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Abstract—A low-power VLSI processor architecture that com-
putes in real time the magnitude and phase-synchronization of
two input neural signals is presented. The processor is a part
of an envisioned closed-loop implantable microsystem for adap-
tive neural stimulation. The architecture uses three CORDIC
processing cores that require shift-and-add operations but no
multiplication. The 10-bit processor synthesized and prototyped
in a standard 1.2V 0.13µm CMOS technology utilizes 41,000
logic gates. It dissipates 3.6µW per input pair, and provides
1.7kS/s per-channel throughput when clocked at 2.5MHz. The
power scales linearly with the number of input channels or the
sampling rate. The efficacy of the processor in early epileptic
seizure detection is validated on human intracranial EEG data.

Index Terms—Early seizure detection, bivariate digital signal
processing, biomedical processor, bivariate processing, phase-
synchronization, energy-band extraction.

I. I NTRODUCTION

OVER 50 million people worldwide suffer from epilepsy.
Approximately one-third of those with epilepsy do not

react well to currently available pharmacological treatments
such as antiepileptic drugs [1]. Electrical stimulation has
shown positive results in reducing the frequency of seizures in
such patients with refractory epilepsy [1], [2]. Typically, the
stimulation pulses are applied continuously and periodically,
which can result in suboptimal treatment efficacy, shorten the
battery life, increase the size of the device and increase the cost
of the therapy as additional surgical operations are required for
battery replacement [2]. Automated identification of optimal
time instances when an electrical stimulus should be applied
can help address these issues [3], [4]. In many cases, seizures
can be detected prior to the clinical onset of the seizure. It
has been widely hypothesized that anticipation of ictal events
(i.e., seizures) is critically important for a proper control of
seizures [5], [6]. This is based on the assumption and some
evidence [7], [8] that it is easier to stop a seizure by electrical
stimulation before or early in its development than when it
has already fully developed.

Over the last two decades, extensive research has been
conducted on prediction and early detection of seizures using
a variety of different methods. Univariate algorithms, which
involve computations on a single input, have been used to
predict seizures. Such methods include computing wavelet
transforms [4], energy of signal bands [9], correlation di-
mensions [10] and computing the Lyapunov exponent [11].
These univariate algorithms lack spatial specificity because
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Fig. 1. Closed-loop neural recording and stimulation systemfor epileptic
seizure detection and control.

they only rely on one recording. This issue can be addressed
through bivariate or multivariate algorithms which operate on
two or more inputs, respectively [12]. Seizure prediction and
detection algorithms that use bivariate or multivariate measures
to quantify synchronization among two or more neural signals
have been shown to yield superior accuracy [5], [13], [14].

Neurons initiate electrical oscillations that are contained
in multiple frequency bands such as alpha (8-12Hz), beta
(13-30Hz) and gamma (40-80Hz) and have been linked to a
wide range of cognitive and perceptual processes [15]. It has
been shown that before and during a seizure the amount of
synchrony between these oscillations from neurons locatedin
different regions of the brain changes significantly [5]. Thus,
the amount of synchrony between multiple neural signals is a
strong indicator in predicting or detecting seizures [5], [13].
To quantify the level of synchrony between two neural signals,
a phase locking value (PLV) can be computed that accurately
measures the phase-synchronization between two signal sites
in the brain [5], [16].

Existing VLSI systems that perform signal processing on
neural signals typically employ univariate algorithms. These
involve computations on a single input, such as computing
spike thresholds [17], correlation integrals [18], autoregres-
sive parameters [19], extracting energy bands [20], RMS,
maximum-minimum, line-length and nonlinear energy [21]
and analog wavelet filtering [4]. More computationally inten-
sive techniques that use inputs from multiple recording sites
such as computing the phase-synchronization, the correlation
index and the similarity index between neural signals, have
been used to develop more accurate seizure prediction and
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Fig. 2. Top-level block diagram of two analog neural recording channels
and the digital phase-synchronization epileptic early seizure detector.

detection algorithms [5], [13], [16], [22], [23], [24], butto
date have only been implemented in software.

