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Abstract

The correct alignment of images is one of the key technologies in medical imaging.
It allows for arranging images in a common reference frame and therefore to prop-
agate complementary information between them. The process that calculates the
transformation is referred to as registration. The automatic registration of images is
important for several applications, with ultrasound mosaicing and motion modeling
being described in more details. Image noise and artifacts, however, complicate
the correct alignment. The registration of ultrasound images is considered to be
especially challenging due to their inherent contamination with speckle noise and
viewing angle dependency. In the scope of this thesis, we present contributions to
ultrasound imaging and registration, together with advances in ultrasound mosaicing
and motion modeling.

In ultrasound imaging, we present a new method for the envelope detection
of radio-frequency data, which is part of the process for creating B-mode images.
Further, we present an approach for the acoustic impedance estimation from multiple
ultrasound views. For registration, we introduce a new probabilistic framework that
incorporates context information. This enables us to review and mathematically
deduce a large number of registration approaches within this framework. Moreover,
we present a new technique for multi-modal image registration with structural images.
Next to a theoretical analysis of properties for such structural representations, we
introduce two specific examples, entropy and Laplacian images.

In ultrasound mosaicing, we propose a new approach for ultrasound alignment
by applying simultaneous registration. To this end, we deduce a new class of
multivariate similarity measures and derive efficient, gradient-based optimization
techniques. We further adapt the registration to ultrasound by deducing ultrasound
specific similarity measures. These are obtained by integrating intensity distributions
that well characterize speckle statistics. Moreover, matching functions are introduced
that separate reflectivity and scattering regions, which result from two different types
of physical interactions of the ultrasound beam with the tissue. For motion modeling,
we propose an image-based gating system with manifold learning. Additionally, we
present a new registration technique for time-resolved data, considering the spatial
and temporal components simultaneously to guarantee a smooth deformation field
over time.
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Zusammenfassung

Die korrekte Anordnung von Bildern ist eine der Schlüsseltechnologien in der
medizinischen Bildverarbeitung. Sie ermöglicht es die Bilder innerhalb eines gemein-
samen Koordinatensystems anzuzeigen und damit komplementäre Informationen
zwischen den Bildern zu propagieren. Der Prozess, der die Transformation zwischen
Bildern berechnet, wird als Registrierung bezeichnet. Die automatische Registrierung
ist wichtig für etliche Anwendungen, wobei wir Ultraschall-Mosaicing und Bewegungs-
modellierung genauer untersuchen. Bildrauschen und Artefakte erschweren jedoch die
korrekte Überlagerung der Bilder. Die Registrierung von Ultraschallbildern ist in die-
sem Zusammenhang als besonders herausfordernd einzustufen, da Speckle-Rauschen
und die Abhängigkeit vom Aufnahmewinkel zu einer inhärenten Beeinträchtigung der
Bilder führt. Im Rahmen dieser Doktorarbeit stellen wir Beiträge zur Ultraschallbild-
gebung und Registrierung vor, zusammen mit Fortschritten in Ultraschall-Mosaicing
und Bewegungsmodellierung.

Im Bereich der Ultraschallbildgebung stellen wir eine neue Methode zur Hüllen-
kurvendemodulation von Radiofrequenzdaten vor, welche zur Erstellung von B-
Mode Ultraschallbildern benötigt wird. Des Weiteren präsentieren wir einen neuen
Ansatz zur Berechnung des akustischen Widerstands aus mehreren Ultraschallbildern.
Zur Registrierung stellen wir ein neues probabilistisches Rahmenwerk vor, dass
auch Kontextinformationen berücksichtigt. Dies ermöglicht es uns eine Vielzahl von
Registrieransätzen zu analysieren und mathematisch abzuleiten. Darüber hinaus
schlagen wir einen neuen Ansatz zur multimodalen Registrierung unter Benutzung
von Strukturbildern vor. Neben einer theoretischen Analyse der Merkmale solcher
Repräsentationen, stellen wir zwei konkrete Beispiele, die Entopy- und Laplacebilder,
vor.

Im Bereich Ultraschall-Mosaicing bringen wir einen neuen Ansatz zur Überlagerung
von Ultraschallbildern durch simultane Registrierung ein. Dafür leiten wir eine neue
Klasse von multivariaten Ähnlichkeitsmaßen ab und deduzieren effiziente, gradienten-
basierte Optimierungsverfahren. Wir passen die Registrierung an die speziellen Erfor-
dernisse von Ultraschall durch Ableitung ultraschallspezifischer Ähnlichkeitsmaße an.
Die vorgeschlagene Kostenfunktion unterscheidet zwischen Reflexion und Streuung,
welche die Ergebnisse zweier unterschiedlicher Arten von physikalischer Interak-
tion des Schalls mit dem Gewebe darstellen. Zur Bewegungsmodellierung stellen
wir ein bildbasiertes Gating-system basierend auf manifold learning vor. Zusätzlich
präsentieren wir eine neue Registriermethode zur Überlagerung zeitlich aufgelöster
Daten. Die Methode berücksichtigt sowohl die räumliche als auch die zeitliche
Komponente gleichzeitig und garantiert dadurch die Erzeugung eines glatten Defor-
mationsfeldes.
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Chapter 1

Introduction

This thesis is conducted in the interdisciplinary field of medical imaging. The purpose
of medical imaging is to assist the medical treatment by creating images of the human
body. Historically, the first device for medical imaging is the optical microscope.
Followed by the introduction of X-ray imaging at the end of the 19th century and
ultrasound imaging in the middle of the 20th century. Subsequently, three-dimensional
imaging techniques such as computed tomography (CT) and magnetic resonance
(MR) tomography developed. Moreover, nuclear imaging techniques emerged, which
allow for measuring the extent of a disease-process, based on the cellular function and
physiology. These imaging possibilities gave rise to a multitude of clinical applications.
Examples are the examination of bone fractures with X-ray, the assessment of fetal
growth and anatomy in obstetric ultrasound, full-motion heart scans with CT, and
the staging of tumors with MR. Further, functional imaging provides a means to
estimate neural activity by measuring hemodynamics. More technically involved are
the guidance of surgical interventions, the support in dose delivery, and the study of
dynamical process such as respiration and tumor growth with time-resolved imaging
and longitudinal studies. A big advantage is that nowadays almost all the data
is available in digital form. This facilitates the application of further processing
steps such as filtering, segmentation, and registration, once the data is reconstructed.
Additionally, more possibilities exist for the visualization, e.g . volume rendering.

In this dissertation, we consider ultrasound imaging in more details. It is an
increasingly popular modality due to its low cost, high mobility, and non-ionizing
radiation. Physicians also appreciate to use bedside ultrasound to answer specific
questions in real-time. Moreover, 3D imaging capabilities are advancing and offer
improved possibilities for visualization, tracking of surgical instruments, and modeling.
The appearance of ultrasound images is, however, rather different to images of other
modalities. While we discuss details later on, a simplistic view is to consider
ultrasound images as gradient-like images, highlighting changes of tissue properties.
In order to achieve good processing results, it is necessary to adapt methods to
ultrasound and take its particularities into account. This requires, on the one hand,
a precise understanding of the ultrasound acquisition process, and on the other hand,
the familiarity with processing algorithms to adapt them accordingly.
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Chapter 1: Introduction

Registration

A drawback of ultrasound imaging is the limited field of view of the acquisitions.
Large fetuses, organs, and bones cannot be captured within a single image. The
combination of several images, as it is done for panorama imaging, is a possible
remedy, but it requires the correct spatial alignment of the images. The process
that calculates the alignment is referred to as registration. Due to the abundance of
data currently available, the interest lies in automatic registration methods. The key
components of a registration procedure are the transformation model, the similarity
measure, and the optimization scheme. The alignment is not limited to images
from the same modality and so called multi-modal registration helps to integrate
information from multiple sensors. Since different imaging modalities base upon
different physical principles and therefore probe different physical properties of tissue,
the scene is displayed with different intensity values. Each imaging modality has,
in this connection, its own characteristics. This allows for fusing complementary
information, for instance, anatomical and functional data. Moreover, the distinction
between structures and the identification of lesions may be straightforward in one
modality, while it is challenging in another one. Essential for benefiting from the
combination of the information of multiple images is, however, the correct registration.

Probabilistic Modeling

As mentioned, one of the key components of registration is the similarity measure. For
the derivation of and reasoning about similarity measures, a probabilistic approach
proves advantageous. A famous quotation of Pierre-Simon Laplace about probability
theory is [Laplace, 1812]:

It is remarkable that a science which began with the consideration of
games of chance should have become the most important object of human
knowledge.

Obviously, we try to benefit from the most important object of human knowledge,
but this is not just due to the advice of Monsieur Laplace. It essentially offers
a convenient framework to theoretically reason about many problems in image
processing. Probabilistic models allow for formulating the relationship between
variables in terms of mathematical equations. Commonly it is used to express the
relationship between the observed data and the unknown parameters. Statistics
allow for quantifying the likelihood of parameter instantiations with respect to the
observations, or to quote Pierre-Simon Laplace again [Scherzer, 2010]:

Statistics is common sense expressed in terms of numbers.

In image registration, we want to deduce the unknown transformation from the
observed images. Further, we are not only interested in quantifying the likelihood of
the current transformation, but we want to achieve the most likely transformation.
Therefore, tools form statistical inference such as maximum likelihood estimation can

2



be applied. Probabilistic models also enable to integrate noise into the formulation,
considering that the image acquisition process is prone to errors and therefore a total
similarity cannot be established. Finally, probabilistic models naturally extend to
the consideration of prior knowledge, turning the maximum likelihood to a maximum
a posteriori estimation.

The direct integration of noise assumptions into the probabilistic model is a
major advantage for ultrasound registration. The reason is that the speckle noise in
ultrasound causes distributions, which differ from the commonly assumed Gaußian
distribution. In classification and segmentation of ultrasound images, a lot of work
was performed on accurately characterizing speckle noise. One of the conclusions
is that the scattering conditions change locally and therefore give rise to changing
speckle patterns. Modeling intensity distribution in ultrasound is therefore dependent
on the imaged scenery and best done locally. The probabilistic model allows for
directly plugging in these noise assumptions and for deriving the corresponding
likelihood functions. This leads to ultrasound specific similarity measures, which are
better suited for estimating the similarity of ultrasound images.

Manifolds

Manifolds are generalizations of curves and surfaces to arbitrary many dimensions.
They locally resemble Euclidean spaces, on which one can do calculus. In medical
imaging, working with manifolds gained a lot of interest because it enables to extend
algorithms to non-linear spaces. One example is manifold learning, which is a non-
linear dimensionality reduction technique. Considering that images are points in
a high dimensional space with the dimensionality corresponding to the number of
pixels. Images of the same organ, of the same patient, or of the same modality
share a lot of information and therefore the corresponding points are not randomly
distributed in high dimensional space. One can in fact assume that they lie on a
manifold of lower dimensionality, which is embedded in the high dimensional space.
We illustrate this for the cases of breathing gating, multi-modal registration, and
patient positioning.

The theory of manifolds is equally important in the optimization of image
registration. Commonly, we deal with elements, such as rigid, affine, projective,
and diffeomorphic transformations, which do not form vector spaces. This can be
easily seen because such transformations are not commutative, which is one of the
axioms for vector spaces. One can rather think of such transformations as points
lying on a manifold. More precisely, they belong to mathematical spaces called
Lie groups. Lie groups are both, smooth manifolds and algebraic groups. For the
optimization of entities living on Lie groups two general approaches exist. Either a
constrained optimization is performed by embedding the Lie group in a Euclidean
space, or the optimization is directly performed on the Lie group. Working on the Lie
group intrinsically guarantees to remain on the geometric structure of the group and
consequently enables the application of unconstrained optimization, as illustrated
for simultaneous registration in this thesis.

3



Chapter 1: Introduction

Ultrasound Mosaicing

The first medical application that we consider in more details is ultrasound mosaicing,
which refers to the correct alignment and fusion of multiple ultrasound images. The
usage of ultrasound mosaicing provides the sonographers not just with a compounded
volume of higher quality; recent studies also state a couple of other clinical advantages
that come along with the extended field of view. First, the spatial relationship among
structures that are too large for a single volume is easier to understand [Kim et al.,
2003]. Second, sonographers have the flexibility to visualize anatomical structures
from a variety of different angles [Peetrons, 2002, Leung et al., 2005]. Third, size
and distance measurements of large organs are possible [Ying and Sin, 2005, Kim
et al., 2003]. Fourth, individual structures within a broader context can be identified
by having an image of the whole examination area [Dietrich et al., 2002]. And last,
because of the increased features in the compounded view, specialists that are used
to other modalities than ultrasound can better understand the spatial relationships
of anatomical structures [Henrich et al., 2003]; helping to bridge the gap between
the modalities and making it easier to convey sonographic findings to other experts.

From a technical point of view, ultrasound mosaicing necessitates to devise
algorithms that are able to cope with the low signal-to-noise ratio, with ultrasound
specific artifacts, and with the viewing angle dependency. Moreover, we are not
facing a pairwise but a groupwise registration problem, since we want to align
a set of images. While one improvement to address these issues is the already
mentioned design of ultrasound specific similarity measures, a further improvement
is the application of simultaneous registration. Simultaneous registration is a specific
method for groupwise registration, which aligns all the images at the same time. An
example for illustrating the advantage of simultaneous registration is the acquisition
of ultrasound volumes around the leg. The dominant structure of the leg is the
bone, which appears as a semicircle in the US images. Aligning two images at a time
easily leads to a total overlap of both images, because the registration algorithms
overlays both semicircles. Considering, however, all images at the same time leads to
a stabilization of the process. This equally holds for artifacts which may be present
in few of the scans.

Motion Modeling

The second clinical application we deal with is motion modeling. A typical cause for
motion in humans is respiration, which we evaluate in more details. Respiration is a
cyclic, irregular process that leads to deformations in the abdominal and thoracic
region. The respiratory signal monitors the current breathing phase of the patient.
For numerous applications, it is necessary to assign to each image the corresponding
respiratory phase in which it was acquired. The application we consider is the creation
of 4D images, for which we propose a novel, purely image-based gating technique,
which does not require the laborious setup of external systems. Time-resolved
images are extensively used to study cardiac [King et al., 2010,Klein and Huesman,
2002,Peyrat et al., 2010], lung [Bystrov et al., 2009,Castillo et al., 2010,Flampouri
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1.1 Thesis Overview

et al., 2006] and liver [Rohlfing et al., 2004, von Siebenthal, 2008] motion. The
motion can be calculated from time-resolved images with deformable registration.
The created motion models lead to benefits for target localization in radiation therapy,
since the exposition of healthy tissue to ionizing radiation can be minimized [Colgan
et al., 2008]. Similarly, enhanced targeting enables to more accurately heat and
destroy pathogenic tissue in high-intensity focused ultrasound [Tempany et al.,
2003,Wu et al., 2005].

The creation of motion models necessitates the non-rigid alignment of time-
resolved volumes. In contrast to mosaicing, where we are mainly interested in the
effect of the transformation to correctly overlay images, the interest now shifts
to the transformation itself. The standard approach is, first, to perform pairwise
registrations, and second, to combine the deformation fields to create the motion
model. This can result in inconsistent and non-smooth motion fields along the
temporal direction [Sundar et al., 2009b]. Further, the pairwise registration approach
has the disadvantage that either, all registrations are performed towards one target
leading to large displacements fields, or, registrations between adjacent volumes are
calculated causing the accumulation of errors in the image sequence [Castillo et al.,
2010]. In our approach, we consider simultaneous deformable registration with a
temporal deformation field. We parameterize the deformation with FFD B-splines,
which guarantee a smooth deformation field. Directly estimating the temporal
deformation field during the registration not only leads to a smooth deformation field,
but also increases the robustness of the registration in regard to outliers. Moreover,
the interest of a motion model lies not only in quantifying the motion between certain
image time points, but to show the motion over the entire cycle. This is better
reflected with the direct optimization of the temporal deformation field.

1.1 Thesis Overview

The manuscript is organized in four parts, as explained in the following.

Part I: Ultrasound Imaging. The first part provides an overview of ultrasound
imaging and describes improvements; it is organized in three chapters. Chapter
two describes the physical principles underlying the ultrasound acquisition and
the processing chain to construct B-mode images. A special emphasis is placed
on motivating various noise models to capture speckle statistics. These statistics
change with varying speckle density and appearance of coherent structures.
A possible improvement for the envelope detection of raw, radio-frequency
ultrasound data is presented in chapter three. Instead of calculating the 1D
analytic signal, we apply the 2D analytic signal to estimate the envelope. The
improvement is evaluated through visual inspection, and further, by performing
goodness-of-fit tests to a Nakagami distribution, which indicate improved
statistical properties. The 2D analytic signal also leads to a more reliable
estimation of local features on B-mode images, such as local orientation and
local phase. In chapter four, we present a method to combine the information
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Chapter 1: Introduction

from multiple ultrasound views. The fusion of information is not straightforward
because of the viewing angle dependency and artifacts in ultrasound images.
The proposed method does not try to combine intensity information from
multiple views but estimates the physical quantity that largely determines
the appearance of ultrasound images, the acoustic impedance. The acoustic
impedance image can either directly be presented or ultrasound images from
arbitrary views can be simulated.

Part II: Registration. The second part consists of two chapters and deals with
image registration. In chapter five, we present a new probabilistic framework
for image registration that incorporates context information. Theoretically, we
consider neighborhood information by introducing a layer of latent random
variables, which can be regarded as descriptors. This extended framework
allows us to review and model a large number of image registration approaches,
ranging from intensity- to feature-based ones. It further enables us to classify
image registration techniques, based on the uniqueness of their descriptors.
By considering larger parts of the registration procedure, not limited to the
similarity measure, we can motivate certain pre-processing steps as being
optimal in maximum likelihood sense. An extension of the framework to
groupwise registration is also presented. A specific type of descriptors, capturing
the structural information of images, is illustrated in chapter six. Calculating
this descriptor densely on the entire image domain, we obtain a new image with
each pixel intensity representing the structure in a local neighborhood. Under
the assumption that images of the same scene, but from different modalities,
have the same structural representations, we apply these descriptors for multi-
modal registration. The presented structural representations are entropy and
Laplacian images. The evaluation on multiple registration experiments shows
the good performance of the approach.

