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ABSTRACT 

Recent successes of missions such as the MSL and the 
Rosetta have increased the interest in the robotic 
exploration of other planets and asteroids. Although 
most of these missions envisage the use of rovers, 
legged robots have shown the potential to outperform 
wheeled vehicles on rough terrains in terms of speed 
and energy efficiency. In this paper, the x-MP controller 
presented in recent work, is used to evaluate the 
performance of a monopod robot under the effect of 
different gravitational fields and terrain types. The 
performance of the x-MP controller during regulating 
the robot motion on rough terrains and for the 
exploration of different types of planetary environments 
will be examined using simulations. Additionally using 
the Cost of Transport index, useful conclusions 
regarding the performance of legged robots for 
planetary exploration will be extracted. 

1. INTRODUCTION 

Legged robots offer a great potential for traversing 
rough and unstructured environments in terms of speed 
and energy efficiency. Planets and asteroids are of great 
scientific and exploration interest and are characterized 
by such environments; therefore they are candidates for 
legged robot deployment. However, control 
requirements for legged robots are very demanding, 
especially when the terrain profile is rough. 

An interesting approach towards running on rough 
terrains was introduced with the RHex robot [1], which 
uses open-loop control, thus forward speed is not 
controlled tightly. In addition, the robot ASTRO, part of 
an emulation testbed for asteroid exploration, was 
introduced as a six-limbed ambulatory locomotion 
system that replicates walking gaits of the arachnid 
insects [2]. On the other hand, DFKI researchers 
presented the SpaceClimber, a biologically inspired six-
legged robot for steep slopes, and focused on the foot-
design to handle constraints from the environmental 
ground conditions [3].  

A common control strategy used by quadrupeds for 
traversing rough terrains involves footstep planning. 

LittleDog has shown impressive results on significantly 
uneven terrain [4]. However, it is capable of static 
walking only. StarlETH also uses a similar approach 
[5]; a foot placement algorithm along with distribution 
of virtual forces among the stance legs is used to 
overcome unexpected obstacles and reject perturbations. 

Interestingly, despite the increasing complexity in the 
development of control algorithms for legged robots, 
many studies disregard the effect of terrain compliance 
and permanent deformation. For example, for the 
monopod hopping robot in [6], the ground was 
considered completely stiff. For the MIT Cheetah 2, the 
authors determine a target ground force profile 
according to the desired duty cycle and stride duration, 
[7]. Again, the terrain is considered stiff and completely 
flat. On the other hand, the case of rough terrain is 
considered and a control algorithm is proposed for a 
monopod robot on rough terrain that could handle 
inclinations up to 20 deg in [8]. The robot was 
considered to possess two actuators, at its prismatic and 
rotational joint. Our recent work involved the 
development of a novel energy-based controller for a 
monopod hopping robot running over compliant 
terrains, [9]. This controller is capable of achieving and 
retaining a desired forward speed and main body apex 
height, using a single actuator located at the robot hip. 

To this end, modelling of the foot-terrain interaction is 
an important aspect for control design, especially when 
designing robots and algorithms for autonomous 
exploration. In many works, a stiff revolute joint is used 
to represent the stance phase, disregarding ground 
interactions. Different approaches are necessary to 
assess its effects. This can be seen in works like [10], 
where a viscoelastic model is used, and like [11], where 
a terradynamics approach is employed. Similar 
approaches can be found in [12]. A viscoplastic model 
has been proposed, which enables the assessment of the 
effects of terrain permanent deformations on fast 
dynamic walking, [9]. 

In this paper, the description of the viscoplastic 
approach is briefly introduced and the x-MP controller 
is presented and used to evaluate the performance of the 



 

monopod robot under the effect of different 
gravitational fields and terrain types. Using simulation 
results, the performance of the x-MP controller for 
regulating the robot motion on rough terrains and for the 
exploration of different types of planetary environments 
will be tested. The case of crater-like and unstructured 
terrain will be considered, without affecting the 
generality of the conclusions. In addition, using the Cost 
of Transport (CoT) index, the correlation between the 
energetic efficiency of the controller and the 
acceleration of gravity will be presented and useful 
conclusions regarding the choice of legged robots used 
for planetary exploration will be extracted. 

