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Abstract

The International Technology Roadmap for Semiconductors projects that embed-

ded memories will occupy increasing System-on-Chip area. The growing density of

integration increases the likelihood of fabrication faults. The proposed memory repair

strategy employs forward error correction at the system level and mitigates the impact

of memory faults through permutation of high sensitivity regions. The effectiveness of

the proposed repair technique is demonstrated on a 19.4-Mbit de-interleaver SRAM

memory of an ISDB-T digital baseband OFDM receiver in 65-nm CMOS. The pro-

posed technique introduces a single multiplexer delay overhead and a configurable

area overhead of ⌈M/i⌉ bits, where M is the number of memory rows and i is an inte-

ger from 1 to M , inclusive. The proposed strategy achieves a measured 0.15 dB gain

improvement at a 2× 10−4 Quasi-Error-Free (QEF) BER in the presence of memory

faults for an AWGN channel.
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1 Introduction

1.1 Motivation

The International Technology Roadmap for Semiconductors (ITRS) projects that em-

bedded memories will occupy an increasing percentage of a System-on-Chip (SoC)

area [1], [7] as shown in Figure 1.1. As a result, the overall yield of an SoC is becoming

increasingly dependent on memory yield. The high density of integration, aggressive

design rules and small transistor geometries make embedded memories particularly

susceptible to manufacturing defects.

2002 2005 2009 2011 2014
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Figure 1.1: Embedded Memory Increase as a Percentage of SoC Area [1].

Manufacturing process variations also dramatically reduce reliability and yield of

1
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Figure 1.2: Variability Induced Failure Rate vs Technology Node [2].

fabricated SoCs as shown in Figure 1.21. Hence, demand will increase for circuits that

consume large die areas, but are highly adaptable to internal failures. Such designs

can help control costs of design verification, manufacturing and testing [2].

Repair strategies that utilize redundant resources such as spare rows and columns

to repair faulty memory cells introduce area overhead and contribute to the cost of

the SoC. However, not all memory cells contribute equally to system-level perfor-

mance. For example, in baseband signal processing a faulty LSB bit when compared

to an MSB error leads to a smaller performance degradation as measured by system

performance parameters such as the Bit Error Rate (BER). Similarly, memories that

store data prior to filtering and error correction operations exhibit higher error tol-

erance. This variation in sensitivity to bit errors can be exploited to minimize the

impact of errors, whereby memory regions with high sensitivity to error are permuted

with regions of low error sensitivity without resorting to redundant rows and columns.

In many statistical signal processing applications such as digital communications

and video processing a certain number of errors can be tolerated without a notice-

1 Failure rates were obtained by simulating the three canonical circuits (i.e., an SRAM cell, a latch,
and an inverter) under the influence of manufacturing process variability. The respective criteria
for failure: for an SRAM cell, the failure to read, write or standby; for a latch, set-up or hold
failure; and for inverter, a failure to invert the output [2].

2



1 Introduction

able degradation in performance or user experience of the device. As a result, in

memory-intensive algorithms considerable area savings can be achieved by mitigating

the impact of errors without employing redundant resources and instead re-mapping

faulty memory cells containing high value content with working memory cells con-

taining low value content. Thus, a fault sensitivity coefficient can be assigned for

each memory cell based on a system performance metric such as BER and exploited

to reduce implementation area and hence cost.

This thesis presents a memory repair strategy that interfaces with a Built-In Self-

Test (BIST) memory wrapper to detect and analyze the location of errors and min-

imizes their impact by permuting memory regions of high and low error sensitivity,

while minimizing area and timing overhead.

1.2 Objectives

The main objective of this thesis is to develop a cost-effective memory repair solution

for an SoC-based OFDM receiver containing embedded memory. A successful repair

technique should introduce minimal area, speed, and power overhead and provide

acceptable error tolerance as measured by the Bit Error Rate (BER) and the Packet

Error Rate (PER) at the Quasi-Error-Free (QEF) operating point for an AWGN

channel as well as TU-6 and TU-12 fading channels as described in Appendix A. The

objectives of this thesis are to develop a memory repair strategy to:

• Increase SoC Yield

• Lower Memory Repair Cost by Minimizing Logic and Area Overhead

• Improve Performance as Measured by BER, Clock Rate, and Power Dissipation.

Without loss of generality, the operation and performance improvement of the mem-

ory repair strategy is illustrated with an ISDB-T OFDM receiver due to its large

de-interleaver memory requirements as outlined in the ISDB-T standard [3].

1.3 Thesis Outline

The thesis is organized into five chapters. Chapter 1 provides a motivation for the

topic, states thesis objectives and presents the thesis outline. Chapter 2 describes

3



1 Introduction

the embedded-memory OFDM receiver partitioned into stream, block, and Forward

Error Correction (FEC) modules. The de-interleaver embedded memory architecture

as well as the yield and fault models are described. Chapter 3 reviews fault-tolerant

memory repair strategies including the proposed repair technique. Simulation results

of the proposed technique are presented. Chapter 4 details a Very Large Scale Inte-

gration (VLSI) implementation of the proposed repair technique including the repair

architecture, simulation results, FPGA prototype and measurement results. Chapter

5 concludes the thesis with a summary of contributions and future directions. Ap-

pendix A provides important design parameters for the ISDB-T standard including

OFDM transmission parameters and fading channel models. Appendix B contains

pseudocode describing the operation of various interleavers and their corresponding

de-interleavers. Appendix C reviews the operation of the 6-T SRAM memory cell.

4



2 OFDM Receiver Overview

The wireless telegraph is not difficult

to understand. The ordinary telegraph

is like a very long cat. You pull the

tail in New York, and it meows in Los

Angeles. The wireless is the same, only

without the cat.

Albert Einstein

2.1 Introduction

Orthogonal Frequency Division Multiplexing (OFDM) receivers use multiple carriers

to transmit data. OFDM transmission schemes are ubiquitous in wireline (DVB-C,

MoCA, G.hn) as well as wireless (DVB-T/H, LTE, ISDB-T) standards. The design

differences across OFDM receivers supporting different standards can be abstracted

and grouped into stream, block, and Forward Error Correction (FEC) modules. Ac-

cording to the International Technology Roadmap for Semiconductors (ITRS), the

amount of SoC embedded memory used in each of the OFDM receiver modules is

expected to rise [7] and so is the number of manufacturing errors due to technology

scaling and high density of embedded memory. Thus, to address the problem of in-

creasing fault density, a generic model of an embedded-memory OFDM receiver is

developed. Without loss of generality, the proposed memory repair strategy is illus-

trated on an ISDB-T OFDM receiver due to large memory requirements for frequency

time de-interleaving (FTDI) as dictated by the ISDB-T standard [3].

2.2 System Overview

A generic OFDM receiver architecture is presented in Figure 2.1. The receiver can

be partitioned into RF tuner, CPU and digital DEMOD sub-systems. The RF tuner
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sub-system down-converts the RF input to digital baseband using up to NR receive

antennas. The CPU sub-system controls the operation of the demodulator through

the firmware and register interface. The digital DEMOD sub-system processes the

digitized baseband input stream.

The focus of this work is on the digital demodulator detailed in Figure 2.2. An

OFDM demodulator consists of three main processing modules: stream, block, and

FEC modules. The stream modules perform synchronization and mode estimation

functions. The block modules compute the FFT, and carry out channel estimation

and equalization. The FEC modules perform frequency and time de-interleaving in

addition to error correction illustrated by soft-output Viterbi and Reed-Solomon de-

coders ultimately producing the output transport stream ts out.

RF
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Digital

Demod

CPU
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SRAM

FTDI

SRAM

DPN

SRAM

Ch. Est.

SRAM
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Figure 2.3: An Area Accurate ISDB-T Receiver SoC Floorplan with Frequency Time
Deinterleaver Highlighted.

Frequency and time de-interleaver (FTDI) operations require large embedded mem-

ory resources. As a result, the frequency-time deinterleaver is the single largest em-

7



2 OFDM Receiver Overview

bedded memory on chip as can be seen from an area accurate floorplan in Figure

2.3. The de-interleaver memory occupies 62% of the total SoC core area. Therefore,

the de-interleaver memory is the single largest area contributor, followed by the de-

puncturer (DPN) at 4%, the channel estimator at 1.9%, the FFT at 1.5% and the

correlator at 0.5% of embedded SRAM area expressed as a percentage of the total

core area. Furthermore, due to the high density of embedded SRAM, the probability

of SRAM errors per unit area caused by manufacturing defects is higher than digital

logic further magnifying its importance. Thus, area efficient memory repair strate-

gies must be developed to address the higher probability of SRAM bit errors. We

briefly review the operation of stream, block and FEC modules and comment on their

respective memory demands and opportunities.

2.3 Stream Modules

A block diagram of the stream modules is shown in Figure 2.4.

Low IF
Digital

AGC
Carrier and Timing Recovery

|ts_in|
2

To FFT

To RF

ts_in

Freq

Offset
Correlator

From FFT Mode

Estimation

Figure 2.4: OFDM Stream Modules.

In the Low IF block, the DC-offset of the transport stream (TS) input is removed

to avoid front-end circuit saturation and to allow for an accurate spectrum estimate

of the low frequency components. The signal is further filtered using a cascade of

IIR filters and the signal power is computed and forwarded to the digital Automatic

Gain Control (AGC) module. The digital AGC scales I/Q according to the power

computation in the Low IF block to reduce dynamic range through amplification of

signals with low input-power or attenuation of high input-power signals.

The carrier and timing recovery module applies frequency offset correction to the

input I/Q data via the COordinate Rotation DIgital Computer (CORDIC) algo-

rithm [8], [9] using a rotation angle supplied by the frequency offset module in which

8



2 OFDM Receiver Overview

the integer and the fractional carrier frequency estimates are combined into a sin-

gle control parameter. Next, temporal Inter-Carrier Interference (ICI) cancelation is

performed and the rotated I/Q data is re-sampled to the FFT sampling frequency.

The correlator is used for mode and channel estimation. The transmission mode and

the guard interval (GI) are estimated by the maximum value of cross-correlation ϕaix

between the received signal x and a stored set of vectors ai corresponding to i different

modes and GI lengths:

ϕaix[n] =
N−1∑
k=0

ai[k]x[n+ k] (2.1)

Embedded SRAM memory is used in the implementation of delay buffers for GI

correlation, ICI cancelation, as well as Look-Up Tables (LUTs) for CORDIC rotation

angles. The combined memory area for stream blocks constitutes 1.7% of the SoC

core area. Due to the small memory size, the expected number of memory faults is

lower, while memory repair poses a larger percentage of area overhead. Thus, the

benefits of memory repair may not justify the implementation costs, and therefore

memory instances of small size are typically unrepairable, although memory built-in

self-test (MBIST) is used to test for memory faults.

2.4 Block Modules

The block modules convert the processed I/Q data into the frequency domain, collect

channel information and perform channel equalization as shown in Figure 2.5. The

To Frequency Offset

To DemapperChannel

Equalizer

Symbol

Sync

Channel

Estimator

From

Correlator

From Carrier and 

Timing Recovery

Figure 2.5: OFDM Block Modules.

symbol sync block issues an FFT start signal based on the correlation of the cyclic

prefix with the received symbol. An 8K FFT computes the frequency spectrum of

the OFDM frame data. The frequency offset module estimates frequency offset larger

9



2 OFDM Receiver Overview

than the carrier interval according to pilot tones embedded in the OFDM frame [3].

The channel estimator constructs a channel delay profile by interpolating the am-

plitudes of the pilot signals. For multiple antenna configurations, the weight factors

used in maximal-ratio combining are also computed from noise power estimates of

the delay profile:

Y =

∑NR

i=0
Ĥi∗

σi

Ŷ i

σi∑NR

i=0
|Ĥ(i)|2

σ2
i

(2.2)

where Ĥ is the channel estimate, NR is the number of receive antenna, and σi is the

standard deviation of the noise. The channel equalizer uses the channel estimate Ĥ

for channel compensation:

ŝ =
y

Ĥ
=

y × Ĥ∗

|Ĥ|2
(2.3)

Embedded memory is used in the implementation of adaptive channel estimation

and computation of the 8K FFT. The memory size depends on the particular architec-

ture used to implement the block modules. For example, single and multi-path Delay

Commutator (DC) and Delay Feedback (DF) FFT architectures [10], [11] offer differ-

ent design trade-offs in terms of memory storage of twiddle multipliers, the number

of additions and multiplications, butterfly and multiplier utilization, and complex-

ity of the control logic. In particular, the use of mixed and higher radix butterfly

architectures such as R22SDF [12] can lower computational complexity and provide

optimum performance and memory storage well suited for VLSI implementation. The

embedded memory used to implement the block modules represents 6.1% of the SoC

core area.

2.5 FEC Modules

The FEC modules carry out forward error correction as shown in Figure 2.6. The

FEC modules include a frequency and time de-interleaver (FTDI), a de-puncturer

(DPN), a Viterbi decoder for the inner convolutional code and a Reed-Solomon (RS)

decoder for the outer Reed-Solomon code.

10
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Figure 2.6: OFDM FEC Blocks.

2.5.1 Inner Code

A punctured convolutional code with a constraint length of m = 7 and a coding

rate of 1/2 is used as the inner code with generator polynomials G1 = 171oct and

G2 = 133oct [3]. The Viterbi Algorithm (VA) [13] is used for maximum likelihood

sequence decoding of convolutional codes. The 64-state Viterbi can be visualized by

means of a trellis diagram. The Viterbi algorithm operates on a trellis by computing

a metric for each branch in a trellis such as the Euclidean distance between the

received and the ideal constellation points for an AWGN channel. Therefore, a path

in a trellis with the minimum accumulated path metric represents the most likely

transmitted sequence. By selecting the common ancestor on the minimum distance

survivor path from each state in the trellis, the Viterbi algorithm performs maximum

likelihood sequence detection. Moreover, the difference in branch metrics between

the minimum distance path and the next shortest path can be used to calculate a

reliability value for each decoded bit. The Log-Likelihood Ratio (LLR) is used to

quantify reliability and improve decoding performance in the Soft Output Viterbi

Algorithm (SOVA) [14]. The LLR of bit xk given the received vector y is defined as:

LLR(xk|y) = ln
P [xk = 1|y]
P [xk = 0|y]

(2.4)

Figure 2.7(a) shows the decoding performance of hard and soft output Viterbi algo-

rithms for a rate-1/2 convolutional code generated by G1 = 171oct and G2 = 133oct.

