

f

b

c
cDone

dDone

a

d

(b) BDN implementing the composition

Fig. 9: Illustrating deadlock when composing BDNs without
NED property

R uses implementation #1 or #3 because a becomes available
only when d is produced. Using implementation #4 for R
will also cause a deadlock if d is a single element FIFO,
since FIFO d has to have space for rule Out to consume a.
If we do not want our BDN implementations to depend upon
the size of various FIFOs then even implementation #4 is not
satisfactory.

We now define the NED property formally:

Definition 6. (Combinationally-connected relation for primi-
tive BDNs)

For any output Oi of a primitive BDN R which implements
SSM S, Combinationally-connected(Oi) is the inputs of R

175

r1
a b

r2

r1(t+1) = a(t)
r2(t+1) = r1(t)

b = r2(t)
r1(0) = r10

r2(0) = r20

(a) An example SSM

a b

bDone

r1 r2

rule OutB
when (¬b.full ∧ ¬bDone)
⇒ b.enq(r2); bDone ← True

rule Finish
when (bDone ∧ ¬a.empty)
⇒ r2 ← r1; r1 ← a.first; a.deq;

bDone ← False
Initial
r1 ← r10; r2 ← r20;
bDone ← False

(b) BDN implementation #1

a b

bCnt

aCnt

r1 r2

rule Out1
when (¬b.full ∧ bCnt = 0)
⇒ b.enq(r2); bCnt ← 1

rule Out2
when (¬b.full ∧ bCnt = 1)
⇒ b.enq(r1); bCnt ← 2

rule In1
when (¬a.empty ∧ bCnt = 2 ∧ aCnt = 0)
⇒ r2 ← a.first; a.deq; aCnt ← 1

rule In2
when (¬a.empty ∧ bCnt = 2 ∧ aCnt = 1)
⇒ r1 ← a.first; a.deq; bCnt ← 0; aCnt ← 0;

(c) BDN implementation #2

Fig. 10: An example illustrating the SC property

corresponding to those inputs of S that are combinationally
connected to the output Oi in S.

Definition 7. (No-Extraneous Dependencies (NED) property
for primitive BDNs)

A primitive BDN has the NED property if all output FIFOs
have been enqueued at least n− 1 times and for each output
Oi, and if all the FIFOs for the inputs in Combinationally-
connected(Oi) are enqueued n times, and all other input FIFOs
are enqueued at least n − 1 times, then Oi FIFO must be
enqueued n times.

According to this definition only implementation #2 satisfies
this property.

2) The Self-Cleaning (SC) property: Figure 10 shows an
SSM and two different primitive BDN implementations. Both
the implementations obey the NED property. In implementa-
tion #1, after an output is produced, the Done flag is set. Then
the input is consumed and the state is updated accordingly.
In implementation #2, two outputs have to be produced, and

r1
a b

r2

(a) SSM composition
R

r1
a b

r2

(b) BDN implementing the composition

Fig. 11: Illustrating deadlock when composing BDNs without
SC property

then two inputs are consumed. The Cnt counters keeps track
of how many outputs are produced and how many inputs are
consumed, and they get reset once two outputs are produced
and two inputs are consumed.

Implementation #2 does not dequeue its inputs every time
an output is produced. This can create deadlocks when this
primitive BDN is used as a node in a bigger BDN. Consider the
composition shown in Figure 11b, which implements the SSM
shown in Figure 11a which can be formed by connecting b to
a. If b is a single element FIFO, then the implementation #2
for R will cause a deadlock as it can not dequeue inputs unless
two outputs are produced, but there is no space to produce two
outputs.

We now define the SC property formally:

Definition 8. (Self-Cleaning (SC) property for primitive
BDNs)

A primitive BDN has the SC property, if when all the
outputs are enqueued n times, all the input FIFOs must
be dequeued n times, assuming an infinite source for each
input.

According to this definition only implementation #1 is self-
cleaning.

Definition 9. (Primitive Latency-Insensitive (LI) BDNs)
A primitive BDN is said to be a primitive LI-BDN if it has

the NED and the SC properties.