Part III: Ultrasound Moasicing. The third part of this thesis deals with a spe-
cific application, ultrasound mosaicing, and is divided into two chapters. For
ultrasound mosaicing, a group of images has to be correctly aligned. In chap-
ter seven, we propose simultaneous registration for ultrasound mosaicing. In
details, we deduce a new class of similarity measures from the previously illus-
trated probabilistic framework. Moreover, we derive efficient gradient-based
optimization techniques for these similarity measures. The fastest convergence
is achieved with a second-order optimization scheme. In chapter eight, we
further focus on similarity measures and try to comprise the particularities
of ultrasound. We propose to separate the calculation of similarity of re-
gions with high reflectivity and texture. Moreover, we derive locally adaptive
Nakagami-based likelihood functions for registration.

Part IV: Motion Modeling. The fourth part is split into two chapters and deals
with the second application, motion modeling. Important for the analysis
of motion is to identify the respiratory phase in which image frames were
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acquired. In chapter nine, we present a purely image-based respiratory
gating approach applying manifold learning. The gating is applicable in several
scenarios, where our focus lies on the creation of 4D data. For this, frames are
acquired at different positions over several respiratory cycles and retrospectively
sorted to create consistent volumes over time. In chapter ten, these volumes
are registered with a specifically designed deformable registration. It takes
the smoothness along the temporal direction intrinsically into account by
working with a 4D deformation field. Additionally, it is devised as simultaneous
registration approach to achieve more robust results by taking all information
into consideration. The calculated deformation field allows us to analyze the
respiratory motion. Moreover, with the deformation field also in temporal
direction, it is possible to interpolate images at arbitrary time points.

1.2 Contributions

In the course of this dissertation, several contributions to the field of medical image
analysis have been made. These are shortly summarized in the following. Some of
the contributions have already been presented to the scientific community, which is
indicated accordingly.

• 2D Envelope Detection in Ultrasound: We propose the application of the
2D analytic signal for the envelope detection of ultrasound radio-frequency data,
instead of the commonly applied 1D analytic signal. Considering the image
data in lateral, as well as, axial direction allows for a more robust estimation
of the local amplitude. This is evaluated by visual inspection and an analysis
of noise statistics. [Wachinger et al., 2011]

• Acoustic Impedance Estimation: We present an approach to estimate
the acoustic impedance from multiple ultrasound images. We first identify
large scale interfaces between tissues of different acoustic impedance. Second,
we apply a model of ultrasound propagation to infer the change of acoustic
impedance from the intensity of the reflection. A combined estimation over
all images in a maximum likelihood framework results in the final estimate.
[Wachinger et al., 2008b]

• Contextual Probabilistic Framework: We propose a contextual proba-
bilistic framework to model image registration. It extends current probabilistic
approaches by incorporating neighborhood information around a pixel location.
A graphical model is utilized to organize the dependencies between random
variables, where we integrate an additional layer of latent variables. These
can be seen as descriptors, capturing the local image information and serving
as input for the similarity calculation. Splitting the registration process in a
description and a similarity stage allows us to put a multitude of registration
approaches in a continuum, ranging from pure intensity- to feature-based reg-
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istration. This is one of the first unified descriptions of iconic and geometric
registration techniques in a probabilistic framework.

• Structural Representations: We propose a new approach for multi-modal
image registration with structural representations. The structural information
of patches is quantified and used to create new images, which can be applied
in mono-modal registration. We present next to a theoretical analysis of
structural representations two specific concepts: entropy and Laplacian images.
Laplacian images are created with Laplacian eigenmaps on the space of image
patches. [Wachinger and Navab, 2010b,Wachinger and Navab, 2010a,Wachinger
and Navab, 2011]

• Multivariate Similarity Measure: We present accumulated pairwise esti-
mates as new class of similarity measures for simultaneous registration. We de-
duce it from a maximum likelihood formulation of image registration. This class
of similarity measures is especially interesting for a small number of overlapping
images and large variations in the number of overlapping images. Relationships
to existing multivariate similarity measures are established. [Wachinger and
Navab, 2009b,Wachinger et al., 2008c]

• Efficient Optimization for Simultaneous Registration: We derive effi-
cient, gradient-based optimization schemes for simultaneous registration on
Lie groups. The fastest convergence is achieved with the efficient second-order
optimization. [Wachinger and Navab, 2009b]

• Ultrasound Specific Similarity Measures: We present similarity measures
specifically designed for the alignment of ultrasound images. We take the
viewing angle dependent nature, as well as, the specific noise distributions of
ultrasound images into account. [Wachinger and Navab, 2009a,Wachinger and
Navab, 2008]

• Image-Based Respiratory Gating: We propose the application of manifold
learning to construct a purely image-based gating system for respiratory motion.
Image frames are considered as points in a high-dimensional space, which are
mapped to a lower dimensional representation that serves as respiratory signal.
This retrospective gating allows for reordering the frames to create consistent
4D data. Experiments are performed on ultrasound and magnetic resonance
images. [Wachinger et al., 2010b,Yigitsoy et al., 2011a]

• Spatio-Temporal Simultaneous Registration: We devise a new registra-
tion algorithm, specifically designed to align images with a smooth defor-
mation along the temporal direction, as it is required for respiratory motion
sequences. Simultaneous deformable registration is performed with a probabilis-
tic gradient-based optimization procedure and a FFD B-spline transformation
model augmented with a temporal dimension. [Yigitsoy et al., 2011b]
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Contributions that are not part of the main body of the thesis but attached in the
appendix are:

• Patient Position Detection in MRI: For accurately modeling the specific
absorption rate of the patient in magnetic resonance imaging, the current
location of the patient in the scanner has to be determined. For this task, low
resolution images from a move-during-scan protocol are available. We achieve
very good classification results by embedding the slices in two dimensions with
manifold learning. [Wachinger et al., 2010a]

• Deformable Mosaicing in Whole-Body MRI: The motivation of whole-
body MRI is to produce images of the entire body in as few stations as possible
to reduce scanning time. This can be achieved with large field of view images.
Such images, however, give rise to system- and patient-specific distortions,
mainly due to the inhomogeneity of the B0 field and the gradient non-linearity.
We correct for these distortions in the overlapping region by performing nonrigid
registration to a linearly weighted average image. [Wachinger et al., 2008a,
Wachinger et al., 2009]
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Part I

ULTRASOUND IMAGING

This part introduces the imaging modality we mainly focus on: ultrasound. We
provide an overview about basic concepts for sound propagation, B-mode construction,
and speckle statistics. These constitute the theoretical foundation for the adaptation
of algorithms to ultrasound at later parts of the thesis. Additionally, we present two
contributions with respect to ultrasound imaging: (i) the envelope detection with
the 2D analytic signal and (ii) an approach towards acoustic impedance estimation.





Chapter 2

Ultrasound Overview

In this chapter, we present a short introduction to ultrasound, highlighting devel-
opments on compounding and volumetric imaging. Further, physical models for
ultrasound propagation are discussed, together with an illustration of the image
formation on transducer arrays and the processing chain to create B-mode images.
Finally, we motivate several distributions for modeling speckle statistics.

2.1 Introduction

The work of the French physicist Paul Langevin during the First World War to
detect enemy submarines is commonly considered as initiation of modern ultrasound.
Working with a 150 kHz source, he noticed that small fishes were killed when
entering the beam, and similarly, that intense pain is caused if a hand was put in the
path [Cobbold, 2007]. The mathematical and physical foundations of acoustic wave
propagation evolved early on in the 18th and 19th centuries with the two-volume
treatise of [Rayleigh, 1877] being one of the most important milestones. Over the
last fifty years, progress in this field has led to the development of systems that allow
for depicting the acoustic structure of biological tissue, without causing damage
when operated at moderate intensity. In 1942, Dussik published a paper in German
that first suggested the usage of ultrasound for diagnostic purposes [Dussik, 1942].
The first 2D cross-sectional imaging system was proposed in 1952 in [Wild and Reid,
1952]. The same authors published in the same year the results of a pilot study
for detecting breast tumors using ultrasound. Surprisingly, the first 3D imaging
system for ultrasound was proposed as early as in 1954 in [Holmes et al., 1954]. The
limited temporal and spatial resolution of the ultrasound systems led to volumes of
lower quality, the basic idea of mechanically moving the probe to create volumetric
images, however, was out soon after 2D imaging. Even earlier than 3D imaging, the
combination of several ultrasound images was proposed to enhance the brightness
of structures that the beam does not hit perpendicularly and to image structures
behind strong reflectors. This technique was referred to as compound scanning and
Howry and Gordon stated in 1964 that is was originally proposed in 1952 [Howry and
Gordon, 1964]. Figure 2.1 illustrates a schematic overview of compound scanning
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Figure 2.1: Left: Illustration from 1959 showing the idea of compound scan-
ning [Brown, 1959]. The probe is placed at various locations around the abdominal
region, A-E. At each position, ultrasound sweeps are acquired. Right: Current
ultrasound compound created from six volumetric scans acquired with a wobbler
probe.

from 1959 and a recent volumetric compound. While the limitations in acquisition
speed and resolution impeded the development of clinical solutions in the 1950s,
subsequent developments enabled the design of high performance ultrasound systems,
which are nowadays common in clinics. Such systems offer more possibilities for 3D
ultrasound imaging and compound scanning, making these areas still active fields of
research, even more than half a century after the initial proposition.

Generally, ultrasound is defined as sound with a frequency above the audible range
of humans, which is at frequencies above around 20 kHz. It has many advantages
in comparison to other imaging modalities which have led to its widespread use in
clinical practice; it is (i) harmless at low power, (ii) portable, (iii) a real-time modality,
and (iv) cost effective. The recent introduction of 2D array US transducers in the
market makes further applications possible, due to the instantaneous acquisition of
ultrasound volumes. However, ultrasound imaging has a number of disadvantages
including: (i) a limited field of view, (ii) occlusions behind structures with high
acoustic impedance, (iii) a low signal-to-noise ratio (SNR), and (iv) position/viewing
angle dependency. The already mentioned compounding of several views helps
reducing some of these shortcomings.

In the focus of this dissertation is volumetric ultrasound imaging, with a variety
of acquisition techniques being available. The 3D systems that are mainly used
throughout this thesis are freehand systems and wobbler probes. These use a regular
1D array probe that is moved during the acquisition, requiring high imaging frequency.
For 3D freehand ultrasound, the position of the transducer is determined by an
optical or a magnetic tracking system to place the ultrasound frames at the right
spatial location. Freehand systems offer a lot of flexibility because the probe can be
moved to arbitrary positions; however, they require an experienced user to sample the

14



2.2 Modeling Ultrasound Propagation

region of interest without gaps. The wobbler probe consists of a 1D array transducer
that continuously oscillates to acquire fan like volumes. An alternative that allows for
instantaneous volumetric imaging is the usage of 2D arrays. In contrast to commonly
utilized piezoelectric transducers, capacitive transducers become popular for 3D
imaging. These capacitive micromachined ultrasound transducers (CMUT) offer
superior and efficient volumetric imaging. This is possible due to a wide bandwidth,
the ease of manufacture (wafer fabrication process), and the high electromechanical
conversion efficiency. The instantaneous acquisition with 2D arrays is especially
interesting for 4D imaging, because breathing motion can, for instance, alter the
underlying scene during the acquisition with 1D arrays. Serious drawbacks of 2D
array systems are their limited availability, high price, and very limited access to data,
especially raw data, impeding their application in most of our experiments. Since we
are interested in 4D data for motion modeling, we propose a new technique for the
acquisition of breathing-affected 4D ultrasound with wobbler probes in chapter 9.

From a research point of view, ultrasound is quite different to other imaging
modalities, because the system can directly be operated by oneself. Such practical
experiments help to develop a better understanding of ultrasound imaging. This is
necessary because ultrasound, even more than other imaging modalities, requires the
specific adaptation of processing techniques to achieve good results. The challenge
lies in devising new algorithms that take the particularities of ultrasound into account.
This, on the one hand, involves taking a detailed look on the mathematical derivation
of approaches in order to be aware of implicit assumptions, and on the other hand,
requires a good knowledge of the process of ultrasound imaging, to check whether the
assumptions are consistent with the imaging scenario. We will present contributions
in this regard for ultrasound registration in parts III and IV. In the next sections,
we will provide a concise description of ultrasound propagation, image formation,
and speckle statistics.

2.2 Modeling Ultrasound Propagation

In order to describe the wave propagation in fluids, the particle velocity function v
has to be known at all spatial and temporal points, together with two thermodynamic
functions [Cobbold, 2007]. The flow field can be fully determined by solving these
equations with respect to initial and boundary conditions. Combining the Navier-
Stokes equation with the equation of state and the continuity equation, it is possible
to derive a wave equation for inviscid fluids [Cobbold, 2007]

1

c2

∂2P

∂t2
−∇2P = f, (2.1)

with the speed of sound c and the source distribution f . The pressure field P is
related to the velocity function ∇P = −ρ∂v

∂t
through the density ρ. Current short,

high-amplitude transmit pulses in diagnostic applications give rise to nonlinear
effects in ultrasound propagation, which are not modeled by equation (2.1). Various
approaches exist to incorporate nonlinear effects in the propagation process, with
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Figure 2.2: Left: Reflection and refraction as expressed in Snell’s law. θi, θr, θt
angles of incoming, reflected, transmitted waves. Right: Reflection due to Lambert’s
emission law. Red: incoming intensity, black: emitted intensity.

the KZK and Westervelt equations being two popular examples [Huijssen et al.,
2003,Pinton et al., 2009,Karamalis et al., 2010]. Such equations allow for an accurate
simulation, however, they include tissue dependent parameters (e.g . diffusivity,
density, nonlinearity), which in practice are difficult to determine. Due to this
drawback and the high computational complexity, we decided to work with a simpler
model, which we derive in the following.

Consider the case where the acoustic wave hits a boundary between two media,
producing reflection and refraction, see figure 2.2(a). These two phenomena can
be considered as special cases of scattering, with the object boundary being large
in comparison to the wavelength, yielding a redirection of incident radiation in an
organized manner [Cobbold, 2007]. The formulation of boundary conditions that
constrain the particle velocity component normal to the interface to be continuous
allows the derivation of the following relationships from the wave equation

sin θi
c1

=
sin θr
c1

=
sin θt
c2

(2.2)

with θi, θr, θt the angles of incoming, reflected, transmitted waves and c1, c2 the
speed of sound in the first and second medium, respectively. It follows that θi = θr,
and further, according to Snell’s law for acoustics

sin θi
sin θt

=
c1

c2

. (2.3)

It is also possible to derive the relationship between the reflected Pr and incident
Pi pressure amplitudes, expressed in terms of the pressure amplitude reflection
coefficient ζP

ζP =
Pr
Pi

=
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

(2.4)

where the acoustic impedance Z1 is the product of density and speed of sound
Z1 = ρ1 · c1, analogously for Z2. Similarly, the intensity reflection coefficient ζI is
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Figure 2.3: Reflection and transmission of the incident sound wave after hitting an
interface. The relative intensities are determined by the acoustic impedances of the
media.

defined as

ζI =
Ir
Ii

=
P 2
r

P 2
i

=

(
Z2 cos θi − Z1 cos θt
Z2 cos θi + Z1 cos θt

)2

, (2.5)

with Ii the incoming and Ir the reflected intensity.
For the simulation of ultrasound and also for the estimation of acoustic impedance,

the dependency on the transmission angle θt in equation (2.5) is problematic. Sup-
posing that we know the location and geometry of the transducer together with the
normal of the boundary, we are able to calculate the incidence angle θi. Directly cal-
culating the transmission angle from the image information is, however, not possible.
Snell’s law allows for relating the transmission to the incidence angle

cos θt =

√
1−

(
c2 sin θi
c1

)2

, (2.6)

providing a possible solution to determine θt. Unfortunately, this requires the
knowledge of the speed of sound in both media, which is commonly not available.
These issues led to the introduction of an alternative model for ultrasound reflection,
which combines parts of Snell’s law with Lambert’s emission law in optics [Wein et al.,
2008]. Supposing the beam hits the boundary perpendicularly and no refraction
occurs, the reflected intensity is

Ir = Ii ·
(
Z2 − Z1

Z2 + Z1

)2

, (2.7)

see figure 2.3. Lambert’s emission law states that the radiant intensity from a
diffusely reflecting surface is directly proportional to the cosine of the incidence angle,
see figure 2.2(b), yielding the following relationship

Ir = Ii · cosm θi ·
(
Z2 − Z1

Z2 + Z1

)2

, (2.8)
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Figure 2.4: The combination of the modulation function and the carrier wave results
in the transmit pulse. For focusing and beam steering, various time delays are added.
The activation of the elements with the pulse pattern leads to the creation of a sound
wave in the medium. The current center location is indicated as bold line.

with m modeling the diffusivity of the surface [Wein et al., 2008]. It is this equation
that is used for modeling ultrasound reflection throughout the thesis.

Apart from reflection, there are also other types of interactions such as scattering
and absorption. Absorption leads to a loss of energy of the ultrasound wave by
conversion to heat or chemical energy. Scattering is caused by microscopic inhomo-
geneities in the tissue and leads to a redirection of energy along paths that differ
from the one followed by the incoming wave. An active scatterer acts as a separate
sound source that emits waves in all directions, causing speckle patterns typical for
ultrasound. The loss due to absorption and scattering is summarized as attenuation.
Attenuation is frequency dependent and follows an exponential decay [Hedrick et al.,
2004,Zagzebski, 1996]

P (x) = Pmax · e−αx (2.9)

with Pmax the initial sound pressure, P (x) the pressure after traversed distance x,
and α the attenuation coefficient.

