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Abstract

Around 0.6-0.8% of the world’s population is affected by a re-current neurological disorder of

epilepsy. Second only to stroke, epileptic seizures interrupt lives of 50 million people. The sudden

and seemingly unpredictable nature of seizures is one of the most defeating facts of epilepsy.

The ability to predict a rising seizure reliably can mitigate the severity of the disorder and open

up new theraupetic possibilities: closed-loop seizure prevention systems and EEG triggered on-

demand therapy. No study has yet reported a method that can reliably predict a seizure. This

thesis investigates EEG phase synchronization as a promising algorithm for seizure prediction.

The algorithm is evaluated on a database of three patients with a total of 30 seizures and 230

hours of labeled EEG data. The results of the study show 37% sensitivity for an average seizure

occurrence period (SOP ) of 30 minutes and maximum false prediction rate (FPRmax) of 0.15

seizures/hr. A review of seizure prediction research and methodology is presented. Motivated by

potential implementation on an implantable chip, a realizable FPGA architecture of the algorithm

is proposed.
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Chapter 1

Introduction to Seizure Prediction

1.1 Overview: Seizure Prediction

1.1.1 Introduction

The research in seizure prediction is focused on developing methods for reliable prognosis of seizures

suitable in clinical application. The prediction is commonly based on time-window analysis of pa-

tients’ electroencephalogram (EEG) recording. For each window of EEG, a certain characterizing

measure is computed and used to warn the patient of an impending seizure.

Seizure prediction is a growing research field. To date, no study has provided a single algorithm

capable of predicting a seizure with high sensitivity and low enough false prediction rate. The

field of seizure prediction has in many ways been influenced by parallel advances in physics and

mathematics [14]. For example, an EEG signal may be regarded as a varying non-linear time series.

Thus, non-linear techniques previously used in physics have been recently applied to the field of

seizure prediction.

A promising non-linear prediction algorithm is identified and evaluated in this study based on

EEG recordings of three patients for a total of 230 hours of EEG, 10 seizures per patient. Recent

work in seizure prediction resulted in the development of rigorous methodology to assess predictive

performance of different characterizing measures. A set of guidelines and future research require-

ments have been proposed in [5]. Such methodology was examined and adopted in the present
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study. Moreover, the potential for on-chip implementation of the selected algorithm is explored by

proposing FPGA implementation of the algorithm.

The motivation for seizure prediction, and the scope and purpose of this study is presented in the

following Sections 1.1.2 and 1.1.3. Section 1.1.4 details the organization of the thesis.

1.1.2 Motivation

Epilepsy is one of the most common neurological disorders, second only to stroke, with a prevalence

of 0.6-0.8% of the world’s population [13]. Epilepsy affects people of all ages. Around 50 million

people worldwide suffer from re-current and sudden neurological disease of seizure [23].

In the majority of cases, seizures occur unexpectedly, without a sign of warning to alert and pre-

pare the person for an onset of seizure. Such abrupt and uncontrollable nature of the disease can

cause physical injury. In addition to bodily harm, there is a feeling of helplessness associated with

a lack of control over seizure and inability to anticipate and know when a seizure may strike.

A system that can reliably predict a prospective seizure can have a significant impact on the

patient’s life. A reliable prediction algorithm can alleviate patient’s anxiety and open up new

therapeutic possibilities: closed-loop seizure-prevention systems [10], EEG-triggered on-demand

therapy [2] and electrical stimulation [20].

Figure 1.1: Seizure Prediction Closed-Loop System

In order to adopt a seizure prediction algorithm in clinical practice, it must pass rigorous statistical

validation using real EEG data. To date, no study has reported an algorithm reliable enough for
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clinical application. Yet, evidence has accumulated that certain measures, particularly measures

that quantify interaction between different brain regions, show a promising performance as evi-

denced by statistical validation [5]. The study, characterization and implementation of such an

algorithm is the subject of this thesis.

1.1.3 Purpose

The study of seizure prediction is aimed, on a higher level, at improving the condition of people

suffering from epilepsy by means of a reliable prediction technique able to anticipate the seizure

and apply a corrective action. A technique that can be realized on an implantable chip and meet

the standards of clinical application.

Towards this goal, the purpose and scope of the thesis is to achieve the following:

1. To understand the state and methodology of the field of seizure prediction

2. To select and describe a promising algorithm suitable for on-chip implementation

3. To analyze, tune and evaluate the algorithm on a real EEG dataset via Matlab implementa-

tion

4. To propose a hardware implementation of the algorithm on FPGA

5. To evaluate results, draw conclusions, and offer future perspective

1.1.4 Organization

The thesis is structured in four parts.

Part I presents the literature review of the field of seizure prediction: the background, current

state of the field and future milestones are introduced in Section 1.2. Section 1.3 identifies promi-

nent seizure prediction algorithms and provides a description of two remarkable algorithms.
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Part II focuses on EEG Phase Synchronization algorithm and its evaluation. Section 2.2 presents

reasons for selection and provides detailed description of the algorithm. Section 2.3 outlines experi-

mental variables, patient data, procedure, and evaluation of the prediction technique. Experimental

results are analyzed and discussed in Section 2.4. Future work is proposed at the end of the sec-

tion. Part II concludes with a summary of predictive performance of EEG Phase Synchronization

algorithm.

Part III describes the implementation of EEG Phase Synchronization algorithm. Section 3.1

details Matlab implementation: functional overview of main signal processing blocks and their

verification. Section 3.2 proposes FPGA implementation of the algorithm. Technology selection

and architectural overview is presented in this section.

Part IV concludes the thesis with a summary of results and a discussion on future work.

1.2 Background: Understanding the Field

1.2.1 Formative Years

The field of seizure prediction has been influenced by advancements in physics, mathematics and

economics related to prediction of uncertain and rare events. Dating back to 1975, the field was

largely shaped by the analysis techniques available at the time.

In the 1970s and 1980s researchers considered mainly linear techniques such as spectral data and

pattern recognition along with mathematical modeling of EEG signals [14]. Early findings showed

that pre-ictal states could be detected based on EEG pattern seconds before the onset of seizure.

Beginning in the 1990s, the linear methods were used in addition to methods of non-linear dynam-

ics, involving measures such as Lyapunov exponents, entropy, and correlation densities. A number

of studies in the 1990s showed characteristic pre-ictal changes minutes to hours before seizure onset

and were interpreted as interictal states of various duration.
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Almost all of the mentioned approaches used univariate measures related to a single recording

electrode and little attention was given to the relationship between different recording sites. If one

views a seizure as a simultaneous action of a network of neurons, additional insight can be gained

by studying combination of electrodes from different recording sites. Thus, in the past decade

researchers focused on bivariate and multivariate measures. These techniques include phase syn-

chronization, cross-correlation, and difference of largest Lyapunov exponents among others [14].

Much of the EEG data used at that time was restricted to only the ictal period and it was highly

selected based on the seizure type, signal to noise ratio, duration of the recording, and presence of

artifacts. The lack of clear definitions and unified methodology prompted the creation of Interna-

tional Seizure Prediction Group (ISPG) in 2000 to improve the structure of research in the field of

seizure prediction.

In 2003, a number of studies were published that found a substantially poorer predictive perfor-

mance than previously reported optimistic results. Earlier highly-optimized algorithms applied to

small, selected data sets could not be reproduced on unbiased EEG recordings [5].

The first attempts for testing seizure prediction algorithms in a prospective way were carried out

by Iasemidis (2003) [17] and D’Allesandro (2005) [18].

1.2.2 State of the Field

At present, it is not clear which of the characterization measures are best suited for prospective

prediction of seizures. There are indications [19], [7], [8] of superior performance for measures char-

acterizing relations between brain regions, consistent with the view of a seizure as a synchronous

action of a network of neurons.

Some studies [18], [15] demonstrated that a combination of measures is likely required to carry out

reliable seizure prediction for individual patients.
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1.2.3 Future Milestones

For the field of seizure prediction to meet the benchmark of clinical application, it is necessary to

use unified methodology and rigorous statistical validation. The following guidelines are proposed

in [5]:

• Prediction algorithms should be tested on unselected continuous long-term recordings cover-

ing several days of EEG

• Studies should assess both sensitivity and specificity and should report these quantities with

respect to the applied prediction horizon. Rather than false prediction rates, the portion of

time under false warning should be reported

• Results should be tested using statistical validation methods based on Monte Carlo simula-

tions or naive prediction schemes to prove that a given prediction algorithm performs indeed

above chance level

• If prediction algorithms are optimized using training data, they should be tested on inde-

pendent testing data. Performance of an algorithm should always be reported separately for

the testing data.

The items above provide next milestones in the field of seizure prediction.