2. CONTACT MODEL DESCRIPTION 

2.1. Viscoplastic Contact Model 

Any foot-terrain interaction model must represent 
realistically the robot behaviour, while running on 
deformable terrains. Main parameters affecting the 
motion of the robot include the compliance of the 
ground, the depth of the permanent deformation that 
may occur, and the change of characteristics due to 
repetitive loading on a particular point (i.e. ground 
compaction or similar phenomena). In the 
terramechanics approach, it is assumed that a wheel or a 
foot are in contact with the ground for considerable 
amount of time or permanently. For example, such 
approach is widely used in space technology for 
modeling the contact of rover wheels with the ground. 
This approach, however, cannot be applied to the case 
of fast dynamic running, as in this case. 

Therefore, to represent the interaction of a monopod 
with the ground during running on compliant terrains 
accurately, a viscoplastic contact model was proposed, 
[9]. This model is considered to be an extension of non-
linear viscoelastic contact models, and is based on the 
Hunt-Crossley (HC) model [12]. According to the 
proposed model, the interaction force Fg  between the 
foot and the ground at stance instance i  is 

 

 

Fg
i yg , !yg( ) =

Fc
i = λc

ikg + bg !yg( ) yg − yei−1( )n , !yg ≥ 0
Fr
i = λr

ikg + bg !yg( ) yg − yei( )n , !yg < 0
⎧
⎨
⎪

⎩⎪
 (1) 

where the subscript c  stands for compression and r  for 
restitution, ye  is the depth reached at the end of impact, 
kg  and bg  are the stiffness and damping coefficients 
respectively, n  in the case of Hertzian non-adhesive 
contact is equal to 1.5, and yg  is the depth of 
penetration. Note that kg  represents the equivalent 
stiffness between the materials in contact (i.e. in this 
case between the foot and the terrain), [13]. Damping is 
affected by the stiffness, as [14], 

 bg = 1.5 ⋅ca ⋅ kg   (2) 

where ca  is usually between 0.01-0.5 depending on the 
materials and impact velocity. Throughout this work the 
value of ca  is considered to be equal to 0.2, without 
affecting the generality of conclusions. 

To account for successive impacts at the same 
horizontal point, the index i  is used to identify an 
impact instance, as the terrain inherits the characteristics 
from the previous impact instant due to permanent 
deformations. The effect of these is described with the 
Coefficient of Permanent Terrain Deformation, λ , 
which is defined in recursive form as: 
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⎧
⎨
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λr
i = λr

i materials, velocity, i( ), i ∈

  (3) 

where λc
i ≥ λr

i ≥1 . Note that as the same terrain point is 
compressed, it becomes stiffer, [9]. To model this 
phenomenon, the following model is proposed for λ , 

 
 
λr
i = 1+ a i( ) ⋅ 1− e− i⋅β i( )( ), i ∈   (4) 

where a i( ) , β i( )  are functions of the impact instance i, 
of the materials and of the velocity. Parameter a  sets 
the maximum value of λr

i , whereas an increase in β  
increases the speed of reaching this value. 

The final depth ye
i  at the ith  impact can be calculated 

by observing that at the maximum compression, yc,max
i , 

the following applies, 

 
 
yc,max
i ⇔ Fc

i = Fr
i and !yg = 0   (5) 

Using (1), one can deduce that 

 ye
i = yc,max

i ⋅ 1− λc
i λr

in( ) + yei−1 ⋅ λc
i λr

in( )   (6) 

where ye
0 = 0  for consistency.  