For structures being visible in ultrasound images, the interaction of the ultrasound
beam with tissue must have led to the redirection of some of the energy back to
the transducer. This energy either comes from scattering or reflection. Since they
are both caused by inhomogeneities in the tissue, they are the result of the same
physical interaction, once on a large scale, and once on a small scale, with respect
to the wavelength λ. In medical ultrasound, typically 0.1 ≤ λ ≤ 1.0 mm holds. As
mentioned above, reflection can be seen as a special case of scattering on large object
boundaries, yielding a redirection of energy in an organized manner. Nevertheless, it
is important to distinguish between these two types of interaction, because reflection
is viewing angle dependent, while scattering is only to very limited extent dependent
on the direction of insonification. This motivates us to design a new ultrasound
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Figure 2.5: From right to left. The reflected sound waves in the medium are detected
by the transducer elements. Each measured pulse is time delayed to compensate for
differences in traveled distance. All received pulses are weighted and summed up to
create the receive pulse for one location. The envelope of the pulse is determined by
calculating the absolute value of the analytic signal.

similarity measure that considers reflection and scattering parts separately, see
chapter 8. The statistics of the scattering process are further described in section 2.4.

2.3 Image Formation and B-mode Conversion

In the last section, we described models for the propagation of sound waves, consti-
tuting the physical basis of ultrasound imaging. In this section, we provide further
details about the image formation and conversion to B-mode images, which is widely
covered in textbooks [Zagzebski, 1996,Hedrick et al., 2004,Cobbold, 2007]. Today’s
ultrasound probes are mainly transducer arrays, consisting of a group of closely
arranged piezoelectric elements, where each element can be excited separately. This
allows for electronic beam steering and focusing by delaying the firing of crystals. Fur-
ther, a dynamic aperture can be created by flexibly activating a number of elements
for transmission and reception. A schematic overview of ultrasound transmission
and reception is shown in figures 2.4 and 2.5, respectively. The transmit pulse is
created by convolving the modulation function with a carrier wave. In the example
shown, we convolve a sinusoidal wave with a Gaußian modulator. Subsequently, a
specific time delay is added to each element to account for focusing and steering.
The created wavefront propagates in the medium and is reflected at inhomogeneities.

After the transmission, the elements are in receive mode and detect arriving waves.
Since the traveled distance of the returning pulses is different for the various elements,
delays have to be added to compensate for this. The delays change dynamically while
echoes from deeper reflectors arrive. In the beam former, the echoes are amplified
and accumulated with an additional weighting. This leads to the creation of a single
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Figure 2.6: Top: RF image after envelope detection and dynamic range compression.
Bottom: Plot of RF scan line 128, highlighted in red.

receive signal for each position. Current transducers commonly operate with 128
elements, which leads in combination with slight beam steering to 256 different
receive signals per image. The signal is subsequently passed through a pre-amplifier
and a time gain compensation (TGC), which emphasizes signals from deeper regions
to compensate for attenuation. The resulting signal is commonly referred to as
radio-frequency (RF) signal and can be accessed in ultrasound systems. Figure 2.6
illustrates one RF scan line of an ultrasound image.

The images presented on the screen of the ultrasound system are B-mode images.
A sequence of processing steps is necessary for transforming RF signals to B-mode
images, see figure 2.7. We illustrate the processing chain for RF to B-mode conversion
on actual images in figure 2.8. Starting from the gain compensated signal, a first
step is the frequency compounding. This is an optional step to increase the quality
of images by multi-frequency decomposition and compounding [Cincotti et al., 2001].
The next step is the demodulation, which extracts the information-bearing signal
from the modulated carrier wave. In ultrasound processing, the demodulation is
commonly performed with an envelope detection. Therefore, the absolute value of
the analytic signal, consisting of the original signal and the Hilbert transformed
signal, is calculated, see figure 2.5. 1D envelope detection is performed for each scan
line separately. In chapter 3, we present the 2D envelope detection with the 2D
analytic signal. Next, the dynamic range of the signal is compressed by applying a
non-linear intensity mapping. Typically a logarithmic scaling is applied, referred to
as log-compression. In [Kaplan and Ma, 1994], the following formula is proposed

Y = α log(X) + β (2.10)

20



2.3 Image Formation and B-mode Conversion

Gain
Compensation

Frequency
Compounding

Envelope
Detection

Dynamic 
Range Comp

Scan
Conversion Filtering

RF Signal B‐mode

Figure 2.7: Exemplar ultrasound processing pipeline. Gain compensated signals are
available as RF data. Further steps are as indicated. The B-mode image is the final
result, presented to the operator.
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Figure 2.8: Images for illustrating the RF to B-mode processing chain. For compari-
son, we also show the B-mode image of the US system.

with the received signal X, the compressed signal Y , and the compression parameters
α, β. In [Wein et al., 2008], a log-compression with

Y =
log(1 + αX)

log(1 + α)
(2.11)

is proposed. The next step is to place scan lines at their correct geometric location,
especially important for curved and phased array transducers. This conversion from
polar to Cartesian coordinate system is done by the scan conversion. Unavoidable is
the interpolation of intensity values at this stage. Finally, noise reduction filters are
applied. The final image of the presented processing chain is shown in figure 2.8(e),
with anisotropic diffusion used for filtering [Abd-Elmoniem et al., 2002]. The B-mode
image, as presented on the ultrasound system, is shown in figure 2.8(f). We observe
that the result of our replicated processing chain is very similar to the B-mode
image of the system. Unfortunately, ultrasound manufacturers provide very limited
information about proprietary processing steps that are included in the processing
chain to enhance the final result, but the main steps are as presented.
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2.4 Ultrasound Statistics

Modeling the statistics of an imaging modality is related to modeling its noise
statistics. For ultrasound, the dominant noise is speckle, which occurs at structures
that are rough with respect to the scale of the wavelength. Typical imaging modalities
affected by speckle patterns are optics, radar imagery, and ultrasound. In optics, it
is the rough surface of an object that produces speckle. In ultrasound, microscopic
inhomogeneities in the tissue are responsible for speckle [Cobbold, 2007]. These
inhomogeneities are due to the cellular nature of tissue. The granular texture due
to speckle can, for instance, be appreciated in figure 2.8. Previously described
compounding techniques, which combine images that contain uncorrelated speckle,
can be used to increase the signal to noise ratio (SNR), which is degraded by
speckle [Burckhardt, 1978]. There was, however, also work conducted on accurately
characterizing the statistics of speckle patterns. While the initial intention was to
design specific filters to increase the SNR, it soon became clear that one can benefit
from working with speckle to assess the tissue microstructure, to measure tissue
strain distributions in elastography, or to calculate flow velocity fields [Trahey et al.,
1987]. In chapter 8, we will apply the speckle statistics described in the following to
design appropriate likelihood functions for ultrasound registration.

The cause of speckle is a signal that consists of a number of independently phased
additive complex components [Goodman, 2006,Dutt, 1995], with each component
having an amplitude an and a phase φn. The single components are complex values
because they are phasors an that represent sinusoidal signals. The addition of these
components creates a random walk and results in an analytic signal A

A = A · eiφ =
1√
N

N∑
n=1

an =
1√
N

N∑
n=1

ane
iφn (2.12)

with N the number of scatterers and 1√
N

the normalization factor. The result of this
addition is dependent on the phases and amplitudes of the single components, with
either destructive or constructive interference occurring, see Figure 2.9. The resulting
length A of the component is the amplitude of the observed wave, corresponding
to the output of the envelope detector described in section 2.3. Let the real and
imaginary parts of A be

R = Re(A) =
1√
N

N∑
n=1

an cos(φn) (2.13)

I = Im(A) =
1√
N

N∑
n=1

an sin(φn). (2.14)

2.4.1 Large Number of Scatterers

For the deduction of noise statistics, we assume amplitudes and phases to be statisti-
cally independent from each other [Dutt, 1995]. Further, let the phases be uniformly
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Figure 2.9: Summation of random phasors, illustrating constructive (left) and
destructive (right) interference.

distributed in the interval [−π, π] and let the number of scatters N per resolution cell
be very large, see first image in figure 2.10. Since the real and imaginary parts are
calculated by the summation of a large number of independent random variables, the
central limit theorem indicates that the sum is asymptotically Gaußian distributed.
The assumptions of independence and uniform distribution yield the expected values
of R and I to be zero [Goodman, 2006]. Moreover, the cross correlation is zero and
the variances of real and imaginary part are identical, σ2

R = σ2
I = σ2 , leading to

pR,I(R, I) =
1

2πσ2
e−
R2+I2

2σ2 . (2.15)

Our interest lies in finding the distribution of the amplitude A, which is related to
R and I in polar coordinates by the expressions

A =
√
R2 + I2 (2.16)

φ = arctan (I/R) (2.17)

and

R = A cosφ (2.18)

I = A sinφ. (2.19)

The joint distribution of A and φ is calculated with the fundamental theorem for
joint densities [Papoulis and Pillai, 1991, p.143]

pA,φ(A, φ) = pR,I(A cosφ,A sinφ) · |J |−1 (2.20)

with the determinant of the Jacobian

|J |−1 =

∣∣∣∣∂R/∂A ∂R/∂φ
∂I/∂A ∂I/∂φ

∣∣∣∣ =

∣∣∣∣cosφ −A sinφ
sinφ A cosφ

∣∣∣∣ = A. (2.21)

We achieve the joint distribution for the amplitude and phase

pA,φ(A, φ) =
A

2πσ2
e−

A2

2σ2 , (2.22)
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Chapter 2: Ultrasound Overview

Figure 2.10: Illustration of scattering scenarios in a resolution cell. From left to right:
(i) large number of scatterers, (ii) with coherent component, (iii) limited number of
scatterers, (iv) with coherent component.

and further we find the marginal statistics of A with

p(A) =

∫ π

−π
p(A, φ) dφ =

A

σ2
e−

A2

2σ2 (2.23)

for A ≥ 0, which is known as the Rayleigh density function. We simplify the notation
by writing p(A) instead of pA(A).

2.4.2 Large Number of Scatterers with Constant Phasor

A different scenario is to consider once again a random phasor sum, but this time in
combination with a known constant phasor. The constant phasor is due to a coherent
component in the resolution cell, which may arise due to unresolved periodically
located scatterers or strong specular scattering [Dutt, 1995]. This is illustrated in the
second image in figure 2.10. The calculation of the real part changes in this case to

R = A0 +
1√
N

N∑
n=1

an cos(φn) (2.24)

with A0 the amplitude of the known phasor. Since we assume again a large number
of random phasors, the real and imaginary parts are asymptotically Gaußian. This
time, however, with the mean of the real part being the known phasor. A similar
deduction as above, presented in [Goodman, 2006], yields the following distribution
for the amplitude

p(A) =
A

σ2
e−

A2+A2
0

2σ2 · I0

(
AA0

σ2

)
(2.25)

for A ≥ 0 and with I0 the modified Bessel function of the first kind of order zero.
This is the Rician density function derived in [Rice, 1945].

2.4.3 Limited Number of Scatterers

The Rayleigh density is a good model for the echo envelope if the number of scatters
is large (> 10 per resolution cell). The Rice distribution models the scenario where
there is an additional coherent backscatter. The drawback of both approaches is the
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2.4 Ultrasound Statistics

presumption of a high scatter density, which limits their applicability. In order to
be able to model situations with lower scatterer density, once again a random walk
is considered, but with a limited number of phasors, see third image in figure 2.10.
In [Jakeman and Pusey, 1976], the negative binomial distribution is proposed to model
the number of scatterers. This leads to the amplitude following a K distribution

p(A) = 2

(
A

2

)α
bα+1

Γ(α)
·Kα−1(bA) (2.26)

with b =
√

4α
E[A2]

and Kα the modified Bessel function of the second kind of order

α. The parameter α can be used to model the effective number of scatterers per
resolution cell. In the limit for α → ∞ this turns into the Rayleigh distribution.
Assuming a biased random walk, the generalized K distribution is shown to be an
appropriate model [Jakeman and Pusey, 1976].

2.4.4 Limited Number of Scatterers with Constant Phasor

While the K distribution accounts for low scatter densities, and the Rician distri-
bution incorporates the presence of a coherent component, we will now describe
a combination of both. The extension for obtaining a model for a small number
of scatterers and a coherent signal is similar to the extension of the Rayleigh to
the Rice distribution. The scenario is illustrated in the last image of figure 2.10.
This extension leads to the homodyned K distribution [Dutt and Greenleaf, 1994].
The explicit formula is complicated and a more convenient way to represent the
distribution is through the following integral

p(A) =

∫ ∞
0

pr(A/x)pγ(x) dx, (2.27)

with pr being the Rice distribution with variance σ2x
α

and pγ the Gamma distribution

pγ(x) =
xα−1

Γ(α)
e−x. (2.28)

The K distribution is a special case of the homodyned K distribution. Further, the
homodyned K distribution converges to the Rice distribution for α→∞.

2.4.5 Nakagami Distribution

In the last sections, we have presented various scattering scenarios and we have seen
that the homodyned K distribution is the most versatile model. A problem with
this distribution is, however, the lack of a tractable density function. An alternative
is the Nakagami distribution [Nakagami, 1960], proposed for modeling ultrasound
envelope statistics in [Shankar, 2000]. The Nakagami distribution belongs to the
exponential family and is defined as

p(A) =
2mmA2m−1

Γ(m)ωm
exp

(
−m
ω
A2
)
,∀A ∈ R+, (2.29)
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Chapter 2: Ultrasound Overview

Figure 2.11: Plot of Nakagami distribution for various shape parameters m and fixed
scaling parameter ω = 0.7. From left to right: 0 < m < 0.5 (pre-Rician), m = 0.5
(generalized Rician), 0.5 < m < 1 (generalized Rician), m = 1 (Rayleigh), m > 1
(Rician).

with shape parameter m and scale parameter ω. The main motivation for using the
Nakagami distribution is to have an easy formula to calculate an approximation of
the previously presented distributions. For m = 1, this corresponds to the Rayleigh
distribution. For varying m, the Nakagami distribution can model pre- and post-
Rayleigh as well as generalized Rician distributions [Shankar et al., 2001]. Further, it
is a good approximation to the homodyned K distribution [Destrempes and Cloutier,
2010]. A drawback is that the parameters of Nakagami do not seem to have a
physical meaning, in contrast to the K distribution, which may be of value for tissue
characterization. Figure 2.11 illustrates the Nakagami distribution for various shape
parameters and fixed scale.

The Nakagami distribution is applied in several studies. [Shankar et al., 2002]
show that the parameters of the Nakagami distribution are suitable for tissue
classification. [Larrue and Noble, 2011] suggest a variant of the previous classification
method, using a small window kernel regression to guarantee locality. [Bouhlel and
Sevestre-Ghalila, 2009] propose an ultrasound specific auto-model by embedding
the Nakagami distribution into a Markov random field (MRF), facilitating the
classification of cancerous breast tissue. Similarly, [Klein et al., 2011] developed a
MRF-based feature descriptor for tissue classification and image registration. We
apply the Nakgami distribution to assess the statistical properties of envelope data
in chapter 3 and we present a similarity measure based on the Nakagami distribution
in chapter 8.

Important to note is that if the amplitude is assumed to be Nakagami distributed,
then the intensity I = A2 is Gamma distributed [Papoulis and Pillai, 1991, p.95].
The Gamma density is

p(I) =
mmIm−1

Γ(m)ωm
exp

(
−m
ω
I
)
,∀I ∈ R+, (2.30)

following the notation in [Shankar, 2000]. Working with the Gamma distribution
is sometimes easier than working with the Nakagami distribution because software
environments, such as Matlab, have certain functionalities for Gamma functions
integrated.
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2.4.6 Statistics of B-mode Images

Most commonly, ultrasound data is not available in form of RF but B-mode data.
The entire analysis provided in this chapter is focusing on the amplitude A, the result
of the envelope detection. We have seen in section 2.3 that a sequence of processing
steps is applied to the envelope to create B-mode images. It would be necessary to
model each of the processing steps to make a clear prediction about the statistics
on B-mode images. We have already mentioned that ultrasound manufacturers use
proprietary processing steps to increase the image quality. Since speckle is perceived
as noise, these processing steps focus on removing speckle. This questions the validity
of the previously presented noise models, which characterize speckle in the images.
Consequently, it is better to either directly work on envelope images or to create
B-mode images oneself, to control the processing steps.

This is, however, not always possible because the access is limited to B-mode
data. In the literature, several works were published that try to at least model part
of the processing chain. While the interpolation of intensity values is difficult to
incorporate and there is uncertainty about the applied smoothing filters, the interest
lies in replicating the dynamic range compression. Therefore, a log-compression, as
shown in equations (2.10) and (2.11), is assumed. Generally, one can distinguish
between approaches that try to decompress the B-mode images and approaches that
try to model the distribution of the B-mode. [Prager et al., 2003] decompress images
to detect speckle with the homodyned K distribution. An iterative procedure is
proposed to determine the multiplicative compression factor α. [Kaplan and Ma,
1994] derive the Fisher-Tippett distribution for B-mode images, assuming Rayleigh
envelope statistics. [Dutt and Greenleaf, 1996] derive an elaborate density function
for B-mode, assuming envelope statistics following the K distribution. For ultrasound
registration, the log-compression was integrated in the imaging model in [Cohen and
Dinstein, 2002,Myronenko et al., 2009], further discussed in chapter 8.
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Chapter 3

2D Analytic Signal on Ultrasound
Images

In ultrasound imaging, the local phase is applied for identifying structures in B-
mode images and the local amplitude is used for envelope detection of RF data.
Recently, the extension of the analytic signal from 1D to 2D, covering also intrinsic
2D structures, was proposed. We illustrate the advantages of this improved concept
for RF demodulation by performing goodness-of-fit tests to a Nakagami distribution,
indicating a clear improvement of statistical properties. Moreover, we demonstrate
benefits for the estimation of local features on B-mode images.