Figure 2.7(b) shows the decoding performance of SOVA for variable code rates created

using the puncture pattern in Table 2.1.
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Figure 2.7: Viterbi Decoding of a Rate-1/2 Convolutional Code with Constraint
Length m = 7, Generated by G1 = 171oct, G2 = 133oct.
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Code Rate Puncture Pattern Transmitted Sequence
X : 1

1/2 Y : 1 X1, Y1
X : 1 0

2/3 Y : 1 1 X1, Y1, Y2
X : 1 0 1

3/4 Y : 1 1 0 X1, Y1, Y2, X3
X : 1 0 1 0 1

5/6 Y : 1 1 0 1 0 X1, Y1, Y2, X3, Y4, X5
X : 1 0 0 0 1 0 1

7/8 Y : 1 1 1 1 0 1 0 X1, Y1, Y2, Y3, Y4, X5, Y6, X7

Table 2.1: Puncture Pattern for a Rate-1/2 Convolutional Code with m = 7, G1 =
171oct, G2 = 133oct.
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Figure 2.8: A Viterbi Decoder Architecture.

There are three main components to the Viterbi algorithm: branch metric com-

putation, add-compare-select and traceback survivor sequence decoding as shown in

Figure 2.8. The branch metric computation unit calculates the distance between the

received signal and the ideal expected signals. The add-compare-select unit accumu-

lates the path metric. The traceback unit or survivor path decode keeps track of the

minimum distance path through the trellis. While branch metric computation and

add-compare-select units carry out arithmetic operations, the survivor path decode is

the most memory intensive block in the Viterbi algorithm. Typically, path histories of

length 10×m are maintained and for the 64-state SOVA with 10-bit LLR a traceback

memory of (10× 7)× 64× 10 = 44, 800 bits is needed.
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Figure 2.9: A Reed-Solomon Decoder.

2.5.2 Outer Code

A shortened Reed-Solomon RS(204, 188) code is used as an outer code by padding a

RS (255, 239) code with 51 bytes of zeros. Reed-Solomon codes consist of non-binary

symbols and therefore the correction of a single symbol results in the correction of

multiple bits. Thus, Reed-Solomon codes are well suited for burst error correction.

Reed-Solomon codes are linear block codes of length q-1 over the finite field GF(q)

and are a subclass of q-ary BCH codes [15]. For a t-error correcting RS code with

symbols from GF(q), the code parameters are:

• Block Length: n = q − 1

• Parity Symbols: n− k = 2t

• Dimension: k = q − 1− 2t

• Minimum Distance: dmin = 2t+ 1

The decoders of Reed-Solomon codes operate on syndromes derived from evaluation

of the received word represented as a polynomial over GF(q) as shown in Figure 2.9.

From the syndromes, an equation is derived, the solution to which gives an error loca-

tor and error magnitude polynomials. The Berlekamp-Massey [16] and Euclidean [17]

algorithms are two efficient ways of solving the syndrom equation to determine the

error location and error magnitude polynomials. The actual error locations are de-

termined by finding the roots of the error-locator polynomial. A Chien search [18]

provides a fast algorithm for determining the roots of a polynomial over a finite field.

The error magnitudes can be evaluated using the Forney algorithm. Finally, error

correction is performed by adding the error magnitudes to the received codeword.
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2 OFDM Receiver Overview

The primitive polynomial used to define GF(28) is:

p(x) = x8 + x4 + x3 + x2 + 1 (2.5)

The shortened RS (204, 188) is generated by the following polynomial:

g(x) = (x− α0)(x− α1)(x− α2) . . . (x− α15), (2.6)

where α = 02HEX [3]. The RS decoder is capable of correcting 8 consecutive bytes in

error:

t = ⌊n− k

2
⌋ = ⌊204− 188

2
⌋ = 8 bytes (2.7)

The implementation of the RS decoder in Figure 2.9 for an (n, k) block code requires

(13n−13k) registers, (11n−11k−4) GF adders, (n−k+1) constant GF multipliers,

8 × (n − k) − 1 GF multipliers, in addition to memory required to store n input

symbols: 256× 20 bits = 5, 120 bits.
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Figure 2.10: Concatenated Code Configurations.

A concatenation of inner and outer codes can achieve lower decoding complexity

than a single code of comparable performance. A concatenated code is constructed

by combining inner and outer codes separated by an interleaver in a serial, parallel,

hybrid or iterative configuration as shown in Figures 2.10(a)-2.10(d). An iterative,

turbo-like [19] configuration is used in the generic OFDM receiver model in Figure 2.2

in which the extrinsic information is exchanged bewteen two Soft-Input Soft-Output

15



2 OFDM Receiver Overview

(SISO) decoders. A useful tool in the study and design of iterative decoding is the

Extrinsic Information Transfer (EXIT) chart introduced in [20].

The bulk of embedded memory is used in the implementation of the Forward Error

Correction modules. In particular, embedded memory is used in the implementation

of the frequency and time de-interleaver followed by the de-puncturer, Viterbi survivor

sequence memory [21], [22], convolutional byte interleavers and the implementation

of RS decoding algorithms such as Berlekamp-Massey [16], Euclidean [17] or Koetter-

Vardy [23], [24] algorithms. The embedded memory used to implement the FEC

modules occupies 68% of the SoC core area, while the frequency-time de-interleaver

memory occupies 62% of the SoC core area. Thus, the frequency-time de-interleaver

presents the greatest opportunity for developing efficient memory repair strategies.

2.6 Frequency Time Deinterleaver

2.6.1 Overview

A high level block diagram of the frequency time deinterleaver (FTDI) is shown in

Figure 2.11. The de-interleaver performs the reverse of the interleaver sequence of

operations as detailed in the ISDB-T standard [3]. An interleaver changes the or-
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Figure 2.11: Frequency Time De-interleaver Overview.

der of symbols before transmission to convert long burst errors into shorter burst or

random errors that can be more easily corrected by the error correction logic [25], [26].
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Figure 2.12: Convolutional Interleaver (Tx) - Deinterleaver (Rx) Pair.

Interleavers are characterized by an encoding delay and storage capacity and can

take on a convolutional or a block form [25]. A block interleaver of degree m formats

the input symbol vector of length m × n into a rectangular array of m rows and n

columns such that a consecutive pair of symbols at the input appearsm symbols apart

at the output. The rectangular array is filled row-by-row and the interleaver output is

read out column-by-column. As a result, an (n, k) block code that can handle burst

errors of length b < ⌊1
2
(n−k)⌋ when combined with an interleaver of degree m creates

an interleaved (mn, mk) block code that can handle bursts of length m × b [27]. A

convolutional interleaver of degree m consists of m shift registers with the ith register

having a storage capacity of (i− 1)× d, for a fixed integer d and i = 1, 2, 3, . . . ,m.

Each new input symbol is written to a new shift register, while the oldest symbol in

the shift register is shifted to the output. Convolutional interleavers reduce the re-

quired storage space to approximately half of block interleavers but require a higher

degree of clock synchronization. The synchronization period can be reduced with

the use of helical interleavers [28]. Appendix B provides pseudocode describing the

operation of the various interleavers and their corresponding de-interleavers. Table

2.2 summarizes the delays and storage capacities for the three types of interleavers.

Convolutional interleaving is used to reduce the total transmission and reception time

as well as decrease the required memory storage.

Figure 2.13 introduces an OFDM frame structure used in the ISDB-T standard [3].

The ISDB-T features three transmission modes (1, 2, and 3) over a 5.575 MHz channel

bandwidth divided into 13 OFDM segments with different transmission parameters

for each mode as summarized in Appendix A. Internally, the data is divided into
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Type Storage Capacity Delay

Block m× n m× (n− 1)

Convolutional (m/2)× (m− 1)× d m× (m− 1)× d

Helical m× n m× n⌈(m+ 1)/n⌉

Table 2.2: Interleaver Characteristics.
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Figure 2.13: OFDM Frame Structure [3].
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three hierarchical layers (A, B, and C) that can have different information bit rates to

accommodate video, audio, and data transmission [29]. Each OFDM segment consists

of S(i, j, k) OFDM symbols identified by the symbol number i ({i ∈ Z | i ∈ [0, 203]}),
the carrier number j ({j ∈ Z | j ∈ [0, nc − 1]}), where nc is the number of carriers

equal to 96, 192, and 384 for Modes 1, 2, and 3, respectively; and a segment number

k ({k ∈ Z | k ∈ [0, 12]}).

2.6.2 Frequency Deinterleaver

A block diagram of the frequency deinterleaver is shown in Figure 2.14. The de-mux

block routes OFDM symbols based on the segment number into partial-reception1,

differential modulation (DQPSK) and coherent modulation (QPSK, 16-QAM, 64-

QAM) streams.
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Figure 2.14: Frequency Deinterleaver Block Diagram.

The intra-segment frequency de-interleaving consists of a carrier de-randomizer fol-

lowed by a carrier rotator. The carrier de-randomizer modifies the carrier number j,

while the carrier rotator changes the symbol number i of an OFDM symbol S(i, j, k)

within an OFDM segment k. Both are intended to eliminate periodicity in carrier ar-

rangement in order to prevent burst errors of a specific segment’s carriers, which may

occur if a reciprocal of the carrier arrangement period matches the frequency-selective

fading of the channel. The inter-segment de-interleaving modifies the segment num-

ber k of an S(i, j, k) OFDM symbol. Inter-segment de-interleaving is conducted across

segment and layer boundaries to maximize the benefit of frequency interleaving.

1 Reception of only one OFDM segment at the center of a group of segments for low SNR.
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Figure 2.15: Carrier Randomization for an OFDM Symbol S(i, j, k) in Mode 2.

More specifically the permutation functions of the three blocks are given by:

The carrier de-randomizer changes the carrier number j according to randomiza-

tion tables defined in the standard [3]. Figure 2.15 shows a sample mapping of the

kth OFDM segment for transmission Mode 2.

The carrier rotator permutes the symbol number i within an OFDM segment k as

follows:

S(i, j, k) ⇒ S(k+i mod nc, j, k) (2.8)

where S(i, j, k) is an OFDM symbol number i ({i ∈ Z | i ∈ [0, 203]}), transmit-

ted by carrier j ({j ∈ Z | j ∈ [0, nc − 1]}), with the carrier number nc equal

to 96, 192, and 384 for Modes 1, 2, and 3, respectively; in the OFDM segment k

({k ∈ Z | k ∈ [0, 12]}).

The inter-segment frequency de-interleaver permutes the symbol number i between

the OFDM segments as follows:

S(i, j, k) ⇒ S(k mod m, j, i mod nc) (2.9)
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where m is the degree of the inter-segment de-interleaver. Figures 2.16(a) and 2.16(b)

show the input data stream of m × nc OFDM symbols before and after the inter-

segment frequency de-interleaver.
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Figure 2.16: Inter-segment Frequency De-Interleaver.

2.6.3 Time Deinterleaver

The data sub-carriers are deinterleaved in time between the 13 OFDM segments

as well as within each segment. Inter-segment time deinterleaving is performed by

distributing the data across OFDM segments as shown in Figure 2.17. Intra-segment

time deinterleaving is carried out via convolutional deinterleavers introduced in Figure

2.12.

Layer Number of Modulation Code Deinterleaver
Name Segments Scheme Rate, R Length, I

A 1 QPSK 2/3 4
B 12 64-QAM 3/4 2
C 0 16-QAM 3/4 1

Table 2.3: ISDB-T Mode 3: Typical Transmission Parameters.

Each OFDM segment contains nc data sub-carriers for a maximum of 13 × 384 =

4992. The length of the delay buffers used for intra-segment interleaving is given by

the interleaver length I multiplied by the delay function mi, where

mi = (i× 5) mod 96 (2.10)
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Figure 2.17: Time Deinterleaver Block Diagram.

and i ({i ∈ Z | i ∈ [0, nc − 1]}) with nc equal to 96, 182, and 384 for Modes 1, 2,

and 3, respectively. For example, in Mode 3 with typical transmission parameters for

layer B according to Table 2.3, the worst-case time deinterleaver delay is

max
i

[I ×mi] = max
i

[2× (i× 5) mod 96] = 190 symbols (2.11)

Based on Figure 2.13, the number of information bits in one OFDM frame for typical

transmission parameters in Table 2.3 is:

203×384
sym.

seg.
× (1 seg.× 2 bits

QPSK sym.
+12 seg.× 6 bits

64QAM sym.
) = 5, 768, 448 bits

Assuming a 20-bit de-interleaver word with 8-bit I, 8-bit Q and 4-bit CN, the de-

interleaver storage capacity required for one OFDM frame is:

13 seg.× I ×
nc−1∑
i=0

(i× 5 mod 96)× 20
bits

seg.
= 18, 969, 600 bits.
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2.6.4 Deinterleaver Architecture

Frequency and time de-interleaving is implemented by address generation logic for

one OFDM frame stored in the deinterleaver SRAM memory. To carry out frequency

de-interleaving, a combination of look-up tables and computational logic are used to

implement the carrier de-randomizer followed by the carrier rotator equation (2.9):

S(i, j, k) ⇒ S(k+i mod nc, j, k)

Inter-segment frequency de-interleaving is accomplished by rotating i and k indices

and implementing the modulo operation [30]. Time de-interleaving is carried out

according to Figure 2.17. The sequence of frequency and time de-interleaving opera-

tions is controlled by a finite state machine.

