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Abstract

Registration performance can significantly deteriorate when image regions do not comply with model assumptions.
Robust estimation improves registration accuracy by reducing or ignoring the contribution of voxels with large intensity
differences, but existing approaches are limited to mono-modal registration. In this work, we propose a robust and
inverse-consistent technique for cross-modal, affine image registration. The algorithm is derived from a contextual
framework of image registration. The key idea is to use a modality invariant representation of images based on local
entropy estimation, and to incorporate a heteroskedastic noise model. This noise model allows us to draw the analogy
to iteratively reweighted least squares estimation and to leverage existing weighting functions to account for differences
in local information content in multi-modal registration. Further, we employ the non-parametric windows density
estimator to reliably calculate entropy of small image patches. Finally, we derive the Gauss-Newton update and show
that it is equivalent to the efficient second-order minimization for the fully symmetric registration approach. We illustrate
excellent performance of the proposed methods on datasets containing outliers for alignment of brain tumor, full head,
and histology images.

Keywords: Computer-assisted image analysis, rigid and affine image alignment, statistical model, magnetic resonance
imaging, optical coherence tomography, histology

1. Introduction

Tremendous progress in image registration has led to a
vast number of new algorithms over the last decades. One
of the important aspects for translating these algorithms
from research to clinical practice is their robustness. Clin-
ical images tend to frequently violate model assumptions
that were incorporated in the derivation of the algorithm.
Typical sources for such inconsistencies are imaging arti-
facts, noise, anatomical changes, and partial image infor-
mation. Registration methods based on concepts from ro-
bust estimation have been proposed to address such issues
by identifying outliers in the images and restricting their
influence on the cost function (Reuter et al., 2010). These
techniques are targeted at minimizing weighted intensity
differences and therefore cannot account for more com-
plex intensity relationships, prevalent in multi-modal im-
ages. However, multi-modal registration could largely ben-
efit from robust approaches because inconsistencies arise
from the very nature of multi-modal acquisitions: the de-
piction of complementary information. Structural infor-
mation that is only available in selected image modalities
thus adds to the inconsistencies already observed in mono-
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modal registration and therefore highlights the need for
robust multi-modal registration.

Furthermore, several applications require the calcula-
tion of inverse consistent (i.e. unbiased) transformations,
that are independent of the order of the two passed images.
Usually, an asymmetric registration approach is taken,
where only one of the images is transformed during regis-
tration and consequently only this image is resampled onto
the grid of the fixed image. Even in global (rigid/affine)
registration, this asymmetry in the resampling process in-
troduces artifacts to only one of the images and has been
shown to bias follow-up analyses (Yushkevich et al., 2010;
Thompson and Holland, 2011; Fox et al., 2011; Reuter
and Fischl, 2011). Inverse-consistent approaches avoid
this processing bias and have been a focus of research in
registration (Christensen and Johnson, 2001; Smith et al.,
2002; Avants et al., 2008; Vercauteren et al., 2009; Reuter
et al., 2010). A fully symmetric registration setup where
both images are mapped into the mid-space avoids such
problems and produces inverse-consistent results. How-
ever, existing symmetric approaches describe mono-modal
registration settings and focus mainly on non-linear trans-
formation models. The reliable and unbiased inclusion of
multi-modal image stacks into modern image processing
pipelines therefore requires an inverse-consistent multi-
modal registration.

In this article, we address these requirements and intro-
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duce a robust, inverse-consistent, multi-modal registration
algorithm. The method is designed to produce a highly
accurate affine alignment of images in the presence of po-
tentially severe local outliers. We derive the new registra-
tion algorithm via a probabilistic framework that incorpo-
rates layers of latent random variables. The layers provide
a structural representation of images, transforming the
initial multi-modal setup into a mono-modal registration
problem via localized entropy estimation (Wachinger and
Navab, 2012b). We incorporate a heteroskedastic Gaus-
sian noise model for the similarity term that operates on
the latent layers, allowing for spatially varying noise. This
construction permits employing techniques from robust es-
timation to model local noise variation via an iteratively
re-weighted least squares estimation. Moreover, we derive
the Gauss-Newton method with symmetric transformation
updates in the Lie group and show that this approach cor-
responds to an efficient second-order minimization achiev-
ing a vastly improved convergence rate and frequency, as
it uses gradient information from both images.

1.1. Applications

The first target application is the registration of multi-
modal, intra-subject, full head images with the objective
to accurately align brain structures. As these images are
collected very close in time (often within the same scan ses-
sion) we expect only minimal changes in the brain between
these multi-modal image pairs, but potentially large differ-
ences in surrounding regions, e.g ., in soft tissue, different
jaw, tongue, neck and eye placement, or different cropping
planes due to subject motion. Applying deformable regis-
tration here is not meaningful as brain displacements are
only rigid (or at most affine, depending on the acquisi-
tion). Non-linear registration bears the risk of propagat-
ing unwanted deformations into the brain by regulariza-
tion constrains. In full head registration, however, stan-
dard global alignment can fail because of the non-matching
structures and may terminate in local minima. A robust
approach helps to overcome this problem by identifying
non-matching structures as outliers and by iteratively re-
ducing their influence on the registration.

An alternative approach to this problem, would be to
align skull-stripped images and thus remove most of the
local differences outside the brain. Unfortunately, brain
extraction tools often work only on a single modality. Even
when they can be applied to both images independently,
they will lead to varying brain masks, as different parts
of dura or skull may be included or removed by the al-
gorithm. A robust registration approach is capable of
identifying these regions and can produce highly accurate
alignments of the brain independent of skull stripping er-
rors. Common cross-modal registration procedures are of-
ten severely influenced by strong boundary edges and thus
may drive the registration towards a good alignment of
the boundary, sacrificing accuracy in the interior. Con-
sequently, the proposed robust registration method can as-
sist in pre-registering full head images for the simultaneous

extraction of the brain in both modalities or to accurately
align independently extracted brain images.

A second motivating application for our method is the
alignment of brain tumor images. Tumors have a differ-
ent appearance depending on the acquisition parameters
and the usage of contrast agent (e.g., Gadolinium in MR
angiography). The largely varying appearance can dete-
riorate the performance of common multi-modal registra-
tion algorithms. Approaches based on robust statistics are
useful in this context; they automatically discount those
regions and recover the correct alignment based on the re-
mainder of the image. Additionally, accurate alignment
of full head images can also be beneficial for tumor im-
ages, since the automatic brain extraction is very chal-
lenging in these cases. Common brain extraction tools use
prior knowledge about intensity distributions to extract
the brain. Since the intensity values vary significantly in
tumor regions, such methods fail frequently in the presence
of pathology.