2.2. Friction 

When the foot touches the ground, it may slip, 
depending on the touchdown angle and velocity and the 
materials in contact [15]. In order to evaluate the foot 
behavior during stance, a friction description is 
required. Here, the classical Static-plus-Coulomb model 
is implemented, which produces satisfactory results 
with reasonable computations, [16]. According to this 
model the friction force Ft  is 

 

 

Ft =
−µc ⋅Fg ⋅sgn !xg , !xg ≠ 0

− F" sgnF",   F" < µs Fg ,   !xg = 0,   !!xg ≠ 0

⎧

⎨
⎪

⎩
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 (7) 

where  
!xg ,  

!!xg  are the velocity and acceleration 



 

components of the foot which are parallel to the 
tangential plane between the foot and the ground, Fg  is 
the interaction force from which is normal to the same 
tangential plane, F||  is the vectorial sum of all other 
forces applied, parallel to this tangential plane, and µc  
and µs  are the Coulomb and static friction coefficients. 

3. MONOPOD ROBOT DYNAMICS MODEL 

The model of a monopod robot with a single actuator, 
which included the description of the foot-terrain 
interaction, was presented in [9]. Here, the system 
model is extended by means of taking friction into 
consideration and describing the motion of the robot 
over rough terrain including small inclinations. In this 
work, the following assumptions are used: (i) a point 
contact occurs each time the foot touches the ground as 
the foot is considered to be a point mass, (ii) bulldozing 
effects are neglected, (iii) the actuator is torque 
constrained, and (iv) the pitching motion of the body is 
bounded, in accordance to the experimental setup 
presented in [6]. 

The monopod robot model is shown in Fig. 1. It consists 
of a mass M  corresponding to the robot body and a 
mass m  corresponding to the equivalent mass of the 
robot leg and foot. The leg is springy with free length L  
and length at any time l , while the stiffness of the linear 
spring is k . The energy losses due to viscous friction in 
the leg prismatic degree of freedom (dof) are modelled 
with a damping coefficient b , while the leg angle with 
respect to the vertical is γ  and the torque applied by the 
actuator at the body hip is τ . Table 1 summarizes robot 
and motion parameters. 

 
Figure 1. Model of the robot on rough surface. 

The system variables for both the flight phase, where 
the foot does not touch the ground, and the stance 
phase, where the foot touches the ground, are the 
coordinates of the main body x , y , and the coordinates 
of the foot x ft , yft . The equations of motion become 
(with cγ = cosγ  and sγ = sinγ ) 

  M ⋅ !!x + k ⋅ L − l( ) ⋅ sγ − b ⋅ !l ⋅ sγ = −τ ⋅ l −1 ⋅ cγ   (8) 

  M ⋅ !!y + M ⋅ g − k ⋅ L − l( ) ⋅ cγ + b ⋅ !l ⋅ cγ = −τ ⋅ l −1 ⋅ sγ   (9) 

  m ⋅ !!x ft − k ⋅ L − l( ) ⋅ sγ + b ⋅ !l ⋅ sγ = τ ⋅ l −1 ⋅ cγ + Fx   (10) 

  m
!!yft + mg + k L − l( )cγ − b ⋅ !l ⋅ cγ = τ ⋅ l −1 ⋅ sγ + Fy   (11) 

where Fx , Fy  are the ground contact forces in the 
horizontal and vertical direction respectively, defined in 
the inertial frame. 

Table 1. Nomenclature. 

Symbol Quantity 

x Body CM x-axis coordinate 

y Body CM y-axis coordinate 

l Leg length 

γ Leg absolute angle 

xft Foot x-axis coordinate 

yft Foot y-axis coordinate 

L Leg free length 

φ Ground inclination 

M Body mass 

k Leg spring stiffness 

b Leg damping coefficient 

m Effective mass of leg and foot 

τ Hip torque 

Fx Ground force in horizontal direction 

Fy Ground force in vertical direction 

Ft Ground force in tangential direction 

Fn Ground force in normal direction 

 

These forces are determined from the normal and 
tangential components of the contact force with respect 
to the common tangential plane between the foot and 
the ground, Fn  and Ft , using the inclination ϕ  as 

 Fx = −Fn ⋅sinϕ + Ft ⋅cosϕ   (12) 

 Fy = Fn ⋅cosϕ + Ft ⋅sinϕ   (13) 

To implement the viscoplastic contact model and 
calculate the friction force, the foot position and 
velocity in the normal and the tangential directions must 
be calculated. For this reason, a local coordinate system 