1.3 Seizure Prediction: Algorithms

1.3.1 Overview

All prospective prediction algorithms rely on window analysis techniques. Each window of Elec-

troencephalogram (EEG) data is processed and a characterization measure describing the seizure

state is computed. This measure provides the input to a prediction device which triggers an alarm

in case of an impending seizure. The prediction decision is a function of the patient’s nominal

(inter-ictal) and current characterization measures.
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1.3.2 Classification

A seizure prediction algorithm can be classified into three main categories based on causality, lin-

earity and the number of inputs used to compute a prediction.

Algorithmic and Statistical

Statistical analysis is non-causal, retro-spective analysis of EEG. In statistical analysis, EEG is

divided into assumed blocks of pre-ictal, inter-ictal, and ictal data used for processing and training

of the parameters. The temporal sequence of EEG segments need not be preserved in statistical

analysis. The main advantage of statistical analysis is in performance comparison of different char-

acterization indices.

Algorithmic approach computes a characterizing measure for each time profile window. This class

of algorithms represents causal analysis suitable for on-chip implementation.

Linear and Non-linear

Linear and non-linear characterizing measures have been used to study EEG dynamics. Linear

techniques provide simple means of analyzing statistical and spectral information of the EEG sig-

nal, whereas non-linear measures take advantage of the non-linearities present in EEG.

Common linear techniques include statistical moments, spectral band power, and autocorrelation

function. To illustrate a linear prediction algorithm, consider the autocorrelation function for time

series:

A(τ) =
1

(N − 1)σ2

N−τ∑
i=1

xixi−τ (1.1)

where τ = 0, .., N − 1 and σ2 represents the variance. By construction, A(τ) varies between -1 and

1, reaching 1 at time delay of zero: A(0) = 1. For non-periodic time series, the autocorrelation

function decays from A(0) as the values of τ increase. The slower A(τ) decays from the origin, the

stronger is the correlation between the input channels. Thus, an estimate of the strength of linear

correlation can be defined using the first zero crossing:
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τ0 = min(τ |A(τ) = 0) (1.2)

Therefore, linear correlation provides a means of characterizing a pair of EEG signals.

Non-linear time series properties of the EEG signal are utilized by non-linear techniques. Common

non-linear methods include the correclation sum, largest Lyapunov exponent, and phase synchro-

nization.

To appreciate non-linear prediction measures, consider an example of largest Lyapunov exponent

Lmax. Lmax is used to compute exponential divergence of nearby trajectories in a state space.

Lmax can be computed from time series directly [1]. However, the computation suffers from the

presence of noise and is highly dependent on the state space parameters, in addition to being

computationally expensive. In order to overcome these obstacles, an estimate of Lmax can be

computed as follows:

dj(i) ≈ CjeLmaxi∆t (1.3)

where dj(i) is the average divergence between two trajectory segments at time ti and Cj with

j = 1, ..,M a constant given by initial separation of a reference vector zj in state space and its

nearest neighbor.

Taking natural logarithm of the expression above:

ln dj(i) ≈ lnCj + Lmaxi∆t (1.4)

Re-arranging and averaging over j:

Lmax =
1

∆t
〈ln dj(i)− lnCj〉 (1.5)
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The calculated largest Lyapunov exponent Lmax provides a non-linear measure of the divergence

of a pair of EEG signals.

It is important to note that the presence of non-linearity in EEG does not in itself justify the

use of non-linear, complicated measures to characterize dynamic changes in the EEG, rather both

measures must be verified and tested on their prediction ability to justify their use [5].

For a complete list of characterization measures used in seizure prediction, see Table 1 of [5]. A

brief mathematical description of each measure can found in Appendix A of [7].

Univariate and Multivariate

All seizure prediction algorithms can be further classified based on the number of inputs used to

compute the prediction into univariate, bivariate, and multivariate methods.

Univariate prediction algorithms, such as autocorrelation and spectrum analysis methods, use data

from a single EEG channel. Whereas bivariate, or more generally, multivariate methods use two

or more EEG electrodes to compute a single characterizing measure.

Note that the use of univariate prediction method does not limit the analysis to a single electrode,

rather a number of EEG electrodes are processed in parallel: a univariate measure is computed for

each electrode and the results form the input to the prediction device.

1.4 Conclusions

The field of seizure prediction offers favorable ground for research. The methodology and future

directions of the field have been outlined in the literature [5]. Long-term, continuous EEG record-

ings are available through the International Seizure Prediction Project [24] and an extensive list of

algorithms is published in Table 1 of [5]. Yet, no single algorithm was found to yield sensitivity of

clinical importance. This creates an opportunity for research in seizure prediction with a potential

direction towards an implantable chip implementation.
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The following Table 1.1 captures some of the main types of causal measures suitable for on-chip

implementation:

Algorithmic Linear Non-Linear

Univariate Statistical Moments Correlation Sum
Spectral Band Power Largest Lyapunov Exponent
Autocorrelation Function Algorithmic Complexity

Bivariate Linear Cross-Correlation Non-Linear Interdependence
Linear Coherence Phase Synchronization

Dynamical Entrainment

Table 1.1: Algorithm Types

16



Chapter 2

The Method of Phase

Synchronization

2.1 Introduction

Seizure prediction based on EEG Phase Synchronization algorithm is the subject of Part II. It

is organized in three sections. First, the reasons for selecting the algorithm are presented along

with detailed description in Section 2.2. Secondly, the experimental methodology used to evaluate

the algorithm is fully described in Section 2.3. Thirdly, experimental results are discussed and

evaluated in Section 2.4. Part II concludes with evaluation of predictive performance of Phase

Synchronization algorithm.

2.2 EEG Phase Synchronization

2.2.1 Reason for Selection

There are two reasons for selecting EEG Phase Synchronization (EPS) as the seizure prediction

algorithm: superior performance under statistical validation and potential for on-chip implemen-

tation.
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Superior Performance

There is evidence that characterization measures relating different recording sites appear to per-

form significantly better than a random predictor even under rigorous statistical validation [14].

Given the bivariate nature of phase synchronization, it is possible to analyze the correlation of

phase of a pair of EEG signals across different recording sites.

Epileptic seizures can be viewed as excessive and hyper synchronous activity of neurons in cere-

bral cortex. Thus, intuitively, a change in synchronization can be used in defining the boundaries

between non-seizure and seizure states. Therefore, a prediction method that characterizes syn-

chronization among different sites, can itself be considered a priori advantage.

On-Chip Implementation

EEG Phase Synchronization (EPS) is a causal algorithm with high potential for on-chip imple-

mentation.

Phase synchronization is widely used in the field of digital communications. Thus, main algorith-

mic blocks have already been proven in application and hardware. An example of such block is the

Hilbert Transform [22]. The transform can be approximated by an FIR filter; thus, significantly

reducing computational requirements [Appendix A].

In addition, previous studies [12] attempted to implement signal processing of non-linear time se-

ries on FPGA. Whereas the application of [12] was sensory data processing for structural health

monitoring, similar implementation procedure can be applied to EEG algorithm for seizure pre-

diction.

Therefore, phase synchronization provides a promising prediction method with a potential for on-

chip implementation.
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2.2.2 Detailed Description

EEG phase synchronization fits in the class of algorithmic, non-linear, bivariate characterization

measures.1 This method provides a causal analysis of non-linear time series characteristic of EEG

based on two EEG inputs. The algorithm computes a characterizing measure proportional to the

amount of synchronization between the pair of EEG electrodes.

Phase synchronization is defined in term of phase lock between the two signals [4]:

φx(t)− φy(t) = const (2.1)

For each time window of EEG, a characterization index γ is computed for the two input channels

as follows:

γ =
1
N

∣∣∣∣∣
N−1∑
k=0

ej[φx(kT )−φy(kT )]

∣∣∣∣∣ = 1− Vc (2.2)

where γ is the measure of phase synchronization, N is the length of the discrete time sequence, T

is the sampling rate, |.| denotes absolute value and Vc is circular variance [16].

When the phases of sampled continuous time signals are equal, phase synchronization index γ is

unity. In the opposite case of unsynchronized signals, γ is zero. This defines a decision range on γ

for seizure prediction: γ ∈ [0, 1].

In order to compute phase synchronization, it is first necessary to obtain the phase of the input

signal. In the case of a complex scalar z = a+ jb, the phase is given by:

φz = arctan(
b

a
) (2.3)

Extending the definition above to real time series2:
1See Section 1.3.2 for algorithm classification
2See Appendix A.2 for justification
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φ(t) = arctan(
˜s(t)
s(t)

) (2.4)

where ˜s(t) is the Hilbert Transform of s(t) [22]. The ideal Hilbert Transform shifts the phase of

its input signal by π/2. However, an FIR approximation to the ideal transform used in this study,

adds linear phase of the FIR filter to the input. Therefore, each constituent single-tone frequency

of the input signal is delayed by an amount proportional to the linear phase delay at that frequency.

[Appendix A.2] In the case of a complete match between two EEG time profiles, the difference in

φ(t) for each channel will be zero over the observation window.