A final application is the mapping of histology images
to optical coherence tomography (OCT) (Huang et al.,
1991; Yaqoob et al., 2005) or to high resolution MR im-
ages. Accurate registration with histology is necessary to
validate the appearance of structures in OCT or MR based
on their true appearance on the histological slices. Fur-
thermore, accurate correspondence will be invaluable to
guide development and validation of new algorithms for
automatic detection of areal and laminar boundaries in
the human brain, or of the extent of infiltrating tumors.
Histology registration can be extremely challenging due to
tears and deformations that occur during slicing, mount-
ing and staining. These artifacts are not present in the
previously acquired OCT or MR images and give rise to
complex registration problems that can be alleviated when
using our proposed robust cross-modal algorithm.

1.2. Related Work

Stewart (1999) presents a general summary of robust
parameter estimation in computer vision. Most robust
registration techniques focus on mono-modal registration.
Nestares and Heeger (2000) propose a method based on
M-estimators for the robust registration of images. Peri-
aswamy et al. (2006) introduce a method based on a local
neighborhood and employ the expectation-maximization
algorithm to handle partial data. Reuter et al. (2010) in-
troduce a robust, inverse-consistent registration approach,
where both images are transformed into a mid space. Sim-
ilar to Nestares and Heeger (2000) robust statistics are
employed to obtain accurate registration in the presence
of temporal differences. This approach was shown to lead
to superior results for alignment of mono-modal images
acquired in the same session, as well as across time in lon-
gitudinal studies (Reuter et al., 2012).

In addition to related methods for mono-modal registra-
tion, a few studies have reported results for robust multi-
modal registration. Itti et al. (1997) extract the brain sur-
face and subsequently perform an iterative anisotrophic
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chamfer matching. A hybrid registration approach, based
on the extraction of the brain surface and intensity infor-
mation is proposed in (Greve and Fischl, 2009). Wong
and Orchard (2009) employ the residual of the local phase
coherence representation for registration. This is simi-
lar to local phase mutual information (Mellor and Brady,
2005), where mutual information is calculated between lo-
cal phase estimates from the image intensities for multi-
modal registration.

Here, we transform the multi-modal registration prob-
lem to a mono-modal one. Several structural representa-
tions have been proposed in the literature for this purpose.
Andronache et al. (2008) recolor images, depending on the
variance in the images. Other algorithms extract edges
and ridges from the images (Maintz et al., 1996) or cor-
relate image gradient directions (Haber and Modersitzki,
2007). Wachinger and Navab (2012b) study the theoretical
properties of structural representations and propose two
approaches: an entropy representation, and Laplacian im-
ages with spectral decomposition for dimensionality reduc-
tion. Entropy images can easily and quickly be calculated
via a dense grid of patches. While they bear similarities
to gradient images, they better represent complex config-
urations such as triple junctions (Wachinger and Navab,
2012b). Shechtman and Irani (2007) employ a concept
similar to the Laplacian images, however, construct the
self-similarity descriptor based only on local information.
Heinrich et al. (2012) also use local self-similarity measures
for multi-modal registration, but without dimensionality
reduction. With the length of the information vector cor-
responding to the size of the neighborhood, this approach
is limited to small neighborhoods due to memory and com-
putational complexity constrains.

In this study, we focus on affine and rigid transformation
models with low degrees of freedom. Many applications
require a highly accurate global registration, e.g. to align
different image modalities within subject in close tempo-
ral proximity. Non-linear registrations across subjects, or
across time, are usually performed within-modality using
a high-resolution image or full images stacks. Further-
more, non-linear registrations rely on an accurate global
alignment as a pre-processing step. There are a number of
freely available registration software packages. The widely
used registration tool FLIRT (Jenkinson et al., 2002), part
of the FSL package (Smith et al., 2004), implements sev-
eral intensity based cost functions such as sum of squared
differences, correlation ratio and mutual information. It
also contains sophisticated optimization schemes to pre-
vent the algorithms from being trapped in local minima.
The freely available SPM software package (Ashburner
et al., 1999) contains a registration tool based on (Col-
lignon et al., 1995). In our study, we compare against
these two programs to evaluate the proposed registration
method.

1.3. Outline

Sec. 2 introduces our robust, inverse-consistent, multi-
modal registration method by using a probabilistic frame-
work of image registration. In Sec. 3, we derive the
steepest descent and Gauss-Newton optimization steps,
with the latter one corresponding to the efficient second-
order minimization for the proposed symmetric registra-
tion setup. The calculation of entropy images with the
non-parametric windows estimator is described in Sec 4.
Finally, we present experiments on several datasets in
Sec 5.

2. Robust Multi-Modal Registration

In this section we detail our robust multi-modal reg-
istration approach. First, we describe the parameteriza-
tion of the transformations for the symmetric setup in
Sec. 2.1. Subsequently, we present a probabilistic model
for robust multi-modal registration based on entropy im-
ages in Sec. 2.2. Sec. 2.3 introduces the spatially varying
noise model that allows us to draw the analogy of the de-
rived log-likelihood function to iteratively reweighed least
squares estimation in Sec. 2.4. This connection permits
to leverage existing robust estimators for the purpose of
robust registration in Sec. 2.5.

2.1. Symmetric Transformation Parameterization

For robust registration, we are interested in transform-
ing both images into an unbiased common space. This is
achieved by a symmetric registration approach, mapping
both images into the mid space (Avants et al., 2008). The
result is an inverse-consistent registration (Christensen
and Johnson, 2001; Zeng and Chen, 2008). The result
is an inverse-consistent registration. This implies that the
exact inverse transformation will be obtained by swapping
the fixed and moving image. The common setup is to have
one moving image Im and one fixed image If together with
a transformation T that operates on the moving image,
Im(T (x)) ≈ If (x), for all spatial locations on the image
grid x ∈ Ω. For the symmetric approach, we want to
transform both images half way and therefore need to cal-
culate the half transformation “ 1

2T”. Since the space of
most linear and non-linear transformations is not a vector
space, we use a parameterization of transformations that
has a Lie group structure. This construction ensures that
we stay within the transformation space after the parame-
ter update and facilitates calculations, such as computing
the inverse transformation, as required for the symmetric
approach.