′x , ′y( )  is defined with axes tangential and normal to 
the ground surface correspondingly. The origin of this 
system during the flight phase is always located at the 
point xgnd , ygnd( )  of the terrain profile that is just below 
the horizontal foot position, as shown in Fig 1. During 
the stance phase, the origin of the system coincides with 
the point where the collision with the ground occurred. 
In this way, the foot position is being calculated in the 
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local coordinate system using the following 
transformation from the inertial coordinate system 

 ′r = T ⋅r   (14) 

where ′r = [ x ft′ yft′ 1 ]T  contains the foot position in 
the local coordinate system, r = [ x ft y ft 1 ]T  
contains the foot position in the inertial coordinate 
system and T  is the transformation matrix from the 
inertial to the local coordinate system, given as (with 
cγ = cosγ  and sγ = sinγ ) 

 T =

cϕ sϕ −xgnd ⋅cϕ − ygnd ⋅sϕ

−sϕ cϕ xgnd ⋅sϕ − ygnd ⋅cϕ

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (15) 

Using (14), the foot velocity components in the normal 
and tangential directions  !′x ft ,  !′yft  are also determined as 
follows 

  
!′x ft = !x ft ⋅cosϕ + !yft ⋅sinϕ   (16) 

  
!′yft = − !x ft ⋅sinϕ + !yft ⋅cosϕ   (17) 

Based on assumption (i) and on the former analysis, the 
penetration depth yg  equals to the foot position ′yft  in 
the local system during stance, as shown in Fig. 1. 
Therefore, ′yft ,  !′yft  substitute yg ,  !yg  in (1), while  !′x ft  
substitutes  !xg  in (7). The stance phase begins with the 
foot initially touching the ground following a flight 
phase ′yft = 0( )  and terminates when the ground force is 
zeroed Fn = 0( ) . During the flight phase, the forces 
from the ground are zero Fn , Ft = 0( ) . 

4. CONTROL METHODOLOGY 

A novel controller called Extended Multipart (x-MP) 
was presented in [9], that is capable of achieving and 
retaining a desired forward speed and main body apex 
height on any terrain, using only a single actuator at the 
robot hip. It uses energy principles and does not require 
an estimate of the terrain properties. However, its 
implementation is limited to completely flat terrains 
with no inclination. In this paper the x-MP is extended 
by means of achieving hopping on rough terrains with 
small inclinations of ±5deg . Larger inclinations are 
possible, but require larger motor torques. 

The controller in this work is applied just after each 
liftoff of the leg, when the stance phase of stride j −1  
terminates and the flight phase of stride j  begins. At 
that moment, it calculates a desired touchdown angle 
γ td

j  for stride j  and a constant torque τ s
j  to be applied 

during the stance phase of stride j . The controller 
performs its calculations in three steps, as described in 
the following sections. 

 

4.1. Prediction of next touchdown ground point 

The first action of the controller is to predict the point of 
the ground surface on which the leg touchdown of stride 
j  will occur. In general the terrain profile is described 

by a function ygnd = f xgnd( ) , which is unknown to the 
robot. By estimating the next touchdown point, the 
control algorithms developed for flat terrain can then be 
applied. The basic idea for this estimation is depicted in 
Fig. 2, where the touchdown instants of strides j − 2  
and j −1 , as well as the estimated touchdown instant of 
stride j  are shown. 

 
Figure 2. Touchdown ground point estimation concept. 

To be more specific, after each touchdown of the robot 
leg, the terrain profile coordinates xgnd ,td  and ygnd ,td  at 
that point are calculated using the kinematic equations 

 xgnd ,td = x ft ,td = xtd + ltd ⋅sinγ td   (18) 

 ygnd ,td = yft ,td = ytd − ltd ⋅cosγ td   (19) 

where the subscript ‘td’ denotes the value of each 
magnitude at touchdown. Relying on the response of the 
previous two strides and using (18) and (19), the 
controller estimates the terrain inclination of the stride 
j −1  as follows 

 ϕ̂ j−1 = tan−1 ygnd ,td
j−1 − ygnd ,td

j−2

xgnd ,td
j−1 − xgnd ,td

j−2

⎛

⎝⎜
⎞

⎠⎟
  (20) 

with ( #̂ ) denoting an estimated magnitude of ( # ). For 
the first and the second stride where no previous data 
exists, ϕ̂ 0 = ϕ̂1 = 0 . 