The computation of index γ defines the challenges to be overcome in hardware implementation of

this algorithm. Expanding the equation for γ and substituting the phase difference φxy(kT ) for

φx(kT )− φy(kT ), we obtain:

γ =
1
N

∣∣∣∣∣
N−1∑
k=0

ej[φxy(kT )]

∣∣∣∣∣
=

1
N

∣∣∣∣∣
N−1∑
k=0

cosφxy(kT ) + j ×
N−1∑
k=0

sinφxy(kT )

∣∣∣∣∣
=

1
N

√√√√(
N−1∑
k=0

cosφxy(kT ))2 + (
N−1∑
k=0

sinφxy(kT ))2 (2.5)

Considering the equation above, to realize characterization measure γ, the following functions must

be implemented: arctan(x),
√
x, sin(x), cos(x), in addition to ˜s(t), the Hilbert Transformer [22].

Functional implementation is detailed in Chapter 3.
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2.3 Methodology

2.3.1 Patient Data

The predictive ability of EEG Phase synchronization can only be verified on a comprehensive EEG

database which includes continuous, long-term EEG recording of several patients covering inter-

ictal as well as ictal periods. Such dataset was found [24] and used in this thesis.

Experimental data selected for algorithm evaluation contains EEG time profiles of three patients,

recorded and labeled during an invasive pre-surgical epilepsy monitoring at the Epilepsy Center of

the University Hospital of Freiburg, Germany. The data is made available through International

Seizure Prediction Project [24] with the purpose of developing a seizure prediction algorithm capa-

ble of meeting the standards for clinical application. This dataset is consistent with the guidelines

proposed by the International Seizure Prediction Group (ISPG).3

Data Acquisition

The patient EEG data was acquired using a Neurofile NT digital video EEG system with 128

channels, 512 Hz sampling rate, and a 16 bit analog-to-digital converter. Intractranial grid, strip,

and depth electrodes were used to acquire the data. EEG was analyzed and labeled by certified

epileptologists [24].

Electrode Selection

Given N recording sites, there are N choose 2 ways of forming a pair. For computational reasons,

it is necessary to limit the number of pairs while keeping important experimental data. Thus,

electrode selection was done to constrain the sample space of recording electrode-pairs while pre-

serving important experimental differences.

The following variables were identified and used for electrode pair selection for each patient [Table

2.1]

3See Section 1.2.3 for guidelines on research in seizure prediction
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Criteria Options
Electrode Type Depth, Strip, Grid
Proximity to Epileptic Focus Adjacent Sites, More than 3 sites apart
Proximity of Recording Sites Adjacent Sites, More than 3 sites apart
Sharing of Electodes Not shared, Shared in at least one paring

Table 2.1: EEG Electrode Selection Variables

Effort was made to include every combination of the variables above in selecting electrodes for each

patient. Preference was given to adjacent recording sites, shared on the same electrode, closest to

the epileptic center.

Patient 1

Patient 1 data is summarized in Table 2.2

Electrode implantation scheme is presented in Figure 2.1

Patient Data
Age: 30
Hours of EEG: 98
No. of Seizures: 10
No. of Channels: 60
Sampling Rate: 512 Hz
Electrode Types: Depth, strip
Sex: Female
Diagnosis: Focal cortical dysplasia
Epilepsy Surgery: left temporolateral resection sparing the hippocampus
Surgery Outcome: Engel Ia
Seizures Recorded: Simple-Partial, Complex-Partial,

Secondarily generalized tonic-clonic

Table 2.2: EEG Data: Patient 1

Patient 2

Patient 2 data is summarized in Table 2.3

Electrode implantation scheme is presented in Figure 2.2
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Figure 2.1: Implantation Scheme: Patient 1

Patient Data
Age: 17
Hours of EEG: 30
No. of Seizures: 10
No. of Channels: 44
Sampling Rate: 512 Hz
Electrode Types: Grip, strip
Sex: Male
Diagnosis: Left temporal tumor
Epilepsy Surgery: Resection of tumor
Surgery Outcome: Engel Ia
Seizures Recorded: Simple-Partial, Complex-Partial,

Secondarily generalized tonic-clonic

Table 2.3: EEG Data: Patient 2
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Figure 2.2: Implantation Scheme: Patient 2
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Patient 3

Patient 3 data is summarized in Table 2.4

Electrode implantation scheme is presented in Figure 2.3

Patient Data
Age: 10
Hours of EEG: 102
No. of Seizures: 10
No. of Channels: 22
Sampling Rate: 512 Hz
Electrode Types: Depth, strip
Sex: Male
Diagnosis: hippocampal sclerosis,

mesiotemporal focal cortical dysplasia and
additional right occipital lesion of unknown histology

Epilepsy Surgery: Selective right amygdalo-hippocampectomy
Surgery Outcome: Engel Ia
Seizures Recorded: Simple-Partial, Complex-Partial,

Secondarily generalized tonic-clonic

Table 2.4: EEG Data: Patient 3

2.3.2 Experimental Variables

This section introduces the three metrics responsible for predictive performance of the algorithm:

Maximum Seizure Occurrence Period (SOPmax), Minimum Seizure Prediction Horizon (SPHmin),

and Maximum False Prediction Rate (FPRmax). All three metrics must be considered together

in evaluating the sensitivity of the algorithm.

SOPmax: Maximum Seizure Occurrence Period

An ideal seizure predictor will point to the exact location in time at which a seizure will occur.

To allow for uncertainty in the prediction, Seizure Occurrence Period (SOP) is introduced. SOP

is defined as the period of time during which a seizure is expected to occur. Thus, SOP accounts

for non-ideality of the seizure predictor.

The chosen intervention system defines the maximum seizure occurrence period SOPmax. Since a

seizure may not occur at the beginning of SOP, an intervention system, such as electrical stimu-
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Figure 2.3: Implantation Scheme: Patient 3

lation or anti convulsive drug delivery, may require to have its effect last for the complete seizure

occurrence period. Thus, the risk of side effects due to prolonged intervention sets an upper bound

on SOP. In addition, higher values of SOPmax cause further stress and anxiety for the patient, as

the predicted seizure is expected to occur at any point during the SOP. A common, acceptable

range for SOP varies from 5 to 50 minutes depending on the patient and the intervention system.

SPHmin: Minimum Seizure Prediction Horizon

In order to suppress a seizure, a certain period of time is required for a corrective action between

the initial prediction and the expected seizure occurrence period (SOP ). This window of time is

defined as the Seizure Prediction Horizon (SPH). SPH measures how far ahead in the future a

given prediction algorithm can anticipate a prospective seizure.

The choice of intervention system limits the SPH. For example, an implantable system [10] that

uses electrical stimulation may suppress a seizure in seconds, allowing for a very short SPH. On

the other hand, a system that employs epileptic drug delivery may need an SPH of 20 to 30 min-

utes to suppress the seizure [21]. Therefore, the time required by intervention system determines
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the minimum seizure prediction horizon.

In addition, longer SPH allows one to prepare for an arising seizure. The person will have more

time to escape harmful surroundings such as a crowded street or a public transit.

FPRmax: Maximum False Prediction Rate

An ideal, error-free prediction is unlikely realistic and errors are bound to occur. Since false predic-

tions cannot be completely eliminated, they must be constrained through the measure of Maximum

False Prediction Rate (FPRmax).

False prediction rate (FPR) is defined as the number of false predictions in a given interval of

time [Appendix B]. Similarly, FPRmax is the maximum acceptable false prediction rate. FPRmax

depends on the selected intervention system. For example, for a simple warning system, high FPR

will either cause the patient to not take the prediction seriously or suffer psychological distress

from counting every prediction as true. The situation gets worse in the case of a drug-release

intervention: the side effects due to a high intervention rate caused by false alarms can only add

to the disease. Therefore, a Maximum False Prediction Rate FPRmax must be defined based on

the intervention system and the patient.

A seizure prediction algorithm must satisfy a certain FPRmax to be eligible for clinical application.

An average number of seizures per hour can be used as in indicator for FPRmax. Under normal

conditions, patients with pharmacorefractory focal epilepsy have a mean seizure frequency of about

three seizures per month [11] or 0.0042 seizures per hour. However, during presurgical monitoring

a higher then normal rate of 0.15 seizures per hour was experienced by the patients [25]. Thus,

an FPRmax equal to 0.15/hr is the maximum allowed false prediction rate for algorithm to be

clinically viable.

Figure 2.4 captures the relationship between Seizure Prediction Horizon (SPH) and Seizure Oc-

currence Period (SOP ) in relation to EEG time-profile.
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Figure 2.4: Seizure Prediction Variables

Sensitivity

The sensitivity is a single metric by which predictive performance of the algorithm is evaluated.

Sensitivity depends on FPRmax, SOP , and SPH. It can be defined as simply the fraction of

correct predictions over the total number of seizures [Appendix B].