More precisely, consider transformation T that is part
of the Lie group G with the related Lie algebra g. Each
element in the Lie algebra t ∈ g can be expressed as a linear
combination t =

∑n
i=1 πi · bi, with the standard basis of

the Lie algebra b1, . . . , bn and transformation parameters
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π = [π1, . . . , πn] (Zefran et al., 1998). The exponential
map

exp : g→ G (1)

t 7→ exp(t) = exp

(
n∑
i=1

πi · bi

)
= T (2)

assigns to an element of the Lie algebra t that is depen-
dent on the transformation parameters π the correspond-
ing transformation T . For notational convenience, we de-
fine the transformation operator Tπ(x) that maps the lo-
cation x with the Lie algebra parameters π. This is a
shorthand for creating a member of the Lie algebra with
the basis elements bi, applying the exponential map to
obtain a transformation matrix, and using this matrix to
map x.

In the space of the Lie algebra it is straightforward to
calculate the mid space transformation with the half pa-
rameters π/2 and the inverse transformation with the neg-
ative parameters −π. The concatenation of two half-way
transforms leads to the original transform

Tπ/2 ·
(
T−π/2

)−1
= exp

(
n∑
i=1

πi
2
bi

)
· exp

(
n∑
i=1

−πi
2
bi

)−1

= exp

(
n∑
i=1

πibi

)
= Tπ . (3)

Lie group parameterizations have been applied to rigid,
affine, projective, and non-linear registration (Benhimane
and Malis, 2004; Vercauteren et al., 2009; Arsigny et al.,
2009; Wachinger and Navab, 2009, 2013). In this study
we work with rigid and affine transformations. While a
standard parameterization for the rigid case exists (Zefran
et al., 1998), different parameterizations were proposed for
affine transformations (Arsigny et al., 2009; Kaji et al.,
2013; Kaji and Ochiai, 2014). For the parameterization
in (Arsigny et al., 2009), no closed form of the exponential
map exists. The parameterization in (Kaji et al., 2013;
Kaji and Ochiai, 2014) describes the transformation ma-
trix as a product of two matrix exponentials, which com-
plicates the computation of the half transform. A viable
alternative in practice is to directly update the param-
eters of the transformation matrix, as gradient descent
optimizations are unlikely to produce negative determi-
nants when started from identity. The half transform in
this case can be directly computed via the matrix square
root. Note, that the matrix square root is equivalent to
but exp(log(T )/2) computationally more efficient. It can
be computed via a Schur decomposition and then apply-
ing a recurrence of Parlett for computing the root of the
triangular matrix.

2.2. Probabilistic Model for Robust Registration

Probabilistic modeling presents a mathematical frame-
work to derive algorithms for image registration in which

Im If Dm Df 

Figure 1: Contextual model for image registration illus-
trated in 2D. Image layers Im and If consist of observed
random variables. Description layers Dm and Df are la-
tent. Each descriptor variable at location x depends on a
local image neighborhood N (x), which is of size 4 in the
illustration. A one-to-one relationship exists between the
description layers.

assumptions about the characteristics of the noise and sig-
nal are made explicit. In this work, we leverage techniques
for robust estimation that require comparable intensity
values, as in the mono-modal registration setup. For this
purpose, we employ a probabilistic framework (Wachinger
and Navab, 2012a) that introduced layers of latent ran-
dom variables, called description layers. Fig. 1 shows a
schematic illustration of the framework in 2D. The de-
scription layer Dm depends on Im and Df depends on If .
In our study, we use the description layers to store a struc-
tural representation of images.

This framework emphasizes the importance of the lo-
cal context. It replaces the common assumption of inde-
pendently distributed coordinate samples with the Markov
property. The Markov property allows for splitting up a
joint distribution into singleton terms, where each term is
conditioned on a neighborhood that contains all the rel-
evant information. In our case, each location x in the
description layer is dependent on a local neighborhood or
patch N (x) in the image, as shown in Fig. 1. The joint
distribution for the contextual framework factorizes as

p(Im, If , Dm, Df ,π)

=
∏
x∈Ω

p(Dm(x)|Im(N (x))) · p(Df (x)|If (N (x)))

· p(Dm(x)|Df (x),π), (4)

with the coupling terms p(Dm(x)|Im(N (x))) and
p(Df (x)|If (N (x))) that ensure that the description
layers represent the original image information, and the
similarity term p(Dm(x)|Df (x),π) that compares both
description layers. Commonly used description layers
result from image filtering, image gradients, or dense
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feature descriptors. Since we are interested in a modality-
invariant description, we use a structural representation
with entropy images, justified by applying the asymptotic
equipartition property on the coupling terms (Wachinger
and Navab, 2012a). Under the assumption that the
information content across modalities is similar, entropy
images reduce the multi-modal setup to a mono-modal
registration problem. This is essential for the further
derivation of the robust registration approach, which
assumes a mono-modal registration setup. Sec. 4 details
the calculation of entropy images.

Based on the distribution in Eq. (4), we formulate reg-
istration as a maximum likelihood estimation (Viola and
Wells, 1997; Roche et al., 2000). For the contextual frame-
work, the optimization is performed over the description
layers and transformation parameters

[π̂, D̂m, D̂f ] = arg max
π,Dm,Df

p(Im, If , Dm, Df ,π). (5)

In this work, we do not allow for a dynamic adaptation
of the description layers during the registration process by
specifically choosing to work with entropy images. The
coupling terms therefore only motivate the construction of
the description layers but do not influence the optimiza-
tion, yielding the maximization problem

π̂ = arg max
π

p(Im, If , Dm, Df ,π) (6)

= arg max
π

p(Dm|Df ,π). (7)

2.3. Heteroskedastic Noise

After introducing the layout of the probabilistic frame-
work, the similarity term p(Dm|Df ,π) needs to be spec-
ified. This requires the introduction of the underlying
imaging model.