3.1 Introduction

The analytic signal (AS) enables to extract local, low-level features from images. It
has the fundamental property of split of identity, meaning that it separates qualitative
and quantitative information of a signal in form of the local phase and the local
amplitude, respectively. These quantities further fulfill invariance and equivariance
properties [Felsberg and Sommer, 2001], allowing for an extraction of structural
information that is invariant to brightness or contrast changes in the image. Exactly
these properties lead to a multitude of applications in computer vision and medical
imaging, such as registration [Carneiro and Jepson, 2002,Grau et al., 2007,Mellor
and Brady, 2005, Zang et al., 2007, Zhang et al., 2007], detection [Estepar et al.,
2006,Mulet-Parada and Noble, 2000,Szilágyi and Brady, 2009,Xiaoxun and Yunde,
2006], segmentation [Ali et al., 2008,Hacihaliloglu et al., 2008,Wang et al., 2009a],
and stereo [Fleet et al., 1991]. Phase-based processing is particularly interesting for
ultrasound images because they are affected by significant brightness variations, as
shown in [Grau et al., 2007,Hacihaliloglu et al., 2008,Mellor and Brady, 2005,Mulet-
Parada and Noble, 2000], as well as, chapters 4 and 8.

For 1D, the local phase is calculated with the 1D analytic signal. For 2D, several
extensions of the analytic signal are proposed, with the monogenic signal [Felsberg
and Sommer, 2001] presenting an isotropic extension. The description of the signal’s
structural information (phase and amplitude) is extended by a geometric component,
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Chapter 3: 2D Analytic Signal on Ultrasound Images

(a) i0D

µ

(b) i1D (c) i2D

Figure 3.1: Illustration of 2D signals with different intrinsic dimensionality. For i1D,
we show the local orientation θ.

the local orientation. The local orientation indicates the orientation of intrinsic 1D
(i1D) structures in 2D images, see figure 3.1. This already points to the limitation
of the monogenic signal; it is restricted to the subclass of i1D signals. Recently, an
extension to the monogenic signal, referred to as 2D analytic signal [Wietzke et al.,
2009], was proposed that permits the analysis of i2D signals. Therefore, the 2D
signal analysis is embedded into 3D projective space, and a new geometric quantity,
the apex angle, is introduced. The 2D analytic signal also has the advantage of more
accurately estimating local features from i1D signals [Wietzke et al., 2009].

In this chapter, we illustrate the advantages of the calculation of the 2D analytic
signal for RF and B-mode ultrasound images. Instead of performing the demodulation
of RF signals for each scan line separately, as described in section 2.3, we perform
the demodulation in its 2D context with 2D Hilbert filters of first- and second-order.
This leads to advantages in the envelope detection. Since all further processing steps
of the creation of the B-mode image are based on the envelope, the improvement of
the 2D envelope detection propagates to the quality of the B-mode image. Moreover,
the result from the 2D envelope detection bears better statistical properties, as
we illustrate with goodness-of-fit tests towards a Nakagami distribution, with its
implications to classification, segmentation, and registration. Finally, we evaluate
the advantages of the 2D analytic signal for estimating local features on B-mode
images. All experiments are performed on clinical ultrasound images.

3.2 2D Analytic Signal

There are various concepts to analyze the phase of signals, such as Fourier phase,
instantaneous phase, and local phase [Granlund and Knutsson, 1995]. We are
primarily interested in the last two. For 1D signals, g ∈ L2(R), the instantaneous
phase is defined as the argument of the analytic signal, arg(g + i · H{g}), with H
being the Hilbert transform. Since real signals consist of a superposition of multiple
signals of different frequencies, the instantaneous phase, although local, can lead
to wrong estimates. The signal has to be split up into multiple frequency bands,
by means of bandpass filters, to achieve meaningful results, as further described in
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3.2 2D Analytic Signal

Figure 3.2: Magnitude of 2D Hilbert transforms with log-Gabor kernels in frequency
domain. From left to right: B, B �H1

x, B �H1
y , B �H2

xx, B �H2
xy, B �H2

yy.

section 3.2.2.
Considering 2D signals, f ∈ L2(R2), the intrinsic dimension expresses the number

of degrees of freedom to describe local structures [Zetsche and Barth, 1990]. Intrinsic
zero dimensional (i0D) signals are constant signals, i1D signals are lines and edges,
and i2D are all other patterns in 2D, see figure 3.1. The monogenic signal is
restricted to i1D signals and calculated with the two-dimensional Hilbert transform,
also referred to as the Riesz transform. In the frequency domain, the first-order 2D
Hilbert transform is obtained with the multiplication of

H1
x(u) = i · x

||u||
, H1

y (u) = i · y

||u||
, u = (x, y) ∈ C\{(0, 0)} (3.1)

with i =
√
−1. For the calculation of the 2D analytic signal, higher order Hilbert

transforms are used [Wietzke et al., 2009]. The Fourier multipliers of the second-order
Hilbert transform 1 are

H2
xx(u) = − x · x

||u||2
, H2

xy(u) = − x · y
||u||2

, H2
yy(u) = − y · y

||u||2
, (3.2)

again with u = (x, y) ∈ C\{(0, 0)}. In contrast to [Wietzke et al., 2009], we do not
present the formulas of the Hilbert transforms in spatial but in frequency domain,
which is more versatile for filtering, see section 3.2.2. Throughout the chapter we use
upper case letters for filters and signals in frequency domain, and lower case ones for
their representation in spatial domain.

3.2.1 Structural and Geometrical Features

The proposed extension of the 2D analytic signal is obtained by an embedding in
3D projective space. This allows for a differentiation of geometrical features (local
orientation, local apex) and structural features (local phase, local amplitude). The
filtered signal Fp, the first-order Hilbert transformed signals Fx, Fy, and the second-
order Hilbert transformed signals Fxx, Fxy, Fyy are calculated with the bandpass filter
B and the pointwise multiplication � in frequency domain as Fp

Fx
Fy

 =

 B � F
H1
x �B � F

H1
y �B � F

 and

 Fxx
Fxy
Fyy

 =

 H2
xx �B � F

H2
xy �B � F

H2
yy �B � F

 . (3.3)

1We want to thank the authors of [Wietzke et al., 2009] for discussions.
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Figure 3.3: Log-Gabor filter bank consisting of 5 filters (red) and ultrasound signal
spectrum (x-axis: frequency in MHz). Ultrasound acquisition frequency: 3.3 MHz.

We illustrate the Hilbert transforms in frequency domain multiplied with log-Gabor
bandpass filters in figure 3.2. In order to enable an interpretation of second-order
Hilbert transformed signals in projective space, an isomorphism between the Hesse
matrix and a vector valued representation is used [Wietzke et al., 2009], leading to
fs = 1

2
[fxx + fyy], f+ = fxy, and f+− = 1

2
[fxx − fyy].

Finally, the local features are calculated as follows. The apex angle α, which
differentiates between features of different intrinsic dimensionality, is

α = arccos

√
f 2

+ + f 2
+−

||fx||
. (3.4)

With the apex angle, the homogeneous signal component fh of the signal fp in
projective space is defined as

fh =

√
1 + cosα

2
. (3.5)

The local orientation θ, local phase φ, and local amplitude A are calculated with

θ =
1

2
arctan

f+

f+−
, (3.6)

φ = atan2

(√
[f−1
h fx]2 + [f−1

h fy]2, fp

)
, (3.7)

A =
1

2

√
f 2
p + [f−1

h fx]2 + [f−1
h fy]2. (3.8)

For i1D signals, the homogeneous component is fh = 1, and the formulas above
reduce to the ones known from the monogenic signal.

3.2.2 Frequency Selection

Each signal f can be described with the Fourier series, decomposing the signal
into components of different frequencies, each one having its own phase and ampli-
tude. The direct application of the Hilbert transform on the original signal, which
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Figure 3.4: Exemplar ultrasound processing pipeline for RF to B-mode conversion.

presents an accumulation of local signals from different frequencies, does therefore
not adequately extract local features. Theoretically, we would need to calculate the
analytic signal for infinitely narrow bandwidths, i.e., Dirac deltas in the frequency
domain. Following the uncertainty principle this results in filters with global support.
Bandpass filters present an appropriate approximation for localization in spatial and
frequency domain.

[Felsberg and Sommer, 2001] apply the difference of Poisson kernels for frequency
selection. An interesting property of the Poisson filter is that it creates a linear
scale-space [Felsberg and Sommer, 2004]. Another filter that is commonly applied,
especially in ultrasound, is the log-Gabor filter [Boukerroui et al., 2004,Grau et al.,
2007,Hacihaliloglu et al., 2008,Mulet-Parada and Noble, 2000]. Also in our analysis
on ultrasound images, we achieve better results with the log-Gabor filter so that we
concentrate on it in the following. A drawback of the log-Gabor filter is, however,
that it has no analytic expression in the spatial domain. This is also the reason why
we present the Hilbert transforms in equations (3.1) and (3.2) in frequency and not
in spatial domain, as it is done in [Wietzke et al., 2009].

Important for the design of the filter bank is to create filters, so that the transfer
function of each filter overlaps sufficiently with its neighbors, in order to have
a uniform coverage of the spectrum. A filter bank with five log-Gabor filters
is illustrated in figure 3.3. A study of alternative bandpass filters is presented
in [Boukerroui et al., 2004]. For the further analysis, it is either possible to focus on
the signal at one specific scale, or accumulate all responses from various scales, as it
is e.g . done for the phase congruency [Kovesi, 1999].

3.3 2D Analytic Signal on RF Data

We saw in chapter 2 that the pipeline of the RF to B-mode conversion consists of
multiple steps, including amongst others demodulation, non-linear intensity mapping,
and filtering. Figure 3.4 illustrates a reduced processing chain. The demodulation is
one of the central parts and extracts the information-bearing signal from a modulated
carrier wave. In ultrasound processing, the demodulation is commonly performed by
an envelope detection. Hereby, the amplitude of the analytic signal is calculated for
each of the 1D scan lines separately. Interestingly, calculating the amplitude of the
1D analytic signal is equivalent to the instantaneous amplitude. In the literature of
ultrasound imaging, it is noted that the quality of ultrasound images can be increased
by multi-frequency decomposition and compounding of the received signal, simply
referred to as frequency compounding [Cincotti et al., 2001]. This is equivalent to
the local amplitude estimation. This constitutes an interesting analogy, between
the advantage of the frequency compounded signal to the normal one, on the one
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 3.5: Magnified region of envelope detected 2D image for various envelopes.

hand, and the advantage of the local amplitude in comparison to the instantaneous
amplitude, on the other hand. We have neither seen this analogy noted in the
literature before, nor the application of local amplitude and local phase techniques
to RF data.

In contrast to the usually separate processing of each scan line, we consider
all scan lines at once and construct the 2D analytic signal to estimate the local
amplitude. This enables improved envelope detection because the signal is analyzed
in its 2D context by also considering information in lateral direction. The balance
between influence from lateral and axial direction can be adjusted by the bandwidth
in each direction of the bandpass filter, where the smaller spacing in axial direction
should be considered accordingly.

3.3.1 Envelope and B-mode Results

We perform experiments on multiple RF images acquired from the neck with a linear
transducer at 3.3 MHz. The sampling frequency of the RF data is 40 MHz. We
compare the envelope detection for: (i) 1D analytic signal (1D AS), (ii) 1D analytic
signal with filter bank (1D ASF), (iii) monogenic signal (MS), and (iv) monogenic
signal with filter bank (MSF), (v) 2D AS, and (vi) 2D ASF. Exemplarily, we show
the frequency spectrum of one scan line together with the log-Gabor filter bank in
figure 3.3. We present magnified regions of the various envelope images in figure 3.5.
Note that we do not show the results of the MS, because the more interesting
improvement is for 2D AS. However, we include them into the analysis of noise
statistics in section 3.3.2. We can clearly observe that the 2D analytic signal leads to
a more accurate and consistent extraction of structures. This becomes particularly
clear on the circular structure on the top left, which appears rather ellipsoidal on
the estimates from the 1D analytic signals. We also note the positive influence of
the filter bank for the estimation of the 2D analytic signal.

We perform an RF to B-mode conversion of local amplitude images A with a
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Figure 3.6: Log-compressed envelopes from 1D ASF (left) and 2D ASF (middle).
Magnification of red region (top right: 1D AS, bottom right: 2D AS).

(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 3.7: Magnified regions of images after log-compression.

log-compression including a translation of 25, log(A+ 25). The results for 1D ASF
and 2D ASF are shown in figure 3.6, together with a magnification of the red region.
Further results for the various envelopes are presented in figure 3.7. The B-mode
image resulting from the 2D analytic signal clearly shows more consistent structures
and less noise. Typically, further filtering steps are applied to the log-compressed
image to improve its visual appearance. These processing steps are proprietary to the
manufacturer and generally not publicly accessible. Ultrasonix (Redmond, Canada),
however, distributes a particular research system with a specific SDK including their
post-processing filter, called MUCRO. We apply MUCRO to the log-compressed
images, with the results shown in figure 3.8. Even after the application of MUCRO,
the advantages of the images from the 2D analytic signal are clearly visible. This is
not self-evident because the post-processing methods are designed to be applied to
1D envelope detected images, still leaving room for improvement by adapting the
post-processing to 2D envelope estimation. Finally, one of the reasons for applying
the post-processing filtering is to establish consistency between scan lines, which we
already achieve by the 2D envelope detection.
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(a) 1D AS (b) 1D ASF (c) 2D AS (d) 2D ASF

Figure 3.8: Magnified regions of images after log-compression and MUCRO.

3.3.2 Analysis of Envelope Statistics

Next to the visual assessment of the 2D envelope detection, we also analyze the
statistical properties of the data. In section 2.4, we discussed different statistical dis-
tributions to model ultrasound data. Among them there is Rayleigh, Rician [Shankar
et al., 1993, Wagner et al., 1983], K distribution, generalized K distribution, ho-
modyned K distribution, pre-Rician K [Jakeman and Pusey, 1976,Lord, 1954], as
well as, Rician Inverse of the Gaußian [Eltoft, 2003]. As already mentioned, the
homodyned K distribution allows modeling various scattering scenarios, but its
inherent complexity limits the practical applicability. In order to address this issue,
the Nakagami distribution [Nakagami, 1960] was proposed, because it admits an
explicit analytical expression. It is used in various applications to model backscatter
characteristics of US envelope data for segmentation and classification, see [Destrem-
pes et al., 2009, Shankar et al., 2002] and references therein. In the following, we
analyze the effects of the 2D envelope detection on the speckle statistics with the
Nakagami model. In particular, we quantify the impact of the 2D analytic signal
with goodness-of-fit (GOF) tests, and show the potential for the aforementioned
applications based on example images.

The Nakagami distribution with shape m and scale ω parameters is

p(x | m,ω) =
2mmx2m−1

Γ(m)ωm
exp

(
−m
ω
x2
)
,∀x ∈ R+. (3.9)

A goodness-of-fit test evaluates if the data d1, . . . , dn, under the assumption of i.i.d.
samples, comes from the given theoretical probability distribution p [D’Agostino
and Stephens, 1986]. Note that conventional GOF tests are restricted to the case of
single distributions. For inhomogeneous regions in the image, however, a mixture of
Nakagami is more appropriate, see figure 3.10 for an illustration of a misfit of a single
Nakagami to mixture Nakagami data as well as a perfect mixture fit. Consequently,
we can only achieve good results with the GOF test on homogeneous image regions.
The mixture case has to be further evaluated, with similar results to be expected.

For the GOF test, the range of the data is partitioned into M bins βi, i = 1, . . . ,M ,
with Ni and the number of samples per bin. Moore suggests to divide the data into
M = 2n

2
5 bins [D’Agostino and Stephens, 1986]. Furthermore, we assume the bins
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Figure 3.9: RF image with sample distributions estimated for two areas. Region 1
contains a mixture of Nakagami, region 2 a single Nakagami. Whereas MLE can fit
nicely in region 2 (d) it expectedly performs poorly in region 1 (c), that can only be
represented properly by mixture (b).

to be equiprobable as suggested in [Bock and Krischer, 1998]. In this regard, we
let pi be the integral of the distribution in the range βi given the parameters of the
distribution θ = {m,ω}

pi =

∫
βi

p(x | θ) dx. (3.10)

Hence, pi expresses the likelihood of a sample to be in the bin βi (identical for all
bins). The test statistics underlying the GOF test is the sum of differences between
observed and expected outcome frequencies

X2 =
M∑
i=1

(Ni − npi)2

npi
. (3.11)

This yields a quadratic form in Ni that has approximately a χ distribution with
M −N − 1 degrees of freedom and N = 2 the number parameters of the distribution.
In order to assess the GOF quantitatively, we employ the P-value based hypothesis
test. The P-value indicates the significance level of accepting the null hypothesis H0.
In our case, H0 is the hypothesis that the observations are Nakagami distributed,
leading to the following calculation of the P-value

P =

∫ ∞
X2

χ2(M −N − 1) dx, (3.12)

employing equation (3.11) as the lower bound of integration.

3.3.3 Rao-Robson Statistic

Given the data, we first have to estimate the parameters m,ω of the Nakagami
distribution before the GOF test is performed. This is, however, opposing the general
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(a) 1D AS (b) 1D ASF (c) MS (d) MSF (e) 2D AS (f) 2D ASF

Figure 3.10: The P-values are calculated for all patches of an envelope image.
Pixel brightness indicates P-value. We perform the calculation for various envelope
detection techniques. Comparing the P-value images to the B-mode image in
figure 3.9, we see that the bright regions correspond to homogeneous regions in the
US image.

assumption that the parameters of the distribution are a-priori given before the test
is performed. Therefore, another quadratic form in Ni has to be used, with the Rao-
Robson statistic being one possibility [D’Agostino and Stephens, 1986]. Considering
the parametric form of the distribution p(x|θ) and the maximum likelihood estimate
θ̂, the Rao-Robson statistic is

RR = V >(θ̂)Q(θ̂)V (θ̂) (3.13)

with

V (θ) =
Ni − npi
(npi)1/2

(3.14)

Q(θ) = I +D(θ)[J(θ)−D>(θ)D(θ)]−1D>(θ) (3.15)

Dij(θ) = pi(θ)
1
2
∂pi(θ)

∂θj
(3.16)

J(θ) is the N ×N Fisher information matrix and I is an M ×M identity matrix.
The Rao-Robson statistic is χ2 distributed with M − N − 1 degrees of freedom,
leading to P-values computed by

P =

∫ ∞
RR

χ2(M −N − 1) dx (3.17)

with the Rao-Robson statistic RR as lower bound of integration.

