BrainPrint: Identifying Subjects by Their Brain

Christian Wachinger\(^1,2\), Polina Golland\(^1\), Martin Reuter\(^1,2\)

\(^1\)Computer Science and Artificial Intelligence Lab (CSAIL), MIT
\(^2\)Massachusetts General Hospital, Harvard Medical School

Introduction

- Is it possible to identify an individual based on their brain?
- Challenges:
 - Morphological changes due to aging and disease
 - Scanning artifacts, inhomogeneities, imaging protocols
 - **BrainPrint**, a brain signature focusing on shape
 - Insensitive to imaging properties
 - Holistic, includes cortical and subcortical structures
 - **BrainPrint**, a useful framework for working with large datasets

BrainPrint Overview

- **FreeSurfer**
- **MRI scan**
- **Shape Descriptor**
- **Classifier**
- **Results**
 - Over 3000 scans from almost 700 subjects each with 3-6 longitudinal scans
 - Data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
 - Leave-one-scan-out experiments
 - Variation of number of eigenvalues
 - Variation of sets of structures:
 - Cortical Triangular (4), Cortical Tetrahedral (4), Cortical Both (8), Selection (15), All (44), All+Difference (48)

Shape Descriptor

\[\lambda = (\lambda_1, \ldots, \lambda_44) \]

Shape Descriptor (Reuter et al., 2006)

Classifier

- Robust classifier that handles missing information
- Classification per structure as weak classifier
- Each subject in database as class, 3-6 points per class

Find subject class \(C_k \) for new scan with **BrainPrint** \(\Lambda = (\lambda_1, \ldots, \lambda_{44}) \)

\[p(\Lambda_a|C_k) \sim N(\mu_a; \mu_a \Sigma_a) \quad a = 1, \ldots, 44 \]

\[p(C_k|\Lambda) \propto \prod_{a=1}^{44} p(\Lambda_a|C_k) \]

Results

- Collection of best structures:
 - Cortical structures [8]
 - Ventricles
 - Corpus Callosum
 - Cerebellum
 - Hippocampus
 - Left lateral ventricle
 - Right lateral ventricle

Conclusions

- Extensive characterization of brain anatomy
- Compact characterization for handling large datasets
- Identification of subjects with very high accuracy
- Launched for more detailed follow-up analysis
- **BrainPrint** does not interfere with anonymization of publicly available data because it does not connect to private information

Future Work

- Concept of brain similarity
- **BrainPrint** in CADementia challenge for AD prediction
- Longitudinal scans over 36 months, similar results over longer periods?
- Quality control of FreeSurfer segmentations
- Detect anonymization errors in longitudinal studies

Acknowledgements

This work was supported in part by the Humboldt Foundation, the Marquardt Center for Biomedical Imaging (FKZ-16S1007X, FKZ-16S1007X), the National Alliance for Medical Image Computing (S1000U-086), and the Neuroimaging Analysis Center (FKZ-18601050). We thank Anna Blumenste for revising the manuscript and the Alzheimer’s Disease Neuroimaging Initiative (ADNI) for image data.