To support multiple transmission modes, the de-interleaver requires approximately

19.4-Mbits of memory. In addition, the high density of integration of SRAM memory

increases the likelihood of fabrication errors. On the other hand, the de-interleaver

operations precede forward error correction, and therefore a higher degree of fault

tolerance is expected because bit errors introduced by faulty memory cells can be

corrected by the downstream error correction modules. To summarize, the following

two observations can be made about the de-interleaver memory:

• Large capacity memories occupy large area and as a result have a higher prob-

ability of bit errors.

• Memories that store data prior to filtering and forward error correction have

higher error tolerance.

The de-interleaver memory is partitioned into two rows of four RAM tiles each as

shown in Figure 2.18. Type I RAM tiles consist of four 16K×40 memory instances.

Type II RAM tiles contain two instances of 16K×40 and one instance of 12.5K×40.

The total capacity of the de-interleaver memory illustrated in Figure 2.18 is therefore

28× 16K × 40 + 2× 12.5K × 40 = 18, 350, 080 + 1, 024, 000 = 19, 374, 080 bits.

The architecture of the Type I RAM tile is shown in Figure 2.19. The four memory

instances are folded internally into 1K rows and 16 × 40-bit wide columns as shown
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Figure 2.18: A Conceptual FTDI SRAM Architecture.
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Figure 2.20: FTDI Type I SRAM Memory 1K × (16× 40) Architecture.

in Figure 2.20.

The de-interleaver memory instances are implemented as single port SRAM mem-

ories with 1 clock cycle latency. At every clock cycle, only one memory instance for

read and one for write are enabled to reduce power consumption [31]. Typical values

are provided in Example 2.1 below:

Example 2.1: For a 1K×(16×40) instance, the power dissipation is 28.42 µW/MHz

for read and 33.93 µW/MHz for write for TT/1.2V/25◦C. In the worst-case of 4992

data sub-carriers in Mode 3, the effective symbol length is 1008 µs. Therefore, there

are 4992 read and 4992 write operations with a symbol rate of approximately 1 kHz.

The dynamic power for read and write operations can be computed as follows:

Pd, read = 28.42
µW

MHz
× 4992

1008 µs
= 140.7 µW (2.12)

Pd, write = 33.98
µW

MHz
× 4992

1008 µs
= 168.3 µW (2.13)

Therefore, the total dynamic power is Pd = 140.7 µW + 168.3 µW ≈ 0.3 mW at

TT/1.2V/25◦C.
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2.7 Summary

The ISDB-T receiver consists of three main processing modules: stream, block and

FEC modules. The stream modules perform synchronization and mode estimation

functions. The block modules compute the FFT, construct channel delay profile and

perform channel equalization. The FEC modules carry out frequency and time de-

interleaving as well as iterative soft-output Viterbi and Reed-Solomon decoding. The

embedded memory used to implement the frequency and time de-interleaver occupies

62% of the total SoC core area and thus presents the greatest opportunity for devel-

oping efficient memory repair strategies.

The frequency-time de-interleaver imposes large memory requirements in order to

support de-interleaving operations for all transmission modes. The 19.4 Mbit de-

interleaver memory is the single largest embedded memory on the SoC. Implemented

as high density SRAM, the de-interleaver memory block is susceptible to fabrication

faults and therefore area efficient memory repair strategies must be considered. De-

spite its large size, which increases the likelihood of SRAM faults, the de-interleaver

memory is located before the forward error correction modules. Thus, greater error

tolerance to fabrication faults is expected due to iterative error correction of the soft-

output Viterbi and Reed-Solomon decoders. Additional fault tolerance is offered by

the proposed repair technique.

To develop efficient memory repair techniques, Chapter 3 provides an introduction

to yield and fault models, presents a number of repair strategies as well as simulation

results of the proposed repair technique.
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3 Fault-Tolerant Techniques

The greatest of all faults is to be con-

scious of none.

Thomas Carlyle

3.1 Introduction

Fault-tolerant memory repair techniques can be classified according to their use of

redundant resources. Repair techniques with redundancy have an upfront cost of

additional area and require an optimum allocation of the limited number of spare

resources. Repair techniques without redundancy, to be a viable alternative, must

introduce lower area overhead and comparable repair performance. Repair techniques

without redundancy include syndrome error detection, correction and storage of er-

ror information [32], de-clustering of memory failures [33], and permuting memory

cells so as to change uncorrectable memory words into ones that can be corrected [34].

In order to develop effective fault-tolerant repair techniques it is important to

understand the nature of memory faults and to quantify their effect on yield. This

chapter develops the theoretical background for yield and fault models based on

prior work, presents a number of repair strategies as well as simulation results of the

proposed repair technique.

3.2 Yield Model

Yield can be defined as a fraction of manufactured chips that pass a set of stringent

production tests. Yield can be divided into two classes: gross yield and random fault

yield.
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The gross yield refers to gross defects that cause parts of a wafer or the entire wafer

to have non-functional chips. Examples of gross defects that occur during m process

steps required to fabricated the chip include errors in the fabrication process such as

over or under exposure of photoresist, over or under etching, mask misalignment in

the process of photolithography; incorrect doping profile, temperature or time settings

during ion implantation and high device parameter variation. Early warning systems

can be employed to prevent manufacturing products with gross defects such as defect

monitors and test circuits fabricated on-chip or in kerfs between the dies [35]. The

gross yield can be modeled as:

Ygross =
m∏
i=1

Y0i (3.1)

where {Y0i ∈ R | Y0i ∈ [0, 1]} represents the impact of gross defects in the process

step i on the gross yield Ygross.

The random fault yield is based on statistical models of random factors that affect

chip yield. These include gate oxide pin holes, particle contamination, overlay faults,

process-induced shorts and opens, layer thickness and critical dimension variations,

in addition to fault clustering induced by dust particles at exposed edges of the silicon

wafer and other random effects as shown in Figure 3.1. Random faults can be mod-

eled in terms of the average number of faults λj of type j with a particular statistical

distribution [35].
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Figure 3.1: Fabrication Defects in a CMOS Process.
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The average number of faults λj can be approximated by a fault density Dj over

a critical area Aj:

λj = Aj ×Dj (3.2)

where the critical area Aj is defined as the area with a non-zero fault density Dj.

The fault densities are based on empirical analysis of a large number of fabricated

ICs. The fault densities are typically reported by the foundry and used internally for

process improvement. Equation (3.2) can be generalized as a function of space and

time over a critical volume:

λj(t) =

∫
Vj

Vj(x, y, z) Dj(x, y, z, t) dV (3.3)

provided that accurate fault models based on exhaustive pathological data are avail-

able. The fault densities vary across fault types as well as technology nodes and in

general improve over time as the process matures.

To model the statistical distribution of faults during the manufacturing process,

consider the probability generating function G(s; t):

G(s; t) =
∞∑
x=0

p(x, t) sx (3.4)

where s is a dummy real variable. Thus, the distribution p(x, t) of x faults on a chip

at time t can be expressed as:

p(x, t) =
1

x!

∂xG(s; t)

∂sx

∣∣∣∣
s=0

(3.5)

The probability generating function (3.4) can be shown [35] to satisfy the differential

equation:
∂

∂t
G(s; t) = (s− 1)

∞∑
x=0

p(x, t)f(x, t)sx (3.6)

where f(x, t) dt is defined as a probability that a fault will occur during the interval

[t, t+ dt] on a chip that already contains x faults. If we assume that the probability

of a fault occurring on a chip is independent of the number of existing faults, i.e.
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f(x, t) = f(t), then (3.6) can be re-written as:

∂G(s; t)

∂t
= (s− 1)f(t)G(s; t) (3.7)

The first order differential equation (3.7) can be solved for G(s; t):

G(s; t) = eλ(s−1) (3.8)

where

λ =

∫ t

0

f(τ)dτ (3.9)

Equation (3.8) is a generator function for a Poisson probability distribution pX(k)

with E[X] = λ. Recall that the probability mass function (PMF) for a Poisson

random variable is:

pX(k) = e−λ λk

k!
, k = 0, 1, 2, ... (3.10)

A Poisson distribution arises in applications when random events occur in a certain

period of time or in a certain region in space. In this case, the space region is the

critical memory area affected by k fabrication faults.

The random fault yield Yrnd is defined as the probability of having zero faults on a

chip. If we assume that f(x, t) = f(t), Yrnd can be expressed as:

Yrnd = p(0, t) = G(0; t) = e−λ (3.11)

It can be advantageous to break up the integral in (3.9) into m individual process

steps, where the average number of faults collected during the process step i is:

λi =

∫ ti

ti−1

f(τ) dτ (3.12)

Then, the random fault yield Yrnd in (3.11) can be expressed as:

Yrnd = exp(−
m∑
i=1

λi) =
m∏
i=1

e−λi =
m∏
i=1

Yrnd, i (3.13)

where Yrnd, i is the random fault yield corresponding to the process step i. Given a

large number of process steps m and a small probability of finding k random faults
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pXi
(k) in the process step i, the Poisson random variable can be used to approximate

a binomial distribution, provided λi = m× pXi
(k) is constant.

However, experimental data shows that the mean and the variance of the fault

distribution in the process step i do not match λi, as predicted by the Poisson model

[36]. This is caused by a non-constant distribution of the average number of faults

across the wafer, i.e. the value λi varies from chip to chip. Therefore, a mixed Poisson

distribution is used with gamma distribution as a compounder or a mixing function:

Yrnd ∼ Pois(Λ) and Λ ∼ Gamma(α, λ/α). The result is a generalized negative

binomial distribution:

pXi
(k) =

Γ(αi + k)

k!Γ(αi)

(λi/αi)
k

(1 + λi/αi)k+αi
(3.14)

with E[Xi] = λi and V AR[Xi] = λi(1 + λi/αi), where the variation in λi is modeled

by a clustering parameter αi. The corresponding random yield based on the negative

binomial distribution in (3.14):

Yrnd, i = pXi
(0) = (1 +

λi

αi

)−αi (3.15)

Low values of αi are needed to model a high degree of fault clustering. As αi ap-

proaches infinity, (3.15) will approach e−λi , which is the component yield of the

random fault model in (3.11).

Assuming that in each process step i, random faults are independent and identically

distributed (iid), Yrnd can be expressed as:

Yrnd =
m∏
i=1

pXi
(0) =

m∏
i=1

(1 +
λi

αi

)−αi (3.16)

Combining the gross yield in (3.1) with the random fault yield in (3.16), the total

chip yield is given by:

Y =
m∏
i=1

Y0i

m∏
i=1

(1 +
λi

αi

)−αi (3.17)

Embedded memories have a much denser layout in comparison to core logic and

therefore higher fault densities. The fault density of embedded memories can be
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expressed as a multiple cj of logic fault density Dj, where cj may typically vary from

2 to 4. Furthermore, it can be assumed that memory yield is directly related to

chip yield, i.e. an unrepairable memory will result in the entire chip being discarded

during production testing. As a result, the following random fault yield model based

on a Poisson distribution is used by the target foundry:

Yrnd =
m∏
i=1

Yrnd, i =
m∏
i=1

(1 + AiDi(1 + ciRi))
−1 (3.18)

where Ai is the critical area in [mm2], Di is the fault density per layer [1/mm2/layer],

Ri is the ratio of critical memory area to core area, ci is a parameter accounting for

higher density (lower yield) of an embedded SRAM memory.

Example 3.1: In the yield equation (3.18), as the fault density approaches zero, the

overall yield tends to 100%. In the limiting case of Di = 0:

Yrnd =
m∏
i=1

Yrnd, i =
m∏
i=1

(1)−1 = 1 (3.19)

Furthermore, if the chip does not contain embedded memory, the density factor ci = 0

and the yield equation (3.18) reduces to:

Yrnd =
m∏
i=1

Yrnd, i =
m∏
i=1

(1 + AiDi)
−1 (3.20)

Hence, the factor (1 + ciRi) accounts for a higher fault density (lower yield) of ICs

with embedded memory.

Example 3.2: Based on a fault analysis of a statistically significant number of SRAM

memory arrays in 65-nm CMOS technology, an estimated SRAM fault density was

found to be 1.0075×10−4 mm−2. If the frequency-time de-interleaver (FTDI) SRAM

memory is implemented in the same process, we can find the expected number of faults

in the FTDI memory. Assuming an equal fault density Dj = 1.0075× 10−4 mm−2 for

each of the m = 21 memory mask layers, a critical area Aj, FTDI , the total chip area

Aj, the ratio of the critical memory area to core area Rj and a density factor cj = 2,
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the expected number of faults per memory mask layer i is:

λi = AjDj(cjRj) = AjDj(2×Rj) = AjDj(2× Aj, FTDI/Aj)

= 2×DjAj, FTDI = 2×Dj(28× A16K×40 + 2× A12.5K×40)

= 2× (1.0075× 10−4 mm−2)× (12.1749 mm2 + 0.7200 mm2)

= 0.0026

λ =
m=21∑
i=1

λi = 0.0546

Therefore, if we assume a uniform fault density of 1.0075 × 10−4 mm−2 for all 21

memory mask layers with the critical area of each layer equal to the dimensions of

the memory, then ⌈5.46⌉ = 6 out of every 100 chips are expected to have a single bit

error in the FTDI memory.

Using the approach in Example 3.2, the expected number of faults λ was calculated

for every embedded memory in the OFDM receiver. The top five memories ranked

by area are listed in Table 3.1.

Functional Instance Number of Mbits Area, Expected Number
Block Size Instances mm2 of Faults λ
FTDI 16384× 40 28 18350080 12.1749 0.0515181
FTDI 12800× 40 2 1024000 0.7200 0.0030468
DPN 6640× 60 4 2124800 0.7970 0.0067447
FFT 8192× 26 2 1703936 0.3097 0.0052426
CSI 16384× 26 1 1703936 0.2932 0.0049626
ICI 8192× 20 1 655360 0.1228 0.0020786

Table 3.1: Expected Number of Faults (λ) in the Five Largest Embedded Memory
Blocks.