3.3.4 Statistical Results

We perform the Rao-Robson GOF test on local patches, densely throughout the
image. Plotting the results for all patches therefore creates a new image with the
intensity values being the P-values. We show these images in figure 3.10 for the
various envelope detection schemes. The brighter the images, the higher the P-values,
and consequently the better for statistical applications because we achieve better
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Figure 3.11: Box plot of P-values for different envelope detections.

fits. We note that the bright regions are corresponding to the homogeneous areas
in the ultrasound image because only these areas are appropriately modeled with a
single distribution, as discussed previously. Additionally, we calculate the statistics
of the P-values, visualized in the box plot of figure 3.11. The red line indicates the
median and the box is constructed from the interquartile range. Our results therefore
show that the envelope detection without the filter bank produces better fits, which
makes sense, because log-Gabor filters influence the distribution. More importantly,
however, we note the improvement from 1D AS to MS, and further from MS to 2D
AS. This shows on the one hand, the advantage of applying 2D Hilbert transforms in
contrast to 1D ones, and on the other hand, the advantage of the 2D analytic signal
in contrast to the monogenic signal. This confirms the visually improved results for
2D envelope detection from the previous section.

3.4 2D Analytic Signal on B-mode Images

Next to the benefits of the 2D analytic signal for the demodulation of RF data, it also
allows for a more accurate estimation of local features on B-mode images [Wietzke
et al., 2009]. This has the potential to increase the quality of follow-up applications
such as registration [Grau et al., 2007,Mellor and Brady, 2005,Zhang et al., 2007],
segmentation [Hacihaliloglu et al., 2008], and detection [Mulet-Parada and Noble,
2000], which use the local features as input. To demonstrate this, we calculate the
local orientation on B-mode images showing a biopsy needle. In figure 3.12, we
illustrate the local orientation that is estimated from the monogenic signal and the
2D analytic signal, both with filtering. The estimation from the monogenic signal
shows no consistent orientation information in the region of the needle. In contrast,
the improved concept of the 2D analytic signal indicates a consistent result.

3.5 Conclusion

We demonstrated that the application of the 2D analytic signal has multiple advan-
tageous for RF and B-mode data. The demodulation of RF signals with the 2D
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Figure 3.12: Ultrasound image with biopsy needle (left). Calculated local orientation
for monogenic signal (middle) and 2D analytic signal (right).

analytic signal enables a more consistent extraction of structures, because the signal
is analyzed in its natural 2D context. We further showed that the improved envelope
detection enables the creation of B-mode images of enhanced quality. To validate
this, we applied a proprietary post-processing filtering for ultrasound on the log-
compressed images and compared the result of 1D and 2D analytic signal. Moreover,
we validated the improved statistical properties of envelope data resulting from the
2D analytic signal by performing goodness-of-fit tests to a Nakagami distribution.
Finally, the advanced signal model of the 2D analytic signal leads to benefits in the
estimation of local features in B-mode images, as we have illustrated for the case of
needle detection.

For the demodulation, we focused on scans from a linear transducer. For curved
linear transducers, the application of 2D Hilbert transforms without a previous scan
conversion can be achieved with the polar Fourier transform [Averbuch et al., 2006].
This, together with the incorporation of mixture models in the statistical analysis,
remains as future work.
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Chapter 4

Towards Acoustic Impedance
Estimation

Reflection of sound waves, due to acoustic impedance mismatch at interfaces of media,
is a principal physical property which allows for imaging with ultrasound. In this
chapter, we investigate the reconstruction of the acoustic impedance from ultrasound
images. This reconstruction is an alternative to common spatial compounding meth-
ods that also combine the information from multiple images. We use local phase
information to determine regions of strong reflection from an ultrasound image. A
model of ultrasound imaging is used for computing the acoustic impedance (up to
scale) from areas of high reflectivity. The acoustic impedance image can either be
directly visualized or be used in the simulation of ultrasound images from an arbitrary
point of view.

4.1 Introduction

Spatial compounding of several views, acquired from different positions, helps to
reduce shortcomings of ultrasound imaging, as detailed in chapter 2. When working
with 2D US images, compounding from different positions poses a problem because
all the scans have to be in one plane. Therefore, multi-angle compounding with
beam steering is typically performed, where the probe remains fixed [Wilhjelm et al.,
2004]. Moving to 3D imaging, compounding from different positions offers much
more flexibility [Grau et al., 2007,Wachinger et al., 2007]. The prerequisite for spatial
compounding is to know the relative positions of the acquired images. This can
either be obtained by tracking the ultrasound transducer or by image registration. In
part III about ultrasound mosaicing, we focus on registration strategies for the correct
alignment of US images. In this chapter, we assume the alignment to be known and
concentrate on the last stage of mosaicing, the combination of the information.

The major problem in compounding ultrasound images is the view-dependent
nature of ultrasound. If we would deal with several CT images of the same object,
the compounding could be done by calculating the mean value. The dominant
features of ultrasound due to reflection and attenuation are, however, dependent on
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Figure 4.1: Schematic illustration of spatial compounding with acoustic impedance
estimation. First, the impedance is estimated from multiple ultrasound images.
Second, an ultrasound image is simulated from an arbitrary point of view.

the direction of insonification. Averaging intensity values is not optimal because
strong echoes from small incident angles (transducer perpendicular to the surface)
would be degraded by weak echoes from large incidence angles. Therefore, in the
literature, several methods for spatial compounding have been proposed, which we
are going to discuss in section 4.1.2. Instead of following one of the established
methods, we introduce a novel approach, which is based on the estimation of the
acoustic impedance of the imaged scene. From each image, we will reconstruct an
acoustic impedance image, which we subsequently average to get an estimation for
the whole imaged area. The reconstructed acoustic impedance images can either
directly be presented to the physician or can be used for the simulation of ultrasound
images from an arbitrary point of view, see Figure 4.1.

In mathematical terms, we deal with an inverse problem, because we infer cause
from effect. We probe the living tissue with sound waves and measure the effect in
form of reflections. The cause of the reflections is changing physical properties - the
change in acoustic impedance - which we try to estimate. The reconstruction of tissue
properties is common in ultrasound tomography [Greenleaf and Bahn, 1981], where
dedicated devices are used. In [Gemmeke and Ruiter, 2007], 384 sending and 1600
receiving transducers are arranged around rings, with the object being placed in the
middle. Such setups allow, next to measuring reflection, also assessing transmission
and scattering. Although such systems are very interesting, they have not yet passed
the stage of research prototypes. Consequently, we investigate for one of the first
times the possibilities of using standard ultrasound probes for the reconstruction
of the acoustic impedance. This is challenging because fewer measurements are
available.
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Image 1 Image 2 Compounded Imageg g p g

Figure 4.2: Illustrated is the spatial compounding of two ultrasound images. The
SNR can be improved by averaging the intensity information of correctly aligned
images, because speckle is reduced. [Jespersen et al., 1998] indicate that images are
virtually fully decorrelated for relatively small rotation angles of around 10 degrees.

4.1.1 Clinical Value of Compounding

The clinical value of US compounding is mainly a result of increased quality and
extended field of view (FOV) of the images presented to the physician. We have
already discussed advantages that come along with the extended FOV in chapter 1.
The quality can be improved by compounding images from different positions,
because the direction dependent speckle noise is reduced and therefore the SNR
is increased [Wilhjelm et al., 2004], see figure 4.2. Moreover, occlusion artifacts
below structures with high acoustic impedance can be removed and the boundary
continuity is enhanced. The positive effects of spatial compounding for diagnosis of
atherosclerotic plaques [Huber et al., 2002,Jespersen et al., 2000] and breast cancer
[Anderson et al., 1997] have already been reported. It also helps for administering
epidural anesthesia by especially improving the depiction of key structures such
as ligamentum flavum and epidural space [Tran et al., 2008]. [Grau and Noble,
2005] work on the combination of several acquisitions from different positions of the
heart. It is not possible to depict the whole heart in a single acquisition; however,
scans from particular acoustic windows can be acquired to show specific cardiac
structures. The combination of these acquisitions into a single volume can be of
great benefit in clinical practice.

4.1.2 Related Work

There are several articles that address ultrasound compounding with a few of them
taking the view dependency of ultrasound into account. [Wilhjelm et al., 2004] use
multi-angle spatial compounding with beam steering, for which the transducer stays
at the same spatial location. They are able to reduce the angle dependency and
speckle noise by combining multiple images. They compare a number of methods
for compounding including mean, median, root-mean-squared value, and geometric
mean. The highest SNR is achieved when using the mean. In a recent work also
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based on beam steering, [Tran et al., 2008] improve the spatial compounding by using
a combination of median- and gradient-based approaches. The median is used if at a
certain location more than half of the images have a high feature-content, otherwise
the gradient-weighted average is calculated. The problem we see with this approach
is the use of thresholding to decide whether a pixel has a high feature-content or
not. [Behar et al., 2003] propose a new method for spatial compounding by using
three ultrasound transducers simultaneously. The transducer in the middle acts as
sender and receiver, the remaining two only act as receiver. With their method they
were able to improve visibility, detectability, and lateral resolution. During their
experiments, various averaging methods were investigated, with the best results for
the averaging of intensities.

[Leotta and Martin, 1999] propose a weighting scheme based on the incidence
angle of the ultrasound beam on a reflecting surface. This technique leads to
significantly improved results in comparison to using the mean value, but is based on
an initial fitting of a surface to the data, which is a challenge for complex images. [Grau
and Noble, 2005] use multiscale information about local structure definition and
orientation to weight the contributions of different images. They obtain these image
characteristics by calculating the local phase, as described in chapter 3, which is to a
certain extent invariant to image contrast, making it particularly interesting for US
images. While this approach is interesting for image registration [Grau et al., 2006],
the compounding is rather cumbersome [Grau and Noble, 2005]. As can be seen,
ultrasound compounding is a non-trivial exercise and still an active field of research.

4.2 Impedance Estimation Framework

Core to our method is the estimation of the acoustic impedance of the region depicted
in the ultrasound image. As we will see, acoustic impedance images are related to
CT attenuation values expressed in Hounsfield units. Further, they do no longer
exhibit view-dependent artifacts or emphasized boundaries. We first formulate
the problem as maximum likelihood estimation, second we present the ultrasound
simulation function, third we identify regions of high reflectivity, and finally, we
describe visualization approaches.

4.2.1 Maximum Likelihood Estimation

We formulate the acoustic impedance estimation as maximum likelihood (ML)
estimation. For this, we take advantage of recently proposed methods for ultrasound
simulation [Wein et al., 2008, Shams et al., 2008]. They allow us to define a US
simulation function s, producing one of the n simulated US images Û = {û1, . . . , ûn},
by taking the corresponding transformation in T = {T1, . . . , Tn} and the acoustic
impedance image z as input

s : (z, Tj) 7−→ ûj. (4.1)
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(a) Original US im-
age

(b) Phase image (c) Threshold of
phase image

(d) Impedance esti-
mation

(e) Smooth imp.
estimation

Figure 4.3: Processing steps for acoustic impedance estimation of a clay model.

The likelihood function, which indicates how well the simulated US images Û match
the real ones U = {u1, . . . , un}, is

L(z) = P (U|z, T , ε) (4.2)

=
∏
j

P (uj|z, Tj, ε) (4.3)

=
∏
j

P (uj − s(z, Tj) = ε), (4.4)

with the random variable ε modeling the noise and incorporating the assumption of
independent US images. In order to proceed with the ML estimation, arg maxz L(z),
we have to choose a distribution for the noise.

In section 2.4, we described several distributions for modeling ultrasound speckle.
For the acoustic impedance estimation, we focus on large scale interfaces, which are
not well characterized by the previously presented noise models. Moreover, we do
not work on RF but on B-mode images. Due to these problems in correctly modeling
the distribution, we decided to remove speckle in a preprocessing step and assume a
Gaußian distribution, which leads to the following least-squares formulation

logL(z) ∝ − 1

n

n∑
i=1

(uj − s(z, Tj))2 . (4.5)

In the next section, we describe details of the ultrasound simulation function s.

4.2.2 Ultrasound Simulation

As we have discussed in section 2.2, ultrasound imaging can be described by the
reflection at tissue interfaces and the exponential loss of intensity within the tissue.
The reflected intensity at a location x is calculated by running along the scan line
with direction d and evaluating

Ir(x) = Ii(x) · cosm θi(x) ·
(
z(x)− z(x−∆d)

z(x) + z(x−∆d)

)2

, (4.6)

similar to equation (2.8). The distance between scan line points is indicated by ∆d.
The incidence angle θi, which is the angle between the US beam and the normal of
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the surface, is calculated with the scalar product

cos θi(x) =

∣∣∣∣d. ∇z(x)

|∇z(x)|

∣∣∣∣ (4.7)

where ∇ is the spatial derivative operator. In order to perform the optimization, we
make the assumption that the incidence angle for the impedance and ultrasound
image are roughly the same

cos θi(x) =

∣∣∣∣d. ∇z(x)

|∇z(x)|

∣∣∣∣ ≈ ∣∣∣∣d. ∇u(x)

|∇u(x)|

∣∣∣∣ . (4.8)

Since the orientation of the interfaces in impedance and ultrasound image should be
the same, this approximation is reasonable. Considering, however, that US images
are very noisy, this can lead to problems. In our estimation framework, we directly
access the local orientation information delivered by the analytic signal for this
purpose, see section 4.2.3. As final step in the simulation, a log-compression is
applied to the images, see equation (2.11), so that the reflectivity regions of the
simulated US images û(x) are

û(x) =
log(1 + α · Ir(x))

log(1 + α)
(4.9)

with α parameterizing the log-compression.

4.2.3 Filtering and Identifying Interfaces

In order to be able to calculate the acoustic impedances for various tissues, we have
to identify the tissue boundaries. On these boundaries we perform the acoustic
impedance estimation. In a first step, we deal with the speckle in ultrasound images.
As discussed in section 4.2.1, we consider speckle as noise for the acoustic impedance
estimation, which we want to remove. A multitude of approaches for speckle reduction
can be found in the literature such as Gaußian filtering, coherence-enhancing diffusion
filtering, and despeckling filters based on the envelope of the US image [Grau et al.,
2007]. We achieved good results with median filtering, which has superior speckle
reduction properties compared to Gaußian smoothing [Yang and Fox, 2004]. We
denote the filtered images as ũj.

For the identification of boundaries, we use the analytic signal as presented in
chapter 3. The local phase provides us with structural information independent of
the brightness and contrast. Further, we use the local orientation to calculate the
incidence angle. For the creation of the filter bank we use log-Gabor filters. A local
phase image is illustrated in figure 4.3(b). We threshold the phase image to extract
the reflectivity part Ω from the ultrasound image, see figure 4.3(c).

4.2.4 Acoustic Impedance Estimation

For the estimation of the acoustic impedance, we combine the results from the last
sections. Inserting the simulation in the maximum likelihood estimation, together
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with the filtered image and restricting the comparison to interfaces, yields the
following optimization

arg min
zj

∑
x∈Ω

ũj(x)−
log

(
1 + α · cosm θi(x) ·

(
zj(x)−zj(x−∆d)

zj(x)+zj(x−∆d)

)2
)

log(1 + α)


2

. (4.10)

The acoustic impedance in the reflection coefficient ζI(x) =
(
z(x)−z(x−∆d)
z(x)+z(x−∆d)

)2

, is

recursively defined, depending on the previous estimation z(x−∆d). Consequently,
we need an initial value to make the calculation along the scan line. When taking e.g .
acquisitions in a water bath, we can directly use the acoustic impedance of water.
But it is not always possible to determine a proper initialization and as such, in
general, a reconstruction up to scale is possible. This is sufficient for visualization
and US simulation. In the future, further information from the US image such as
tissue estimation from RF data [Moradi et al., 2007] or speckle [Aja-Fernandez et al.,
2007] could be integrated to make the estimation more precise. Since we estimate
the acoustic impedance per scan line, an averaging with neighboring scan lines while
propagating the values between the interfaces leads to smoother estimations, see
figure 4.3(e). We start the estimation at the beginning of the scan line with the initial
values. Locations between interfaces are assigned impedance values, as calculated at
the last interface.

In equation 4.10, we ignore the incident intensity Ii. Although attenuation and
scattering lead to a decrease in intensity as the ultrasound beam penetrates the
tissue farther, the time gain compensation simulates that everywhere in the image
the same incident intensity is present, causing a constant Ii.

Moreover, we separate the direct estimation of the global impedance z in equa-
tion (4.5), and instead, estimate for each US image uj an acoustic impedance zj. In
section 4.1.2, we argued that compounding of ultrasound images is not a trivial task.
In contrast, compounding of estimated acoustic impedance images is straightforward
because these images hold a correspondence between intensity value and tissue type.
The global acoustic impedance image z is consequently the mean of the estimates zj ,
obtained from equation (4.10)

z =
1

n

n∑
j=1

zj. (4.11)

Problems can still occur when structures with high acoustic impedance such as bones
cause occlusion in the underlying region. For the detection of occlusions, the intensity
term in equation (4.6) can be used to make a reliable compounding possible

4.2.5 Visualization

Once the global acoustic impedance image z is estimated, we have to find ways to
visualize it for the physician. One possibility would be to directly present the acoustic
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(a) Original US im-
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(d) Impedance esti-
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(e) Smooth imp.
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Figure 4.4: Processing steps for acoustic impedance estimation of the first forearm
image.
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(e) Smooth imp.
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Figure 4.5: Processing steps for acoustic impedance estimation of the second forearm
image.

impedance image, but this may be of limited clinical value, because physicians are
not used to these images and may have problems interpreting them. A better way
may be to create artificial ultrasound views. The simulation of US from the acoustic
impedance image is feasible because it is the acoustic impedance that determines the
structure of the US images. It has the advantage, that US views can be simulated
that were initially not recorded, and from positions that are physically not possible,
e.g . below the skin. We use a recently introduced method [Shams et al., 2008],
designed for simulating ultrasound images from CT data, to simulate US images
from acoustic impedance, see Figure 4.8(h) for an example. A final possibility would
be to convert the acoustic impedance image to a CT image. Therefore, the mapping
from Hounsfield units to acoustic impedance values, as used in simulation [Wein
et al., 2008], would have to be inverted.