We present a low-power digital phase-synchronization pro-
cessor VLSI architecture that efficiently performs compu-
tationally intensive phase-locking value (PLV) estimation.
This paper extends on an earlier report of the principle and
demonstration in [25], and offers a more detailed analysis
of the architecture and seizure prediction sensitivity results
in human EEG data. The VLSI architecture employs the
COrdinate Rotation DIgital Computer (CORDIC) algorithm
[26]. The algorithm offers a hardware-efficient approach to
computing trigonometric and vector functions, as it requires
only shift-and-add operations for vector rotations. The VLSI
architecture is to be integrated with neural recording and stim-
ulation circuits [27] to implement a multi-channel implantable
closed-loop microsystem as shown in Figure 1. The phase
synchronization processor combines three CORDIC processor
cores, which operate on vectors to compute the magnitude,
phase and the phase-synchronization of two signals. The rest
of the paper is organized as follows. Section II discusses
the phase-synchronization algorithm. Section III presents the
VLSI architecture of the processor. Section IV describes its
VLSI implementation. Section V contains simulation and
experimental results of early seizure detection by the phase-
synchronization processor, in human EEG recordings.

II. PHASE-SYNCHRONIZATION ALGORITHM

For two oscillations,V0 and V1, when their instantaneous
phase difference is locked to a constant value, synchronization
is present between the two signals. A number of methods exist
that quantify the level of frequency-specific synchronization
between two neuroelectric signals, including mutual informa-
tion and Shannon entropy [16]. Estimation of phase locking
has emerged as a popular leading method of quantifying neural
synchronization. Its effectiveness comes from the fact that it
relies on the phase information of a neural signal, separately
from its magnitude. Thus, to quantify the amount of phase
locking between two neural signals requires the computation
of the phase difference followed by the computation of a
phase locking index. First, the Hilbert transform is applied
to both signalsV0 andV1 to compute their real and imaginary

components,

V0 = Re(V0) + jIm(V0), V1 = Re(V1) + jIm(V1) (1)

whereV0 and V1 are two sinusoidal continuous or discrete-
time signals. The Hilbert transform is conventionally per-
formed over the full band of frequencies in the neural spec-
trum, and thus, a narrow-band bandpass filter should be
applied before the Hilbert transform to isolate the signal band
of interest [16].

The magnitude in the extracted frequency band can be
computed as

MAG(Vk) =
√

(Re(Vk))2 + (Im(Vk))2 (2)

wherek=0,1. Next, the instantaneous phases are computed for
each channel

φk = arctan
Im(Vk)

Re(Vk)
(3)

and if phase-synchronization exists between the two channels
in the same frequency band then the difference in phase is
equal to a constant

∆φ = φ1 − φ0 = constant. (4)

Numerous statistical tools exist that quantify the level of
phase-synchronization between two signals such as entropyin-
dex, mutual information index and mean phase coherence [5].
The hardware-efficient mean phase coherence in [5] was
selected, which uses a phase locking value (PLV) between
0 and 1 to evaluate the amount of phase-synchronization. The
algorithm defines PLV as

PLV =
1

N

√

√

√

√(

N−1
∑

i=0

sin(∆φi))2 + (

N−1
∑

i=0

cos(∆φi))2 (5)

whereN is the length of the moving-average FIR filters and
∆φi is the instantaneous phase difference between thei-th
samples of the two signals.

In summary, the PLV computation requires the Hilbert
transform, arctan, addition, sine and cosine, moving-average
filtering and lastly, the PLV magnitude. The arctan, sine/cosine
and magnitude operators will be computed using the CORDIC
algorithm while the moving-average filtering will be computed
using digital FIR filtering. Both the magnitude value in (2) and
the PLV value in (5) are used in this work for early detection
of epileptic seizures.

III. VLSI A RCHITECTURE

The architecture of the feedforward path of the system in
Figure 1 for two channels is presented in Figure 2 and contains
both analog and digital components. After low-noise amplifi-
cation of the neural signals by a low-power neural amplifier,
narrow-band filter extracts the signal in the frequency bandof
interest.

The proposed analog front-end utilizes two stages of AC-
coupled amplifiers with a gain of 1000V/V (60dB), and
tuneable low-pass and high-pass filters to maintain a band-
width between 0.1Hz and 5kHz. The capacitive feedback
architecture minimizes area and power dissipation allowing



3

20 25 30 35 40
−30

−25

−20

−15

−10

−5

0

INPUT FREQUENCY (Hz)

M
A
G
N
IT
U
D
E
 (
d
B
)

BPF @ 30Hz+16 TAP FIR ALL PASS FILTER

BPF @ 30Hz+16 TAP FIR HILBERT FILTER

N<16

N<16
N<16

N<16
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analog bandpass filter at 30Hz.

for a large number of channels as was previously reported in
[27] and [28]. The input-referred noise integrated over a 5kHz
bandwidth is below 10µV. A fully differential architecture
minimizes common-mode noise.