The probability of finding k memory faults on a chip can be computed from the

Poisson distribution in (3.10) or the Negative Binomial distribution in (3.14) as shown

in Figure 3.2 with λ = 0.0546 corresponding to the average number of faults in the

de-interleaver memory as calculated in Example 3.2.

33



3 Fault-Tolerant Techniques

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k, Number of Memory Faults on a Chip

p
x
(k

),
 P

ro
b

a
b

ili
ty

 o
f 

H
a

v
in

g

k
 M

e
m

o
ry

 F
a

u
lt
s
 o

n
 a

 C
h

ip

Statistical Distribution of Memory Faults on a Chip (  = 0.0546)

Poisson Distribution (! " #)

Negative Binomial Distribution (! = 2)

Figure 3.2: Plot of pX(k) vs k for Poisson and Negative Binomial Distributions with
λ = 0.0546.

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

k, Number of Memory Faults on a Wafer

p
x
(k

),
 P

ro
b

a
b

ili
ty

 o
f 

H
a

v
in

g

k
 M

e
m

o
ry

 F
a

u
lt
s
 o

n
 a

 W
a

fe
r

Statistical Distribution of Memory Faults on a Wafer (  = 767! 0.0546 = 42)

Poisson Distribution (" # $)

Negative Binomial Distribution (" = 2)

Figure 3.3: Plot of pX(k) vs k for Poisson and Negative Binomial Distributions with
λ = 42.

34



3 Fault-Tolerant Techniques

The probability of finding k memory faults on a chip can be extended to a silicon

wafer. Assuming L chips per wafer with each chip l having an iid random fault

distribution Xl ∼ Pois(λl), the expected number of faults per wafer is the expected

value of the sum of L Poisson random variables:

λwafer = E [
L∑
l=1

Xl ] = E [ Pois(
L∑
l=1

λl) ] = L× λl (3.21)

Example 3.3: For a 250−mm wafer and an estimated die area of 8 mm× 8 mm,

the number of chips per wafer L is approximately equal to:

L ≈ π(250 mm/2)2

8 mm× 8 mm
≈ 767 (3.22)

Therefore, the expected number of faults per wafer is:

λwafer = E [
L=767∑
l=1

Xl ] = E [ Pois(λl × L) ] ≈ 42. (3.23)

The PMF of Pois(λl × L) is plotted in Figure 3.3.

Poisson, binomial and negative binomial distributions are fundamental to modeling

the random fault yield. The generalized negative binomial yield model in (3.16):

Y =
m∏
i=1

Y0i

m∏
i=1

(1 +
λi

αi

)−αi

reduces to the Poisson model when αi → ∞ and to the binomial model when αi = −N.

Figure 3.4(a) shows a yield vs. de-interleaver memory size plot based on (3.16) with

Y0i = 0.999 ∀i, Dj = 1.0075 × 10−4 mm−2 ∀j, clustering coefficient αi = {2,∞} ∀i,
and m = 21 memory mask layers.

Yield improvement can be achieved by including redundancy such as spare memory

rows and columns at the cost of increased chip area and therefore an increase in cost

per chip and a potential decrease in the number of chips per wafer. A chip yield with

redundancy Yred consisting of NB identical blocks and NR redundant blocks is the
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probability that at least NB −NR blocks are fault free [37]:

Yred =

NB∑
k=NB−NR

pk =

NB∑
k=NB−NR

(
NB

k

)
(e−λi)k(1− e−λi)NB−k (3.24)

where a Poisson model of independent and identically distributed faults is assumed.

To account for fault clustering, the expression in (3.24) can be inverted to find

an equivalent λred, that can then be substituted into the negative binomial model

in (3.16). Figure 3.4(b) shows an improvement in yield due to redundancy with

NB = 16 × 40 = 640, NR = {2, 4, 8}, Y0i = 0.99 ∀i, Dj = 1.0075 × 10−4 mm−2 ∀j
and a clustering coefficient αi = 2 ∀i.

An expression for yield probability with redundancy is further developed in [37] and

the general case requires a model that specifies fault distribution for any sub-area of

the chip as well as the correlation of faults between the sub-areas. When a closed

form yield expression cannot be found for complex redundancy schemes with clus-

tered faults, Monte Carlo simulation may be used, in which faults are introduced on

a wafer according to a statistical fault distribution and the percentage of functional

chips is calculated. Alternatively, a simpler yield model can be derived based on a

Poisson distribution and adjusted to take clustering into account using an appropriate

mixing function.

3.3 Fault Model

To develop an accurate fault model, it is important to consider both top-level and

cell-level views of the embedded memory. Figure 3.5 shows a conceptual top-level

architecture of a 2X × 2Y memory. It consists of three main functional blocks: the

memory array, the address decoder, and the read / write circuits.

The memory array matrix has M = 2X rows and N = 2Y columns with a total

capacity of 2X+Y bits. A memory cell is accessed by activating one of the 2X rows or

word lines (WLs) and communicating the data via the 2Y columns or bit lines (BLs).

The row address decoder selects one of the 2X word lines according to the X-bit row

address by raising the line voltage. During a read operation, the information stored
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Figure 3.5: Generic Memory Architecture.

in memory cells that are connected to the selected word line is transferred to the re-

spective bit lines. A small voltage difference characteristic of a logic “1” is amplified

by the sense amplifier to a full-swing digital signal. The column decoder then selects

the bit of the particular column whose Y-bit address is applied at its input. During a

write operation the input bit to be stored is applied to the data line. The target cell

is selected by a combination of its row and column addresses, while the sense ampli-

fier acts as a driver forcing the contents of the selected cell to the input data. The

time it takes to complete a memory operation is referred to as thememory access time.

The memory access time increases with memory size due to higher parasitic capac-

itance added to WLs and BLs by the additional SRAM cells. The bit line delay can

be modeled as a distributed RC ladder network consisting of K = 2X stages with a

total Elmore [38] delay τd:

τd =
K∑
j=1

Cj

j∑
k=1

Rk (3.25)

where Cj = Cgs +Cgb is the parasitic capacitance contributed by a single SRAM cell

and Rk = R� × lk is the resistance of the metal wire of a single stage. If we further
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assume a uniform distribution of R and C for each stage, then the total delay in

(3.25) becomes:

τd =
K∑
j=1

(
Ctotal

K
)

j∑
k=1

(
Rtotal

K
) = (

Ctotal

K
)(
Rtotal

K
)

K∑
j=1

j∑
k=1

1 = (
Ctotal

K
)(
Rtotal

K
)
K(K + 1)

2

Note that as the number of stages increases, limK→∞ τd =
1
2
RtotalCtotal. To accelerate

memory access, the array can be divided into blocks with shorter WLs and BLs and

with a subset of address bits acting as block select signals as done in Figure 2.18.
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Figure 3.6: 6-T SRAM Memory Cell.

A 6-T SRAM cell as shown in Figure 3.6(a) consists of two cross-coupled inverters

and two access transistors. The cross-coupled inverters regenerate the data through

positive feedback, while access transistors provide bi-directional current flow between

the bit lines and the memory cell, once activated by the word line. Figure 3.6(b)

shows a sample layout of the 6-T SRAM cell in a standard CMOS process. For a

review of the 6-T SRAM cell operation please refer to Appendix C.

The impact of memory faults is different for each of the three functional blocks:

the memory array, the address decoder, and the read / write circuits. For example,

a faulty address decoder bit can can cause a number of memory row cells to become

inaccessible. Similarly, a faulty sense amplifier may fail to output the contents of
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a memory column cell. Thus, to unite different functional units into a single fault

model, faults in the address decoder and the read / write circuits can be modeled as

the corresponding single or multi-bit faults in the memory array. The memory array

faults can be grouped into one of the following categories [39]:

1. Stuck at Faults (SAF): A memory cell value is stuck-at-zero (s-a-0) or stuck-at-

one (s-a-1) and the contents of the cell cannot be altered.

2. Stuck Open Faults (SOF): A memory cell is stuck open and the contents of the

cell cannot be accessed.

3. Data Retention Faults (DRF): A memory cell fails to retain its value after a

certain period of time.

4. Transition Faults (TF): A memory cell fails in at least one 0 → 1 or 1 → 0

transitions.

5. Coupling Faults (CF): A state, an operation or a transition due to a write to one

memory cell (coupling cell) affects the value of another memory cell (coupled

cell).
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Figure 3.7: Example SRAM Fault Types.

Figures 3.7(a) and 3.7(b) illustrate the different fault types described above. First,

the bit line BL connected to ground will cause the cell to become stuck-at with a

constant value of Q = 1. This will also introduce a coupling fault in the vertical
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direction for all cells sharing the faulty BL. Second, a word line shorted to ground

will cause the cell to become stuck-open. The access transistors M5 and M6 will be in

the cut-off region and will prevent data transmission through the bit lines. Similarly,

a coupling fault is introduced in the horizontal direction for all cells sharing the faulty

WL. Third, if the drain of the pull-up transistor is open, the re-generative feedback

loop becomes an open loop and causes a data retention fault. Fourth, if a polysilicon

gate is drawn such that it extends over a diffusion region of an access transistor, this

can lead to an additional access transistor controlled by a cell node. This causes a

transition fault when the gate of M3 extends over the diffusion region of M6, the

cell can fail a Q0→1 transition, since the created access transistor will counteract the

access transistor M6. Fifth, a cell node connected to the bit line (BL) introduces a

state coupling fault. If the cell node VQ = 0V , other cells along the same bit line

will act as if they are stuck-at a certain value. If VQ = VDD, the cells will function

normally during a read.

Stuck-at faults (SAF) account for more than 50% of memory array faults [39].

Therefore, a stuck-at model can be used as a first order approximation to a faulty

memory array as illustrated in the following example.

Example 3.4: Given a C model of an OFDM receiver, the impact of frequency-time

de-interleaver memory faults can be analyzed by modifying the contents of the FTDI

memory array and observing the impact on overall BER. The worst-case buffer delay

used in an intra-segment interleaver is equal to maxi [ I×mi ] = 190 OFDM symbols

as derived in equation (2.11). Thus, as a first-order, worst-case, approximation to

fault-distribution in the physical memory, we can modify the contents of the C model

memory array over a fault window of 190 OFDM symbols in duration with a uniform

distribution of N stuck-at-faults, alternating between s-a-0 and s-a-1:

if (bit err cnt % 2) //stuck-at-zero (s-a-0) fault

faulty data = (rxqam t)* address & 0xFFFFFFFE; //LSB s-a-0

else // stuck-at-one (s-a-1) fault

faulty data = (rxqam t)* address | 0x00000001; //LSB s-a-1

Therefore, by stepping through each bit in a memory word and forcing the bits to
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Test Name O(N) Description Faults Covered

MATS 4N {⇕ (w0, r0, w1, r1)}; SAF, SOF

MATS+ 5N {⇕ (w0);⇑ (r0, w1);⇓ (r1, w0)} SAF, DRF, AD

MATS++ 6N {⇕ (w0);⇑ (r0, w1); SAF, SOF, DRF
⇓ (r1, w0, r0)} TF, AD

March C- 10N {⇕ (w0);⇑ (r0, w1);⇑ (r1, w0); SAF, DRF,
⇓ (r0, w1);⇓ (r1, w0);⇕ (r0)} TF, AD

March B 17N {⇕ (w0);⇑ (r0, w1, r1, w0, r1);⇑ (r1, w0, w1); SAF, DRF,
⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)} TF, AD

Table 3.2: MBIST Test Patterns [5], [6].

s-a-0 or s-a-1 faults one-by-one, we can measure the impact of individual bit faults

on a system performance metric such as BER. This is explored further in Section 3.5.

March Test

An error map showing faulty cell locations for memory repair can be obtained via a

memory Built-In Self-Test (MBIST). MBIST is a Design-for-Test (DFT) technique

in which test generation and test application is accomplished through built-in hard-

ware [40]. The MBIST hardware architecture supports a parameterizable series of

march tests in which the address pointer marches through the address space writ-

ing (w0, w1) and reading (r0, r1) bit patterns and comparing the read-out data with

the expected result. Table 3.2 summarizes several important march algorithms. For

instance, MATS+ is defined as {⇕ (w0);⇑ (r0, w1);⇓ (r1, w0)}, where ⇕, ⇑ and ⇓
indicate any, up and down address order directions, respectively.

Test patterns can be generated by a Linear Feedback Shift Register (LFSR), com-

pressed by a Multiple Input Signature Register (MISR) and communicated to indi-

vidual memory modules via a BIST processor. March tests are executed in parallel

for each memory instance, the results are communicated back to the processor and

can be accessed externally via the JTAG interface [41].
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3.4 Repair Strategies

Fault-tolerant memory repair techniques can be grouped into hard, soft, combination

and accumulative repair strategies [7] based on how repair information is acquired

and retrieved.

Hard Repair

The repair information is stored in a one-time programmable, non-volatile eFuse

and retrieved during chip boot-up. The repair signature is compressed and recorded

permanently in the eFuse through the process of electromigration of the silicide layer

induced by an application of higher-than-nominal voltage. The hard repair technique

introduces a minor latency overhead in order to load the eFuse information during the

power on reset. For example, an estimated latency required for hard repair based on

a parallel test of 1K × (16× 40) memories is: 2300 TCK × 313 ns
TCK

= 0.72 ms, where

TCK is the test clock period that may be further decreased to curtail the latency

requirement. The primary advantage of hard repair is the ability to detect and repair

memory faults revealed under extreme operating conditions generated by the tester.

The Automated Test Equipment (ATE) is capable of uncovering faults that would

not be found during normal operation conditions through aggressive voltage and

temperature scaling. The eFuse module is typically limited by a maximum number

of available eFuses [4] and its area scales better with the process compared to laser

fuses.