4.3 Estimation Results

We present results for the acoustic impedance estimation for three data sets. The
first one is an image of a clay model, see figure 4.3(a), the second one consists of two
scans of a human forearm, see figures 4.4(a) and 4.5(a), and the third one consists of
five simulated US images from a human abdomen, see figure 4.6. The acquisitions
for the first and second data sets were done in a water bath, because we wanted
to avoid tissue deformation due to probe pressure, so that we could focus on the
acoustic impedance estimation. We used a linear array ultrasound transducer for
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(a) US −20◦ (b) US −10◦ (c) US 0◦ (d) US 10◦ (e) US 20◦

Figure 4.6: Five ultrasound images simulated from CT from −20◦ to 20◦.

(a) Original US
image

(b) Filtered im-
age

(c) Phase image (d) Threshold
of phase image

(e) Impedance
estimation

Figure 4.7: Processing steps for acoustic impedance estimation of simulated ultra-
sound at 0◦.

the acquisitions.

The steps for acoustic impedance estimation, as described in section 4.2, are
shown in figure 4.3 for the clay model. The image is filtered with a median filter
with a window size 10 × 10. Then, the phase is calculated on the filtered image,
where we use a wavelength of 250mm for the log-Gabor filter, see figure 4.3(b). We
apply thresholding on the phase image to obtain a mask, showing us the regions with
high reflectivity, see figure 4.3(c). Determining the threshold is not critical and we
performed all our experiments with a value of 0.7. For the calculation of the acoustic
impedance, we set the log-compression parameter α = 700 and the exponent m = 0.1.
The original and smoothed estimations are shown in figures 4.3(d) and 4.3(e).

In figures 4.4 and 4.5, the estimation steps for both forearm images are shown.
We use a wavelength of 180mm for the log-Gabor filter and α = 1000 for the
log-compression.

For the third data set, we simulate US from a CT image shown in figure 4.8(g),
using a recently introduced method [Shams et al., 2008], which produces realistic
ultrasound images from CT data. The images are acquired from different viewing
angles varying from −20◦ to 20◦ to create a realistic spatial compounding scenario.
We show as an example the processing steps for the estimation of the simulated
US images acquired at 0◦ in figure 4.7, with a wavelength of 60mm, α = 83, and
m = 0.1. After analog processing with the four remaining images and mapping them
back to the reference frame at 0◦, see figures 4.8(a) - 4.8(e), we can calculate the
global acoustic impedance image, see figure 4.8(f). It is the average of the separate
estimations and one observes the improved quality. When comparing it to the original
CT image, which can to some extent be seen as ground truth, the good quality of

49



Chapter 4: Towards Acoustic Impedance Estimation

(a) Impedance
estim. −20◦

(b) Impedance
estim. −10◦

(c) Impedance
estim. 0◦

(d) Impedance
estim. 10◦

(e) Impedance
estim. 20◦

(f) Imp. mean (g) CT (h) US from
imp. mean

Figure 4.8: Acoustic impedance estimation in the overlap area from the 5 simulated
US images, transformed in reference coordinate system. Mean of estimations, and in
comparison the original CT. Last, simulation of US image from the global acoustic
impedance image.

the reconstruction becomes apparent. Finally, we use the global impedance image to
simulate an ultrasound image, see figure 4.8(h).

4.4 Conclusion

This work is a first approach to estimate the acoustic impedance from standard
B-mode ultrasound images. The proposed method deduces the change of impedance
from reflections at tissue interfaces. Crucial is the reliable detection of these interfaces,
with the local phase being one possibility. An extension leading to more robust
results may be the segmentation of the entire image domain. With this it could be
possible to impose further constraints, guaranteeing the same impedance estimates
for one tissue. A drawback of the presented analysis is the utilization of B-mode
images. RF data would give more precise measurements, which are necessary for an
accurate calculation. Finally, the applied model for ultrasound reflection is only an
approximation, as already indicated in section 2.2 and further evaluated in section 8.4.
Consequently, we consider the presented analysis as a first step into the direction of
acoustic impedance estimation with the essential building blocks being identified.
Better results could be achieved by improving each of these blocks. Also interesting
would be the integration of additional data from elastography and speckle analysis
to better characterize tissue.
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Part II

REGISTRATION

This part describes the key methodology of this thesis: image registration. We
introduce a new contextual probabilistic framework to model image registration.
It is more versatile than existing frameworks and allows for a unified description
of geometric and iconic registration. Further, it enables to review a large number
of registration techniques and to arrange them in a continuum, limited by pure
intensity- and feature-based registration. Subsequently, we propose a new technique
for multi-modal image registration with structural representations.





Chapter 5

A Contextual Maximum
Likelihood Framework

In this chapter, we review a large number of registration techniques with the help of a
novel probabilistic framework. This framework considers, in contrast to previous ones,
local neighborhood information. We integrate the neighborhood information into the
framework by adding layers of latent random variables, characterizing the descriptive
information of each image. This extension has multiple advantages. It allows for
a unified description of geometric and iconic registration, with the consequential
analysis of similarities. It enables to arrange registration techniques in a continuum,
limited by pure intensity- and feature-based registration. With this wide spectrum of
techniques combined, we can model hybrid registration approaches. The probabilistic
coupling allows further to deduce optimal descriptors and to model the adaptation of
description layers during the process, as it is done for deformable registration and
joint registration/segmentation.

5.1 Introduction

Image registration is a key technology in medical image analysis and computer vision.
It is not only applied for fusing the information from multiple images, but it is also
a prerequisite for many processing tasks. The goal of registration is to establish a
spatial relationship between a pair or a group of images. This is done by optimizing a
similarity criterion between a fixed and a transformed image with respect to a chosen
transformation model. Since registration is the main methodological component
of this thesis, we review related registration approaches in this chapter. This is
done with a new probabilistic model. We will frequently refer to this model in the
following chapters in order to illustrate how our contributions about registration fit
into this model.

A common classification in registration is to distinguish between geometry- and
intensity-based approaches. Geometric approaches establish the spatial relationship
between images based on extracted features, landmarks, surfaces, or point clouds.
Intensity-based or iconic approaches directly operate on the images by comparing
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their pixel intensities or photometric properties. In order to get an overview of
the plethora of registration techniques, several survey articles are available [Brown,
1992,Maintz and Viergever, 1998,Lester and Arridge, 1999,Hill et al., 2001,Hajnal
et al., 2001,Zitova and Flusser, 2003,Pluim et al., 2003]. Next to a listing of existing
techniques, these articles as well present a rough categorization. For intensity-based
registration unifying, probabilistic frameworks [Viola, 1995,Roche et al., 2000,Zöllei,
2006] were proposed. These frameworks are essential in better understanding and
categorizing different types of registration approaches. With a strict deduction from a
mathematical framework, it is possible to detect implicitly incorporated assumptions.
Discovering such assumptions allows for a better adaptation of registration to specific
applications and to justify the adequacy of an approach in a specific scenario.
Concepts from probability theory, such as maximum likelihood or a posteriori
estimation, were in this context shown to be very useful to reason about image
registration. The limitation of currently existing probabilistic frameworks is, however,
that they focus on modeling the similarity measure.

Looking at registration in practice, we observe that processing steps such as
gradient calculation, multi-scale analysis, and noise reduction are applied to the
images, before performing the alignment. Further, the comparison of single pixel
information is prone to noise, leading to the introduction of context and spatial
information in registration. With the presented contextual, probabilistic framework
we are able to model these approaches. Moreover, we can model geometric approaches
through the introduction of layers of latent random variables. Dealing with these
representations allows for differentiating between pure image processing steps, such
as smoothing and gradient calculation, and the estimation of the similarity between
images. This helps to classify registration techniques and identify commonalities.

In section 5.2, we describe existing unifying approaches in detail and provide
further insights and interpretations, together with the corresponding probabilistic
graphical models. In section 5.3, we present the contextual framework, in which
the graphical model allows a descriptive integration of neighborhood information.
In section 5.4, we review several geometric and iconic techniques in the context
of the proposed framework. This permits to establish a continuum of registration
approaches ranging from geometry- to intensity-based approaches. Moreover, we
describe the dynamic adaptation of description layers. In section 5.6, we formulate
the extension of the framework to groupwise registration.

5.2 Probabilistic Modeling of Image Registration

In this section, we provide further insights into existing probabilistic frameworks for
image registration proposed in [Viola and Wells, 1997,Roche et al., 2000,Zöllei et al.,
2003], with a detailed discussion in the corresponding theses [Viola, 1995] and [Zöllei,
2006]. Most of the approaches model the registration as maximum likelihood (ML)
estimation or, more generally, as maximum a posteriori (MAP) estimation. In image
analysis, we usually consider probabilities from a Bayesian perspective, because it
allows a more general notion of probability. In the center is Bayes’ theorem that we
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repeat shortly due to its frequent application in image registration.

5.2.1 Bayes’ Theorem

Bayes’ theorem describes how one conditional probability depends on its inverse.
Given observed data, a common task is to express the likelihood of a set of parameters
describing the underlying model. With Bayes’ theorem it is possible to express this
posterior probability in the form of a likelihood and a prior term

p(Parameter | Data) =
p(Data | Parameter) · p(Parameter)

p(Data)
(5.1)

with the normalization factor

p(Data) =

∫
p(Data | Parameter) · p(Parameter) dParameter (5.2)

which ensures the integral of p(Parameter | Data) to be one. Short and concise,
Bayes’ theorem can be formulated as

Posterior ∝ Likelihood · Prior. (5.3)

Often, one is not just interested in quantifying the probability of the parameters
given the data, or the inverse, but one tries to find the most probable parameters that
make the model fit best to the observed data. Depending on whether the posterior
or the likelihood term is maximized, this results in an MAP or ML estimation,
respectively.

5.2.2 Image Registration Frameworks

In order to describe image registration from a probabilistic point of view, we consider
each image to be a random variable U . The probability of the appearance of a
concrete sample image u is p(U = u), with the simplified notation p(u). Considering
further that an image is defined on a grid Ω, each spatial location U(x) with x ∈ Ω
is a random variable. Taking the set of intensity values I, e.g . I = {0, 1, . . . , 255},
the probability of a location having a certain intensity is p(U(x) = i) with i ∈ I.
The goal of registration is to find the transformation T that expresses the spatial
relationship between two images u and v

u(x) = v(T (x)). (5.4)

This is the underlying model of the generative [Bishop and Lasserre, 2007], joint
probability that we maximize

T̂ = arg max
T∈T

p(u, v, T ), (5.5)

with T being the space of transformations and T̂ the optimal transformation with
respect to the model. This is the full probability model, which is a joint probability
distribution for all observable and unobservable quantities.
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Figure 5.1: Probabilistic graphical models of the listed probabilities.

We apply the product rule and Bayes’ theorem to the joint probability density
function (PDF) in equation (5.5) to relate to the commonly utilized conditional
probabilities

p(u, v, T ) = p(T | u, v) · p(u, v) (5.6)

=
p(u, v | T ) · p(T )

p(u, v)
· p(u, v) (5.7)

= p(v | u, T ) · p(u | T ) · p(T ). (5.8)

Maximizing the term p(T | u, v) corresponds to an MAP estimation used e.g . in [Zöllei
et al., 2007] and [Toews et al., 2005]. Applying Bayes’ theorem, one identifies
the likelihood term p(u, v | T ) and the prior on the transformation p(T ). [Viola,
1995, Roche et al., 2000] further apply the product rule to the likelihood term to
get p(v | u, T ). In the literature, the probabilities p(u, v | T ) and p(v | u, T ) are
not distinguished and plainly considered as likelihood terms in an ML estimation.
In figure 5.1, we show the corresponding probabilistic graphical models [Bishop,
2008,Bishop, 2006] for the aforementioned probabilities, where filled nodes correspond
to observed random variables and empty ones to latent variables. Graphical models
have the advantage that dependencies between random variable are easily observable,
like in this case between u and v.

5.2.3 Interpretation of Probability Maximization

The relationship between the maximization of the probabilities in equations (5.6 -
5.8) and the correct registration of images is not trivial, but may become more clear
thanks to further interpretation. We start with the term p(v | u, T ), which is the
most intuitive one, to demonstrate that the maximum likelihood estimation makes
sense. Consider the probability density function p(V = v), defined over the set of
images on the grid Ω. Without further knowledge, it is meaningful to assume p to be
a uniform distribution, because each observation v is equally likely. Adding, however,
knowledge in the form of the observation of the image u, whose relation to v is
known from our model in equation (5.4), the conditional distribution p(V = v | u)
has peaks for images v being equal to u. When further considering that the images
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Figure 5.2: Illustration of the joint density p(u, v|T ) conditioned on the transforma-
tion.

are not correctly aligned, the correct transformation T leads to the maximization of
the likelihood p(V = v | u, T ) of the appearance of image v.

For the interpretation of p(u, v | T ) consider the joint density over the images
p(U = u, V = v). Initially it may seem strange that the joint density is maximized
in case of correctly aligned images. The situation becomes clearer when considering
again that the joint density is linked to the model in equation (5.4). Assuming
the transformation to be the identity, T = Id, the only images that fulfill the
model equation are identical images, so u = v. This is illustrated in figure 5.2(a),
where the histogram of the joint distribution consists only of the bisecting line.
Considering actual transformations, such as translations, the histogram changes
accordingly. Interesting in this regard is that the number of non-zero entries of the
joint probability increases since the comparison of the images can only be done in
the overlapping region Ωuv = Ωu ∩ Ωv, which is the intersection of both image grids.
The image region which is not part of the overlap Ωu −Ωuv can be arbitrary. This is
schematically illustrated in figure 5.2(b) with an increased blue region. Also note
that all entries in the joint histogram have the same value, since the images are either
equal or not. The registration process can then be considered as finding for a given
image pair (u, v) a transformation so that the images are equal in the overlapping
area or more descriptive, that the point (u, v) in the diagram is part of the blue
region.

For the term p(T | u, v) consider the marginal probability of the transformation
p(T ), which is once again uniformly distributed without prior knowledge. Condi-
tioning the distribution on the known images p(T | u, v), where we know from our
model in equation (5.4) that T relates them, the maximum should be achieved for
the correct alignment. To illustrate this, we translate the chessboard pattern shown
in figure 5.3(a) along one of the axes. The distribution p(T | u, v) is shown in
figure 5.3(b), where we have peaks at the positions of exact match. Note that the
likelihood is identical for each of the peaks, even if the overlapping region is smaller.

Next, we look at the joint distribution over all random variables in the problem,
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Figure 5.3: Illustration of p(T | u, v) for the translation of the chessboard image
along one of its axes. For each of the diagrams we consider a different underlying
model, expressed by the probability.

p(u, v, T ). An illustration is, unfortunately, more challenging because we have to
consider a three-dimensional probability. However, we can relate it back to the
two-dimensional distribution p(u, v | T ). The cutting plane of p(u, v, T ) for a specific
T is exactly p(u, v | T ) weighted by p(T ). So stacking all joint distributions p(u, v | T )
with the appropriate weighting leads to p(u, v, T ), see figure 5.4. Analogously is the
relation to p(T | u, v), which corresponds to a line in 3D space for a specific pair of
images (u, v), also illustrated in figure 5.4.

The last interpretation we want to present is of a more theoretical nature and
is provided in [Zöllei, 2006,Zöllei et al., 2003]. An information-theoretic framework
is introduced and its relationship to the maximum likelihood approach is shown.
It bases upon the utilization of two information-theoretic quantities, the Kullback-
Leibler (KL) divergence D and the Shannon entropy H, between a source pS and
model pM distribution

T̂ = arg min
T∈T

D(pS||pM) +H(pS). (5.9)

In [Zöllei et al., 2003], it is shown that the ML approach is equivalent to the following
minimization

T̂ ≈ arg min
T∈T

D(p(u, v, T ∗)||p(u, v, T )) (5.10)

with p(u, v, T ∗) the source distribution, the ground truth transformation T ∗, and
p(u, v, T ) the distribution of the current alignment. So, in order to show that the
maximization of the likelihood is meaningful, we can equivalently show that the
minimization in equation (5.10) is meaningful. This is straightforward, because the
Kullback-Leibler divergence is the lower, the more similar the distributions are. And
the distributions are the more similar, the better the images are aligned, so the better
T approximates T ∗.

The information-theoretic framework is interesting not just as another interpre-
tation of the ML framework; it also presents a different probabilistic view on the
problem of image registration. More precisely, it enables us to analyze the work
of [Leventon et al., 1998] and [Chung et al., 2002], who learn the joint intensity
distribution from previous registrations and use it to evaluate the current alignment.
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Figure 5.4: Illustration of the joint probability p(u, v, T ). The cutting plane in the
left figure corresponds to p(u, v | T ), for a specific T . The line on the right figure
corresponds to p(T | u, v) for a specific pair (u, v) (since the visualization of an
infinitely thin line is challenging, we represent it as a cuboid).

Further, the derivation of mutual information (MI) [Wells et al., 1996,Collignon et al.,
1995] becomes easier than the rather challenging deduction from an ML approach
with an unspecified channel in [Roche et al., 2000].

We shortly present the integration of MI since it contains a nice explanation of
the underlying assumptions [Zöllei et al., 2003]. Maximizing mutual information is
equivalent to the following maximization

T̂ ≈ arg max
T

D(p(u, v, T ∗)||p(u)p(v, T )). (5.11)

Interesting is the discrepancy in comparison to equation (5.9), where the KL
divergence is to be minimized. The maximization of mutual information cor-
responds to moving away from the situation of u and v being independent, so
p(u, v, T ) = p(u)p(v, T ). This is justified because we know that the independence of
the images is false, and therefore, a correct registration impedes such an alignment.
In contrast, the minimization in equation (5.9) tries to equal the current and ground
truth distributions. Hence, instead of moving away from the wrong alignment, it
forces the registration to approximate the alignment that we know is right.