A bandpass filter is required as changes in magnitude and
instantaneous phase and phase difference occur in specific
signal bands [15]. Narrowband synchronization outperforms
broadband synchronization in recognizing the start of a seizure
onset [16]. Utilizing the narrow bandwidth also puts less
constraint on the input-referred noise and resolution of the
analog front-end and ADC, respectively, leading to smaller
area and lower power dissipation. A 2nd order analog bandpass
filter with a Q of 5 was used to extract the signal band of
interest.

The bandpass filtered signal is then digitized by a low-power
medium resolution analog-to-digital converter (ADC). Next,
each digitized signal is fed to a set of two 10-bit finite impulse
response (FIR) filters. One FIR filter is configured to perform
the Hilbert transform to shift the signal by 90 degrees, while
the other FIR filter is an all-pass filter to ensure the digital
delays of the two FIR filters are matched. To further save
power, this FIR filtering can also be efficiently performed in
the mixed-signal VLSI domain by incorporating it within the
ADC [29]. This is why the front-end FIR filtering is not con-
sidered as a part of the phase-synchronization processor. With
the high-Q bandpass filter, a FIR filter with 16 taps achieves
a well matched magnitude response when programmed with
the coefficients for the all-pass and Hilbert response. Further
decreasing the number of taps of the FIR filters leads to gain
mismatches between the all-pass and Hilbert filters as shown
in Figure 3.

The rest of the computation is efficiently performed in the
digital domain by using the CORDIC algorithm. Sampling
more than one pair of analog channel outputs within a single
seizure prediction time window yields multivariate signal
processing [30].

A. CORDIC Algorithm

Next, the phase locking value is computed using the
CORDIC algorithm. The CORDIC algorithm has been demon-
strated in a large number of applications, such as matrix com-
putations (QRD and eigenvalue estimation), image processing
(DCT) and digital communications (FFT, DDS) [26]. The
CORDIC algorithm operates on a vector of complex numbers
by multiplying it by powers of two removing the requirement
of complex multipliers and utilizing only adders, shiftersand
memory retrieval operations [26]. Using an iterative approach,
CORDIC provides a high-accuracy, low-power and low-area
computational algorithm at the cost of reduced speed. Two
modes were implemented in CORDIC: the rotational mode
which is used for computing sine and cosine, and the vectoring
mode which is used to compute the magnitude and the phase.
The two modes only differ in the directions of rotation [26].

The CORDIC algorithm involves iterations on three differ-
ence equations as follows

for n = 1 : 16 (6)

x[n+ 1] = x[n] + y[n]2−(n−1)

y[n+ 1] = y[n]− sign(y[n])x[n]2−(n−1)

z[n+ 1] = z[n] + sign(y[n])arctan(2−(n−1))

To compute the magnitude and the phase using CORDIC, the
initial values must first be set. For the CORDIC equations, the
initial x[1] and y[1] would represent the real and imaginary
components of the signal, respectively, withy[1] set to 0.
Over the next 16 clock cycles the procedure that computes
magnitude and phase is repeated whiley converges to 0. The
final valuex[16] represents a scaled magnitude and the final
valuez[16] represents the phase. A look-up table that stores 16
arctan values was used in the phase computation. Computing
sine and cosine is similar except we initializex[1] to the
CORDIC aggregate constant K, sety[1] to 0 and setz[1] to
the angle we want to compute. Alsoz converges to 0 instead
of y and the final output,x[16], represents the cosine of the
angle, whilez[16] represents the sine of the angle.

B. CORDIC-based Processor VLSI Architecture

The VLSI architecture of the 10-bit phase-synchronization
and magnitude processor is shown in Figure 4. It uses three
pipelined CORDIC cores and two moving-average FIR filters.
The pipelined architecture allows the supply voltage to be
lowered to minimize power dissipation by using a lower
frequency clock while maintaining a constant throughput.
The first core receives the two digitized vectored signals,
preprocesses them by extracting the quadrant of the angle
and then simultaneously computes both the angle between 0
and 90 degrees and the magnitude using a 16-bit CORDIC
core configured in the vectoring mode. The angles are re-
adjusted using the stored quadrant information to output an
angle between 0 and 360 degrees. The difference between the
two computed angles is transferred to the next stage.