First, we map both of the description layers into the
mid space to obtain an inverse-consistent transformation.
Second, we assume heteroskedastic Gaussian noise to ac-
count for outliers and perform robust estimation. Third,
instead of intensity mapping, we operate on the modality-
invariant description layers. This set of assumptions yields
the imaging model

Dm

(
Tπ/2(x)

)
= Df

(
T−π/2(x)

)
+ ε(x) (8)

with a spatially varying Gaussian noise ε(x) ∼ N (0, σ2(x))
and variance σ2(x). Note that this model differs from al-
ternative probabilistic approaches (Viola and Wells, 1997;
Roche et al., 2000) that consider homoskedastic image
noise, ε(x) = ε, ∀x ∈ Ω. To facilitate notation we define
D↑m(x) = Dm(Tπ/2(x)) for the movable image mapped

forward and D↓f (x) = Df (T−π/2(x)) for the fixed image
mapped backward. We continue referring to images and
description layers as fixed and moving to differentiate be-
tween them, although both of them are moving.

In the derivation of the similarity measure, we re-
lax the commonly made assumption of independent and

identically distributed samples to allow independent and
not identically distributed samples. We define the log-
likelihood function for heteroskedastic Gaussian noise

log p(Dm|Df ,π, ε) (9)

= log
∏
x∈Ω

p(Dm(x)|Df (x),π, ε(x)) (10)

=
∑
x∈Ω

log

(
1√

2πσ(x)
exp

(
−

[D↑m(x)−D↓f (x)]2

2σ(x)2

))
(11)

=
∑
x∈Ω

− log(σ(x))−
[D↑m(x)−D↓f (x)]2

2σ2(x)
+ const, (12)

where const does not depend on the variables of interest.
The influence of each sample in the summation is depen-
dent on σ(x). In fact, σ(d)−2 can be seen as a local weight
that determines the influence of the local error. Note that,
for a constant variance across the image σ(x) = σ, ∀x ∈ Ω,
this reduces to the commonly applied sum of squared dif-
ferences. The optimization problem changes from estimat-
ing just the transformation parameters to additionally es-
timating the variance at each location

[π̂, σ̂] = arg max
π,σ

log p(Dm|Df ,π,σ), (13)

with the vector of variances σ2 = [σ2(x1) . . . σ2(x|Ω|)].
The joint estimation of transformation parameters and
variance can cause a complex optimization problem. We
employ an iterative optimization procedures that alter-
nates between optimizing the transformation parameters
and variances, as summarized in Algorithm 1.

Algorithm 1 Alternating Optimization

π̂(0) = 0;
for k = 1 to maxIteration do

(I) σ̂(k) = arg maxσ log p(Dm|Df , π̂
(k−1),σ)

(II) π̂(k) = arg maxπ log p(Dm|Df ,π, σ̂
(k))

end for

Initially, the transformation parameters are set to zero,
corresponding to the identity transformation1. In step (I),

the optimal variances σ̂(k) are calculated for the trans-
formation of the last iteration π̂(k−1). In step (II), the

optimal transformation π̂(k) is calculated for fixed vari-
ances σ̂(k). An important consequence of the decoupled
optimization is that the log-likelihood term in Eq. (12)
only depends on the second term when maximizing with
respect to the transformation parameters in step (II) of
Algorithm 1.

In order to solve step (I), we draw the relationship to
iteratively reweighted least squares estimation for which

1An alternative would be to initialize the transformation based
on raw image moments, as described in (Reuter et al., 2010).
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a large number of robust estimators have been proposed.
This allows us to estimate local variances even though we
only have a two intensity values at each location x.

2.4. Relationship to Iteratively Reweighted Least Squares

In iteratively reweighted least squares estimation (Hol-
land and Welsch, 1977; Street et al., 1988), the least
squares estimator is replaced by the more general class
of M-estimators. This yields a cost function

E(π) =
∑
x

ρ(r(x)), (14)

where ρ is a symmetric, positive-definite function with a
unique minimum at zero and r(x) = D↑m(x) − D↓f (x). In
the following, we concentrate on ρ being differentiable, in
which case the M-estimator is said to be of ψ-type (as
ψ = ρ′). Calculating the derivative yields

∂E(π)

∂πi
=
∑
x

ρ′(r(x))
∂r(x)

∂πi
. (15)

Defining a weight function w(z) := ρ′(z)
z , we obtain

∂E(π)

∂πi
=
∑
x

w(r(x)) r(x)
∂r(x)

∂πi
. (16)

To relate this to our optimization problem, we calcu-
late the gradient of the negative log-likelihood function
of Eq. (12)

−∂ log p(Dm|Df ,π, ε)

∂πi
=
∑
x

1

σ2(x)
r(x)

∂r(x)

∂πi
, (17)

under the assumption that σ2(x) does not depend on the
transformation parameter π, as it is the case for the al-
ternating optimization. Comparing Eq. (16) and Eq. (17),
we see that they can be brought into correspondence by
identifying w(x) = 1

σ2(x) . This shows that the appli-

cation of gradient-based optimization for the proposed
log-likelihood function is equivalent to the gradient-based
optimization of the M-estimator function ρ. Since the
weights are inversely related to the variances, we have

σ2(x) = 1
w(x) = r(x)

ρ′(r(x)) for different M-estimators ρ.

2.5. Robust Estimators

Having this important connection established, we can
now leverage M-estimators ρ, for the robust description of
the local variances. Here we specifically model the vari-
ances via Tukey’s biweight function, as it completely sup-
presses the effect of outliers:

σ2(x) =

{
(1− r(x)2

c2 )−2, if |r(x)| ≤ c,
∞, otherwise,

(18)

Fig. 2 illustrates Tukey’s biweight function as well as the
quadratic function with the corresponding weights. The
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Figure 2: Illustration of Tukey’s biweight function for c =

2 in red and the quadratic function r2

2 in blue. We also

show the corresponding weight function ρ′(r)
r as dashed

line. The weights are constant for the quadratic function.
For Tukey’s biweight the weights are zero for |r| > c.

weight function w(r) = ρ′(r)/r for the quadratic function
ρ(r) = r2/2 is the constant function w(r) = 1 and for

Tukey’s biweight function is w(r) = 1
σ2(r) =

(
1− r2

c2

)2

for

|r| ≤ c and zero otherwise. Tukey’s biweight (red curve)
limits the influence of large residuals (r > c), for which
the weights (red dashed curve) are zero (and the vari-
ance infinity). The regular least squares approach (blue
curves) results in a constant weight function and vari-
ance, independent of the local residuals, and thus considers
the contribution of all voxels equally. Using Tukey’s esti-
mator requires the saturation parameter c to be set. A
fixed value of c = 4.685 is recommended for unit Gaussian
noise by Holland and Welsch (1977); Nestares and Heeger
(2000). However, it may be more appropriate to specify
the value depending on the characteristics of the input im-
ages. A method to automatically estimate the saturation
parameter for each image pair in a pre-processing step on
low resolution images has been recommended in Reuter
et al. (2010). The procedure allows for more outliers in
the skull, jaw and neck regions, where more variation is
to be expected. We employ this method to estimate the
saturation parameter for entropy images automatically.