5.2.4 Integration of Noise and Intensity Mapping

The exact equality of the images is practically not possible due to noise, distortion,
and interpolation artifacts. This is taken into account by introducing an additive
and stationary Gaußian white noise ε to the imaging model [Viola, 1995,Roche et al.,
2000]

u(x) = v(T (x)) + ε. (5.12)

Considering once again the joint density p(u, v | T ) in figure 5.2(c), there is no longer
just the bisecting line for identical images, but a gradation starting from this line.
This gives similar images still a noticeable likelihood. The optimal similarity criterion
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images consists of a random variable for each location x ∈ Ω, in this case 5. Right:
Assumption of i.i.d. coordinate samples,

∏
p(v(x) | u(x), T ), illustrated as plate.

considering this imaging model is sum of squared differences (SSD) [Viola, 1995]. In
figure 5.3(c), we show the similarity plot for the chess pattern using SSD, which is
corresponding to the histogram of p(T | u, v) with respect to this new imaging model.
The chosen type of noise enables the adaptation to specific applications, which is
further analyzed in chapter 8 for ultrasound images.

A further extension of the model presents the consideration of an intensity
mapping f , allowing for a functional relationship [Viola, 1995,Roche et al., 2000]
between pixel intensities

u(x) = f(v(T (x))) + ε. (5.13)

Standard similarity measures can then be classified according to the type of similarity
function they are able to model: SSD (identity), correlation coefficient (affine), and
correlation ratio (functional) [Roche et al., 1998].

Similarity measures like mutual information or joint entropy do not fit into this
category, because they assume a statistical, instead of a functional, relationship.
The ability of MI to deal with more complex similarity relationships is illustrated in
figure 5.3(d). MI does not only show maxima, where white squares are correlating
with white squares, but also where white ones correlates with black ones. For certain
situations this could be desired. However, also notice that the increased modeling
capability of mutual information may create ambiguous situations, introducing further
local minima in the cost function [Roche et al., 2000]. The similarity measures have
therefore to be chosen dependent on the concrete application.

5.2.5 I.I.D. Coordinate Samples

A general assumption in the discussed unifying approaches [Viola, 1995,Roche et al.,
2000,Zöllei et al., 2003] are independent and identically distributed (i.i.d.) coordinate
samples. With this assumption, equation (5.6) is simplified to

p(u, v, T ) =
∏
x∈Ω

p(u(x), v(x), T ). (5.14)
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This is illustrated in figure 5.5 for the probability p(v | u, T ). Since each of the
spatial locations in the images corresponds to a random variable, we use the plate
visualization, as proposed by [Bishop, 2006], because it permits a more compact
representation of the graph.

Relating this back to the imaging model in equation (5.13), we have to assume
that next to the independence of the coordinate samples, also the mapping function
f and the noise ε are context-free. The noise is therefore restricted to a spatial extent
of one pixel and artifacts like blurring, that affect a local neighborhood, cannot be
considered. Finding an alternative to the limiting i.i.d. assumption is the subject of
the following section.

5.3 Contextual Probabilistic Registration Frame-

work

The introduction of a new probabilistic framework for registration is motivated by
the increasing importance of the consideration of context information for image
registration and by the enhanced descriptiveness. The intensity value of a single
pixel shows limited significance and is corrupted by noise. A local neighborhood
provides more consistent information. In [Shechtman and Irani, 2007], for instance,
impressive results are obtained by correctly matching objects in different images,
where only their shape is similar, but the appearance is very different. They achieve
it by extracting the local self-similarity around the pixels. In [Belongie et al., 2002],
the shape context is introduced, which describes the distribution of the rest of the
shape with respect to a given point on the shape. Recently, the contextual flow
was proposed [Wu and Fan, 2009], which replaces the core assumption of intensity
constancy of optical flow with a constancy of context. These are just a few examples
to show the increasing importance of context in image registration.

Especially in the medical imaging literature, the consideration of spatial informa-
tion motivates the usage of neighborhood systems. The standard example is that
the entropy does not change when shuffling pixels within an image. For image regis-
tration, interpolation and multi-resolution approaches lead to an implicit integration
of spatial information. However, an explicit consideration of spatial information may
improve the registration. In [Rueckert et al., 2000], neighboring intensities are added
to the calculation of mutual information by estimating higher-order densities. This
approach is extended to larger neighborhoods and addresses the high dimensionality
of the problem by utilizing uniformly distributed random lines [Bardera et al., 2006].
In [Zheng and Zhang, 2006, Zheng, 2008], a Markov random field is proposed to
integrate contextual information. A 3× 3 neighborhood is used around each pixel
in [Russakoff et al., 2004]. The problem of the high dimensionality is tackled by
introducing simplifying assumptions which reduce the estimation of a D-dimensional
distribution to D independent 1-dimensional distributions. [Legg et al., 2009] ex-
tend this by not only considering intensity values but also multi-scale derivatives.
In [Loeckx et al., 2010], conditional mutual information is proposed, where the joint
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modal illustrated for multiple descriptors.

distribution is augmented by a spatial dimension, expressing the location of the
joint intensity pair. In [Zhuang et al., 2009], the densities for mutual information
based similarity measures are estimated on local volumes. This large number of
approaches building upon the introduction of context shows the importance of a
unified theoretical model that integrates context information. The i.i.d. assumption
of current frameworks prohibits, however, their consideration.

5.3.1 Contextual Probabilistic Graphical Model

The key component of the novel probabilistic framework is to replace the assumption
of independence of coordinate samples in equation (5.14), by the Markov property,
so making each pixel position dependent on a local pixel neighborhood. One could
think of a variety of possibilities for modeling the local neighborhood in a maximum
likelihood framework. We decided to introduce two additional layers d and e, because
it facilitates the representation of the neighborhood dependency. Each of the layers,
we refer to as description layers, consists of latent random variables di and ei,
respectively, with 1 ≤ i ≤ N and N = |Ω|. The layers d and e are lying on the
same grid as the images do, so we have a dense set of descriptors. Each descriptor
di is dependent on a local neighborhood Ni of the image u(Ni), analogously, ei is
dependent on v(N ′i ). In our model, we let each descriptor di be dependent on a local
neighborhood Ni of the image u(Ni), analogously, ei is dependent on v(N ′i ). The
relationship between descriptors di and ei is one-to-one. The creation of the layer e
is dependent on the transformation T .

As mentioned previously, we utilize probabilistic graphical models [Bishop, 2006] for
establishing the relationship of the random variables because they are advantageous
in representing the structure and dependency for a multitude of variables. Further,
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we choose a directed graphical model, where nodes (vertices) represent random
variables and directed links (edges) express probabilistic dependency between them.
The graphical model for our framework is shown in figure 5.6(a) as plate with an
exemplary 4- and 3-neighborhood, for u and v, respectively. Another illustration,
not as plate, is shown in figure 5.6(b) without the consideration of T due to clarity
of presentation. The presented graphical model factorizes to

p(u, v, d, e, T ) = p(T ) ·
N∏
i=1

p(u(xi)) · p(v(T (xi))) · p(di|u(Ni)) · p(ei|di, v(N ′i ), T ).

(5.15)

We deduce the term p(ei|di, v(N ′i ), T ) further by applying the product rule and Bayes’
theorem. Therefore, we assume the conditional independence of di and v(N ′i ) given ei.
Moreover, we incorporate the independence of di and v(N ′i )), which is a consequence
of the model. This leads to

p(ei | di, v(N ′i ), T ) =
p(di | ei) · p(v(N ′i ), T | ei) · p(ei)

p(di) · p(v(N ′i ), T )
(5.16)

=
p(ei | di) · p(ei | v(N ′i ), T )

p(ei)
. (5.17)

Setting this in the right-hand side of equation (5.15) results in

p(T ) ·
N∏
i=1

p(u(xi)) · p(v(T (xi))) · p(di | u(Ni)) ·
p(ei | di) · p(ei | v(N ′i ), T )

p(ei)
. (5.18)

Therein, the marginal terms p(T ), p(u(xi)), p(v(T (xi))), and p(ei)
−1 represent the

probabilities for the transformation, the images, and the description layer. The
reason that only the descriptor layer e appears in the formulation is rooted in the
asymmetric formulation of the registration, by only transforming the image v. This
can be changed with a symmetric formulation, by transforming all images, which is
shown in section 5.6 for the general case of groupwise registration.

The marginal terms are used to incorporate prior information into the registration,
with the purpose of improving the robustness and capture range [Zöllei, 2006]. This
will be discussed for deformable registration in section 5.5.1. In most cases, we do
not have any a priori knowledge about the probability distribution of these terms, so
that we presume a uniform distribution, leading to

p(u, v, d, e, T ) =
N∏
i=1

p(ei | di)︸ ︷︷ ︸
similarity

· p(di | u(Ni)) · p(ei | v(N ′i ), T )︸ ︷︷ ︸
coupling

. (5.19)

It is mainly the interplay of these three probabilities that determines the function-
ality of our model. The similarity term p(ei | di) is the standard likelihood function
as used in previous unifying frameworks [Roche et al., 2000,Viola, 1995,Zöllei et al.,
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2003]. However, instead of comparing the images u and v, it compares the description
layers d and e. If we could arbitrarily modify the description layers and just optimize
p(e | d), we would simply change the layers to be totally exact. The coupling terms
p(di | u(Ni)) and p(ei | v(N ′i ), T ) prevent this simplistic solution by expressing how
well the description layers fit the original images. In the optimization, they are
counterbalancing the influence of the similarity term like a regularizer.

The joint distribution, p(u, v, e, d, T ), we finally end up with, is different from
the one used in maximum likelihood frameworks, p(u, v, T ). This can, however, be
obtained by marginalizing with respect to the descriptors

p(u, v, T ) =
∑
d,e

p(u, v, d, e, T ). (5.20)

Practically, it is not possible to sum over all possible descriptors. Thus, the alignment
is only optimal with respect to a specific descriptor or a small set of descriptors,
which is discussed further in section 5.4.3 on hybrid approaches.

5.3.2 Similarity Term

The probability p(e | d) models the calculation of the similarity on the description
layers. This is exactly the part of registration where the reviewed probabilistic
approaches in section 5.2 focus on. An analysis of certain similarity measures with
respect to the underlying intensity mapping is provided in [Roche et al., 2000]. Com-
monly used measures are SSD, sum of absolute differences, correlation coefficient, and
correlation ratio. Further, entropy-based metrics are mutual information [Collignon
et al., 1995,Wells et al., 1996], joint entropy [Studholme et al., 1999], and the entropy
of the difference image (EDI) [Penney et al., 1998]. Recently, the residual complex-
ity (RD) [Myronenko and Song, 2009b] was proposed, which is similar to EDI. First,
the difference image is calculated. Then, the complexity or information content of
this image is quantified. For correctly aligned mono-modal images the difference
should be around 0. A mis-alignment leads to large differences and therefore a large
spread around 0. In EDI, the entropy is used to quantify the spread. For residual
complexity, the compressibility is used, where the difference image of correctly aligned
images contains less information and can therefore be better compressed. Also in
this line of argumentation fits the minimum descriptor length criterion [Twining
et al., 2004], however, with a focus on groupwise registration, further described in
section 5.6. Finally, the mapping complexity [Myronenko and Song, 2009a] presents
an extension of the residual complexity, applicable for multi-modal registration

5.3.3 Transformation

The final objective of registration is to recover the transformation, indicating the
spatial relationship of the images. In this chapter, we do not focus on the details of
the transformations; however, we have to differentiate between two categories. First,
global transformations including rigid, affine, and projective transformation models,
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Figure 5.7: Continuum between feature- and intensity-based registration, augmented
with exemplary approaches. Arranged by the uniqueness of descriptors.

with the purpose of arranging the images in a common reference frame. And second,
local transformations, which deform the images and are meant to represent changes in
the images. An overview of non-rigid transformations is presented in [Holden, 2008].
Since rigid transformations apply the same algorithm to each pixel position, the
coupling term p(ei | v(N ′i ), T ) is constant, and can consequently be neglected. For
affine, projective, and local transformations, however, this term becomes interesting,
because it constrains together with the prior on the transformation p(T ) the changes
in the images. These terms are generally referred to as regularization terms. The
modeling of deformable registration within this framework is further detailed in
section 5.5.1.

5.4 A Continuum of Registration Approaches

In this section, we discuss several approaches for geometry- and intensity-based
registration and show how they fit into the proposed framework. These methods
form, in fact, a continuum of registration approaches, going all the way from pure
geometric to pure iconic registration. On the one end, we identify landmark-based
registration, where users manually pick salient points in the image. The description
is optimal because we exactly know about the correspondence of points. On the
other end, we identify intensity-based registration, with single intensity values as
minimalistic descriptors. The number of approaches in between can be arranged by
the uniqueness of their descriptors, as illustrates figure 5.7.

On the right-hand side of the spectrum, we consider SIFT and GLOH with
comparatively high uniqueness of the descriptors. SIFT/GLOH correspondence
hypotheses are created without location information, therefore descriptors must
uniquely characterize the position they are extracted from. For DAISY [Tola et al.,
2008], the dense arrangement of descriptors relaxes this requirement, equally for
self-similarity [Shechtman and Irani, 2007]. Entropy images (cf. chapter 6), extract
structural information of images for multi-modal registration. These images resemble
gradient images that are commonly applied for registration. The images in scale-space
are close to the original ones, because locally weighted averages are created with an
emphasis on the center location.

In figure 5.8, we show a diagram that illustrates the new registration process,
which is in comparison to the previous one augmented with description layers. The
layers are the output of D(u,Φ) and D(v,Φ), with Φ being the parameters that
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Figure 5.8: Diagram illustrating the registration process with description layers (gray
shaded).

are to be calculated. As an example, the parameters for a joint registration and
restoration could be Φ = (T, µ, σ2) [Woods et al., 2006], with the transformation T
and the Gaußian noise parameters µ, σ2. The iterative process starts with the initial
parameters Φinitial and the output is Φfinal.

5.4.1 Intensity-Based Registration

Existing probabilistic frameworks for intensity-based registration focus on similarity
measures and do not model common processing steps on the images. We demonstrate
in the following how they can be integrated in the new framework. The proposed
framework is a true extension of previous maximum likelihood frameworks, which
can be obtained by setting Ni = (xi), di = u(xi), N ′i = (T (xi)), and ei = v(T (xi)).

5.4.1.1 Image Filtering

Image filtering is a common pre-processing step for image registration. One ap-
plication of filtering is image enhancement through operations such as sharpening,
noise reduction, and contrast adjustment. Another application is the creation of a
scale-space [Koenderink, 1984]. Although these processing steps are very popular, it
has not yet been described under which conditions they are optimal choices.

With the proposed framework, it is possible to deduce optimal filters under
the incorporation of certain assumptions, similar to the derivation of similarity
measures. For this, we focus on the maximization of the coupling term p(d | u) with
all considerations analogously for p(e | v, T ). Incorporating the assumption of white
Gaußian noise and conditional independence we obtain

max
d
p(d | u) = max

d

N∏
i=1

∏
j∈Ni

p(di | uj) = max
d

N∏
i=1

∏
j∈Ni

exp
(
−ωj(di − uj)2

)
. (5.21)
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Following the maximum likelihood estimation by calculating the log-likelihood func-
tion [Bishop, 2006] leads to the optimal solution for d. This estimation was extended
to the usage of various norms, considering for instance least absolute values, instead
of least squares. Further extensions resulted in M-estimators, and later, generalized
M-estimators [Hoaglin et al., 1983]. We consider in the following the minimization
problem

min
d

N∑
i=1

||Λ · (di1− u(Ni))|| and Λ = diag(ω1, . . . , ω|Ni|) (5.22)

with a vector norm ||.||, weights Λ, and the one vector 1 = [1, 1, . . .]>. The sum in
equation (5.22) is minimal if each summand is minimal, so that we can optimize for
each descriptor di separately

min
di
||Λ · (di1− u(Ni))||. (5.23)

Calculating the derivative with respect to di and setting it to zero leads to optimal
descriptors. For different norms and Λ = I, this results in the following descriptors

• ||.||22: di is the mean of u(Ni)

• ||.||1: di is the median of u(Ni)

• ||.||∞: di is [max(u(Ni))−min(u(Ni))]/2.

As an example for least squares and arbitrary weights, we obtain

di =
1

Π

∑
j∈Ni

ωjuj with Π =
∑
j∈Ni

ωj. (5.24)

Modifying the weights in this case allows for modeling arbitrary linear filters. For
the creation of scale-space, the weights follow the entries of a Gaußian filter mask,
with the typical decay from the center.

5.4.1.2 Gradient-Based Similarity Measures

Gradient-based similarity measures are, for instance, of interest in 2D-3D registra-
tion [Penney et al., 1998]. Example metrics are gradient correlation and gradient
difference. The gradients are calculated with the Sobel operator represented as 3× 3
filter mask. Subsequently, the correlation coefficient or difference is evaluated between
the gradients of the images. For modeling the Sobel operator in the maximum likeli-
hood framework, as described in section 5.4.1.1, we have to adapt equation (5.24),
because the weights for differential operators sum up to zero. Consequently, we do
not consider the normalization factor Π and set the weights ωj according to the
Sobel mask. The description layers of our framework represent the gradient images,
which are successively matched. In a more recent article, [Shams et al., 2007] propose
gradient intensity-based registration, where mutual information between the gradient
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images is calculated. The description layers for both registration approaches [Penney
et al., 1998,Shams et al., 2007] are the same, it is only the metric that is changing.
This shows the increased modularity provided by our framework due to the explicit
consideration of description layers.