Soft Repair

The soft repair information is generated each time the chip is powered on. In contrast

to hard repair, a soft repair signature is volatile, and therefore soft repair keeps track

of embedded memory problems as they arise during the operation of the device. As

a result, the differentiating advantage of soft repair is the ability to repair memory

faults that arise in the field throughout the life-time of a chip. The repair information

is generated based on MBIST march tests. The latency introduced by soft repair for

the parallel test of 1K×(16×40) memories is comparable to the hard repair technique:

1670 TCK × 313 ns
TCK

= 0.52 ms.
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Combinational Repair

A combinational repair strategy combines the advantages of both hard and soft repair

at the expense of increased latency. Hard repair covers memory faults unmasked by

PVT corner cases at production time, while soft repair complements by repairing

current faults acquired throughout the chip’s life-time. The combined latency for the

parallel test of 1K × (16 × 40) memories is 3970 TCK × 313 ns
TCK

= 1.24 ms, which

may further be decreased by reducing TCK period.

Cumulative Repair

A cumulative repair strategy accumulates repair information in a re-programmable,

non-volatile eFuse module. Consequently, soft repair information generated in the

field is added to and stored with the hard repair information generated at production

time. The repair signatures stored in the re-programmable eFuse box are non-volatile

but limited in terms of the maximum number of eFuses available.

Redundancy Allocation

To reduce repair overhead for memories with redundant rows and columns, an opti-

mum allocation strategy can help conserve redundant resources while maximizing the

benefit of a particular allocation of spare rows and columns. The problem of finding

the minimum number of spares required to cover the maximum number of bit errors

can be modeled as a vertex covering problem of a graph [42].

An M × N memory array is represented as a bi-partite or a two-colorable graph

G = (V,E) with two sets of nodes R and C in V , corresponding to faulty memory

rows and columns, respectively. The two nodes are connected by an edge whenever

there is a bit error in the corresponding row and column. For example, a rectangular

memory array with M=8 rows and N=10 columns and the corresponding bipartite

graph are shown in Figures 3.8 and 3.9. In the example of Figure 3.8, the number of

Spare Rows (SR) is 2 and the number of Spare Columns (SC) is 3.

Because the redundancy allocation problem is modeled as a graph, graph-theoretic

methods can be applied to find the minimum number of spare rows and columns

required to repair the memory. In particular, we are interested in finding a minimum
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Figure 3.9: A Bipartite Graph G of the Faulty Memory Array in Figure 3.8.
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vertex cover (lowest number of redundant resources) required to cover the maximum

number of edges (highest number of bit errors).

For a bipartite graph, the minimum number of vertices that cover all the edges is

equal to the number of edges in any maximum matching of the graph [43]. A match-

ing M of a graph G is a subset of the edges with the property that no two edges of

M share the same node. M is a maximum matching if G has no matching M
′
with

|M ′ | > |M |, where | · | is the number of elements in a set.

S T

1

1

1

1

1

1

1

1

Figure 3.10: A Maximum Matching Flow Graph M of the Faulty Memory Array in
Figure 3.8.

The largest bipartite matching M can be found using a network flow as shown in

Figure 3.10. A source node S is connected to every vertex in R by an edge of weight

1. Similarly, a sink node T is connected to every vertex in C by an edge of weight 1.

Each edge in the bipartite graph G is assigned a weight of 1. The maximum possible

flow from S to T defines the largest matching in G. Finally, the number of edges in a

maximum matching M is equal to the minimum number of vertices that cover all the

edges or equivalently the minimum number of spares required to repair the memory.

Therefore, in the example of Figure 3.8, only four spares are required to fully repair

the memory, e.g. SR={2, 5}, and SC={4, 9}.
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3.5 Proposed Repair Technique

The proposed repair technique is a fault-tolerant scheme aimed at improving the

yield of an embedded-memory OFDM receiver without the use of redundancy. The

proposed repair technique assigns a sensitivity coefficient for each memory cell based

on the impact of cell fault on a system performance metric such as the Bit Error

Rate (BER). Thus, in the simplest form of the technique, each addressable word

in the memory array is divided into fields or blocks of high and low sensitivity to

memory cell failure. To minimize the impact of memory faults on system performance,

the data block is permuted such that bits with higher fault sensitivity coefficient are

assigned fault-free memory locations while bits with lower fault sensitivity coefficient

are assigned faulty memory locations. Figure 3.11 shows a section of the de-interleaver

memory used to store soft I and Q data along with the carrier-to-noise (CN) ratio.
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Figure 3.11: Sensitivity Coefficient for the FTDI Embedded Memory. Memory
columns store {I[14:9], Q[8:3], CN[2:0]} associated with a single OFDM
symbol. Memory rows store OFDM symbols S(i ,j ,k).

A sensitivity coefficient ζ is assigned for each bit as a difference in BER caused by

the stuck-at memory cell compared to the nominal or fault-free cell, normalized to 1:

ζ =
1

C
(BERSA −BERFF ) (3.26)

47



3 Fault-Tolerant Techniques

where, the subscripts SA and FF represent stuck-at and fault-free cases, respectively,

and C is a normalization constant. Figure 3.11 shows a colorbar with high error

sensitivity bits in light red and low error sensitivity bits in dark red. As expected,

the data bits of I, Q, and CN in Figure 3.11 that are closest to the MSB have a higher

sensitivity coefficient compared to bits that are closest to the LSB. Thus, the impact

of memory faults on system performance can be minimized if sensitive-to-error (MSB)

data is permuted with less sensitive (LSB) data when the MSB memory region con-

tains faulty memory cells, while the LSB region is fault-free. The proposed memory

repair technique without redundancy is summarized in the Memory Repair Algorithm.

Algorithm 1 Memory Repair Algorithm (Mode, M, N, I)

1: if (Mode = MBIST) then
2: for i = 0 to I − 1 do
3: row address fault[i][M-1:0] ⇐ 0;
4: if (cur err out = 1) then
5: error word[i] ⇐ error register[i][N-1:0];
6: MSB region[i] ⇐ error word[i][sensitivity ≥ threshold];
7: LSB region[i] ⇐ error word[i][sensitivity < threshold];
8: if (|MSB region[i] = 1 and |LSB region[i] = 0) then
9: row address fault[i][(cur row address[i])] ⇐ 1;
10: end if
11: end if
12: end for
13: else
14: while (Mode = Functional) do
15: if (row address fault[i][(cur row address[i])] = 1) then
16: swap (MSB region, LSB region);
17: end if
18: end while
19: end if
20: return row address fault[i]

The proposed memory repair algorithm initializes the row address fault register in

test mode (steps 1-12) by setting a bit corresponding to the faulty row address to a “1”

and checks the row address fault register in functional mode (steps 13-20) on every

memory read and write operation to determine when to activate the permutation

logic. In MBIST mode, the bit error location is captured by reading the error register

(5), next the high and low sensitivity regions are examined for the presence of errors
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via a reduction-OR operator (6-8), and the row address is labeled faulty if errors are

found in the high sensitivity (MSB) region, while the low sensitivity (LSB) region is

error free (9). In functional mode, the row address fault register is accessed on every

memory operation (15) and if the current row address is marked faulty, the MSB and

LSB regions are permuted (16). Thus, the algorithm provides memory repair without

redundancy in which sensitive-to-error data is stored in error-free memory locations,

while less sensitive-to-error data is assigned to faulty memory locations.

3.6 Simulation Results

Figure 3.12 shows a simulated BER plot for an AWGN channel based on an ISDB-T

receiver model. The simulation parameters are summarized in Table 3.3.
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Figure 3.12: Simulated BER Plot (Mode 3, Layer B: 64-QAM, R=3/4, NR=1,
AWGN, 2000 OFDM symbols, FEC with 0 and 2 Iterations).

The Quasi-Error Free (QEF) operating point is defined as the maximum acceptable

bit error rate for which the user does not perceive any degradation in performance.

The ISDB-T QEF point for an AWGN channel is 2×10−4 at 18.5 dB carrier-to-noise

(CN) ratio.
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Parameter Value Description
Transmission Parameters

Mode 3 5,617 sub-carriers
1 Number of Segments

Layer A QPSK Modulation
R=2/3 Code Rate
I=4 Interleaver Length
12 Number of Segments

Layer B 64-QAM Modulation
R=3/4 Code Rate
I=2 Interleaver Length
0 Number of Segments

Layer C 16-QAM Modulation
R=3/4 Code Rate
I=1 Interleaver Length

Channel Parameters
Channel AWGN Additive White Gaussian Noise
Models Rayleigh Fading Channel
CN 16 - 21 dB Carrier to Noise Ratio

Foffset 0 Hz Frequency Offset
Toffset 0 ppm Sampling Offset
Fdrift 0 Hz/sec Frequency Offset Drift

Receiver Parameters
NR 1 Number of Receive Antennas

NFFT 8,192 Fast Fourier Transform
Nsym 2,000 Number of OFDM symbols
Niter 0, 2 Number of Iterations
NSA 0 - 400 Number of Stuck-At Faults in

Deinterleaver Memory

Table 3.3: Simulation Parameters.
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The BER drops to 1× 10−7 with 2 turbo-like iterations of soft-output Viterbi and

RS (204, 188) decoder [44]. The transmission parameters in Table 3.3 were selected

to cover most of the signal processing blocks (Mode 3, Layer B), while keeping rea-

sonable simulation time (e.g. NR = 1). Figure 3.12 shows the nominal BER plot with

zero stuck-at faults in the de-interleaver memory (NSA = 0).

To analyze the impact of embedded memory faults on the BER, the two largest

area blocks in Table 3.1 were selected: the frequency-time de-interleaver (FTDI) and

the de-puncturer (DPN). NSA stuck-at faults alternating between s-a-0 and s-a-1 were

uniformly distributed every 190 OFDM symbols corresponding to the worst-case de-

interleaver delay for Layer B, as illustrated in Example 3.4. The tests were divided

into high fault (NSA ≥ 400) and low fault cases (NSA = 10 to 20).

Figures 3.13(a) and 3.13(b) show high fault behavior for an AWGN channel with

0 and 2 decoding iterations, respectively. The de-puncturer (DPN) memory is by-

passed in the 0 iteration case and the BER plot for DPN aligns with the fault-free

reference. However, the BER plot for FTDI shows a 2 dB performance degradation

at the 2 × 10−4 QEF point. In the 2 iteration case, the DPN memory is used and

a degradation in BER is observed. The gain loss for FTDI is comparable to the 0

iteration case due to a very high NSA.

Figures 3.14(a) and 3.14(b) show the high fault impact on the BER for an AWGN

channel at CN = 18.5 dB QEF point for two different FTDI word formats. In Figure

3.14(a) NSA faults were mapped onto each bit in {I[23 : 14], Q[13 : 4], CN [3 : 0]}
de-interleaver word, while zero faults were introduced in the de-puncturer. For a very

high NSA, the upper 5 bits of I and Q as well as the upper 2 bits of CN show highest

sensitivity to memory faults, while the lower 5 bits of I and Q as well as the lower

2 bits of CN show low fault sensitivity. Similarly, Figure 3.14(b) shows the impact

of NSA = 400 on BER for a shorter word format: {I[14 : 9], Q[8 : 3], CN [2 : 0]}.
In both cases, the de-interleaver memory can be divided into blocks of high and low

fault sensitivity. The proposed memory repair exploits the observed difference in sen-

sitivity and permutes the incoming data such that bits that are sensitive to faults are

stored in the fault-free locations and vice versa.

A sensitivity coefficient ζ in Figure 3.11 was computed based on the BER plot in
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Figure 3.14(b). By setting a sensitivity threshold to 1.6×10−4, or 7% above the fault-

free reference, the high-sensitivity (MSB) region consists of the top 3-bits of I and Q

and the MSB of CN: {I[14 : 12], Q[8 : 6], CN [2]}, while the low-sensitivity region

of the same width contains: {I[11 : 9], Q[5 : 3], CN [1]}. If a memory fault is found

in the MSB region and no faults were found in the LSB region, the permutation

of the MSB and LSB regions in the case of Figure 3.14(b) results in 0.35 dB gain

improvement at 2× 10−4 BER over memory without repair at the QEF BER for an

AWGN channel. The gain improvement ∆CN due to the proposed repair was found

by dividing the maximum difference in the MSB BER in Figure 3.14(b) by the slope

of the BER plot at the QEF BER=2× 10−4 in Figure 3.12:

∆CN =
∆BER

slope

∣∣∣∣
QEF

=
BERQ[5] −BERQ[8]

slope

∣∣∣∣
QEF

=
(0.00015− 0.00024)

(−2.6× 10−4 dB−1)
= 0.35 dB.

The implementation cost of storing the repair information is equal to ⌈M/i⌉ storage

bits, where M is the number of memory rows and i is an integer between 1 and M

equal to the number of rows assigned to a single bit of the row address fault register.

Thus, with M = 1024 and i = 4, the implementation overhead is 256 bits.

Figures 3.15(a) and 3.15(b) show the BER at QEF CN = 18.5 dB as a function

of the number of stuck-at faults NSA for {I[19 : 12], Q[11 : 4], CN [3 : 0]} de-

interleaver word. In the 0 iteration case in Figure 3.15(a), the MSB (sign bit) shows

higher sensitivity to a memory fault in comparison to MSB-3 bit, which is close to

the fault-free reference. With 2 decoding iterations in Figure 3.15(b), NSA ≤ 400

stuck-at faults were corrected by the soft-output Viterbi and RS (204, 188) turbo-like

iterative decoding.

3.7 Summary

The total yield model combines the gross yield and the random fault yield based on

the generalized negative binomial distribution characterized by an average number of

faults and clustering parameters for each process step. Embedded memories have a

much denser layout in comparison to core logic and therefore higher fault densities.