Note that according to this definition of primitive LI-BDNs,
the fork in Figure 6b is not an LI-BDN while the fork in
Figure 6c is. As it turns out both the BDN forks work well
under composition because both the outputs have the same
Combinationally-Connected inputs. We could have given a
more complicated definition of the NED property which would
admit the fork in Figure 6b also as an LI-BDN. For lack of
space we won’t explore this more complicated definition of
the NED property.

E. Implementing any SSM as a primitive LI-BDN

We will now describe a procedure to implement any SSM
as a primitive LI-BDN. Let the SSM be described as follows:

Oi(t) = fi(s(t), ICCi1(t),. . ., ICCik
(t))

s(t+1) = g(s(t), I1(t),. . ., InI(t))
s(1) = s0

where {ICCi1 , . . . ICCik
} are inputs combinationally con-

nected to Oi

We associate a donei flag with every output Oi. These flags
initially start out as False. We have a rule for each output Oi

176

done

Depends-on(Oj)

Oj

All
dones

All input
deqs

deq

not-full

1 0

enq

no
t-e

m
pt

y
Ii

value

first Patient SSM

enable

Fig. 12: A wrapper to turn a patient SSM into an LI-BDN

as follows:
rule OutOi

when (¬ICCi1.empty ∧ . . . ∧ ¬ICCik
.empty ∧

¬Oi.full ∧ ¬donei)
⇒ Oi.enq(fi(s, ICCi1.first,. . ., ICCik

.first));
donei ← True

Finally we have a rule to dequeue all the inputs:
rule Finish
when (done1 ∧ . . . ∧ donenO ∧

¬I1.empty ∧ . . . ∧ ¬InI.empty)
⇒ s ← g(s, I1.first, . . ., InI.first);

I1.deq; . . .; InI.deq;
done1 ← False; . . .; donenO ← False

Initial
done1 ← False; . . .; donenO ← False; s ← s0

The BDN described above can be implemented as a syn-
chronous hardware circuit by converting the original SSM into
a Patient SSM, and creating a wrapper around it, treating it
as a black-box. Figure 12 shows the circuit representing the
wrapper.

IV. THEORY FOR MODULAR REFINEMENT OF BDNS

Large SSMs are often designed by composing smaller
SSMs. In this section we develop the theory needed to
support a design methodology where each smaller SSM can
be implemented as a primitive LI-BDN and the large SSM
can be constructed simply by composing these LI-BDNs. We
will further show that any constituent primitive LI-BDN can
be refined to improve some implementation aspect such as
area, timing, etc without affecting the overall correctness of
the BDN.

A. Preliminaries

Definition 10. (Bounded Dataflow Network (BDN))
A BDN is a network of primitive BDN nodes such that

1) At most one node can enqueue in a given FIFO and at
most one node can dequeue from a given FIFO.

2) For any FIFO X in the network, the transitive closure of
Combinational-connected(X) is well defined, i.e., X is not
in the transitive closure of Combinationally-connected(X).

The transitive closure restriction formally says that a BDN
does not contain any “combinational loops”. Note the similar-
ity of this definition with that of SSMs (Definition 1).

Lemma 1. If an SSM is formed as a network of smaller SSMs,
then a BDN can be formed as a corresponding network of
primitive BDNs that implement the smaller SSMs.

Proof: Since an SSM formed from smaller SSMs does not
contain a combinational loop, neither does the corresponding
network of the primitive BDNs; thus it forms a BDN.

We now extend several definitions that we had for primitive
BDNs to larger BDNs.

Definition 11. (Depends-on relation for BDNs)
For any output Oi of a BDN R, Depends-on(Oi) is the in-

puts of R that are in the transitive closure of Combinationally-
connected(Oi).

Definition 12. (NED property for BDNs)
A BDN has the NED property if all outputs have been

enqueued atleast n − 1 times and for each output Oi, all the
inputs in Depends-on(Oi) are enqueued n times, and all other
inputs are enqueued at least n − 1 times, then Oi must be
enqueued n times.