3. Optimization

In this section, we present more details on the optimiza-
tion with respect to the transformation parameters (step
(II) in Algorithm 1) and derive the Gauss-Newton method.
Moreover, we show that Gauss-Newton corresponds to the
efficient second-order minimization for the special case of
a fully symmetric setup. For the alternating optimiza-
tion, only the second term of the log-likelihood function in
Eq. (12) is a function of the transformation. We rewrite
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the resulting cost function in vector notation

C(π) =
1

2
r(π)>W>Wr(π) =

1

2
‖Wr(π)‖2, (19)

with the diagonal weight matrix Wxx = 1
σ(x) being of size

R|Ω|×|Ω|. As before, the weights do not depend on the
transformation parameters π.
Steepest descent: For steepest descent, we obtain the
update rule

h = α · JC π ← π + h (20)

where α is the learning rate . Note that the additive up-
date in Lie algebra is equivalent to a compositional update
in the Lie group Tπ ◦ exp(

∑
hi · bi). The Jacobian JC(π)

contains the partial derivatives of all n parameters, i.e.,

JC(π) =
[
∂C(π)
∂π1

, . . . , ∂C(π)
∂πn

]
with

∂C(π)

∂πi
= W 2r(π)

∂r(π)

∂πi
. (21)

Gauss-Newton and Efficient Second-Order Mini-
mization: For least squares optimization problems, as in
Eq. (19), Gauss-Newton methods can be applied. From
the Taylor series, we obtain the following approximation
of the residual for small updates ‖h‖

r(π + h) ≈ r(π) + Jr(π) · h (22)

with the Jacobian Jr(π) =
[
∂r(π)
∂π1

, . . . , ∂r(π)
∂πn

]
. The linear

approximation yields

C(π + h) =
1

2
‖Wr(π + h)‖2 =

1

2
r(π + h)>W>Wr(π + h)

≈ 1

2
r(π)>W 2r(π) + h>Jr(π)>W 2r(π)

+
1

2
h>Jr(π)>W 2Jr(π)h (23)

= C(π) + h>Jr(π)>W 2r(π)

+
1

2
h>Jr(π)>W 2Jr(π)h

We obtain the optimal update by differentiating with re-
spect to h and setting the gradient to zero, leading to the
linear system of equations(

Jr(π)>W 2Jr(π)
)
h = −Jr(π)>W 2r(π). (24)

The update is as before π ← π + h. We take a closer look
at the Jacobian to see an interesting consequence of the
fully symmetric setup

Jr(π) =
∂
(
D↑m −D

↓
f

)
∂π

=
∂
(
Dm

(
Tπ/2

)
−Df

(
T−π/2

))
∂π

=
1

2

(
(∇Dm)↑ + (∇Df )↓

) ∂Tπ
∂π

. (25)

Since the first image is mapped exactly in the inverse di-
rection of the second, the derivatives of the transforma-
tions only differ by a minus sign. Thus the transforma-
tion derivative

∂Tπ
∂π can be factored out. The resulting

formula for the Jacobian is equivalent to the Jacobian
of the efficient second-order minimization (ESM) (Benhi-
mane and Malis, 2004; Vercauteren et al., 2007; Wachinger
and Navab, 2009, 2013). For the fully symmetric registra-
tion setup, Gauss-Newton and ESM are therefore equiva-
lent. Independently, the same relationship was discovered
by Lorenzi et al. (2013) in an analysis of the log-Demons
algorithm.

In a general setup, ESM was shown to require sig-
nificantly fewer steps in the optimization than Gauss-
Newton (Benhimane and Malis, 2004; Wachinger and
Navab, 2013) and to have a cubic convergence rate (Malis,
2008). The update procedure of ESM is closely related to
Gauss-Newton: it uses the addition of the image gradients
of both images, instead of just one of the images. We use
the Gauss-Newton optimization in our experiments and
are therefore benefiting from the attractive convergence
properties of ESM. To simplify implementation we explic-
itly state the derivative at a point p = (x, y, z, 1) for the
rigid case (Wachinger and Navab, 2013)[

∂Tπ
∂π

]
p

=

 0 z −y 1 0 0
−z 0 x 0 1 0
y −x 0 0 0 1

 (26)

and for the affine case (Ashburner, 2000; Reuter et al.,
2010)[
∂Tπ
∂π

]
p

=

 x y z 1 0 0 0 0 0 0 0 0
0 0 0 0 x y z 1 0 0 0 0
0 0 0 0 0 0 0 0 x y z 1

 .

(27)

3.1. Additional Algorithmic Details

We employ a multiresolution approach to estimate large
displacements between the images (Roche et al., 1999).
The Gaussian pyramid is constructed by halving each di-
mension on each level until the image size is approxi-
mately 163. This procedure results in 5 resolution lev-
els for typical image sizes (2563). The iterations at each
level are terminated if the transformation update is below
a specified threshold (0.01mm) or a maximum number of
iterations (5) is reached. The registration of the subse-
quent resolution level is initialized with the result of the
previous one.

In our experiences with entropy images, different
smoothness or signal-to-noise ratio can lead to entropy im-
ages that vary in overall scale. To account for this varia-
tion, we add a global intensity scaling of entropy images.
Since we are interested in a fully symmetric registration
setup, we apply the intensity scaling to both images. The
equation for the imaging model (8), changes to

e
s
2 ·Dm

(
Tπ/2(x)

)
= e−

s
2 ·Df

(
T−π/2(x)

)
+ ε(x), (28)

7



(a) Histogram, 3 (b) Histogram, 5 (c) Histogram, 7

(d) NP windows, 3 (e) NP windows, 5 (f) NP windows, 7

Figure 3: Comparison of entropy images for patch sizes
3×3×3 to 7×7×7 created with density estimators based
on on histogram (a-c) and non-parametric (NP) windows
(d-f). Appearance of entropy images is smoother for larger
patch sizes. Note the striking difference between the two
estimation approaches for patches of size 3 (a vs. d).

where s is the scaling parameter 2. We choose an exponen-
tial intensity scaling, in contrast to square root multipli-
cation of s in (Reuter et al., 2010), because it is symmetric
(with respect to the parameter update) and improves the
stability of the model.