Embedded memory faults can impact the functionality of the memory array, the
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address decoder or the read / write circuits. In each case, the faults can be mapped

to the corresponding single or multi-bit faults in the memory array. SRAM faults can

be characterized into: stuck-at faults (SAF), stuck-open faults (SOF), data retention

faults (DRF), and coupling faults (CF). MBIST memory tests known as march tests

can be used to discover the faults in each category and create a fault map of the

memory array.

Memory repair strategies use the fault map information to correct or mitigate the

impact of errors. Repair techniques with redundancy incur area overhead and require

optimum allocation of the limited number of spare rows and columns. Repair tech-

niques without redundancy, must be comparable in repair performance and introduce

lower implementation overhead to be a competitive alternative to redundancy ori-

ented repair techniques. The implementation of memory repair can be classified into

hard repair, soft-repair, combinational and cumulative repair strategies based on how

repair information is acquired and retrieved.

The proposed repair technique is a low-overhead, fault-tolerant scheme for reduc-

ing the impact of embedded memory errors in OFDM receivers without the use of

redundancy. The proposed repair technique divides the memory array into blocks of

high and low sensitivity to cell failures based on a sensitivity coefficient computed for

each bit in a memory word as a difference in BER caused by the faulty bit compared

to the fault-free bit. Thus, the data block with faulty cells is permuted with a data

block of the same size only if the former has a higher sensitivity to error. The permu-

tation results in 0.35 dB improvement in CN at 2× 10−4 BER for an AWGN channel

compared to memory without repair based on simulation results with zero decoding

iterations, when NSA = 400 stuck-at faults were randomly distributed across the de-

interleaver memory.

The next chapter compares performance advantages of the proposed repair tech-

nique, presents a memory repair architecture in addition to BER measurements for

AWGN and fading channel models.
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Knowledge is of no value unless you put

it into practice.

Anton Chekhov

4.1 Introduction

The proposed memory repair strategy is implemented as part of a larger Design-

for-Test (DFT) on-chip infrastructure. The memory repair architecture interfaces

with Built-In Self-Test (BIST) memory wrappers designed for increased controllability

and observability of embedded memory faults. The repair architecture provides low

latency and configurable area overhead. The effectiveness of the proposed repair

strategy is evaluated on a multiple-FPGA platform connected to an ISDB-T signal

generator through a wireless channel emulator. Measurement results are presented

for an AWGN and TU-6/TU-12 fading channels.

4.2 DFT Architecture

Figure 4.1 shows the top-level DFT architecture [4]. It consists of STAR1 Memory

System (SMS) modules, a JPC2/SFP3 server, an eFuse Box and 1149.1 JTAG and

P1500 SECT interfaces. The SMS modules contain embedded memory wrappers con-

trolled by a STAR processor [4]. The JPC/SFP server interfaces IEEE 1149.1 Joint

Test Action Group (JTAG) with IEEE P1500 Standard for Embedded Core Test

(SECT) and provides a connection to the one-time programmable eFuse Box used to

store hard repair information.

1 STAR: Self Test And Repair.
2 JPC: JTAG to P1500 Converter.
3 SFP: Shared Fuse Processor.
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Figure 4.1: SoC Level DFT Architecture with JTAG IEEE 1149.1 Interface [4].
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Figure 4.2 shows the block level architecture of a single SMS module composed of a

STAR processor and BIST memory wrappers. The processor directs the execution of

march tests carried out in parallel by the memory wrappers. The results of MBIST

tests are communicated back to the processor and can be accessed externally via the

JTAG interface. The architecture of the memory wrapper and the proposed repair

technique are generic enough to support multiple memory types4 and memory BIST

vendors.

The STAR processor to memory wrapper interface is shown in Figure 4.3(a). The

internal registers of the wrappers can be configured and accessed via wrapper control

signals. If a mismatch is detected during a march test, the curerrout flag is pulsed

and memory fault information is accumulated in an accumulative fault register. The

accumulative fault register can be accessed externally via the serial output wr so of

the wrapper or in certain cases via the Q[39 : 0] output of the memory. The memory

wrapper architecture is shown in Figure 4.3(b). It consists of an SRAM memory

block, a command generator, a data comparator as well as auxiliary registers. An op-

tional Built-In Repair Analysis (BIRA), SEC/DED Error Correction Coding (ECC),

and redundancy blocks can be instantiated by the memory compiler.

4.3 Memory Repair Architecture

Figure 4.4 shows the architecture of the proposed soft memory repair without redun-

dancy. The proposed repair algorithm in Section 3.5 initializes the row address fault

register in test mode (steps 1-12) by setting a bit corresponding to the faulty row

address to a “1” and checks the row address fault register in functional mode (steps

13-20) on every read and write operation to determine when to active the permuta-

tion logic. In MBIST mode, the error capture and repair enable logic is used to: (i)

capture externally the serial output of the accumulative fault register; (ii) examine

its contents for the location of faults in both high and low sensitivity regions; and

(iii) set the corresponding bit of the row address fault register if the higher sensitiv-

ity region has at least one error while the lower sensitivity region is error-free. In

functional mode, the row address fault register is accessed on every read and write

4 Supported memory types include Single Port (SP), Dual Port (DP), Register File (RF), Integrated
Test (IT) as well as 3-rd party SRAM memories.
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Figure 4.4: Proposed Memory Repair Architecture.

operation, and if the current row address is labeled faulty, the regions of high and low

sensitivity are swapped by the fault repair interleave (ITL) logic and output through

the 2-to-1 MUX controlled by repair enable signals. During a memory write, the

2-to-1 input MUX selects between the original data or the permuted data based on

the corresponding bit of the row address fault register before writing the data into

one of the memory blocks. During a memory read, the 2-to-1 output MUX selects

either the original or the de-permuted data based on the corresponding bit of the row

address fault register and forwards the data to the output bus.

The FTDI memory is organized internally into 1K rows and 16 × 40-bit columns.

Therefore, the maximum size of the row address fault register is 1024. However, to

reduce area overhead, a single bit in the row address fault register can be used to

track multiple rows as shown in Figure 4.5. The external-to-memory row address fault

register consists of ⌈M/i⌉ flip-flops, where M is the total number of memory rows

and i is an integer between 1 and M equal to the number of memory rows assigned

to a single bit of the row address fault register. The values of M and i are commonly

expressed as powers of two. In the extreme cases: (i) when i = 1 the size of the

row address fault register is M , which means that every row has a dedicated bit that
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controls whether to enable or disable the permutation of high sensitivity region for

that row; (ii) when i = M , the size of the row address fault register is a single bit,

which means that the in-coming data is permuted at the input and de-permuted at

the output for the entire memory instance. Thus, the value of i can be adjusted to

reflect the expected number of memory faults λ for a given technology process. For

example, in Figure 4.5, the value of i is set to M/4, such that the row address fault

register introduces an area overhead of only 4 flip-flops. By tuning the parameter i,

one can trade off area overhead with the effectiveness of the proposed memory repair

technique.

The expected number of memory faults in the 19.4 Mbit memory according to

Figure 3.2 is less than 2. Thus, in the low-fault case, there is a higher chance that

either the MSB or the LSB regions but not both are affected by memory faults. This

causes a greater difference in the sensitivity coefficients between the two regions, and

as a result the repair permutation is enabled. As the number of faults increases, the

MSB and the LSB regions are more likely to both be affected by memory faults, and

in that case the repair permutation is disabled. Thus, reducing the size of the row

address fault register sacrifices repair performance in the high fault case.

Figure 4.6 shows the circuit used to activate the permutation logic. The accu-

mulative fault register counts the total number of faults in a given memory column

during an MBIST march test. A mismatch between the expected and the actual

data results in an increment of the fault counter of the accumulative fault register

corresponding to the column in which a memory fault occurred. The accumulative

fault register is analyzed for presence of memory faults in the regions of high and

low fault sensitivity via OR trees. If a region with high fault sensitivity contains a

memory fault and a region of low fault sensitivity is fault-free, the two regions are per-

muted and the corresponding bit of the row address fault register is set to enable the

permutation in functional mode. The accumulative fault register is reset every i rows.

Figure 4.7(a) shows the memory repair permutation or interleave (ITL) block that

permutes high sensitivity data regions. In its simplest form, the permutation can be

hard-wired. For example, in the proposed technique, the MSB and LSB regions of

8-bit I, 8-bit Q, and 4-bit CN fields of each memory word are permuted by inter-

changing the wires as shown in Figure 4.7(a). More generally, the mapper can be
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made programmable via a permutation network controlled by a ctrl signal as shown

in Figure 4.7(b), in order to adapt the permutation to a variety of data formats and

to account for potential difference between the logical address and the corresponding

physical memory location that may arise due to memory layout constraints.

The proposed repair architecture does not introduce additional clock cycles re-

quired to access the memory. It provides minimum timing overhead since the only

data path delay is due to the 2-to-1 MUX during write and read operations, while the

ITL logic performs a zero delay permutation operation. The implementation costs

of the proposed repair technique based on the worst-case PVT synthesis in 65-nm

CMOS are presented in Table 4.1. The repair overhead is summarized under ∆i

columns for i = 1, 2, 4, where i is the number of memory rows assigned to a single

bit of the row address fault register. Thus, the proposed memory repair can be con-

figured to introduce 1.7 % of area overhead, when i = 4 due to the fault register with

⌈M/i⌉ = ⌈1024/4⌉ = 256 flip-flops.

Table 4.2 compares implementation performance of different SRAM memory repair

techniques. The proposed strategy introduces a single multiplexer latency delay on

read and write operations and 1.7% of area overhead (i = 4), dominated by external-

to-memory registers used to store repair information. The proposed repair technique

is different in the sense that it seeks to minimize the impact of embedded memory
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65nm CMOS FTDI SRAM FTDI SRAM ∆1 FTDI SRAM ∆2 FTDI SRAM ∆4

(original) (i=1 ) (i=2 ) (i=4 )

Clock Rate (MHz) 4ps 4ps 4ps
(Spec’d 64 MHz) 69.4 69.4 w.c. 69.4 w.c. 69.4 w.c.

slack slack slack

Number of Cells 14,074 144,031 129,957 78,646 64,572 42,943 28,869
Cell Area (µm2) 13,148,617 13,826,323 5.2% 13,481,993 2.5% 13,368,199 1.7%

Dynamic (µW ) 31,060 39,413 8,352 32,845 1,785 32,387 1,327
Leakage (µW ) 887 1,055 168 987 100 928 41

Total Power (µW ) 31,947 40,468 27% 33,832 5.9% 33,315 4.3%
@ 69.4 MHz

Table 4.1: ASIC Synthesis Results of the Proposed Memory Repair in 65 nm CMOS
for the Worst-Case PVT: SS, 1.08V , 125◦C. ∆i: Repair Overhead When
the Faulty Row Address is Recorded for Every i Memory Rows.

Parameter [45]-2006 [46]-2007 [47]-2010 [4]-2011 This Work-2011*

Memory Size [Mbits] 0.5 0.5 0.5 19.4 19.4
Memory Area [mm2] N/A 6.79 5.05 12.9 12.9
Area Overhead 6.5% 2.8% 2.3% 1.7% 1.7%
Technology 180nm 180nm 180nm 65nm 65nm
Gate Count [kGE] 6.3 8.3 N/A N/A 38.1
Redundant Rows 4 3 6 0 0
Redundant Cols 2 3 6 4 0
Error Correction No No No No Yes
Clk Frequency [MHz] N/A N/A N/A 69.4 69.4
Repair Strategy soft soft soft hard soft

Table 4.2: SRAM Memory Repair Performance Comparison. *Based on i = 4 in
Table 4.1.
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faults relying on the downstream Viterbi and RS decoder blocks for error correction

rather than using costly redundancy or local ECC logic as memory repair mechanism.

The repair technique in [4] introduces a comparable area overhead with four redundant

columns integrated internally in the layout of the main memory. The repair perfor-

mance in [4] with redundancy is limited by the number of spare rows and columns,

while the proposed strategy is capable of permuting data for all faulty memory rows.

However, the choice of using registers as a means of storing repair information for

every memory instance increases the gate count in comparison to [45], [46]. The large

gate count is a result of the row address fault registers of size ⌈M/i⌉ for each of the

30 de-interleaver memory instances with M = 1024 and i = 1, 2, 3, . . . , M , where i

is the number of memory rows assigned to a single bit of the row address fault reg-

ister. Alternatively, the series of registers can be implemented as a block of memory

of size ⌈M/i⌉ for each instance or as a dedicated memory used to store a fixed set

of the 14-bit fault addresses. The timing penalty of a single multiplexer delay on

read and write operation is comparable to [45], however, no write buffer is required

since the data is permuted via combinational logic before it is written to or read from

the memory. The proposed repair technique is integrated with a commercial BIST

infrastructure, similar to [46]; however, it is generic enough to be used with multiple

memory BIST vendors.

4.4 Memory Repair Verification
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Figure 4.8: Memory Repair Verification Platform.

The test set-up used to verify the proposed memory repair strategy is shown in

Figure 4.8. The signal generator modulates a pseudo-random binary number (PN)

sequence according to the ISDB-T transmission specifications [3] summarized in Ap-
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Original Build New Build
Virtex-5 LX330 w/o BIST, w/o BIST, ∆

FF1760-1 w/o Repair w/ Repair + Err. Gen.

Speed (MHz) 8.082 8.296 0.214

Area
Num of Slices 68% (35,257 of 51,840) 69% (35,971 of 51,840) 1% (714)

LUTs 47% (98,255 of 207,360) 48% (101,538 of 207,360) 1% (3,283)
Slice FFs 21% (45,254 of 207,360) 22% (46,414 of 207,360) 1% (1,160)

Table 4.3: FPGA Post Place and Route Resource Summary.

pendix A. The wireless channel emulator generates programmable time-varying chan-

nel characteristics such as multi-path delay spread, fading, and channel loss. The

channel emulator is connected to a custom made platform with two Virtex-5 LX330

FPGAs via an RF tuner card. An external to FPGA synchronous SRAM chip is used

to store the de-interleaver memory data due to its large memory requirements. The

OFDM receiver register data is communicated to the PC via the I2C interface and

analyzed in real-time.
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Figure 4.9: Memory Repair FPGA Prototype.