Next, the following assumptions are made for stride j : 
(i) due to small length strides the terrain inclination will 
remain the same, (ii) the touchdown angle will be 
approximated as being equal to the touchdown angle 
during stride j −1  so that γ̂ td

j ≈ γ td
j−1  and (iii) the robot 

body performs a ballistic trajectory during flight. The 
goal is to estimate the touchdown point x̂gnd ,td

j , ŷgnd ,td
j( )  of 

the terrain profile. Using assumptions (ii) and (iii), the 
following set of equations can be formed regarding the 
ballistic trajectory of the main body (with cγ = cosγ ) 
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j , ŷgnd ,td

j( )
ϕ̂ j−1



 

 
 
ŷtd
j = ŷgnd ,td

j + L cγ̂ td
j = ylo

j−1 + !ylo
j−1Δt̂ f

j − 0.5g Δt̂ f
j( )2  (21) 

  x̂td
j = x̂gnd ,td

j − L ⋅sinγ̂ td
j = xlo

j−1 + !xlo
j−1 ⋅ Δt̂ f

j   (22) 

with the subscript ‘lo’ denoting the value of each 
magnitude at liftoff and Δt̂ f

j  the estimated duration of 
flight for the stride j . Using assumption (i), x̂gnd ,td

j  and 
ŷgnd ,td
j  are related according to the following equation 

 ŷgnd ,td
j = ygnd ,td

j−1 + x̂gnd ,td
j − xgnd ,td

j−1( ) ⋅ tanϕ̂ j−1   (23) 

Equations (21), (22) and (23) formulate a 3x3 system, 
with ( x̂gnd ,td

j , ŷgnd ,td
j ,Δt̂ f

j ) being the unknown variables. 
This system can be analytically solved and yield the 
estimated point ( x̂gnd ,td

j , ŷgnd ,td
j ). 

4.2. Calculation of desired touchdown angle 

Following the calculation of x̂gnd ,td
j , ŷgnd ,td

j( ) , the 
controller calculates the desired touchdown angle γ td

j . 
In [9], a method was proposed where the extended robot 
model incorporating the foot-terrain description could 
be mapped to a simple model for stiff terrains by 
calculating an equivalent stiffness and damping ′k  and 
′b  respectively, as shown in Fig. 3. The calculation of 
′k , ′b  was performed using previous stride response 

and calculating the energy losses due to damping and 
ground dissipation. The desired touchdown angle γ td

j  
was determined by integrating the flight and stance 
dynamics of the equivalent simple model, according to 
the desired main body apex height hdes . 

 
Figure 3. Idea of the x-MP controller. 

The same control approach is used here, with the main 
difference that the ground level is now considered to be 
at ŷgnd ,td

j  rather than at zero, and the desired main body 
apex height is determined so that a specific clearance 
from the ground Δhcl ,des  is reached, as follows 

 hdes = Δhcl ,des + ŷgnd ,td
j   (24) 

4.3. Calculation of constant stance torque 

After the calculation of the desired touchdown angle, 
the x-MP determines a constant torque τ s

j  to be applied 
during the next stance phase. This torque is calculated 
so that a desired energy level is reached [9]. The 

controller compensates for leg damping energy losses 
and energy losses due to ground dissipation, and 
accelerates or decelerates the system according to the 
desired forward velocity  !xdes  and apex height hdes . The 
same algorithm is used here. 

Following these calculations, the leg is servoed to the 
desired touchdown angle γ td

j  during the flight phase 
using a PD controller as described in [9]. After the leg 
touchdown, which is determined using a force sensor at 
the robot foot, the constant torque τ s

j  is applied. 