The values of maximum seizure occurrence period SOPmax, minimum seizure prediction horizon

SPHmin, and maximum false prediction rate FPRmax depend on a particular intervention system,

which is, in general, not known at the time of evolution of seizure prediction algorithm. Therefore,

sensitivity must be verified for a reasonable range of FPRmax, SPH, and SOP . The sensitivity

of seizure prediction algorithm (S) is a function of the three variables:

S = f(FPRmax, SPH, SOP ) (2.6)

Thus, the FPRmax, SPH, and SOP must be reported along with the measure of sensitivity to

fully characterize predictive performance of an algorithm.

It is important to mention that sensitivity (S) is in direct trade off with false prediction rate
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(FPR): the parameters of seizure prediction method can be adjusted to improve sensitivity at the

expense of increased false prediction rate and vice versa4.

2.3.3 Prediction Methods

A prediction method along with characterizing measure form the core of seizure prediction algo-

rithm. The method is representative of the properties of a seizure as evident through the change in

characterizing measure. In this study, two simple prediction methods are used: threshold and area

predictors. Both prediction methods are compared against a random predictor to observe whether

a prediction is better than chance.

Threshold Predictor

A seizure can be viewed as hyper-synchronous neural activity. Therefore, characterizing index

γ is expected to approach unity during the ictal EEG period. A drop in the value of γ can

be used to differentiate between the pre-ictal and ictal stages of the seizure. Thus, a comparison

of the index γ against a nominal (inter-ictal) threshold can be used to predict a prospective seizure.

The threshold τ is computed as follows:

τ = µij − nij × σij (2.7)

where µij is the mean value of γ for a channel pair (i, j) computed in the interictal segment of the

EEG, σij is the interictal standard deviation of γ for the same period, and nij is the number of

standard deviations below interictal mean required to achieve a certain prediction accuracy.

A seizure alarm is triggered when γ drops below the inter-ictal threshold, i.e. at the negative-slope

crossings of the threshold τ . Any pair of channels (i, j) may trigger a prediction. Once the pre-

diction is issued, no further alarms are allowed for a period equal to the sum of seizure prediction

horizon (SPH) and seizure occurrence period (SOP ).

4See Section 2.3.5 for discussion
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Area Predictor

To reduce the number of false predictions caused by spikes in γ, an alternative predictor, based on

accumulated area, can be used. This prediction method integrates γ below a fixed threshold and

compares the result with inter-ictal reference area:

Acurr =
N−1∑
i=0

(γ[i]− τ) ≥ Aref = Kij × σij (2.8)

where σij is the standard deviation from inter-ictal mean, Kij is adjustable integration period, and

τ is an adjustable threshold below which the accumulation takes place. The threshold τ will have

a different numerical value from the threshold detector, however, it is computed using the same

formula.

Any pair of channels could trigger a seizure prediction. Once an alarm is issued, all accumulated

areas are reset and any subsequent predictions are disabled for a period of time equal to the sum

of (SPH) and (SOP ).

Random Predictor

The random prediction method is used as a reference to assess the predictive significance of an

algorithm. The output of the random predictor is independent of the EEG data. In order to

compare the performance of threshold and area prediction methods to a random predictor, the

common metric of sensitivity5 is used. The expression for sensitivity of the random predictor is

derived below.

To compute sensitivity of the random predictor, consider small interictal time period δ, and max-

imum false prediction rate FPRmax. Then, the probability of seizure prediction during interictal

time interval δ is

5See Section 2.3.2 for definition of sensitivity
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p = FPRmax × δ (2.9)

Over a longer period of time T , the probability of at least one alarm is

P = 1− (1− FPRmax × δ)T/δ (2.10)

Considering the limit of δ << T and the fact that

e = lim
x−>∞

(1 +
1
x

)x (2.11)

We can approximate the probability P of at least one alarm as

P ≈ 1− e−FPRmaxT (2.12)

Setting T equal to the seizure occurrence period SOPmax, yields the sensitivity of the random

predictor.

2.3.4 Experimental Procedure

An experimental procedure was designed to handle the extensive EEG database and control the

number of experimental variables to evaluate the predictive ability of phase synchronization algo-

rithm. The experimental variables are identified in Table 2.5.

Variable Name

Patients Patient 1, Patient 2, Patient 3

Methods Threshold, Area, Random

Electrodes Number, Pairing

Sensitivity FPRmax, SOPmax, SPHmin

Table 2.5: Experimental Variables

To limit the amount of computation, it is important to reduce the number of degrees of freedom
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and choose a set that will be most useful in evaluating the sensitivity of phase synchronization

algorithm. Thus, the experiment aims at, first, selecting the best algorithm-patient pair, and

second, evaluating sensitivity of the chosen pair over a reasonable range of FPRmax, SOPmax,

and SPHmin. The experimental procedure is divided into two main stages: algorithm-patient

selection and algorithm validation.

Stage 1: Algorithm-Patient Selection

The purpose of the first stage is to select the highest-performing algorithm-patient pair which will

be used to study the sensitivity of phase synchronization in the second stage of the experiment.

The best-case scenario was chosen to study the maximum possible sensitivity given the current

configuration of the algorithm. The choice can be justified by noting that, in each scenario, pre-

dictive performance is compared against the random predictor. Thus, all results are objectively

evaluated against the common reference of the random predictor.

The following steps were used for each patient in the first stage:

1. Select a set of EEG electrodes

2. Compute the mean and standard deviation of interictal EEG segments

3. Configure sensitivity variables: FPRmax, SOPmax, and SPHmin

4. Run the algorithm and obtain first-pass results

5. Optimize threshold and area parameters

6. Iterate steps 4 and 5 until desired FPRmax is achieved

7. Tabulate the results

8. Repeat the steps above for each prediction method

Having completed stage 1 of the experiment, the best performing patient-predictor pair can be

chosen based on maximum sensitivity. As a result of the first stage, the number of experimental

variables is reduced to three: FPRmax, SOPmax, and SPHmin.
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Stage 2: Algorithm Validation

The second stage evaluates the sensitivity of EEG phase synchronization algorithm. The sensitiv-

ity or TPR is determined by varying FPRmax, SOPmax, and SPHmin over a reasonable range.

The range is captured in Table 2.6

Variable Minimum Average Maximum Units
SPH 16/60 5 10 minutes
SOP 10 30 50 minutes
FPR 0.08 0.15 0.3 seizures/hr

Table 2.6: Experimental Range of FPRmax, SOP, and SPH

First, the range of SPH was chosen based on the average value of 5 minutes, and the maximum

and minimum deviations of 16 seconds and 10 minutes required for electrical stimulation and drug-

release prevention systems respectively. Next, the range of SOP was selected around the average

value of 30 minutes with a deviation of 10 and 50 minutes, which represent a more and less accurate

prediction ability respectively. Finally, the range of FPRmax was chosen based on the minimum

accepted value of 0.15/hr with the deviation of 0.08/hr and 0.3/hr that represent half and double

the acceptable rate respectively. This range was used to construct the sensitivity plots presented

in the Results Section 2.4.

2.3.5 Parameter Optimization

This section illustrates the trade-off between accuracy of the prediction (TPR) and the false pre-

diction rate (FPR). Consider Figure 2.5, which shows a sample EEG signal beside the extracted

characterization measure γ and thresholds 1 and 2.

Notice that increasing the threshold level in Figure 2.5, increases the number of level crossings

triggering a prediction. Thus, sensitivity of the algorithm improves at the expense of higher false

prediction rate. In the extreme case of a continuous prediction, the algorithm will yield 100%

sensitivity, however, the false prediction rate will be unacceptably high. Therefore, FPRmax must

be reported along with the range of SPH and SOP for a valid assessment of algorithms’ sensitivity.
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Figure 2.5: Parameter Optimization: TPR - FPR trade-off

2.4 Results

This section presents the experimental results for the two stages described in experimental proce-

dure. The discussion of results is presented at the end of the section.

2.4.1 Stage 1: Selection

Table 2.7 displays the electrode pairings and interictal mean and standard deviation of γ for each

patient.

Table 2.8 displays performance metrics6 computed based on results of Table 2.7

Table 2.8 was obtained for each patient using a fraction of the total EEG recording. To achieve a

target FPR of 0.15/hr, a recording of length 1/0.15 = 6.7 hours is required with at least one seizure.

Therefore, a recording period of over 6.7 hours was selected with an average of 3.3 seizures/patient

[Table 2.9]. Note that the start and end samples in Table 2.9 refer to data samples in the EEG

database [24].