4. Entropy Images with non-parametric Windows

We employ entropy images with the non-parametric
windows estimator to obtain a structural representation
of the images. Considering an image I and a local neigh-
borhood N (x), the corresponding description layer is cal-
culated as

D(x) = H(I|N (x)), (29)

with the Shannon entropy H(Y ) = −
∑
y∈Y p(y) log p(y)

and I|N (x) the restriction of the image to the neighborhood
N (x). The calculation of the local entropy for all locations
in the image leads to entropy images. Compared to mutual
information, entropy images have advantages for the reg-
istration of images affected by bias fields (Wachinger and
Navab, 2012b). An essential step for the entropy calcula-
tion is the estimation of the intensity distribution pI|N(x)

within patches I|N (x). On the one hand, the patch size
has to be large enough to provide enough samples for a

2We consider separate noise for fixed and moving image, which are
subject to the intensity scaling. Since linear combination of mutually
independent normal random variables is again normal distributed, we
summarize it into a global noise term.

reliable density estimation. On the other hand, a large
patch size leads to smoothing in the images. Since we are
interested in a highly accurate multi-modal registration,
we want to reduce the patch size as much as possible to
allow for accurate localization and sharp structures.

One approach is to upsample the original image and to
utilize the interpolated values for the density estimation.
A recently proposed method of non-parametric (NP) win-
dows (Dowson et al., 2008) considers the asymptotic case
by letting the number of interpolated samples go to infin-
ity. The method involves constructing a continuous space
representation of the discrete space signal using a suitable
interpolation method. NP windows requires only a small
number of observed signal samples to estimate the den-
sity function and is completely data driven. Originally,
Dowson et al. (2008) only presented closed form solutions
for certain 1D and 2D density estimation cases. Recently,
Joshi et al. (2011) introduced a simplified version of NP
windows estimation. Importantly they also include closed
form solutions for 3D images. The density is estimated
per cube in the volume, where each cube is divided in five
tetrahedra. Finding the density estimate over the cube
then reduces to finding densities for each of the tetrahe-
dra. We employ the NP windows density estimation for
entropy images, leading to highly localized entropy images.
Fig. 3 shows entropy images for density estimation based
on histograms and NP windows for different patch sizes.
The entropy estimation with NP windows leads to a clear
improvement, especially for small patch sizes.

5. Experiments

We evaluate the robust, multi-modal registration in the
following experiments. For quantifying the registration re-
sults, we calculate the root mean squared (RMS) error
between two transformations Jenkinson (1999). This er-
ror describes the average voxel displacements in millimeter
inside a ball with radius r located at the center of the im-
age. Given two affine transformations in 3D, (A1, t1) and
(A2, t2), with the 3×3 transformation matrices Ai and the
3× 1 translation vectors ti, the RMS error is

ERMS =

√
1

5
r2tr[(A2 −A1)>(A2 −A1)]− (t2 − t1)>(t2 − t1).

(30)

We calculate the RMS error on transformations in RAS
(right, anterior, superior) coordinates, where the origin
lies approximately in the center of the image. We set
r = 100mm, to define a sphere that is large enough to
include the full brain. For example, an ERMS error of 0.1
mm corresponds to 1/10 of a voxel displacement (for 1mm
isotropic images), which can easily be picked up in visual
inspection.

5.1. Brain Registration with Ground Truth

In the first experiment, we work with simulated T1 and
T2 images from the BrainWeb dataset (Cocosco et al.,
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Figure 4: Statistical analysis of RMS errors for the skull-
strip T1-T2 registration study over 100 repetitions. Bars
indicate mean error, error bars correspond to two standard
deviations. *** indicates significance level at 0.001. Ro-
bust registration with non-parametric windows (RR-NP)
yields a significant reduction in registration error with re-
spect to robust registration with histograms (RR), FLIRT,
and SPM. Further, setting the parameter in Tukeys bi-
weight function to c = 2, which allows for more outliers
than c = 10, yields to significantly better results.

1997) which are perfectly aligned. Always knowing the
ground truth transformations allows us to establish results
on the accuracy of different registration procedures. The
image resolution is 256 × 256 × 181 with 1mm isotropic
spacing. We automatically skull-strip the T1 image with
the brain extraction tool (BET) (Smith, 2002), modify the
brain mask (asymmetric and localized dilation), and apply
it to the T2 image to induce variations in brain extrac-
tion between both modalities. We apply random trans-
formations to the skull-stripped images with translations
of 30mm and rotations around an arbitrary axis of 25◦.
Different registration approaches are compared to deter-
mine how well they recover the correct registration: the
statistical analysis of the RMS registration error for 100
repetitions is shown in Fig. 4.

For the robust registration with NP windows (RR-NP)
the patch size is 3 × 3 × 3 and for the robust registration
with histograms (RR) it is 5 × 5 × 5. We manually set
the parameter in Tukey’s biweight function to simulate a
robust approach with many outliers (c = 2) and a less ro-
bust approach with few outliers (c = 10). We compare
to popular and freely available registration software using
mutual information: FLIRT in FSL and the coregistration
tool in SPM. Our results show the significant reduction
in registration error of our approach in contrast to these
reference methods. Moreover, we observe a significant im-
provement for the density estimation with NP windows in
comparison to histograms, highlighting the importance of
the better localization with NP windows and confirming
the qualitative results from Fig. 3. Finally, the significant

(a) MPRAGE (b) T2 (c) Ent
MPRAGE

(d) Ent T2

Figure 5: Coronal view of full head MR MPRAGE (a) and
T2 (b) tumor images with corresponding entropy images
(c-d).

improvement for c = 2 over c = 10 demonstrates the neces-
sity for a robust approach to limit the influence of outliers
on the registration. The creation of the entropy images
took about 9s with histograms and about 320s with NP
windows. The remaining registration took about 39s.