The sine and cosine of the angle difference are computed
using a 16-bit CORDIC core configured in the rotational mode.
The computed sine and cosine as well as the negative flags
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Fig. 4. VLSI architecture of the phase-synchronization processor.
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Fig. 5. Simulated PLV for different values ofN (length of the FIR filters)
when the frequency of one input,VIN1, is held constant at 110Hz and the
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are transferred to the two 32-tap moving-average FIR filters.
Higher sensitivity for the PLV algorithm can be achieved
by increasing the length of the FIR filters at a cost in area
and complexity. Lastly, the PLV is computed by extracting
the magnitude of the FIR averaged sine and cosine outputs
using a 16-bit CORDIC core configured in the vectoring
mode. An output multiplexer can be configured to output the
instantaneous magnitude and phase of each channel, as well as
the phase difference and the PLV between two channels. Each
CORDIC core requires 18 clock cycles which include one
clock cycle for pre-processing the angles, 16-clock cyclesto
perform the CORDIC algorithm and one clock cycle to output
the data and post-process the angles for a total latency of
54 clock cycles to compute the PLV algorithm. The simulation
results in Figure 5 show how the PLV sensitivity improves with
increasing the length of the moving-average FIR filters.

IV. VLSI I MPLEMENTATION

The processor was designed and synthesized using a stan-
dard 8-metal 0.13µm CMOS technology. It contains a total
of 41,366 gates and occupies an area of 0.178mm2. The first
magnitude/phase CORDIC core occupies 20.6 percent of the
area, the second sine/cosine CORDIC core uses 12.8 percent,
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Fig. 6. (a) Experimentally measured magnitude of a sinusoidal input
computed by the phase-synchronization processor. (b) The corresponding
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the FIR moving-average filters occupy 57 percent, the third
magnitude CORDIC core utilizes 9 percent and pre-processing
and the output MUX occupy 1 percent of the total core area.
Accuracy and sensitivity of the PLV computation can be traded
for area by reducing the length of the moving-average FIR
filters. A 4 times increase in the length of FIR filters yielded
an overall layout area increase of 1.8 times and an overall
power dissipation increase of 1.7 times.

The univariate magnitude and phase-estimation operations
and the bivariate phase difference and PLV-estimation opera-
tions are all computed simultaneously for every sample and
are time-multiplexed through a 10-bit output. The synthesized
design can operate at frequencies above 100MHz, which is
beyond the requirements of the intended application. This
margin allows the ability to further reduce power dissipation
by lowering the supply voltage.

V. RESULTS

A. Experimental Results

The phase-synchronization processor was prototyped in a
standard 0.13µm CMOS technology and characterized experi-
mentally. Two analog signals were digitized, sent through FIR
filters to obtain the Hilbert transform and its delayed version,
and fed to the processor.

The experimentally measured magnitude extraction results
are shown in Figure 6, when a sinusoid is applied as an input
to the processor. The maximum error is below 3.5 percent
with respect to the full scale when the input is between 0mV
and 600mV. For a neural amplifier gain of 2,000V/V, this
corresponds to a neural signal between 0µV and 300µV .

Next, two sinusoid inputs were set to 110Hz, with one
sinusoid having its phase locked while adjusting the phase
of the other sinusoid. The measured phase difference between
this pair of inputs is shown in Figure 7. The maximum error
is approximately 1.5 percent.

The measured PLV between a pair of inputs is shown in
Figure 8. The average PLV between the two inputs is computed
with one input held constant at 110Hz, while the other input
frequency is swept from 60Hz to 160Hz. As expected, the
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computed PLV is near unity when the two signals have the
same frequency. When the second signal has its frequency set
to 60Hz or 160Hz, the PLV drops to 0.45 and 0.4 respectively.
The phase locking sensitivity can be further improved by
increasing the length of the moving-average FIR filters.