4.4. Discussion 

Τhe controller uses information from a force sensor 
yielding the ground reaction forces Fn ,Ft( )  and from 
two encoders that measure the leg angle γ  and the leg 
length l , and estimates the body position x, y( )  using 
the robot dynamic model fused with data from an 
inertial sensor, [9]. No extra sensor for determining the 
terrain properties or inclination is required. Finally, the 
controller does not need tuning but only an estimate of 
the robot parameters. 

5. SIMULATION RESULTS 

To evaluate controller performance, various simulation 
scenarios were run, each for a different gravitational 
acceleration. The equivalent stiffness kg  between the 
materials in contact (i.e. foot and ground) was used [13], 
where the properties of various Earth terrains in [17] 
were used for the Moon and Mars also, without loss of 
generality of the conclusions. 

The foot material was selected to be ether polyurethane 
with Young’s modulus E = 100MPa . Thus, as an 
example, the equivalent stiffness between this material 
and granite with Young’s modulus E = 50GPa  is 
kg ≈ 450,000N m . In this way, three main categories 
of terrains were examined: soft ground with 
kg = 8 ⋅10

4 N m , µs = 0.5  and µc = 0.4 , moderate 
ground with kg = 2 ⋅10

5 N m , µs = 0.6  and µc = 0.5 , 
and stiff ground with kg = 4 ⋅10

5 N m , µs = 0.7  and 
µc = 0.6 . 

In all cases, the monopod hopping robot described in 
Section 3 was used. Its parameters are shown in Table 2. 
The acceleration of gravity g  varied according to each 
motion scenario. The simulations were performed in 
Matlab using ode23s with absolute and relative 
tolerance 10−2  and maximum step 10−5 . To minimize 
the zero-crossing arithmetic problems created by the 
numerical stiffness, the impact was considered over 
when the interaction force between the foot and the 
terrain was below 5N, while the foot transition from slip 
to stick was considered to occur when the foot 
horizontal velocity was below 10−4m/s . 

ττ

′k
′b

k
b

M M

m

Extended Model Simple Model



 

Table 2. Robot parameters during simulation. 

Parameter Value 

Main body mass M 4 kg 

Equivalent foot mass m 0.5 kg 

Leg length L 0.3 m 

Leg spring stiffness k 12,000 N/m 

Leg damping coefficient b 3 Ns/m 

 

5.1. Controller performance 

In Fig. 4 the response of the controller on a rough 
terrain profile on Mars ( g = 3.71 m/s2 ) with maximum 
inclination of ±2 deg  is shown. The initial conditions 
were: height h0 = 0.32 m  and forward velocity 

 !x0 = 0.6 m s . The desired commands were clearance 
from the ground Δhcl ,des = 0.32 m  and forward velocity 

 !xdes = 0.6 m s , while the ground was considered stiff. 
The simulations show that the controller, using the 
touchdown ground point estimation algorithm, retains 
the desired forward velocity and follows the desired 
apex height profile smoothly. 

 
Figure 4. Controller performance on rough, random-

generated terrain profile on Mars: (a) Forward Velocity, 
(b) Main Body Height. 

The above simulation showed that the x-MP controller 
can be used for the successful motion of the monopod 
robot on the unstructured environment of another planet. 
However, in this motion scenario, the ground was 
considered completely stiff and with no permanent 
deformations. To extract further conclusions about the 
controller applicability on every type of terrain, a 
different set of simulations were performed on the 
shallow crater depicted in Fig. 5, where the terrain type 
gradually changed from stiff and non-deformable at the 
external sides of the crater, to soft and very deformable 
at the center of the crater. 

The robot behavior was simulated for the Earth 
(g = 9.81m/s2 ) , the Mars ( g = 3.711m/s2 ) and the 
Moon ( g = 1.622m/s2 ). The initial conditions and 
desired magnitudes remained the same as the previous 
scenario. The controller adapted quickly to each terrain 

and followed the desired objectives of forward velocity 
and main body height in each case, as it is shown in Fig. 
6. It can be observed that the response converged more 
slowly to the desired commands as the acceleration of 
gravity decreased. This is due to the fact that the flight 
phase duration was larger; in this way, there were fewer 
touchdowns for the same horizontal distance and the 
constant stance torque and touchdown angle, which are 
the inputs that regulate the system energy level, were 
applied less frequently. 