Definition 13. (SC property for a BDN)
A BDN has the SC property, if all the outputs are enqueued

n times, then all the inputs must be dequeued n times,
assuming an infinite source for each input.

Definition 14. (Latency-Insensitive (LI) BDNs)
An LI-BDN is a BDN which has the NED and SC proper-

ties.

A natural equivalence relation between BDNs can be de-
fined in terms of their input-output behavior as follows:

Definition 15. (Equivalence of BDNs)
BDNs R1 and R2 are said to be equivalent iff

1) There is a bijective mapping between the inputs of R1 and
R2, and a bijective mapping between the outputs of R1

and R2.
2) The output histories of R1 and R2 matches whenever the

input histories matches, i.e.,
∀n > 0,

I(k) for R1 and R2 matches (1 ≤ k ≤ n)
⇒O(j) for R1 and R2 matches (1 ≤ j ≤ n)

Our theory rests on the fact that this equivalence relation
becomes a congruence for LI-BDNs, i.e., if two LI-BDNs are
equivalent then there is no way to tell them apart regardless
of the context.

B. Structural composition of BDNs

Just like SSMs, any BDN can be formed inductively using
parallel and iterative compositions of BDNs starting with
primitive BDNs.

Definition 16. (Structural definition of BDNs)
1) Primitive BDNs are BDNs
2) If R1 and R2 are BDNs, then so is the parallel composition

of R1 and R2, written as R1 ⊕ R2 (Figure 13a). The
semantics of parallel composition of two BDNs is defined

177

R

R1

R2...
... ...

...

R1

R2...
... ...

...

(a) Parallel composition of BDNs

S

S1... ...S1... ...

Ii Oj Ii Oj

(b) Iterative composition of BDNs

Fig. 13: Composition of BDNs

by the union of the two sets of disjoint rules (i.e., rules
with no shared state) for the two BDNs.

3) If R1 is an BDN then so is the (Ii, Oj) iterative composi-
tion of R1 written as (Ii, Oj)�R1 (Figure 13b), provided
that Ii /∈ Depends-on(Oj). The semantics of the iterative
composition of a BDN is defined by aliasing the name of
a pair of an input and an output FIFO in the set of rules
associated with the BDN.

The following two theorems are the main theorems of this
paper:

Theorem 1. (Modular Composition Theorem)
If R1 and R2 are LI-BDNs implementing SSMs S1 and S2,

respectively, then
• R = R1⊕R2 is an LI-BDN that implements S = S1+S2.
• R = (Ii, Oj) � R1 is an LI-BDN that implements S =

(Ii, Oj) · S1.

Theorem 2. (Modular Refinement Theorem)
Equivalence of two LI-BDNs is preserved under parallel

and iterative composition, i.e. if R1 and R2 are LI-BDNs
equivalent to BDNs R′1 and R′2, then
• R = R1⊕R2 is an LI-BDN equivalent to R′ = R′1⊕R′2.
• R = (Ii, Oj) � R1 is an LI-BDN equivalent to R′ =

(Ii, Oj)�R′1.

The proofs of the two theorems are very similar; we only
give the proof of Theorem 1.

Proof:
1) Compositions of LI-BDNs are LI-BDNs. (Lemma 2)
2) LI-BDNs are deadlock-free. (Lemma 3)
3) If R is a composition of LI-BDNs R1 and R2 then R

partially implements the composition of S1 and S2 where
S1 and S2 are the SSMs corresponding to R1 and R2,
respectively. (Lemma 4)

Lemma 2. (Closure property of LI-BDNs) If R1 and R2 are
LI-BDNs then so are R1 ⊕R2 and (Ii, Oj)�R1.

Proof: The proof is obvious for the parallel composition.

For the iterative composition, we show by induction on n,
Oj will be enqueued and dequeued n times if all the inputs are
enqueued n times and all the outputs are enqueued n times.
This is trivial as Oj will not wait for Ii (as R1 has the NED
property). All output FIFOs of R1 can now be enqueued and
so all input FIFOs of R1 can be dequeued (R1 has the SC
property).