Figure 4.9 shows a schematic of the proposed memory repair prototype consisting

of error generation and repair logic. The error mask introduces bursts of alternat-

ing s-a-0 and s-a-1 faults at the output of the de-mapper first before it is written

into a functional SRAM memory chip acting as a faulty de-interleaver memory. The
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maximum error counter is set to 190 OFDM symbols corresponding to the worst-case

de-interleaver delay. Therefore, to summarize, bursts of length NSA are introduced

every 190 OFDM symbols. The fault repair interleave (ITL) logic is activated by

the repair enable signal. A 32-bit I2C register is used to enable or disable repair,

introduce bit faults via a 20-bit error mask and keep track of the number of faults via

an 11-bit counter. While a DFT netlist with memory BIST wrappers is not typically

prototyped on an FPGA, the DFT library can be made FPGA synthesizable [48] to

prepare and execute DFT tests on an FPGA.

A resource summary based on the post place-and-route netlist of the proposed

memory repair prototype is shown in Table 4.3. The new FPGA build was optimized

for speed at the expense of available area by distributing error generation and repair

logic across block boundaries and configuring synthesis options, such as enabling

register duplication and re-timing, while disabling resource sharing [49].

4.5 Measurement Results

Measurement results were recorded by reading the internal registers of the OFDM re-

ceiver via an I2C interface according to the experimental set-up in Figure 4.8. Each

point on the BER curve is based on the average value of the BER register over a

three minute interval, corresponding to the transmission of a payload of approxi-

mately 20 Mbps× 180 s = 3.6 Gbits.

Figure 4.10(a) shows the effect of stuck-at faults on the BER for an AWGN channel

at QEF CN = 18.5 dB with a burst of NSA = 10 and NSA = 400 alternating s-a-0

and s-a-1 memory faults for a mixed de-interleaver word format. An order of magni-

tude increase in the number of memory stuck-at faults results in a 1.6-fold increase

in the BER at CN = 18.5 dB for an AWGN channel.

Figure 4.10(b) shows the CN required to achieve QEF BER vs Doppler frequency for

TU-6 and TU-12 fading channels in the nominal, fault-free case. The wireless channel

emulator was configured with multi-path delay and gain parameters for the 6 (TU-6)

and 12 (TU-12) tap fading channels according to Appendix A. A static frequency

shift model was used to emulate the Doppler effect: fd = fc (ν/c), where fc is the
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carrier frequency, ν is the receiver velocity, and c is the speed of light (≈ 3×108 m/s).

As expected, higher CN values are needed to compensate for mobility of the receiver.

Figures 4.11(a) and 4.11(b) show the deviation in QEF BER for high (NSA = 400)

and low (NSA = 20) fault cases, with and without proposed memory repair for a

single deinterleaver word format and an AWGN channel. In both cases, the MSB

region consists of {I[19 : 16], Q[11 : 8], CN [3 : 2]}, while the LSB region is defined

as {I[15 : 12], Q[7 : 4], CN [1 : 0]}. The dashed line shows the increase in BER for

deinterleaver memory with NSA faults. The solid line represents the BER when the

proposed memory repair is enabled. As a result of the permutation of MSB and LSB

regions, the proposed repair strategy achieves the fault sensitivity exhibited by the

LSB region for MSB region data, whenever the MSB region has faults and the LSB

region is fault-free.

The gain improvement ∆CN due to the proposed repair is calculated by dividing

the maximum difference in the MSB BER in Figure 4.11(b) by the slope of the BER

plot at the QEF BER=2× 10−4 in Figure 3.12:

∆CN =
∆BER

slope

∣∣∣∣
QEF

=
BERI[15] −BERI[19]

slope

∣∣∣∣
QEF

=
(0.00012− 0.00016)

(−2.6× 10−4 dB−1)
= 0.15 dB.

The measured ∆CN is 0.2 dB smaller the simulated ∆CN in Section 3.6. The 0.2

dB loss could be attributed to the RF tuner card, which was not modeled in the

simulation.

Figures 4.12(a) and 4.12(b) show the deviation in QEF BER for a TU-6 and TU-

12 fading channel models in the presence of NSA = 400 memory burst faults every

190 OFDM symbols with and without the proposed memory repair for the top 4

bits of I and Q. The dashed line representing the proposed memory repair shows

a smaller QEF BER degradation in comparison to memory without repair over all

Doppler frequencies. In the case of the MSB fault and Fd = 40 Hz for TU-6 channel,

the proposed repair reduces the BER from 0.00245 to 0.00235 or 4.1% decrease with

zero decoding iterations. For the TU-12 channel, the MSB BER with Fd = 40 Hz is

reduced from 0.00437 to 0.00418 or 4.4% decrease with zero decoding iterations.
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4.6 Summary

The proposed memory repair strategy is implemented as part of a larger Design-

for-Test (DFT) on-chip infrastructure and interfaces with Built-In Self-Test (BIST)

memory wrappers. Each memory wrapper is controlled by a Self-Test-And-Repair

(STAR) Processor that directs the parallel execution of march tests and communi-

cates fault information externally via SECT and JTAG interfaces.

The proposed VLSI architecture of the memory repair strategy provides a config-

urable area overhead of ⌈M/i⌉ bits where M is the number of memory rows and i is

an integer between 1 and M equal to the number of memory rows assigned to a single

bit of the row address fault register. The memory repair architecture introduces a sin-

gle multiplexer data-path latency and zero additional clock cycles required to access

the memory. The frequency-time de-interleaver memory with repair operates at 69.4

MHz and dissipate 1,885 µW based on the worst-case (SS, 1.08V, 125C) synthesis

results in 65-nm CMOS. The memory repair can be configured to occupy 1.7% of the

19.4 Mbit de-interleaver memory area by assigning every i = 4 memory rows to a

single bit of the row address fault register.

The repair strategy was verified on a multiple-FPGA platform interfaced with an

ISDB-T signal generator and a wireless channel emulator. Measurements results

for an AWGN channel show a gain improvement of 0.15 dB in the presence of a

burst of NSA = 400 stuck-at memory faults in the de-interleaver with zero FEC

decoding iterations. Measurement results for TU-6 / TU-12 fading channels show a

4% improvement in BER in the presence of NSA = 400 deinterleaver faults, when the

proposed repair is enabled compared to the deinterleaver memory without repair.
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5.1 Summary of Contributions

A memory repair strategy is proposed for an embedded memory SoC OFDM receiver.

The proposed repair strategy saves implementation cost by eliminating redundancy or

local error correction in favor of forward error correction and improves decoding per-

formance in the presence of memory faults by permuting stored data so as to minimize

the impact of memory faults on system performance as measured by the bit error rate.

The repair strategy was investigated on a 19.4-Mbit frequency-time de-interleaver

embedded SRAM memory occupying 12.17 mm2 or 62% of the OFDM receiver SoC

core area in 65-nm CMOS. The impact of stuck-at faults on the bit error rate of the

receiver as well as the probability of their occurrence in the de-interleaver memory

was evaluated. A measured degradation of 0.15 dB at 2 × 10−4 QEF BER was ob-

served for an AWGN channel in the presence of NSA = 400 uniformly distributed

stuck-at faults with zero forward error correction decoding iterations. The proposed

memory repair introduces a configurable area overhead of ⌈M/i⌉ bits, where M is

the number of memory rows and i is an integer between 1 and M , inclusive. The

de-interleaver memory is located before forward error correction blocks illustrated by

the soft-output Viterbi and Reed-Solomon decoders, and as a result, it has a higher

degree of fault tolerance. Thus, costly redundancy or local error correction can be

replaced with system-level forward error correction, thereby saving implementation

cost.

To improve bit error performance in the presence of memory faults, a soft repair

technique without redundancy is proposed. The proposed repair technique assigns

a sensitivity coefficient for each memory cell based on the impact of cell fault on a

system performance metric such as the bit error rate. Thus, the memory array is

divided into blocks of high and low sensitivity to memory faults. To minimize the
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impact of memory faults, the data block is permuted such that bits with higher fault

sensitivity coefficient are assigned fault-free memory locations while bits with lower

fault sensitivity coefficient are assigned faulty memory locations.

The proposed repair architecture does not introduce additional clock cycles re-

quired to access the memory. It provides minimum latency overhead since the only

additional data path delay is introduced by a 2-to-1 MUX during write and read

operations.

The proposed memory repair introduces a configurable area overhead due to an

external row address fault register of size ⌈M/i⌉ bits used to store the repair informa-

tion, where M is the number of memory rows and i is the number of rows assigned

to a single bit of the row address fault register. In the case of de-interleaver memory

with M = 1024, a repair overhead of 1.7% of memory area can be achieved with i = 4

based on the worst-case PVT (SS, 1.08V , 125◦C) synthesis results in 65-nm CMOS.

The proposed repair strategy is generic enough to support multiple Memory Built-In

Self-Test (MBIST) hardware. The proposed repair strategy is integrated with Vi-

rage DFT architecture of an ISDB-T OFDM receiver in 65-nm CMOS and verified

on a Virtex-5 LX330 multiple-FPGA platform for AWGN and TU-6 / TU-12 fading

channels.

5.2 Future Directions

Storage of Error Information. The proposed soft-repair technique stores error in-

formation in a row address fault register, where each bit marks one or more memory

rows as faulty. The size of the register can be adjusted to match the expected number

of faults according to empirical fault data for a given memory process technology. Al-

ternative ways of storing error information can be developed based on a different set

of design constraints. For instance, a separate memory can be used to store the repair

information for all deinterleaver repairable memory blocks, or alternatively, a single

column can be added to each repairable deinterleaver memory block to record repair

information. If the number of memory access cycles is allowed to increase, a stage

of address comparators can be added in the data-path to determine when to activate

the repair logic. Furthermore, spare eFuses can be utilized to store row address fault
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information generated by a diagnostic MBIST test. In the case of a programmable

eFuse box, an accumulative repair strategy can be adopted; otherwise, spare one-time

programmable eFuses may be used to store the location of memory errors to save soft

repair implementation costs.

Support of Multiple Fault and Memory Types. The proposed repair strategy

focuses on the dominant stuck-at faults in the embedded SRAM memory. The repair

strategy can be augmented to include coupling faults, stuck open faults, transition

and data retention faults. For example, permutation of data across multiple rows can

be added to resolve fault coupling in the vertical direction. Furthermore, the repair

technique can be extended to other volatile and non-volatile memories such as DRAM

and Flash.

Empirical Fault Distribution. The proposed soft-repair technique can be adjusted

to suit a particular fault distribution. An accurate fault map and fault description

can increase the effectiveness of memory repair customized for a particular memory

process. Memory process parameters and error distribution may be obtained from the

foundry or from memory characterization tests averaged over a statistically significant

number of fabricated SoCs.

Generalizing Sensitivity Coefficient. The idea of assigning a sensitivity coefficient

for each bit in a memory word can be generalized and included as part of a memory

compiler. For example, it is always true that the MSB is more sensitive to error than

the LSB. Therefore, data permutation logic can be integrated with existing memory

either externally or as part of memory layout, taking into account the differences

between logical and physical memory cell locations, to further reduce implementation

overhead. In addition, as bits travel through the signal processing chain, their fault

sensitivity coefficients are modified. In the case of de-interleaver memory, the bits are

processed by an identity function, i.e. bits are not modified over time; however, other

signal processing block such as FFT, Viterbi and Reed-Solomon decoders perform

linear and non-linear arithmetic operations on collections of bits over time. Thus, a

generalized theory may be possible that identifies subsystems within the SoC that

are most likely to benefit from memory repair.
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A.1 ISDB-T Overview

Integrated Services Digital Broadcasting - Terrestrial (ISDB-T) is a digital broad-

casting multi-carrier system with a variety of reception features and formats [3]. The

ISDB-T features three transmission modes for video, audio and data transmission

over a bandwidth of 5.575MHz (Table A.1). The transmission band is divided into 13

OFDM segments each segment having a bandwidth of 6/14 MHz (Table A.2). Each

OFDM segment consists of 108, 216, or 432 sub-carriers depending on the transmis-

sion mode. An ISDB-T receiver is capable of demodulating QPSK, DQPSK, 16-QAM

and 64-QAM constellations; it supports inter-segment and intra-segment frequency

and time de-interleaving and guard intervals of 1/4, 1/8, 1/16 and 1/32 of the sym-

bol length to accommodate different broadcasting network configurations and Doppler

shifts arising in mobile reception. The ISDB-T receiver uses a concatenation of con-

volutional inner code and Reed-Solomon outer code for error correction and decodes

information at a bit rate of 3.65 Mbps to 23.23 Mbps.