For a fair comparison of sensitivity of different prediction methods, equal SPH, SOP , and FPRmax

are required. While the values of SPH and SOP can simply be set prior to the experiment, it is

not the case for FPRmax. To arrive at equal FPRmax, the threshold and reference area must be
6See Appendix B for metric definitions
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Patient Electrode Interictal Interictal
Number Pairing Mean of γ STD of γ FPR SOP SPH

TBa3 : TBb3 0.490 0.170
TBa3 : TBc1 0.496 0.164
TLc15 : TLc16 0.494 0.170

1 TLc16 : TLc4 0.495 0.170 0.15/hr 30 min 5 min
TLa3 : TO12 0.494 0.169
TO12 : TBa2 0.493 0.170
TBa2 : TBa3 0.487 0.171
TBa1 : TBa4 0.873 0.182
TBa4 : TBb1 0.872 0.183

2 TBb1 : TBc4 0.869 0.183 0.15/hr 30 min 5 min
Gc4 : Gb4 0.867 0.185
Gb4 : Gb5 0.867 0.187
Gb5 : Gc5 0.867 0.188
Hr4 : Hr5 0.511 0.280
Hr1 : Hr10 0.512 0.275
TOb3 : TOb4 0.502 0.278

3 TOb4 : TOa4 0.502 0.285 0.15/hr 30 min 5 min
TOa4 : TOc1 0.498 0.277
TOc1 : Hr8 0.501 0.278
TOb4 : TOb1 0.495 0.281

Table 2.7: Experimental Data: Stage 1: Steps 1-3

No Method TP FP TN FN FPR ACC TPR FPR/hr
Threshold 1 10 2.433 2 0.804 0.222 0.333 1.290

1 Random - - - - - - 0.475 1.290
Area 2 11 0.576 1 0.950 0.177 0.667 1.419

Random - - - - - - 0.508 1.419
Threshold 1 9 5.140 2 0.636 0.358 0.333 1.029

2 Random - - - - - - 0.402 1.029
Area 1 0 14.14 2 0.000 0.883 0.333 0.000

Random - - - - - - 0.000 0.000
Threshold 3 8 0.859 1 0.903 0.300 0.750 1.199

3 Random - - - - - - 0.451 1.199
Area 1 8 2.573 3 0.757 0.245 0.250 1.199

Random - - - - - - 0.451 1.199

Table 2.8: Experimental Data: Stage 1: Steps 4-8

Patient Start Sample End Sample Length Number of Seizures
1 165994497 180744704 8 hrs 3
2 1 16589312 9 hrs 3
3 169365505 182269440 7 hrs 4

Table 2.9: Experimental Data: Stage 1: EEG dataset
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Figure 2.6: Experimental Data: Stage 1: Sensitivity Bar Graph

adjusted at each iteration until a near-equal FPRmax is achieved. The adjustment is more easily

done to the reference area than in the case of a threshold predictor. The difficulty in realizing

exact FPRmax is reflected in the variation of FPR in Table 2.8. Note that a zero FPR represents

the case of a perfect prediction7. Therefore, rather than achieving an equal non-zero FPRmax for

Patient 2, the opposite case was attempted.

A prediction method comparison based on sensitivity (TPR) data is presented in Figure 2.6. The

red and dark-gray bars correspond to sensitivity based on threshold and its corresponding random

predictor. Similarly, the green and light-gray bars represent the sensitivity of the area method and

its corresponding random predictor.

Figure 2.6 shows that sensitivity of the random predictor is higher than the actual threshold and

area predictors in half of the trials. In two-thirds of the trials, the area predictor outperformed

its random match, whereas the threshold predictor was better than chance in one third of the

trials. However, it is important to remember that dataset used in Stage 1 is only a fraction of the

total EEG recording for each patient. Thus, it is early to draw any conclusions on the usefulness of

phase synchronization method until the complete dataset is examined in Stage 2 of the experiment.
7See Appendix B for definition of perfect prediction
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In order to complete Stage 1, we need to identify the best predictor-patient pair. Comparing the

sensitivity (TPR) in Figure 2.6, we see 33% improvement of area predictor over threshold for

Patient 1, equal performance for Patient 2 and 55% improvement of threshold predictor over area

for Patient 3. The advantage of area prediction over threshold is not clear and additional selection

criteria is needed. Considering that area predictor produced an FPR of zero and the flexibility

with which reference area may be adjusted to control FPR, the predictor based on accumulated

area was selected for Stage 2 of the experiment. Consequently, Patient 2 was paired with the

area predictor because their combined effect resulted in zero false prediction rate for Patient 2.

Therefore, Patient 2 and area predictor advance to Stage 2 of the experiment.

2.4.2 Stage 2: Evaluation

The dependence of sensitivity (S) on the three variables SPH, SOP , and FPRmax introduced in

Section 2.3.2 is explored in Stage 2 of the experiment. The sensitivity is observed by holding two

of the three variables constant, while varying the third. The results are tabulated and presented

in the form of three 2-D plots of sensitivity S versus each of SPH, SOP , and FPRmax, and a 3-D

ROC Curve8 capturing the relationship between sensitivity and its fundamental trade-offs.

Dataset

The entire Patient 2 dataset [Table 2.10] was used to examine the predictive ability of Phase Syn-

chronization algorithm using accumulated area as a decision device.

Patient Start Sample End Sample Length Number of Seizures
2 1 55616512 30 hrs 10

Table 2.10: Experimental Data: Stage 2: EEG dataset

8See Appendix B on application of ROC curves to seizure prediction
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Variation of Sensitivity with FPR

Table 2.11 shows the dependence of sensitivity (S) on false prediction rate (FPR), for a fixed SOP

= 30 minutes and SPH = 5 minutes. Figure 2.7 shows how sensitivity varies with FPR, while

keeping SPH and SOP constant.

FPR TPR(Area) TPR(Random) SOP SPH
0.000 0.333 0.000 30 5
0.375 0.400 0.171 30 5
0.784 0.500 0.324 30 5

Table 2.11: Experimental Data: Stage 2: TPR vs. FPR
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Figure 2.7: Sensitivity vs. FPR Plot

Variation of Sensitivity with SOP

Table 2.12 shows the dependence of sensitivity (S) on seizure occurrence period (SOP ) for a fixed

(SPH) = 5 minutes and an average FPRmax = 0.568/hr. Figure 2.8 shows how sensitivity (S)

varies with SOP , while SPH and FPR are held constant.
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SOP TPR(Area) TPR(Random) FPR SPH
10 0.200 0.132 0.852 5
30 0.400 0.180 0.613 5
50 0.600 0.264 0.239 5

Table 2.12: Experimental Data: Stage 2: TPR vs. SOP
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Figure 2.8: Sensitivity vs SOP Plot
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Variation of Sensitivity with SPH

Table 2.13 summarizes the dependence of sensitivity (S) on seizure prediction horizon (SPH), for

a fixed SOP = SOPavg = 30 minutes and an average FPRmax = 0.295/hr. Figure 2.9 illustrates

the dependence of sensitivity (S) on variation in SPH, while SOP and FPR are held constant.

SPH TPR(Area) TPR(Random) FPR SOP
16/60 0.571 0.138 0.296 30

5 0.400 0.112 0.239 30
10 0.300 0.161 0.351 30

Table 2.13: Experimental Data: Stage 2: TPR vs. SPH
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Figure 2.9: Sensitivity vs SPH Plot

ROC Plot

The data in Table 2.14 was used to construct the ROC plot9 for phase synchronization algorithm

employing area prediction method. Figure 2.10 shows how sensitivity S varies with both SOP and

FPRmax for a fixed value of SPH equal to 5 minutes. (Note: The ROC data was interpolated by

First Order Hold and fit by a 6th order polynomial. The original points are marked as squares in

Figure 2.10)

9See Appendix B for application of ROC to seizure prediction

40



SOP SPH TPR FPR
10 5 0.10 0.750
10 5 0.20 0.784
10 5 0.30 0.852
30 5 0.33 0.000
30 5 0.40 0.375
30 5 0.50 0.784
50 5 0.20 0.170
50 5 0.40 0.239
50 5 0.67 0.374

Table 2.14: Experimental Data: Stage 2: TPR vs SOP and FPR
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Figure 2.10: 3D Plot of Sensitivity vs SOP and FPR

2.4.3 Discussion

This section evaluates experimental results of Stage 1 and 2 presented in Section 2.4. The discus-

sion is structured in two parts: first, analysis and discussion of the selection Stage 1 is presented,

followed by discussion on sensitivity of the algorithm in Stage 2.
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Discussion: Stage 1

Table 2.7 shows the inter-ictal mean µγ and standard deviation σγ used in computing the reference

level for threshold and area predictors. The difference of µ across the patients suggests distinct

levels of EEG synchronization. Although some variation in µ is expected due to differences in

scope and types of seizures between each patient, a higher value of µ is observed for Patient 2 in

comparison with Patients 1 and 3. The reason for the higher inter-ictal mean may be explained by

the severity of the condition for Patient 2. In addition, the time of day of the recording (i.e. the

time of wake versus sleep), not reported with experimental data, could have an influence on EEG

synchronization as found in [3]. To verify these hypotheses, additional patient data with similar

diagnosis is required.