 
Figure 5. Terrain profile used for simulations. 

5.2. Energy requirements and Cost of Transport 

It is interesting to examine the controller behavior as the 
acceleration of gravity, the terrain type or the terrain 
inclination changes. For this reason, Fig. 7, containing 
information about the leg angle response and the 
commanded torques by the controller during the stance 
phase, is employed. Note that negative torque 
corresponds to positive work, since the leg moves in the 
negative direction during stance, which is desired. As 
can be seen, for all gravity accelerations, on the uphills, 
the controller sets larger touchdown angles and constant 
torques in order to retain the desired forward velocity.  

On the contrary, when the robot ran downhill, the 
controller tried to decelerate the body and cancel the 
gravity effect; for this reason the touchdown angles and 
the constant torques were smaller in comparison to the 
uphill or flat motion. The controller outputs also 
depended on terrain properties. The more compliant and 
the more deformable was the ground, the larger the 
touchdown angles and stance torques were. As far as 
gravity is concerned, it can be seen that it did not 
generally affect the commanded touchdown angles. This 
was expected considering that the desired touchdown 
angle depends solely on the desired forward velocity 
and main body apex height and the initial conditions of 
the flight phase, which remained approximately the 
same. On the contrary, it can be noticed that greater 
acceleration of gravity resulted in greater stance torques, 
as the controller had to compensate for larger impact 
losses during stance.  

To further evaluate the effect of gravity on the robot 
energy consumption, an additional number of 
simulations were performed on the same shallow crater 
shown in Fig. 5, for different values of the acceleration 
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of gravity g . In this work, the Cost of Transport CoT( )  
index was used, which is defined as follows 

 CoT =W M +m( ) ⋅g ⋅d⎡⎣ ⎤⎦   (25) 

where W  is the total work required over a distance d . 
Fig. 8 shows the total energy consumption by the 
robot’s single actuator as a function of gravity. As can 

be seen, the total work W  increased linearly with the 
acceleration of gravity. This was expected considering 
that greater acceleration of gravity resulted in larger 
energy losses during the impact with the ground, which 
the controller had to compensate for. 

 

 

 
Figure 6. Controller performance on shallow crater: (a), (c), (e) Forward Velocity on Earth, Mars and Moon 

respectively, (b), (d), (f) Main Body Height on Earth, Mars and Moon respectively. 

  
Figure 7. Controller behavior on shallow crater: (a), (c), (e) Leg Angle response on Earth, Mars and Moon respectively, 

(b), (d), (f) Commanded Stance Torques on Earth, Mars and Moon respectively.

On the other hand, Fig. 9 shows the effect of the 
acceleration of gravity on the Cost of Transport. As can 
be seen, the CoT index decreases when the acceleration 
of gravity increases. It can be also presumed that CoT 

remains almost constant beyond a specific threshold 
value for the acceleration of gravity. However, the total 
efficiency of the motion falls exponentially as the 
acceleration of gravity decreases. This must be taken 
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into consideration when planning exploration missions 
with legged robots on planets or other celestial bodies. 

 
Figure 8. The effect of gravity on energy consumption. 

 
Figure 9. The effect of gravity on the Cost of Transport. 

 

6. CONCLUSIONS 

The performance of a monopod robot under the effect of 
different gravitational fields and terrain types was 
examined. First, a description of the viscoplastic 
approach was introduced and the x-MP controller was 
presented and used to evaluate the performance of the 
monopod robot. Using simulation results, the 
performance of the x-MP controller for regulating the 
robot motion on rough terrains and for the exploration 
of different types of planetary environments has been 
tested. The use of the Cost of Transport (CoT) index to 
correlate the energetic efficiency of the controller and 
the acceleration of gravity was presented and useful 
conclusions were extracted. The results of this paper 
give insights that should be taken into account during 
the design of legged systems for space exploration. 
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