5.2. Tumor Registration

In the second experiment, we evaluate registration ac-
curacy based on a pair of real brain tumor MR T1
(magnetization-prepared rapid gradient-echo, MPRAGE,
Mugler and Brookeman (1990)) and MR T2 images, both
acquired within the same session. The image resolution is
0.94 × 0.94 × 0.9mm3 for T1 and isotropic 1mm for T2.
Fig. 5 shows the pair of images that we use for the
experiments. Both the automatic skull stripping tool in
FreeSurfer and the brain extraction tool (BET) (Smith,
2002) frequently fail for tumor images because of the dif-
ferent appearance of enhancing tumor compared to regular
brain tissue, violating intensity priors used by the meth-
ods. In order to produce a useful result, we manually
refined the brain extraction obtained from FreeSurfer on
the T1 image and propagate the brain mask to the T2 im-
age by registering the full head T1 and T2 images with
FLIRT.

When performing robust multi-modal registration on
the skull-stripped brain images we expect the tumor re-
gions to be marked as outliers because of the different ap-
pearance in both modalities. Fig. 6 depicts the variance
σ̂2 calculated with Tukey’s biweight function (Sec. 2.5) at
each spatial location after successful registration. Larger
variances are shown in red and yellow. We observe that
tumor regions are marked as outliers (yellow), as expected.
Also note the increased variance at the interface between
the brain and the skull, which is likely caused by the in-
consistent brain extraction (mask propagation) and differ-
ential distortion between the two modalities. These non-
matching structures in tumor regions and artifacts from
the brain extraction, that can cause problems for non-
robust techniques, are correctly identified automatically
by our method and their influence is limited during the
registration.
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(a) MPRAGE (b) T2

Figure 6: Coronal view of MR MPRAGE (a) and T2 (b)
skull-stripped brain tumor images after registration. Esti-
mated weights are overlaid as heat map.
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Figure 7: Statistical analysis of RMS errors for tumor reg-
istration study over 100 repetitions. Bars indicate mean
error, error bars correspond to two standard deviations.
*** indicates significance level at 0.001. Robust registra-
tion with NP windows (RR-NP) yields a significant re-
duction in registration error. The range of the y-axis is
adjusted to highlight the differences of the methods.

In the case of clinical tumor images, we do not know
the ground truth alignment. To quantify the registration
error, landmarks were manually selected in both modal-
ities, permitting the computation of landmark distances
after the registration. Fig. 7 shows the statistical anal-
ysis for 100 repetitions with the random displacement of
the images similar to the previous experiment. We com-
pare RR-NP with patch size 3 to FLIRT and SPM. The
results indicate a significantly lower registration error for
the proposed robust registration approach. The manual
refinement of the brain extraction and the manual selec-
tion of landmarks make the extension of this study to many
subjects complicated, but results on a large cohort are pre-
sented in the next section.

Figure 8: Sagittal view of MR T1 (a) and T2 (b) full head
images with an overlay of the weights as a result of the ro-
bust registration. Magnifications of the tongue area (c-d)
that is susceptible to motion. Areas with motion differ-
ences are assigned low weights to limit their influence on
the registration. Also regions in the periphery of the brain
are assigned low weights because of the different appear-
ance of CSF and dura mater and resulting dissimilarities
in the entropy images.

5.3. Full Head Registration

In this experiment we register T1 (Multi-Echo
MPRAGE van der Kouwe et al. (2008)) and T2 full head
images of 106 healthy subjects. These images have a 1mm
isotropic resolution (256×256×176). Although each image
pair was acquired within the same session, we expect local
differences caused by jaw, tongue, and small head move-
ments. Such local displacements can deteriorate the regis-
tration quality of full head scans. Fig. 8 shows a registered
pair of T1 and T2 images with an overlay of the estimated
variances σ̂2, together with a magnified view of the area
around the tongue. Due to the movement of the tongue
between the scans, the robust registration algorithm de-
tects outliers in that region. Note that also regions in the
periphery of the brain show low weights, which are caused
by the different appearance of dura mater and CSF in T1-
and T2-weighted images. The local information content is
different in these regions, yielding differences between the
entropy images. The benefit of the robust approach is to
identify these contradictory regions as outliers and reduce
their influence on the registration.

Again no ground truth alignment is available, but the
number of scans in this study is too large for the manual
identification of landmarks. Instead, we assume that the
registration of skull-stripped images is more accurate than
the registration of the full head images because most struc-
tures that are susceptible to patient motion are removed.
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Figure 9: Analysis of difference of RMS errors for the
large control study on 106 subjects with 10 repeats.
The RMS error is computed between full head registra-
tions and the reference transformation, yielding EType =
ERMS(TRef , TFullType), , where we use RR-NP, FLIRT and
SPM as registration Type on the full head scans. Differ-
ences of RMS errors EFLIRT − ERR−NP and ESPM −
ERR−NP are plotted to compare the methods, where pos-
itive values show better performance of RR-NP. Bars in-
dicate mean difference error and correspond to standard
error of difference. *, **, and *** indicate significance lev-
els from paired t-test at 0.05, 0.01, and 0.001, respectively.
To avoid biasing the results, we use each method (RR-NP,
FLIRT, and SPM) to establish the reference transforma-
tion on the skull-stripped images (x-axis).

Since both scans were collected within the same session,
we do not expect any changes in the brain. Local differ-
ences are mainly expected in the scalp, jaw, neck and eye
regions. It is therefore reasonable to assume a higher reg-
istration accuracy when using the brain as a stable region
of interest (ROI). Given a reference transformation TRef ,
we compute the RMS error EType = ERMS(TRef , TFullType),

where TFullType is the transformation computed on the full
head scans with registration method Type that we want
to evaluate. Fig. 9 shows the difference in RMS error be-
tween the usage of FLIRT and SPM compared to RR-NP,
so EFLIRT −ERR−NP and ESPM −ERR−NP , where pos-
itive differences indicate that a better approximation of
the reference transformation with RR-NP. To avoid bias-
ing results by selecting only one registration to establish
the reference transformation, we report results for using
all three registration methods to compute TRef , shown on
the x-axis of Fig. 9. For each subject, we randomly trans-
form the full head images (up to 15◦ and 20mm) ten times
and perform the registration with each method, yielding
3180 full head registrations. The results show that RR-NP
is significantly better in recovering the reference transfor-
mation established on the brain ROI independent of which
reference method was used.

Figure 10: OCT (first column) and histology (second col-
umn) slices together with an overlay of weights on the
histology slices (third column). The top row shows the
entire slices, while the bottom row shows a magnifications
around the large crack in the center of the images. Tears in
the histology image and alignment errors at the boundary
(caused by non-linear deformations) are marked as out-
liers.