On the other hand, the value of µ across the electrodes for individual patients is nearly constant,

with greatest variation for different electrode types. The differences between grid, strip, and depth

electrodes are taken into account by computing statistics for each electrode separately. In this

way, the prediction device is not biased to select a certain type of electrode over others.

An important set of experimental results is summarized in Table 2.8. This data was used to

assess predictive performance of phase synchronization algorithm employing area and threshold

prediction devices. Following the definitions in Appendix B, we can verify that:

• The sum of TP and FN is equal to the total number of seizures per patient

• The sum of TP , FP , TN , and FN is equal, within rounding error, for both area and

threshold prediction methods

• The definitions for TPR, FPR, and accuracy (ACC) are consistent with experimental results

in Table 2.8

The last three columns of Table 2.8 quantify predictive ability of the phase synchronization algo-

rithm. Highest accuracy (ACC), lowest (FPRmax) and highest (TPR) are required for a successful

prediction method. The highest accuracy of 88% and also the lowest FPRmax of zero is achieved

by the area predictor for Patient 2. Considering the two false negative predictions in the same

trial, the sensitivity (TPR) is only 33%. In contrast, the highest TPR in Stage 1 is 75% achieved

by the threshold predictor for Patient 3 at the expense of non-zero FPR = 1.199 seizures/hr. The
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superior performance of Patient 2 - Area Predictor pair is apparent from Table 2.8.

The bar chart in Figure 2.6 compares sensitivity (TPR) of each method with the model for random

predictor introduced in Section 2.3.3. The comparison illustrates improvement in performance of

area and threshold methods over the random predictor. Recall that sensitivity for the random

predictor is defined by the following expression:

S ≈ 1− e−FPRmax×SOP (2.13)

Because FPRmax could not be always made constant for area and threshold predictors, two differ-

ent random models are associated with area and threshold methods. Figure 2.6 shows that in 3 out

of 6 trials performed on segmented EEG recording, random predictor yielded higher sensitivity

than area and threshold schemes. However, a complete EEG recording must first be examined

before drawing a conclusion on predictive ability of the phase synchronization algorithm in its

current configuration.

Discussion: Stage 2

This section discusses the central metric used to evaluate the seizure prediction algorithm: sensi-

tivity. The dependence of sensitivity (S) on SPH, SOP , and FPRmax was introduced in Section

2.3.2. The results of Stage 2 are interpreted below based on study of sensitivity as a function of

SPH, SOP , and FPRmax.

Figure 2.7 illustrates a general increase in sensitivity associated with an increase in false prediction

rate FPRmax. The data serves as an example of TPR−FPR trade off presented in Section 2.3.5.

Recall that any algorithm with FPRmax greater than 0.15/hr is not qualified for clinical applica-

tion (Section 2.3.2). At exactly 0.15/hr, the sensitivity is around 36% for the area predictor. Even

though the sensitivity of prediction based on area is 28% higher than that of random predictor, a

sensitivity of 36% is not sufficient for medical application.

Consider the neighborhood point at FPR = 0.375, more than twice the required rate. This point
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is defined by TP = 4, FP = 11, TN = 35.9, and FN = 6. We can calculate the probability P

that given a positive prediction, the prediction is true:

P =
TP

TP + FP
=

4
4 + 11

≈ 0.27 (2.14)

This calculation shows that at an FPR of double the clinically acceptable rate (0.15/hr), proba-

bility that our algorithm predicted the seizure correctly is only 27%. While area predictor is more

sensitive to a prospective seizure than the random predictor, the value of sensitivity at clinically

acceptable FPR = 0.15/hr remains low.

Next, the influence of SOP on algorithm sensitivity is discussed. Figure 2.8 captures an increase

in sensitivity, as a result of increasing SOP . This relation was anticipated because an expansion

of SOP leads to a higher chance that a seizure will fall within expected occurrence period, thus

increasing the number of true positives leading to increase in sensitivity. At an average acceptable

SOP of 30 minutes, sensitivity of the algorithm was 40%, a 21% improvement over the random

predictor.

The third variable examined in relation to sensitivity (S) is seizure prediction horizon (SPH).

Higher sensitivity values are observed for lower SPH in Figure 2.9. These results deviate from the

expected near-zero slope of S. A slope close to zero was expected because SPH affects both the

numerator and denominator terms in the expression for sensitivity:

TPR =
TP

TP + FN
(2.15)

The difference in expected and actual results can be explained by noting the variation in FPR

across the data points. This difference in FPR causes the sensitivity predicted by area and random

methods to deviate from its expected value.

The ROC plot shown in Figure 2.10 provides a visual way of understanding the limits of per-

formance placed on sensitivity by SOP and FPRmax. Consistent with Figures 2.7 and 2.8, an
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increase in either SOP or FPRmax causes sensitivity to increase. The highest sensitivity achieved

for the current configuration and experimental space of the algorithm is 67%. This is 40% above

the sensitivity at critical FPR = 0.15/hr.

Results obtained in this experiment are comparable to a parallel study [26], in which the same EEG

database was used to evaluate sensitivity as a function of SPH, SOP , and FPR for a different

non-linear characterizing measure. The sensitivity of 37% at maximum tolerable FPR = 0.15/hr

and SOP = 30 minutes as shown in the ROC plot suggests the need to improve current con-

figuration of the algorithm. The next Section 2.4.4 on Future Work proposes a list of possible

improvements.

2.4.4 Future Work

This section provides a list of improvements to current configuration of EEG phase synchronization

algorithm. The following future work items are identified:

Signal Processing

1. EEG Frequency Bands. The data reported in [19] suggests that pre-ictal changes in phase

synchronization are dominant in the β band. Thus, additional insight can be gained by

filtering EEG signal into its frequency bands: δ ∈ [0.5 - 4]Hz, θ ∈ [4 - 8]Hz , α ∈ [8 - 13]Hz,

β ∈ [13 - 30]Hz, γ ∈ [30 - 48]Hz.

2. Windowing Function. To achieve higher accuracy due to windowing of the sampled EEG

signals, a different windowing function such as Hanning window can be used in place of

rectangular window.

3. Window Overlap. To smooth out edge effects due to windowing and reduce spikes in the

time profile of γ, consecutive windows can be designed to overlap by a certain percentage.

Methodology

1. Algorithm Comparison. To verify reported similarity between EEG phase synchronization

and comparable measures such as Maximum Linear Cross-Correlation [6] and Dynamical
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Similarity Index [19], the alternative algorithms may be implemented to ascertain their pre-

dictive performance.

2. Balanced Evidence. To make sure that future study is not based heavily on the research

work of Seizure Prediction Group in Freiburgh University and the University Hospital but

strengthened through evidence from other sources.

3. Correction of Artifacts. To eliminate adverse influence of artifacts on EEG prediction mea-

sure, artifacts such as eye-movement and the wake versus sleep states of the patient, must

be identified and addressed in the prediction algorithm.

4. Improved Implementation. By implementing the entire algorithm in C will help speed up the

computation as well as avoid potential timing errors due to repeated execution of Matlab

and C.

2.5 Conclusions

EEG phase synchronization algorithm was selected based on its potential for predicting prospec-

tive seizures and ease of on-chip implementation. A comprehensive procedure was used to evaluate

the performance of the algorithm on a continuous, long-term EEG recording. The results of the

experiment indicate a sensitivity of 37% at FPRmax of 0.15/hr and SOP of 30 minutes. The

algorithm performed 30% better than the random predictor. A sensitivity of 37% at FPRmax =

0.15/hr suggests the need to improve the current configuration of the algorithm. The future work

section proposes a list of improvements in signal processing and methodology.
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Chapter 3

Implementation

3.1 Matlab Implementation

3.1.1 Introduction

This section presents Matlab implementation of the phase synchronization algorithm. Section 3.2.3

provides a top level overview of the model. Section 3.2.3 examines implementation of two main

signal processing blocks. Verification of the model is presented in Section 3.1.3

3.1.2 Functional Overview

Top Level

Figure 3.1 shows system-level Matlab implementation of the phase synchronization algorithm.

The model in Figure 3.1 consists of EEG reader written in C (provided with EEG database [24]),

and seizure prediction algorithm implemented in Matlab. The top-level Matlab script directs the

execution of EEG reader and the algorithm.

Top-level implementation can be summarized as follows:

• Initialize patient parameters

• For each window of EEG data:

1. Execute EEG Data Reader
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1

2

N

Figure 3.1: Matlab Implementation Overview

2. Compute synchronization index γ

3. Form a prediction based on γ

• Plot ROC

Effort was made to make Matlab implementation as modular as possible in order to simplify de-

bugging and hardware implementation.

Block Level

At the block level, signal processing pipeline consists of two main functional blocks: Hilbert trans-

former and γ computational block.

Hilbert Transformer Hilbert transformer is approximated by Direct Form FIR filter of 64th

order. The filter is designed for a sampling frequency of 512 Hz and implemented using equirriple

approximation method. Coefficients of Hilbert transformer are quantized to 16 bits fixed point and

scaled to utilize full dynamic range. Figure 3.2 shows a superposition of magnitude and frequency

response of FIR approximation of Hilbert Transformer1.