We now prove again by induction on n that for an output
Ok 6= Oj , Ok will be enqueued n times if all the inputs in
Depends-on(Ok) are enqueued n times, and all the other inputs
are enqueued at least n − 1 times, and all the other outputs
are enqueued at least n− 1 times (NED property). There are
two cases to consider:

1) Ii /∈ Depends-on(Ok): trivial as R1 is an LI-BDN.
2) Ii ∈ Depends-on(Ok): Oj is not full because of the SC

property of R1 and it will be enqueued n times because
of NED property of R1, which makes Ii and hence Ok

enqueued n times.
By a similar induction on n we can show that if all the

inputs are enqueued n times, and all the outputs are enqueued
n times, then all the inputs will be dequeued n times (SC
property).

Lemma 3. (Deadlock-free Lemma) LI-BDNs are deadlock-
free.

Proof: Given infinite sinks for outputs and infinite source
for inputs, by induction on the number of inputs and outputs
enqueued it can be shown using the NED and SC properties
of an LI-BDN that it will not deadlock.

Lemma 4. If R1 and R2 are LI-BDNs then R1⊕R2 partially
implements S1 + S2 and (Ii, Oj) � R1 partially implements
(Ii, Oj) · S1

Proof: The proof is obvious for the parallel composition.
For iterative composition, we first show by induction on n

Oj(n) matches for R and S whenever the input histories for R
and S match upto n values. Oj(n) does not depend on Ii(n)
in S1. So Oj(n) matches in R1 and S1 whenever the rest of
the inputs match upto n− 1 as R1 implements S1.

We show by induction on n, for an output Ok 6= Oj , Ok

will have the same nth values in the SSM and the LI-BDN if
the input histories match upto n values. There are two cases
to consider:

1) Ii /∈ Depends-on(Ok): trivial as R1 implements S1.
2) Ii ∈ Depends-on(Ok): Oj(n) matches. Since all the nth

inputs are the same for R1 and S1, all the nth outputs
will be the same in both.

V. CYCLE-ACCURATE REFINEMENTS OF SSMS USING
LI-BDNS

One way to apply the theory that we have developed is to
refine parts of an existing SSM (referred to as the model SSM
in this section) into more area-efficient hardware structures.
Such modular refinements, in general, are quite difficult be-
cause the refined module may take a different number of cycles

178

cuts

S3

(big)
S2

(big)
S1

(a) Model SSM

R2 R3R1

S1
S2

(big)
S3

(big)

(b) Turning the model SSM into an LI-BDN

R’2
(small)

R1

S1 R’3
(small)

(c) Refining R2 and R3

Fig. 14: Modular Refinement

than the original module. Under such circumstances even if
one proves the functional correctness of the refined module
with respect to the original module, there is no guarantee that
the functionality of the model SSM would be preserved by
the modularly refined design. This problem is faced by many
designers who are trying to use FPGAs.

Based on the theory we have presented, a designer can make
one or more cuts in his model SSM to separate the modules
he wishes to change. Each such module can be converted into
an LI-BDN using the procedure given in Section III-E. Once
the SSM is implemented as a network of LI-BDN nodes, then
each node can be refined into a different but equivalent LI-
BDN (Figure 14). There is no need to verify the entire LI-
BDN again for correctness, just the changed node has to be
validated. Thus one can do true modular refinements using
LI-BDNs. In this section, we give examples of some useful
refinements of LI-BDNs.

Example 1: Optimizing the multiplexor

Figure 15a shows an SSM for a multiplexor and Figures
15b and 15c show primitive BDNs which implement the
multiplexor. Figure 15b is the standard primitive BDN while
in Figure 15c the rule waits only for the input indicated by
the predicate. The output will be enqueued by the rule even if
the other input takes longer to get enqueued. When the other
input finally arrives, it will be discarded; the counters keep
track of how many inputs to discard. A similar multiplexor
was considered using A-Ports [15]. The BDN is an LI-BDN
because it obeys the NED and SC properties. In general, this
idea can be used to “run-ahead” in any LI-BDN, without
waiting for all the inputs, thereby improving the performance
of the whole system. This is shown in Figure 15d. If function
g is implemented as a multi-cycle function, then the output
in d has to wait till g is computed every time if we use
the multiplexor in Figure 15b. If we use the multiplexor in
Figure 15c, then the multiplexor has to wait for g only if the
predicate c is false.