5.4. Histology-OCT Registration

In this multi-modal experiment we register images from
optical coherence tomography (OCT) with histology slices.
OCT is an optical microscopy technique, analogue to ul-
trasound imaging, which provides a resolution close to 1
micron. This technique requires neither staining nor dyes,
as it relies on the intrinsic optical properties of the tis-
sue. The block sample can be imaged prior to any cut-
ting, which greatly reduces the distortions contrary to the
histological protocol. Details on the technique and the ac-
quisition of those images can be found in Magnain et al.
(2014). Histology-OCT alignment is of clinical importance
to validate the appearance of structures in OCT based on
the true appearance on the sliced tissue. The registration
is challenging as histology images show artifacts due to lo-
cal deformations and tearing of the tissues during slicing,
which are not present in the previously acquired OCT im-
ages. Fig. 10 shows the result of the registration between
an OCT and histology slice, as well as the estimated vari-
ance σ̂2. The magnified view illustrates the differences
between both images and shows that cracks in the histol-
ogy slices are correctly marked as outliers. Fig. 11 shows
another set of histology and OCT images with the corre-
sponding entropy images. The gyrus was cropped from
larger OCT and histology images independently, which in-
troduces small differences at the top boundary edge due
to slightly different cropping angles. The variance map
shows that these differences together with internal cracks
are marked as outliers by the robust registration.
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(a)	  OCT	   (b)	  Histology	  

(c)	  Entropy	  OCT	   (d)	  Entropy	  Histology	  

(e)	  OCT	  with	  weights	  

Figure 11: OCT (a) and histology (b) slices with corresponding entropy images (c-d). Estimated weights are shown on
the OCT slice (e). Outliers are found in cracks of the histology slices and around the boundary.

To confirm the promising results from the qualitative
analysis, an expert identified 26 landmark correspondences
in four histology and corresponding OCT images. We use
the transformation from image registration to map the
landmarks from the OCT to the histology domain. The
average Euclidean distance between mapped OCT and
histology landmark pairs measures the registration error.
Fig. 12 shows the mean and standard error for the ro-
bust registration (RR), FSL, and an alternative 2D affine
registration method using mutual information (MI) and
a Powell minimizer (based on the SPM algorithm). The
original SPM registration method is implemented only for
the full 3D case and does not model 2D affine transfor-
mations. Because of the high resolution of the images in
our experiment (1400×2500), we select a larger patch size
and work with histogram-based density estimation in the
robust registration method. The results from the quanti-
tative analysis confirm the improved registration accuracy
of the robust multi-modal registration.

5.5. Bias Field Robustness

Intensity bias fields in images can severely affect cost
functions in cross-modal registration, such as mutual in-
formation (Myronenko and Song, 2010). On the con-
trary, the presented approach is very robust with respect
to bias fields, as it is based on local entropy estimation.
To demonstrate robustness with respect to changes in the
bias field, we employ 5 different cases from the Brain-
Web dataset (Cocosco et al., 1997) and increase the size
of this test set by simulating brain tumors Prastawa et al.
(2009) (including contrast enhancement, local distortion of
healthy tissue, infiltrating edema adjacent to tumors, de-
struction and deformation of fiber tracts). For each of the 5
original cases tumor seed were placed at two different loca-
tions and two different parameter settings were selected to
vary the characteristics of the tumor (conservative vs. ag-
gressive growth), yielding 20 tumor cases. Each simulation
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Figure 12: Registration error for histology-OCT alignment
measured as landmark distance in microns. Results are
shown for different registration methods. Bars indicate
mean error; error bars correspond to standard error. The
range of the y-axis is selected to highlight the differences
of the methods.

produced aligned T1, T2, and T1 Gadolinium enhanced
(T1Gad) tumor images (1mm isotropic, 256 × 256 × 181)
where we added noise and bias fields.

We apply random rigid transformations with transla-
tions of 30mm and rotations of 25◦ around an arbitrary
axis with the center of rotation corresponding to the im-
age center, and measure how accurately each test method
can estimate the true transformation. We perform the ro-
bust registration for patch sizes between 3 × 3 × 3 and
7× 7× 7 and again compare to FLIRT and SPM. Fig. 13
shows the RMS registration errors for the different cross-
modal registration pairs. It can be seen that the robust
registration approach is not affected by the bias field. SPM
performs better than FLIRT, but in both methods regis-
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Figure 13: RMS errors of the different registration meth-
ods for 20 synthetic multi-modal brain tumor images (T1,
T2, T1Gad) with bias field. Bars indicate mean error, er-
ror bars correspond to two standard deviations. White
discs correspond to the individual data points. The pro-
posed methods (RR, RR-NP) are robust to bias field due
to the local entropy estimation, while the bias field has a
strong influence on FLIRT and SPM.

tration fails completely in a large number of cases. With-
out adding a bias field none of the methods produce any
of these severe registration failures (not shown). Bias field
correction can therefore be expected to remove most of the
intensity bias and resulting registration problems, but this
additional processing step is not required for our entropy
based cross-modal registration approach.

6. Conclusion

We presented a novel registration approach for inverse-
consistent, multi-modal registration, that is robust with
respect to local differences and with respect to bias fields.
To achieve outlier robustness, we incorporated a het-
eroskedastic noise model and established the relationship
to iteratively reweighed least squares estimation. We de-
rived the Gauss-Newton optimization, which we showed
to be equivalent to the efficient second-order minimiza-
tion in case of our robust and inverse-consistent regis-
tration setup. To allow for better localization of struc-
tures when constructing entropy images we employed a
non-parametric density estimator and demonstrated it’s
advantages. We evaluated our method on different multi-
modal datasets and demonstrated increased accuracy and
robustness of the proposed method. This work focuses on
global registration and it remains to investigate the perfor-
mance and feasibility of the proposed robust multi-modal
approach for non-linear registration. One concern is that
locations with large differences may be marked as outliers

and therefore produce no force on the deformation field,
although they could potentially be correctly aligned in sub-
sequent steps. On the other hand, deformation fields are
never estimated only locally. Regularizers and paramet-
ric models combine the forces from several locations. This
combination may still push the deformation field in the
correct direction, in spite of a reduced weight at certain
locations. Adjustments to the robust estimation approach
may be required, for instance, the regularization of weights
via local smoothing.

The presented registration method will be made freely
available within the FreeSurfer software package.
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