1See Appendix A for discussion on Hilbert Transform
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Figure 3.2: Hilbert Transformer FIR Approximation: Magnitude and Phase Response

Synchronization Index Computational block of synchronization index γ implements the equa-

tion derived in Section 2.2.2, repeated here for convenience:

γ =
1
N

√√√√(
N−1∑
k=0

cosφxy(kT ))2 + (
N−1∑
k=0

sinφxy(kT ))2 (3.1)

3.1.3 Verification

To verify the operation of each functional block and system as a whole, a series of block and

top-level tests were designed. In the following discussion, the results of single-tone and multi-tone

tests of the Hilbert transformer are presented.

Figure 3.3 shows the output of FIR approximation of Hilbert transformer for a given sinusoidal

input.

Observe the delay of π/2 and the change in amplitude due to windowing and gain of the Hilbert

transformer in Figure 3.3.
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Figure 3.3: Hilbert Transformer FIR Approximation: Sinusoidal Input

Figure 3.4 shows the output of Hilbert transformer in response to a square wave input. The

figure compares Matlab and DSP platform implementations. The FIR approximation to Hilbert

transformer was implemented on TMS320C6713 DSP Starter Kit (DSK) [9].

Figure 3.4 shows a close resemblance between Matlab and DSP outputs for a square wave input.

Figure 3.5 compares the outputs of Hilbert transformer for a multi-tone EEG signal input.

The outcomes of single-tone and multi-tone Hilbert transformer tests are consistent with expected

results.
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Figure 3.5: Hilbert Transformer FIR Approximation: EEG Input
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3.2 FPGA Implementation

3.2.1 Introduction

This section proposes FPGA implementation of EEG phase synchronization algorithm. Section

3.2.2 identifies implementation constraints and selects fitting FPGA technology. Section 3.2.3 pro-

vides the top level perspective and proposes block level implementation. The section concludes by

summarizing the results.

3.2.2 Technology Selection

Two main constraints were identified in selecting FPGA technology for algorithm implementation:

signal processing IP and I/O Interface. Given the low-frequency nature of EEG signals (Fs = 512

Hz), constraint on FPGA speed is relaxed. The following technology options were considered (Ta-

ble 3.2)

Board Name FPGA Relevant IO Relevant IP

XUPV5 Virtex-5 RS-232 (x2) DSP 48E
XC5VLX110T

XUPV2P Virtex-II Pro RS-232 FFT, IFFT,
XC2VP30 FIR, DFPSQRT

Spartan-3E Spartan-3E RS-232 (x2) Multiplier Blocks
XC3S500E

Table 3.1: Technology Selection: FPGA Board

As shown in Table 3.2, XUPV2P30 Virtext II board [28] was chosen for algorithm implementation.
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3.2.3 Functional Overview

Top Level

EDK Base System Builder was used in board-level implementation of the phase synchronization

algorithm. The system includes the following building blocks:

Board Name FPGA IO Interface IP Cores

XUPV2P Virtex-II Pro RS-232 Phase Synchronization Algorithm
XC2VP30 Sine Cosine Look Up Table

DFPSQRT
CORDIC

Table 3.2: Technology Selection: FPGA Board

Block Level

Figure 3.6 shows the proposed FPGA implementation of the algorithm. As described in Section

2.2.2, in addition to ˜s(t), the Hilbert Transformer, the following functions must be implemented

in hardware: arctan(x),
√
x, sin(x), and cos(x).

Hilbert Transformer Hilbert transformer is realized by a Direct Form FIR filter in Fully Par-

allel architecture with 64-taps.

Square Root Digital floating point square root (DFPSQRT ) IP [27] is used to implement the

square root function. DFPSQRT IP is IEEE-754 compliant, utilizes 4 pipelines and supports single

precision format.

Trigonometric Functions sin(x) and cos(x) are implemented with 10 bit in, 32 bit out Sine

Cosine Look Up Table using block ROM [27].

COordinate Rotation DI gital C omputer (CORDIC ) algorithm is used to perform the arctan(x)

function. CORDIC algorithm [29] provides an iterative approximation of arctan(x) using shift and
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Figure 3.6: FPGA Implementation Overview

add operations.

Comparable FPGA implementation is presented in [12].

3.3 Conclusions

In this section Matlab model and proposed FPGA implementation have been described. The Mat-

lab model was written in a modular form to simplify debugging and hardware implementation. The

operation of its main functional blocks was verified in Matlab and TMS320C6713 DSP Starter Kit

(DSK) [9]. The results obtained show similarity between the simulated model and its implementa-

tion. An FPGA architecture was proposed. Xilinx Virtex-II Pro was selected for implementation

of the algorithm. The use of CORDIC algorithm and FPGA IP addressed the computational

complexity of γ.
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Chapter 4

Conclusions

Research in seizure prediction is an international effort in search for a reliable prediction method

that can meet the standards of clinical application. Only recently first attempts were made to

study causal seizure prediction schemes. Nevertheless, sound methodology exists in addition to

hours of continuous, long-term EEG recordings. These conditions set up a favorable environment

for research in seizure prediction.

In this study, EEG phase synchronization algorithm was selected and evaluated on a dataset of

three patients for a total of 230 hours of EEG and 30 seizures. The results of the study indicate the

best case sensitivity of 37% at FPRmax = 0.15/hr and SOP = 30 minutes. While this sensitivity

is 30% higher than that of a random predictor, it is not sufficient for clinical application. The

sensitivity of 37% suggests the need to improve current configuration of the algorithm. A list of

improvements was proposed in Section 2.4.4.

The algorithm was implemented and verified in Matlab via top and block-level tests in addition

to TMS320C6713 DSP Platform [9]. Virtex-II technology was selected for FPGA implementation.

An architectural overview and implementation of main functional blocks was proposed.
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Appendix A

Appendix A

A.1 Hilbert Transform

A.1.1 Introduction

A discrete time signal can be represented in the frequency domain by its Discrete Time Fourier

Transform (DTFT). In general, complete knowledge of magnitude and phase for all frequencies

−π < ω ≤ π is required to completely specify a signal in time domain. However, additional in-

formation about the signal induces certain properties on DTFT. For example, for a real x[n], its

discrete-time Fourier transform is conjugate symmetric: X(ejω) = X∗(e−jω) Thus, to completely

specify x[n], it is sufficient to specify X(ejω) for only the positive frequencies 0 < ω ≤ π. In case

of Hilbert transform, the causality of the sequence implies a relationship between the real and

imaginary parts of DTFT.

A.1.2 Hilbert Transform Relationship

Since we are interested in relating the real and imaginary parts of DTFT, one-sided condition will

be applied to the discrete-time Fourier transform. Thus, we consider a causal sequence for which

DTFT is zero over the bottom half of the unit circle

X(ejω) = 0, −π ≤ ω < 0 (A.1)
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The sequence x[n] corresponding to X(ejω) must be complex, since, if x[n] were real, the DTFT

would be conjugate symmetric, violating the above condition. Therefore, we express x[n] as a sum

x[n] = xr[n] + jxj [n] (A.2)

where xr[n] and xj [n] are real sequences. Let Xr(ejω) and Xj(ejω) denote the DTFT of the real

sequences xr[n] and xj [n], then

X(ejω) = Xr(ejω) + jXj(ejω) (A.3)

Expressing the real and imaginary parts of DTFT in terms of X(ejω) and its conjugate X∗(e−jω),

we obtain

Xr(ejω) =
1
2

[X(ejω) +X∗(e−jω)] (A.4)

and

jXj(ejω) =
1
2

[X(ejω)−X∗(e−jω)] (A.5)

Note that X(ejω) is zero for −π ≤ ω < 0, thus, there is no overlap between the nonzero portions of

X(ejω) and X∗(e−jω). Therefore, X(ejω) can be fully recovered from either Xr(ejω) or Xj(ejω):

X(ejω) = 2Xr(ejω), 0 ≤ ω < π

= 0, −π ≤ ω < 0 (A.6)

and
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X(ejω) = 2jXj(ejω), 0 ≤ ω < π

= 0, −π ≤ ω < 0 (A.7)

Therefore, Xr(ejω) and Xj(ejω) can be directly related by

Xj(ejω) = −jXr(ejω), 0 ≤ ω < π

= jXr(ejω), −π ≤ ω < 0 (A.8)

or

Xj(ejω) = H(ejω)Xr(ejω) (A.9)

where

H(ejω) = −j, 0 < ω < π

= j, −π < ω < 0 (A.10)

Thus, one-sided property of DTFT induced the relationship H(ejω) between the real and imag-

inary parts of discrete-time Fourier transform. Relationships of this type between the real and

imaginary parts of complex functions are commonly known as Hilbert transform relationships.