The experimentally measured power dissipation of the pro-
cessor for a supply voltage of 0.85 and 1.15V operating at
various clock frequencies is shown in Figure 9. For a 0.85V
supply at 2.5MHz and 10MHz the processor dissipates 102µW
and 412µW, respectively. For a 1.15V supply at 2.5MHz and
10MHz the processor dissipates 231µW and 897µW, respec-
tively. For only one pair of channels, operating at 1.7kS/s
the processor dissipates 3.6µW from a 0.85V supply. At
lower clock frequencies of 39kHz and 156kHz the processor
dissipates 4.6µW and 17.3µW, respectively, from a 1.15V
supply and 2.4µW and 8.5µW, respectively, from a 0.85V
supply.
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TABLE I
EEG DATABASE USED IN VERIFICATION OF THE

PHASE-SYNCHRONIZATION PROCESSOR. SEIZURE TYPES: SIMPLE

PARTIAL (SP), COMPLEX PARTIAL (CP), GENERALIZED TONIC-CLONIC

(GTC). SEIZURE LOCATION: HIPPOCAMPAL (H), NEOCORTICAL (NC).
ELECTRODETYPES: DEPTH (D), STRIP (S), GRID (G).
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B. Simulated Human EEG Results

A Verilog-AMS model of the phase-synchronization proces-
sor is too computationally complex to be used in early seizure
detection simulations. Instead, a Simulink model which hadits
resolution and accuracy set to match the performance of the
RTL-level implementation of the synthesized processor was
utilized.

The efficacy of the phase-synchronization processor in
early seizure detection was verified and validated on an EEG
database from the seizure prediction project at the University
of Freiburg [31]. It consists of 222 hours of intracranial EEG
recording of three patients with a total of 30 seizures analyzed
and labeled by certified epileptologists as summarized in Table
I. The data was acquired by a Neurofile NT digital video EEG
system with 128 channels, 512 Hz sampling rate, and a 16-bit
analog-to-digital converter via implanted depth, strip and grid
electrodes.

For each patient, three intracranial electrodes located inthe
proximity of an epileptic focus were used. For each electrode
type, a sub-set of contact pairs was selected for the PLV
computation as follows. First, only the contact pairs of the
same electrode type were used as inputs to the PLV processor
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to suppress common-mode noise. Next, a reference electrode
was chosen for each electrode type as the contact furthest away
from the epileptic focus. Then, for each contact pair, the signal
spectrum was separated into five frequency bands via high-Q
bandpass filters: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13
Hz), a sub-band of beta (15-25 Hz) and gamma (30-48 Hz).
Finally, a sub-set of contact pairs across all frequency bands
was selected by pairing each contact with the reference and
observing the channel magnitudes and the PLV within three
hours of a clinical seizure onset.

The sensitivity, defined as the true positive rate (TPR), of
the phase-synchronization algorithm was evaluated as a func-
tion of seizure occurrence period (SOP ), seizure prediction
horizon (SPH), false positive rate (FPR) and maximum false
positive rate (FPRmax) [22], [23], [24]. TheSOP is defined
as the period of time in which only one seizure is to be
expected. It was varied between 5 and 40 minutes to account
for the uncertainty in the seizure frequency. TheSPH was set
to between 16 seconds and 5 minutes to allow enough time
for the therapeutic intervention, such as electrical stimulation
or a warning signal to the patient.

Three early seizure detection methods were used in the
analysis of the EEG database: magnitude, PLV and combined
magnitude with PLV detectors. The magnitude detector is
active when the amplitudes of both input channels within a
frequency band of interest cross their corresponding thresh-
olds. The PLV detector is triggered when the phase locking
value, integrated over an adjustable period of time, drops
below a certain threshold. The combined magnitude and PLV
detector output is formed by AND-ing the outputs of the
individual detectors. Each threshold detector, once triggered,
remains active for the duration equal to the sum ofSOP and
SPH time periods. All early seizure detection methods were
compared against the random detector.

The experimental results showed highest PLV activity in
the 15-25Hz frequency band. Figure 10 presents an example
of an early seizure detection result computed by the phase-
synchronization processor in the 15-25Hz frequency band
for patient 2. The clinical seizure onset is characterized by
an increase in the magnitude and a marked fluctuation (a
drop in this case) in the PLV before the seizure. The phase
locking value reaches 1 during the seizure reflecting the
synchronized firing of neurons. Similar early seizure detector
outputs generated by the processor are observed in the 15-
25Hz frequency band of patient 3 as shown in Figure 11. The
magnitude and PLV thresholds are adjusted for each patient to
achieve the highest sensitivity in early detection of seizures.