A.2 OFDM Transmission Parameters

Table A.1 summarizes OFDM segment transmission parameters. OFDM signal trans-

mission parameters are presented in Table A.2.
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Mode Mode 1 Mode 2 Mode 3
Bandwidth 3000/7 = 428.57· · · KHz
Spacing
between
carrier
frequencies

250/63 =
3.968· · ·KHz

125/63 =
1.98841· · · KHz

125/126 =
0.99206· · · KHz

Total Sub-
carriers

108 108 216 216 432 432

Data Sub-
carriers

96 96 192 192 384 384

Scattered
Pilots

9 0 18 0 36 0

Continual
Pilots

0 1 0 1 0 1

Control
(TMCC)

1 5 2 10 4 20

Auxiliary
Channel 1

2 2 4 4 8 8

Auxiliary
Channel 2

0 4 0 9 0 19

Carrier QPSK QPSK QPSK
Modulation 16QAM DQPSK 16QAM DQPSK 16QAM DQPSK
Scheme 64QAM 64QAM 64QAM
Symbols
Per Frame

204

Effective
Symbol
Length

252µs 504µs 1008µs

63µs(1/4) 126µs(1/4) 252µs(1/4)
Guard 31.5µs(1/8) 63µs(1/8) 126µs(1/8)
Interval 15.75µs(1/16) 31.5µs(1/16) 63µs(1/16)

7.875µs(1/32) 15.75µs(1/32) 31.5µs(1/32)
64.26ms(1/4) 128.52ms(1/4) 257.04ms(1/4)

Frame
Length

57.834ms(1/8) 115.668ms(1/8) 231.336ms(1/8)

54.621ms(1/16) 109.242ms(1/16) 218.484ms(1/16)
53.0145ms(1/32) 106.029ms(1/32) 212.058ms(1/32)

IFFT Sam-
pling Fre-
quency

512/63 = 8.12698 · · ·MHz

Inner Code Convolutional Code (1/2, 2/3, 3/4, 5/6, 7/8)
Outer
Code

RS (204, 188)

Table A.1: ISDB-T: OFDM Segment Parameters [3].
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Mode Mode 1 Mode 2 Mode 3
Number of OFDM
Segments Ns

13

Bandwidth 3000/7(kHz)×
Ns+

250/63(kHz) =
5.575 · · ·MHz

3000/7(kHz)×
Ns+

125/63(kHz) =
5.573 · · ·MHz

3000/7(kHz)×
Ns+

125/126(kHz) =
5.572 · · ·MHz

Number of segments
of differential modula-
tions

nd

Number of segments
of synchronous modu-
lations

ns(ns + nd = Ns)

Spacing between car-
rier frequencies

250/63 =
3.968 · · · kHz

125/63 =
1.984 · · · kHz

125/126 =
0.992 · · · kHz

Total Subcarriers 108×Ns + 1 =
1405

216×Ns + 1 =
2809

432×Ns + 1 =
5617

Data Subcarriers 96×Ns=1248 192×Ns = 2496 384×Ns = 4992
Scattered Pilots 9×ns 18×ns 36×ns

Continual Pilots nd+1 nd+1 nd+1
Control (TMCC) ns + 5× nd 2ns + 10× nd 4ns + 20× nd

Auxiliary Channel 1 2Ns = 26 4Ns = 52 8Ns = 104
Auxiliary Channel 2 4× nd 9× nd 19× nd

Carrier Modulation
Scheme

QPSK, 16QAM, 64QAM, DQPSK

Symbols Per Frame 204
Effective Symbol
Length

252µs 504µs 1008µs

63µs(1/4) 126µs(1/4) 252µs(1/4)
Guard 31.5µs(1/8) 63µs(1/8) 126µs(1/8)
Interval 15.75µs(1/16) 31.5µs(1/16) 63µs(1/16)

7.875µs(1/32) 15.75µs(1/32) 31.5µs(1/32)
64.26ms(1/4) 128.52ms(1/4) 257.04ms(1/4)

Frame 57.834ms(1/8) 115.668ms(1/8) 231.336ms(1/8)
Length 54.621ms(1/16) 109.242ms(1/16) 218.484ms(1/16)

53.0145ms(1/32) 106.029ms(1/32) 212.058ms(1/32)
Inner Code Convolutional Code (1/2, 2/3, 3/4, 5/6, 7/8)
Outer Code RS (204, 188)

Table A.2: ISDB-T: OFDM Transmission Signal Parameters [3].
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A.3 Channel Models

Model Path Delay, µs Path Gain, dB

delay[0]=0.0 power[0]=-3.0
delay[1]=0.2 power[1]= 0.0

Urban delay[2]=0.5 power[2]=-2.0
delay[3]=1.6 power[3]=-6.0
delay[4]=2.3 power[4]=-8.0
delay[5]=5.0 power[5]=-10.0

delay[0]=0.0 power[0]= 0.0
delay[1]=0.1 power[1]=-4.0

Rural delay[2]=0.2 power[2]=-8.0
delay[3]=0.3 power[3]=-12.0
delay[4]=0.4 power[4]=-16.0
delay[5]=0.5 power[5]=-20.0

delay[0]=0.0 power[0]=-2.5
delay[1]=0.3 power[1]= 0.0

Bad delay[2]=1.0 power[2]=-3.0
Urban delay[3]=1.6 power[3]=-5.0

delay[4]=5.0 power[4]=-2.0
delay[5]=6.6 power[5]=-4.0

Table A.3: Channel Models.
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Model Path Delay, µs Path Gain, dB

delay[0]=0.0 power[0]= 0.0
delay[1]=0.1 power[1]=-6.4
delay[2]=0.2 power[2]=-10.4
delay[3]=0.4 power[3]=-13.0
delay[4]=0.6 power[4]=-13.3

Portable delay[5]=0.8 power[5]=-13.7
Indoor delay[6]=1.0 power[6]=-16.2

delay[7]=1.6 power[7]=-15.2
delay[8]=8.1 power[8]=-14.9
delay[9]=8.8 power[9]=-16.2
delay[10]=9.0 power[10]=-11.1
delay[11]=9.2 power[11]=-11.2

delay[0]=0.0 power[0]= 0.0
delay[1]=0.3 power[1]=-1.5
delay[2]=1.0 power[2]=-3.8
delay[3]=1.6 power[3]=-7.3
delay[4]=5.0 power[4]=-9.8

Portable delay[5]=6.6 power[5]=-3.3
Outdoor delay[6]=5.0 power[6]=-5.9

delay[7]=6.6 power[7]=-20.6
delay[8]=5.0 power[8]=-19.0
delay[9]=6.6 power[9]=-17.7
delay[10]=5.0 power[10]=-18.9
delay[11]=6.6 power[11]=-19.3

Table A.4: Channel Models.
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Algorithm 2 Block Interleaver (out, m, n, in)

1: for i = 1 to m do
2: A[i, 1 : n] ⇐ in[(i− 1)× n+ 1, i× n]; // fill rows
3: end for
4: for j = 1 to n do
5: out[1, (j − 1)×m+ 1 : j ×m] ⇐ A[1 : m, j]; // read columns
6: end for
7: return out[1, m× n]

Algorithm 3 Block Deinterleaver (out, m, n, in)

1: for j = 1 to n do
2: A[1 : m, j] ⇐ in[(j − 1)×m+ 1, j ×m]; // fill columns
3: end for
4: for i = 1 to m do
5: out[1, (i− 1)× n+ 1 : i× n] ⇐ A[i, 1 : n]; // read rows
6: end for
7: return out[1, m× n]

Algorithm 4 Convolutional Interleaver (out, m, n, d, in)

1: for i = 1 to m do
2: shift reg i[(i− 1)× d, 0] ⇐ [shift reg i[(i− 1)× d− 1, 1], in[i]]; // shift input
3: shift out i ⇐ shift reg i[(i− 1)× d]; // shift output
4: shift out ⇐ [shift out, shift out i];
5: end for
6: return shift out[1, m]
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Algorithm 5 Convolutional Deinterleaver (out, m, n, d, in)

1: for i = 1 to m do
2: shift reg i[(m− i)× d, 0] ⇐ {shift reg i[(m− i)× d− 1, 1], in[i]}; // shift input
3: shift out i ⇐ shift reg i[(m− i)× d]; // shift output
4: end for
5: return shift out[1, m]

Algorithm 6 Helical Interleaver (out, m, ngrp, in)

1: for j = 1 to m do
2: // init m columns with ngrp elements in a helical fashion
3: A[j : ngrp+ j − 1, j] ⇐ in[(j − 1)× ngrp+ 1, j × ngrp];
4: end for
5: for i = 1 to ngrp+m− 1 do
6: out[1, (i− 1)×m+ 1 : i×m] ⇐ A[i, 1 : m]; // read rows
7: end for
8: return out[1, m× (ngrp+m− 1)]

Algorithm 7 Helical Deinterleaver (out, m, ngrp, in)

1: for i = 1 to ngrp+m− 1 do
2: A[i, 1 : m] ⇐ in[(i− 1)×m+ 1 : i×m]; // fill rows
3: end for
4: for j = 1 to m do
5: // read m columns with ngrp elements in a helical fashion
6: out[(j − 1)× ngrp+ 1, j × ngrp] ⇐ A[j : ngrp+ j − 1, j];
7: end for
8: return out[1, m× (ngrp+m− 1)]
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C SRAM Embedded Memory

C.1 The 6-T SRAM Cell

The 6-T SRAM cell first inroduced in Figures 3.6(a) and 3.6(b) consists of two cross-

coupled inverters and two access transistors. The cross-coupled inverters regenerate

the data through positive feedback, while access transistors provide bi-directional

current flow between the bit lines and the memory cell, once activated by the word

line.
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M2

M5

CBL

_

BL

_

Q

_

i5

i1

+

VDD / 2

-

VWL=VDD

Q=VDD

(a) Reading a “1”.
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CBL

Q
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i6

i4

+

0V

-

_
Q < Vtn3

(b) Writing a “0”.

Figure C.1: 6-T SRAM Read Stability and Write Ability.

In the design of an SRAM cell, it is important to maintain read stability and

write ability. Figure C.1(a) shows the active half-circuit during a read operation,

assuming that the cell is storing a logic “1”, i.e. VQ = VDD. Before the read op-

eration, the BL is precharged to an intermediate voltage of VDD/2. Because the

Q output is equal to a logic “1”, |Vgs2| > |Vtp2| and M2 is in the cut-off region;

M5 is in saturation (Vgs5 > Vtn5, Vds5 ≈ VDD/2 ≥ Vgs5 − Vtn5); and M1 is in tri-
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ode (Vgs1 > Vtn1, Vds1 ≤ Vgs1 − Vtn1). To maintain read stability, voltage VQ must

be designed to stay below VDD/2 for a symmetric inverter to prevent the cell from

changing its state during a read operation. Therefore, M1 is sized larger than M5,

i.e. (W
L
)1 > (W

L
)5. As a result, CBL is discharged with a current i5,SAT = i1,TRI . The

time it takes to sense the voltage difference ∆V on CBL in addition to the rise time

due to the RC time constant of the word line is approximately equal to the memory

read time: tread ≈ tBL + tWL ≥ CBL∆V/i5 + τWL.

Figure C.1(b) shows the half-circuit during a write operation, assuming the cell is

storing a logic “1”. To write a logic “0”, the BL is lowered to 0V , while BL is raised

to VDD. Having sized the access and pull down transistors for read stability, we expect

the Vds of M1 to stay below the threshold voltage Vtn3 of M3. Therefore, to change

the stored information bit, instead of attempting to raise the VQ to VDD, we need to

reduce VQ below the threshold voltage Vtn1 of M1. When VQ = Vtn1, M6 operates in

the triode region (Vgs6 = VDD > Vtn6, Vds6 ≈ Vtn1 ≤ Vgs6 − Vtn6), and M4 operates in

saturation (|Vgs4| = VDD − Vtn3 > |Vtp4|, |Vds4| ≈ VDD − Vtn1 ≥ |Vgs4| − |Vtp4|). Thus,
the capacitance at node Q is discharged via a current i4,SAT = i6,TRI . Since the pull-

up transistor M4 opposes the lowering of the voltage at node Q, it must be designed

smaller then the access transistor M6, i.e. (W
L
)4 < (W

L
)6. When VQ reaches VDD/2,

the regenerative feedback will cause the cell to switch state. The time it takes CQ to

discharge to VDD/2 in addition to the rise time of WL and the time required for the

propagation delay of the inverter is approximately equal to the memory write time:

twrite ≈ tBL + tWL + tPD ≥ CQ(VDD/2)/i6 + τWL + tPD. Therefore, to achieve both
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

SNMHI

SNMLO

(a) SRAM Static Noise Margin (SNM).
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Figure C.2: 6-T SRAM Static Noise Margin.
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read stability and write ability, the inverter pull-up (p), pull-down (n) and access (a)

transistors are sized such that: (W
L
)p < (W

L
)a < (W

L
)n [50].
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Figure C.3: 6-T SRAM 2× 2 Memory Array Layout.

The stability and write ability of an SRAM cell are quantified by static noise

margins in various modes of operation. The static noise margin (SNM) measures

how much noise can be applied to the inputs of the cross-coupled inverters before

a stable state is lost (during hold or read) or switched (during write) [51]. Figure

C.2(a) shows a butterfly diagram for a static hold margin along with the test-bench

in Figure C.2(b). To determine the hold margin, VWL and VBL are set to 0V and V2

is plotted against V1 and vice versa. If the inverters are identical the DC curves are

inverse functions of each other and therefore symmetric around V2 = V1. The static

noise margin is determined as the length of the side of the maximum square that can

be inscribed between the curves. In case the inverters are not identical, the SNM
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is taken as min(SNMHI , SNMLO). The word line, bit line, and the noise voltage

sources can be adjusted to imitate read and write cell conditions to obtain butter-

fly diagrams for read and write static noise margins. Furthermore, the noise margins

can be qualified by dynamic conditions such as cell access time and recovery time [52].

A number of layout techniques can be used to minimize the area occupied by an

SRAM memory array. Figure C.3 shows an area-efficient layout consisting of four

6-T SRAM cells [53]. The SRAM cell area can be reduced by observing minimum de-

sign rules and sharing power, ground and bit line contacts between the two inverters.

The layout of a single SRAM cell can be re-used to minimize mismatch. Moreover,

a symmetric layout in which the SRAM cell is mirrored around the horizontal axis

allows the sharing of N-well regions between adjacent cell rows, thereby greatly re-

ducing memory area. A symmetric layout introduces regularity and simplifies routing

complexity, in addition to reducing the impact of process parameter gradients and

common mode noise in the case of differential signal processing. Furthermore, a ca-

pacitive coupling between adjacent bit lines can be reduced through bit line twisting,

thereby increasing memory speed. Finally, the dimensions of the memory layout that

approach a square provide balanced lengths and therefore balanced capacitances and

delays of word lines and bit lines.
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