The Hilbert transform H(ejω) is an ideal 90-degree phase shifter. It has unity magnitude and a

phase angle of −π/2 for 0 < ω < π and π/2 for −π < ω < 0. As a result, xi[n] can be obtained by

processing xr[n] with an LTI discrete-time system, with frequency response H(ejω).
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Figure A.1: Ideal Hilbert Transform Frequency Response

The corresponding impulse response h[n] in time domain can be derived as follows:

h[n] =
1

2π

∫ π

−π
H(ejω)ejωndω

=
1

2π

∫ 0

−π
(jejωndω)− 1

2π

∫ π

0

(jejωndω) (A.11)

or

h[n] =
2
π

sin2(πn/2)
n

, n 6= 0

= 0, n = 0. (A.12)

A.2 FIR Approximation of Hilbert Transform

The Hilbert Transform represents an ideal 90-degree phase shifter. Its frequency response,

H(ejω) =
∞∑

n=−∞
h[n]e−jωn (A.13)
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Figure A.2: Impulse Response of FIR Approximation to Hilbert Transform Order 64

is not absolutely summable and converges only in the mean-square sense. Thus, in practical design,

approximations to the ideal Hilbert Transform are obtained.

An FIR approximation with linear phase can be designed using either the window method or the

equiripple approximation method. In such implementation, the 90-degree phase shift is realized

exactly in addition to linear phase component of the FIR filter. Therefore, a multi-tone signal will

have different amounts of delay added to its constituent frequency components when filtered by

FIR approximation of the Hilbert Transform.

Recall, the definition for instantaneous phase in Section 2.2.2:

φ(t) = arctan(
˜s(t)
s(t)

) (A.14)

Define the difference in instantaneous phase φ(t) for two EEG time windows x and y at time kT as

φxy(kT ). Then, φxy(kT ) measures the difference in phase content of the present frequency compo-

nents in the two EEG time windows. A value of φxy(kT ) equal to zero suggests equal amount of

delay at each frequency in the EEG spectrum of windows x and y, while the magnitude of non-zero

φxy(kT ) phase difference determines the amount of asynchronicity of the two EEG window profiles.
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Therefore, an extension of definition of instantaneous phase from a set of complex numbers to a

set of non-linear time series over a finite length is justified in its ability to measure amount of

synchronization of a pair of signals.
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Appendix B

Appendix B

B.1 ROC: Receiver Operating Characteristic

Receiver operating characteristic (ROC) is a binary classifier system adopted from signal detection

theory as a method for evaluating performance of a binary classification algorithm such as one

used to predict a seizure. The ROC can be represented as a plot of sensitivity (TPR) versus the

false prediction rate (FPR) of the algorithm.
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Figure B.1: Reciever Operating Characteristic (ROC) Plot

65



The sensitivity of a seizure prediction algorithm is equivalent to true positive prediction rate (TPR).

While (1− specificity) is equal to the false prediction rate (FPR) 1.

To appreciate the role of ROC in algorithm evaluation, it is important to grasp the fundamental

rates: TPR and FPR.

B.1.1 Fundamental Definitions

Consider a binary classification problem, in which the outcomes are labeled as either positive [p]

or negative [n]. There are four possible outcomes of a binary classifier.

Given the actual outcome of a binary event is [p], if the predicted outcome is also [p], the prediction

is classified as a true positive (TP). In the case of prediction value equal to [n], the prediction is

classified as a false negative (FN). Similarly, given the actual outcome of an event is [n], if the

predicted outcome is [n], the prediction is considered a true negative (TN). In the opposite case,

when the predicted outcome is equal to [p], the prediction is classified as a false positive (FP). The

results can be grouped in the form of a 2x2 confusion matrix, also known as contingency table.

Actual Actual
Positive Negative

Predicted
Positive TP FP

Predicted
Negative FN TN

Table B.1: Confusion Matrix

Having defined the fundamental variables, we can extract useful performance information by consid-

ering their ratios. An ROC curve is defined in terms of TPR (sensitivity) and FPR (1-specificity).

TPR =
TP

P
=

TP

TP + FN
(B.1)

1See Section 2.3.2 for application of TPR and FPR in seizure prediction
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FPR =
FP

N
=

FP

FP + TN
(B.2)

where P and N stand for the total number of positive and negative outcomes respectively. TPR

determines the number of correctly predicted positive instances among all positive occurrences

of the event. Similarly, FPR quantifies the number of incorrect positive predictions among all

negative occurrences (i.e. non-occurrences) of the event.

Other useful ratios in measuring predictive performance of the algorithm are accuracy (ACC),

specificity (SPC), positive predictive value (PPV), and negative predictive value (NPV).

ACC =
TP + TN

P +N
=

TP + TN

TP + TN + FP + FN
(B.3)

SPC =
TN

N
=

TN

FP + TN
= 1− FPR (B.4)

PPV =
TP

TP + FP
(B.5)

NPV =
TN

TN + FN
(B.6)

The accuracy ratio evaluates the number of correct positive and negative, predictions over the en-

tire sample space. The specificity considers the ratio of correctly predicted true negatives over the

total number of negative occurrences. Finally, the positive and negative prediction values quantify

the probability that either a positive (PPV ) or negative (NPV ) prediction is correct.

67



B.1.2 ROC Space

Having defined the fundamental variables and ratios, we can now see how they work in application

to ROC plot used to evaluate predictive ability of a binary classification algorithm.

Figure B.2: ROC Space

The ROC space is defined in terms of TPR and FPR two trade-off quantities: true positive pre-

dictions (benefits) and false positive predictions (costs). Since TPR is equivalent to sensitivity

and FPR is equal to (1 − specificity), the ROC plot is often referred to as sensitivity vs

(1 − specificity) plot. One point on the ROC curve represents a single instance of the 2 × 2

confusion matrix (Table B.1).

To gain an intuitive feel for ROC space, consider the ideal case of a perfect prediction in the top-left

corner of the ROC plot: (FPR, TPR) = (0, 1). This point denotes 100% sensitivity (no false nega-

tives) and 100% specificity (no false positives). The (0, 1) point is called a perfect classification. Its

opposite is located at the bottom-right corner (FPR, TPR) = (1, 0) corresponding to 0% correct

and 100% incorrect predictions. In the case of a random prediction, the outcome is expected to lie

along the diagonal line TPR = FPR, known as line of no-discrimination.

For multiple trials, the accumulation of points above the diagonal indicates high predicting ability
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and vice versa. Therefore, the area under ROC curve is a commonly used metric for measuring

predictive performance of a binary classification algorithm.

B.2 Application to Seizure Prediction

This section applies the theory of Receiver Operating Characteristic (ROC) to seizure prediction.

How do we express the true positive TP, false positive FP, true negative TN, and false negative

FN in terms of EEG parameters relevant for seizure prediction? Consider the drawing in Figure B.3

Time

EEG
Alarm 1 Alarm 2Seizure 1 Seizure 2

TP FNFP

SPH

TN

Figure B.3: Seizure Prediction Metrics

In Figure B.3, SOP refers to the Seizure Occurrence Period and stands for the period of time

within which a seizure is expected to occur. SPH is an acronym for Seizure Prediction Horizon

and measures how far ahead a given algorithm can predict a rising seizure. 2

Therefore, a true positive TP is incremented whenever a seizure occurs within SOP . A false posi-

tive FP is increased when a seizure does not occur within SOP. A false negative FN is incremented

when a seizure does develop but is not preceded by an alarm within SPH. Note, that this is a

stricter definition than requiring the seizure to be preceded by an alarm within SPH +SOP time
2See Section 2.3.2 for detailed discussion on SPH and SOP
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period. A less trivial question is how to define a true negative TN, the case when a seizure does

not occur and we do not predict it?

In theory, every single time window, which is outside the SPH and does not produce an alarm,

could be counted as a true negative. However, since sensitivity is defined as the number of seizures

with at least one alarm emerging within SPH divided by the total number of seizures, the true

negative TN can be defined in a complementary way [Figure B.3]

TN =
TotalRecordingT ime− [(TP + FP ) ∗ (SPH + SOP ) + FN ∗ SPH]

SPH + SOP
(B.7)

note the expression above represents the worst case TN, when every seizure arrives at the very end

of SOP resulting in the maximum waiting period of SPH + SOP .

To construct the ROC curve, we require the knowledge of FPR. A simple definition yields

FPR1 =
NumberofFalsePredictions

TotalRecordingT ime
(B.8)

This definition, however, ignores the fact that for each seizure there is a pre-ictal (SPH) period

during which a prediction is by definition counted as true positive. Thus, an alternative definition

proposed in [5] was used,

FPR2 =
NumberofFalsePredictions

TotalRecordingT ime−NumberofSeizures ∗ (SPH)
(B.9)

The revised definition is stricter, in a sense that it yields a higher false positive rate. In general,

a stricter definition was always selected among the alternatives and used to analyze experimental

results.
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