a

b

c

d

(a) Multiplexor SSM

a

b

c

d
aCnt

bCnt

rule OutD
when (¬d.full ∧ ¬c.empty ∧ ¬a.empty ∧ ¬b.empty)
⇒ if(c.first) then d.enq(a.first);

else d.enq(b.first);
a.deq; b.deq; c.deq

(b) A multiplexor BDN (Does not use the Done flags)
rule OutD

when (¬d.full ∧ ¬c.empty)
⇒ if(c.first ∧ ¬a.empty ∧ bCnt 6= max) then

d.enq(a.first); a.deq; c.deq; bCnt ← bCnt+1;
else if(¬b.empty ∧ aCnt 6= max)
d.enq(b.first); b.deq; c.deq; aCnt ← aCnt+1;

rule DiscardA
when (aCnt > 0 ∧ ¬a.empty)
⇒ a.deq; aCnt ← aCnt-1

rule DiscardB
when (bCnt > 0 ∧ ¬b.empty)
⇒ b.deq; bCnt ← bCnt-1

Initial
aCnt ← 0; bCnt ← 0

(c) A performance-optimized multiplexor BDN

a

b

c

d
aCnt

bCnt

f

g

x

y

(d) Illustrating the performance optimized multiplexor

Fig. 15: Optimizing the multiplexor BDN

Example 2: Multicycle implementation of Content Addressable
Memory (CAM)

Figure 16a shows a synchronous CAM lookup. The CAM
is an array of n elements, where each element stores a (key,
value) pair. Every cycle, the synchronous CAM returns a value
and the index of the search-key in the CAM-array if the key
is found; otherwise it returns an Invalid. If the upd signal
is enabled, then the CAM array is updated with uKey and
uVal at the position given by uIdx. Single cycle CAMs are
expensive structures in terms of area and critical path. If the
CAM is implemented as an LI-BDN, then it can be refined
to do a sequential lookups taking several cycles to lookup the
value corresponding to a key (Figure 16b). See [16] for other
multi-cycle implementations of CAM. This keeps the rest of
the system using the CAM unchanged, while resulting in a
circuit with lesser area and lesser critical path than the original
unrefined LI-BDN. If the CAM lookup is not done frequently,

179

ar
ra

y

key

upd

uIdx

uKey

uVal

Invalid/(val_idx)

(a) A single cycle CAM lookup SSM

ar
ra

y
key

upd

uIdx

uKey

uVal

Invalid/(val_idx)
done

idx

rule OutValueIndex
when (¬key.empty ∧ ¬val_idx.full ∧ ¬done)
⇒ if(idx = LastIdx+1)

val_idx.enq(Invalid); idx ← 0;
done ← True

else if(array[idx].key = key.first)
val_idx.enq(array[idx].value, idx);
idx ← 0; done ← True

else idx ← idx + 1
rule Finish
when (¬key.empty ∧ ¬upd.empty ∧

¬uKey.empty ∧ ¬uVal.empty ∧
¬uIdx.empty ∧ done = True)

⇒ if(upd.first)
array[uIdx.first].key = uKey.first;
array[uIdx.first].val = uVal.first;

key.deq; upd.deq; uKey.deq; uVal.deq;
uIdx.deq; done ← False

(b) Multicycle LI-BDN implementing the CAM

Fig. 16: CAM lookup as a multicycle LI-BDN

then using the multiplexor that we discussed above we can
ensure that even the performance degradation is minimized.

VI. CONCLUSIONS

We have presented a theory using Bounded Dataflow Net-
works (BDNs) that can help in modular latency-insensitive
refinements of synchronous designs. The theory should help
implementers avoid deadlocks in implementing latency insen-
sitive circuits, especially when refinements involve changes in
design that affect the timing.