Figures 12(a) and 12(b) show the variation of the sensitivity
with FPR andSOP , respectively, for patient 2 in the Uni-
versity of Freiburg data set. Each plot compares the sensitivity
of the three detectors in comparison to a random detector. The
sensitivity plot in Figure 12(a) shows that the best detector, the
PLV detector, achieves 66 percent sensitivity with FPR of 0.65
FP/hr,SOP of 30 minutes, andSPH of less than 5 minutes.

The sensitivity plot in Figure 12(b) shows that when the
FPRmax is increased to 1.2/hr, the true positive rate reaches
100 percent for a seizure occurrence period greater than
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Fig. 11. Early seizure detection results example for patient3. (a), (b).
Two input intracranial EEG signals recorded on EEG electrodes 1 and 2,
respectively. (c), (d) Magnitude of the signals shown in (a), (b), respectively,
after they are bandpass filtered in the 15Hz to 25Hz frequencyrange,
computed by the prototyped phase-synchronization processor. (e) Integrated
PLV between the two inputs in the 15Hz to 25Hz frequency band computed
by the prototyped phase-synchronization processor.
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10 minutes. By increasing theFPRmax to 1.2 FP/hr-2.0 FP/hr
depending on a patient,TPR approaches 100 percent for all
patients. TheFPRmax could not always be made constant by
varying the thresholds; therefore, the averageFPRmax rates
are shown for each early detection method in Figure 12(b).

The sensitivity results in early seizure detector are compara-
ble to previously reported software-based bivariate prediction
algorithms [22], [23], [24] as summarized in Table II (with
the exception of [22] which results in 100 percent TPR at
FPR=1/hr versus 100 percent TPR at FPR=1.2/hr performance
yielded by the presented phase-synchronization processorar-
chitecture). All of the listed algorithms have been tested on
the same benchmark data set from the University of Freiburg,
but the presented algorithm is the only one that has been
implemented as a low-power implantable integrated circuit.
Recent integrated circuit seizure detector implementations
[19], [20], [32] achieve a high TPR for a given set of patient
seizure data, but have not been tested on publicly available
benchmarking human seizure data sets such as the one from
University of Freiburg and have lower detection-to-seizure-
onset times as shown in Table II.

C. Experimental Human EEG Results

Two-electrode intracranial EEG data from patient 1 from
University of Freiburg database was loaded onto a dual-
channel Tektronix AFG3252 arbitrary waveform generator and
fed into the phase-synchronization processor chip. A bandpass
filter filtered the inputs to 15-25Hz frequency band. Two 8-
bit ADCs and four 16-tap FIR filters (two all-pass and two
Hilbert filters) digitized and applied a 90 degree phase shift,
respectively, to the two signals. The processor simultaneously
computed both magnitudes, the phase difference and the PLV
at 1.7kS/s dissipating 3.6µW from a 0.85V supply.

Two-electrode intracranial EEG seizure recordings from
patient 1 (electrode-40 and electrode-44) are shown in Figure
13(a) and (b). Figure 13(c) shows the experimentally measured
magnitude from electrode-40, while Figure 13(d) shows the
the experimentally measured magnitude from electrode-44.
For both inputs, the experimentally measured magnitude was
observed to increase during the seizure. Lastly, Figure 13(e)
shows the experimentally measured PLV between the two
inputs. The PLV was observed to drop 15 seconds before
the onset of the seizure displaying an early detection, then
increasing during the seizure. Seizure data from other patients
were also fed into the processor. The magnitude was observed
to increase before and during the seizure while a pronounced
fluctuation of PLV is observed before and during the seizure.

VI. CONCLUSIONS

A compact low-power signal processing VLSI architecture
has been presented that computes the phase locking value on
two neuroelectrical signals and the instantaneous magnitude
on individual neural inputs. The signal processor is used in
conjunction with a neural recording front-end and operates
in real time on frequency bands in the neural spectrum. The
processor occupies 0.178mm2 area and dissipates 3.6µW
operating on a pair of inputs sampled at 1.7kS/s from a 0.85V
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Fig. 12. Early seizure detection results for patient 2, showing (a) true positive
rate vs. false positive rate plot with the seizure occurrence period held at
30min, and (b) true positive rate vs. seizure occurrence period plot. For the
above detectors, MAG refers to magnitude, PLV refers to phaselocking value,
and RND refers to random.

supply. Results from pre-recorded human intracranial EEG
data demonstrate the effectiveness of the processor in early
seizure detection.
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