In future we wish to explore the use of BDNs even in
the absence of a clearly specified model SSM. For example,
it is not clear how the timing requirements for a modern
complex processor should be specified. One can use the RTL
of the microprocessor as a timing specification but usually
RTL is not available at the time when modelers do their
architectural explorations. Furthermore, architects want to be
able to modify their micro-architectures and study its effect
on performance (i.e., the number of cycles it takes to execute
a program) without having to worry about the correctness of
various models. We doubt that RTL for the many variants of
the models that an architect wants to study can be provided
to the architect. It is quite common to set up the design in a
way that latency insensitive aspects of the design are clear to

the modeler. However, a modeler probably would not want to
make any changes in its design to accommodate the vagaries
of an FPGA implementation because mixing of these two
concerns may destroy his intuition about the performance of
the machine to be studied. We think BDNs can provide the
required separation between these two types of timing changes.

ACKNOWLEDGEMENT

The authors would like to thank Intel Corporation and
NSF grant Generating High-Quality Complex Digital Systems
from High-level Specification (No. 0541164) for funding this
research. The discussions with the members of Computation
Structures Group at MIT, especially Joel Emer, Mike Pellauer,
Asif Khan and Nirav Dave have helped in refining the ideas
presented in this paper.

REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Information Processing ’74: Proceedings of the IFIP Congress,
J. L. Rosenfeld, Ed. New York, NY: North-Holland, 1974, pp. 471–475.

[2] J. B. Dennis and D. P. Misunas, “A preliminary architecture for a
basic data-flow processor,” in ISCA ’75: Proceedings of the 2nd annual
symposium on Computer architecture. New York, NY, USA: ACM,
1975, pp. 126–132.

[3] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in DAC ’00: Proceed-
ings of the 37th conference on Design automation. New York, NY,
USA: ACM, 2000, pp. 361–367.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “Theory
of latency-insensitive design,” Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, vol. 20, no. 9, pp. 1059–
1076, Sep 2001.

[5] L. P. Carloni, K. L. Mcmillan, and A. L. Sangiovanni-vincentelli,
“Latency insensitive protocols,” in in Computer Aided Verification.
Springer Verlag, 1999, pp. 123–133.

[6] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli,
“A methodology for correct-by-construction latency insensitive de-
sign,” Computer-Aided Design, 1999. Digest of Technical Papers. 1999
IEEE/ACM International Conference on, pp. 309–315, 1999.

[7] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer, “A-
ports: an efficient abstraction for cycle-accurate performance models on
fpgas,” in FPGA ’08: Proceedings of the 16th international ACM/SIGDA
symposium on Field programmable gate arrays. New York, NY, USA:
ACM, 2008, pp. 87–96.

[8] ——, “Quick performance models quickly: Closely-coupled partitioned
simulation on fpgas,” April 2008, pp. 1–10.

[9] D. Chiou, D. Sunwoo, J. Kim, N. Patil, W. H. Reinhart, D. E. Johnson,
and Z. Xu, “The fast methodology for high-speed soc/computer simula-
tion,” in ICCAD ’07: Proceedings of the 2007 IEEE/ACM international
conference on Computer-aided design. Piscataway, NJ, USA: IEEE
Press, 2007, pp. 295–302.

[10] K. Asanovic. (2008, January) RAMP Gold. RAMP Retreat. [Online].
Available: http://ramp.eecs.berkeley.edu/Publications/RAMP%20Gold%
20(Slides,%201-16-2008).ppt

[11] D. Chiou, private Communication.
[12] J. Hoe and Arvind, “Operation-centric hardware description and synthe-

sis,” Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 23, no. 9, pp. 1277–1288, Sept. 2004.

[13] J. C. Hoe and Arvind, “Synthesis of operation-centric hardware descrip-
tions,” in ICCAD ’00: Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design. Piscataway, NJ, USA: IEEE
Press, 2000, pp. 511–519.

[14] Bluespec System Verilog. Bluespec Inc. [Online]. Available: http:
//www.bluespec.com

[15] M. Pellauer, private Communication.
[16] K. Fleming and J. Emer, “Resource-efficient fpga content-addressable

memories,” in WARP, 2007.

180