5.4.1.3 Local Similarity Measures

The term local similarity measure is ambiguous. It can on the one hand refer to
similarity measures that calculate a global score based on locally adapted properties,
such as local normalized cross correlation (LNCC) [Larose, 2001], and on the other
hand, to the local evaluation of the similarity measure, as it is necessary for block
matching and deformable registration [Hermosillo et al., 2002,Glocker et al., 2008].
For LNCC, the NCC is calculated within windows of 7 × 7 or 11 × 11 pixels for
all spatial locations. In our framework, the descriptors di and ei would be vectors
with all the normalized intensity values of the local neighborhoods. The objective
function is then the accumulated inner product of the vectors

∑N
i=1 < di, ei >.

5.4.1.4 Interpolation

For the comparison of images, the transformed image has to be interpolated on the grid
of the source image. The simplest technique is to use a nearest neighbor interpolation,
where the neighborhood system consists only on the nearest neighbor. The frequently
applied bi-linear interpolation in 2D and tri-linear interpolation in 3D need a 4-
and 8-neighborhood, respectively. More complex methods like cubic interpolation
need accordingly a larger neighborhood to determine the interpolator [Gonzalez and
Woods, 2002]. Except the nearest neighbor strategy, a drawback of these methods is
that they may lead to the creation of artificial intensity values. The partial volume
(PV) distribution interpolation addresses this issue [Maes et al., 1997, Chen and
Varshney, 2003]. However, grid-aligning transformations cause problems for PV
interpolation [Pluim et al., 2000b] because no interpolation results in higher joint
entropy. A recent discussion of interpolation artifacts together with possible solutions
is presented in [Rohde et al., 2009]. An approach that is not part of this study is
the nonparametric (NP) windows technique [Kadir and Brady, 2005,Dowson et al.,
2008], which is equivalent to sampling the images at an infinite resolution, leading to
more robust estimates. We conclude that whatever interpolation method is applied,
it bases upon a local context.

5.4.1.5 Multi-Modal Registration

Intensity-based registration of images from different modalities can be solved in
numerous ways. Possibilities are to apply similarity measures that can deal with
complex intensity relationships, to simulate one modality from the other, or to
transfer both images to a common representation. For the last two approaches the
multi-modal alignment problem is reduced to a mono-modal one. Popular examples
for the simulation are the creation of digitally reconstructed radiographs (DRRs)
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u vd0 e0
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i

Figure 5.9: Extension of the graph of figure 5.6(b). Keypoint locations in the original
images are marked red, while non-keypoint locations are marked light red. Only
those descriptor nodes are marked active (red) that correspond to keypoint locations.
Further, only those pairs of nodes are considered for the similarity calculation, where
both are active.

for the registration of X-ray fluoroscopy images to CT [Penney et al., 1998] and the
simulation of ultrasound images from CT for US-CT registration [Wein et al., 2008].
For the first example, the description layers consist of the X-ray image and DRR, and
for the second example, they consist of the original and simulated ultrasound image.
For the simulation, each pixel is dependent on the locations the beam penetrated
before to account for attenuation. These locations constitute the local neighborhood
of the descriptors. For the last approach to multi-modal registration by transferring
both images to a common representation, we introduce a novel method in chapter 6
by calculating structural representations. The structural representations form the
description layers, which are registered with simple similarity measures.

5.4.2 Geometry-Based Registration

The integration of geometric registration in our framework corresponds to embedding
the feature points on a dense grid. This is similar to the dense set of descriptors
used for matching in stereo reconstruction [Tola et al., 2008]. Once the descriptors
are calculated for each image, the next step is the comparison between the images.
Looking at the approaches for geometry-based registration, we observe that typically
SSD is evaluated between the descriptors, which is derived from the similarity term
p(e|d). The difference to intensity-based registration is, however, the focus on certain
keypoint locations. To account for this change, we extend the description layers
with keypoint information, d′i = [di, ki], with ki = 1 for a keypoint and ki = 0 for no
keypoint. Analogously for e′i = [ei, li]. Assuming the independence of descriptor and
keypoint, we obtain for the coupling terms

p(di, ki | u(Ni)) = p(di | u(Ni)) · p(ki | u(Ni)). (5.25)

The term p(ki = 1 | u(Ni)) expresses the likelihood that location xi is a keypoint
location in image u. The location xi is a keypoint if it is a keypoint in both images,
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p(ki = 1 | u(Ni)) · p(li = 1 | v(N ′i )). Commonly in geometry-based registration, hard
assignments are made, p(ki = 1 | u(Ni)) ∈ {0, 1}, meaning that the similarity of
the descriptors is only considered if both locations are keypoints, as illustrated in
figure 5.9. Soft assignments may, however, be more practical in noisy environments,
leading to p(ki = 1 | u(Ni)) ∈ [0, 1]. Considering these probabilities on the entire
image domain would lead to images that resemble distance maps, with the appearance
being dependent on the calculation of ki and the selected distribution.

Next to the coupling terms, we obtain for the similarity term

p(ei, li | di, ki) = p(ei | di) · p(li | ki) ·
p(di) · p(ki) · p(ki | ei) · p(di | li)

p(di, ki)2
(5.26)

= p(ei | di) · p(li | ki), (5.27)

by applying Bayes’ theorem and incorporating independence assumptions. These
are the independence between the descriptor di and keypoint ki, as well as, the
independences between keypoints and descriptors of different images (p(ki | ei) = p(ki)
and p(di | li) = p(di)). The probability p(li | ki) models if two locations have the
same keypoint value. This is comparable to the similarity term p(ei | di), but instead
of expressing the similarity between descriptors, it expresses the similarity between
keypoints. The extension of the joint probability (cf. equation (5.19)) with keypoint
information is

p(u, v, d′, e′, T ) =
N∏
i=1

p(ei, li|di, ki) · p(di, ki = 1|u(Ni)) · p(ei, li = 1|v(N ′i )) (5.28)

=
N∏
i=1

p(ei | di) · p(li | ki)︸ ︷︷ ︸
similarity

· p(di | u(Ni)) · p(ei | v(N ′i ))︸ ︷︷ ︸
coupling

· (5.29)

p(ki = 1 | u(Ni)) · p(li = 1 | v(N ′i ))︸ ︷︷ ︸
keypoint

, (5.30)

by incorporating the results of equations (5.25) and (5.27). Geometric registration
can be classified into aligning landmarks, point clouds, surfaces, and features. We
describe in the following the probabilities that are involved in the different types of
registration, summarized in table 5.1.

5.4.2.1 Landmarks

The term landmark-based registration is ambiguously used in the literature, where
we consider it in the sense that experts identify the location of the keyoint and
also provide a distinctive description. An example is a physician who identifies
anatomical landmarks such as the nose, eyes, or ears on the scans. Most important
is the probability p(ei | di), which evaluates the similarity that locations with the
same labels overlap. The other terms can be used to model the confidence in the
assignment of the label and the keypoint location. p(di | u(Ni)) and p(ei | v(N ′i ))
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Table 5.1: Probability terms for various types of registration approaches. Simplified
notation is used.

Registration Type Probability Terms

Landmark p(e|d) · p(d|u) · p(e|v) · p(k = 1|u) · p(l = 1|v)
Point p(l|k) · p(k = 1|u) · p(l = 1|v)
Feature p(e|d) · p(d|u) · p(e|v) · p(k = 1|u) · p(l = 1|v)

Intensity p(e|d) · p(d|u) · p(e|v)

expresses the certitude in labeling, e.g . if the point clicked on is really the tip of
the nose. With p(ki = 1 | u(Ni)) and p(li = 1 | v(N ′i )) it is possible to model the
confidence in the geometric location. The physician knows, for instance, that this is
the nose but he is not confident if the tip is several pixels to the left or right.

5.4.2.2 Point Clouds and Surfaces

Point clouds or surfaces are mainly extracted from the images through segmentation.
Alternative sources are 3D scanners and fiducial markers [Hajnal et al., 2001]. A com-
mon drawback of these approaches is the dependency on a meaningful segmentation
and the propagation of the segmentation errors to the registration. In contrast to all
other approaches, we do not have descriptive information in point-based registration.
We therefore use p(li | ki), instead of p(ei | di), to calculate how well points are
matching. We do not consider the coupling terms p(di | u(Ni)) and p(ei | v(N ′i )),
because we do not have descriptors. Finally, the terms p(ki = 1 | u(Ni)) and
p(li = 1 | v(N ′i )) quantify the reliability of points being detected and therefore weight
their influence on the overall optimization.

5.4.2.3 Features

While in landmark-based registration, the localization and description of the keypoints
takes place manually, and for point clouds, the localization is automatic but no
description is provided, feature-based registration performs the extraction as well
as the description automatically. The first task, the keypoint localization, identifies
locations that can repeatedly be assigned under different views of the same object.
Popular methods include the difference-of-Gaußian (DoG) [Lowe, 2004], Harris
detector, Harris-affine, and Hessian-affine detector [Mikolajczyk and Schmid, 2004].
The output of these detectors, after normalization, is set to the variables ki and
li. The second step, the feature description, has to represent the characteristics
of the point within its local neighborhood. Frequently used image descriptors are
e.g . Scale-Invariant Feature Transform (SIFT) [Lowe, 2004], Speeded-Up Robust
Features (SURF) [Bay et al., 2008], and Gradient Location and Orientation Histogram
(GLOH) [Mikolajczyk and Schmid, 2005]. The descriptors are assigned to the
corresponding locations on the description layers. The last step is the feature
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matching, resulting in the image transformation. For this, descriptors of both images
at the corresponding locations are compared.

In our framework, p(ki = 1 | u(Ni)) and p(li = 1 | v(N ′i )) emphasize the influence
of keypoint locations or restrict it to them. The terms p(di | u(Ni)) and p(ei | v(N ′i ))
are applied for the deduction and calculation of the descriptors from the images.
They ensure that the descriptors well characterize the local image context. p(ei | di)
expresses the similarity of descriptors.

Looking at feature-based approaches, we clearly see the local nature of these
techniques. Choosing SIFT as an example, the keypoint localization with DoG
searches the local maximum in scale-space. The DoG can be modeled by setting
the appropriate weights in the linear filtering in equation (5.24). The maximum
search only considers the direct neighbors. The SIFT descriptor uses 4× 4 blocks
around the keypoint, where each block consists of 4× 4 pixels of the corresponding
scale-space level. In total, a 16× 16 neighborhood of each keypoint is considered for
building the descriptor, demonstrating the restriction to a local context. We are able
to model them due to the neighborhood extension and integration of latent layers.

5.4.3 Hybrid Methods

Hybrid registration approaches combine multiple alignment techniques to achieve
an improved registration result. So far, it has not been possible to describe hybrid
approaches that combine techniques from geometric and iconic registration in a
common framework, because there was no framework that enabled the modeling of
both registration approaches. As seen in sections 5.4.1 and 5.4.2, the proposed prob-
abilistic framework enables the description of a multitude of registration techniques
by choosing different descriptors. A possible differentiation of hybrid approaches
is to distinguish between the consecutive application of registration [Johnson and
Christensen, 2002,Wang and Feng, 2004,Rohr et al., 2004,Teng et al., 2006,Azar
et al., 2006,Georgel et al., 2008], or the coupling to a joint energy formulation [Pluim
et al., 2000a,Hartkens et al., 2002,Kybic and Unser, 2003,Feldmann et al., 2006,Wörz
and Rohr, 2008,Biesdorf et al., 2009,Wacker and Deinzer, 2009,Brox et al., 2009]. For
the joint formulation, we consider the sets of descriptors D and E , which can contain
descriptors from geometric registration, such as SIFT, and from iconic registration,
such as entropy and gradient information. The final marginalization is similar to
equation (5.20)

p(u, v, T ) ≈
∑

d∈D,e∈E

p(u, v, d, e, T ). (5.31)

Since we marginalize only over finite sets and not all possible descriptors, we only
achieve an approximation. In chapter 8, we present a hybrid similarity measure for
ultrasound registration.

For the consecutive approaches, we face the issue of modeling the temporal evolu-
tion of the registration, in order to decide when to change the method. This problem,
about the missing information of the progress of the registration, is also encountered
in the hyperplane approximation of the Jacobian matrix for optimization [Jurie and
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Dhome, 2002]. In [Gay-bellile et al., 2007] an approach is proposed for learning which
matrix to choose at which time of the registration based on the current intensity
error. These approaches could be extended to not just adapting the optimization
during the registration, but also the similarity measure and descriptors.

5.4.4 Prior Knowledge

Prior knowledge is important for image registration because it can help to make the
registration more robust and enlarge the capture range [Zöllei et al., 2007]. With the
increasing availability of image databases more data becomes available for analysis
and therefore more powerful priors can be defined. Prior knowledge can be integrated
in several parts of the registration process. Basically, even the expertise of the user
for selecting a specific similarity measure or optimization procedure can be considered
as prior knowledge. In the literature, prior knowledge is mainly used on the joint
distribution model and the transformation.

Prior knowledge on the transformation is modeled with the term p(T ) in equa-
tion (5.18). A common prior is to force the transformation to be smooth. For a prior
on the joint distribution, [Leventon et al., 1998] evaluate the current samples under
a previously constructed model distribution. In [Chung et al., 2002], the prior model
distribution is compared to the current model distribution with the Kullback-Leibler
distance. A multinomial model of joint intensities is used in [Zöllei et al., 2007]
and the effect of uninformative, informative, and strong priors is analyzed. An
uninformative prior only considers the observed data and therefore corresponds to
standard maximum likelihood approaches and a strong prior focuses on the con-
structed model distribution like in [Leventon et al., 1998]. The informative prior
presents a compromise between prior and current observations.

These approaches can directly be integrated into the probabilistic framework,
however, it it also provides new possibilities for integrating prior information. One
way is to give information about the structure of the local neighborhood by e.g .
learning it from previous images [El-Baz and Gimel’farb, 2008]. Another way is to
assign probabilities to the descriptors, which would enable to learn about descriptors
that work well for the specific alignment scenarios [Seshamani et al., 2009]. And
lastly, prior information can be introduced through the coupling terms p(d|u) and
p(e|v, T ) to assure the description layers to resemble the original images.

5.5 Dynamic Adaptation of Description Layers

In the last section, we showed how registration techniques can be modeled with the
proposed framework. Further, we illustrated a continuum of registration approaches,
classified by the uniqueness of their descriptors. We achieve this increased flexibility
in modeling by introducing layers consisting of latent random variables. For the
approaches in the last section, these layers were calculated with various deterministic
algorithms and did not change during the registration. In this section, we illustrate
the second advantage of our model, the dynamic adaptation of the description layers.
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Instead of mainly reducing the optimization to the similarity term p(e|d), we now
rely on the interaction of coupling and similarity terms.

5.5.1 Deformable Registration

Deformable registration is frequently formulated in the context of calculus of varia-
tions [Hermosillo et al., 2002], with the energy

I(u, v, T ) = J (u, v, T ) +R(T ) (5.32)

to maximize. The term J measures the similarity between the warped images, and
R the regularity of the displacement field. The regularization is commonly performed
by putting smoothness constraints on the transformation model. This formulation
naturally embeds into our framework by taking the original images as u and v, the
deformed ones as e and d, and applying the logarithm to equation (5.19)

E = E(T ) +
N∑
i=1

E(ei, di) + E(di, u(Ni)) + E(ei, v(N ′i )). (5.33)

The energy E(ei, di) corresponds to J . The energies E(di, u(Ni)), E(ei, v(N ′i )), and
E(T ) to the regularizer R, where we define the energies as E(.) = log(p(.)) [Mumford,
1994]. The regularization in our model is not only performed by analyzing the
transformation field but also by comparing the deformed image to the original one,
which we have not yet seen in the literature. This provides a probabilistic rationale
for the variational formulation of deformable registration, similar to the energy
functionals for segmentation of Mumford [Mumford, 1994].

We already referred to several articles that integrate context into deformable
registration throughout the article. Here we just want to mention two recent
approaches. [Wu and Fan, 2009] replace the core assumption of optical flow - the
constancy of intensity - with constancy of context. [Shekhovtsov et al., 2008] apply
Markov random fields (MRFs) for the deformable registration of images. The
likelihood term p(e | d) is modeled with univariate potentials and the regularization
with pairwise potentials.

5.5.2 Joint Registration and Segmentation

Fundamental operations in image analysis include the segmentation and registration of
images. Although they are most times solved separately, there are applications where
they can benefit mutually and accordingly a joint formulation is expedient [Ashburner
and Friston, 2005, D’Agostino et al., 2006, Pohl et al., 2006, Wyatt and Noble,
2003, Xiaohua et al., 2004]. The performance of any segmentation approach is
primarily dependent on the discriminative power of the underlying likelihood model
for the data [Wyatt and Noble, 2003]. Multiple measurements with different imaging
modalities or viewpoints could therefore improve segmentation. On the other hand,
the alignment of segmented images, instead of the original ones, significantly reduces
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the influence of noise and consequently facilitates the registration. In our framework,
the description layers represent the segmented images. The similarity term p(e | d)
drives the correct global alignment and also provides the combination of both image
segmentations. The coupling terms p(d | u) and p(e | v, T ) counterbalance the
effect of letting both segmentations looking as similar as possible, by ensuring the
segmentations to be close to the underlying data.

We show how the MAP MRF approach in [Wyatt and Noble, 2003] naturally
integrates into our framework. The MAP problem is stated using Bayes rule

p(d, e, T | u, v) =
p(u, v | d, e, T ) · p(d, e, T )

p(u, v)
(5.34)

with the images u, v given and the transformation T and segmentations d, e to
calculate. The likelihood term p(u, v | d, e, T ) is represented with a Gaußian mixture
model (GMM), and the prior p(d, e, T ) with an MRF using the Ising model. At the
beginning of the registration, when the images are far from being correctly aligned,
the joint modeling of both images is not meaningful. Therefore, the independence of
the images and consequently the labels is assumed, leading to

p(d, e, T | u, v) =
p(u | d) · p(d) · p(v | e) · p(e) · p(T )

p(u) · p(v)
. (5.35)

For the joint optimization, an alternation is done between solving for the optimal
labeling with iterated conditional modes and the alignment with the Powell method.

5.6 Groupwise Registration

The analysis of a group or population of images necessitates their alignment to a
common reference frame, referred to as groupwise registration. A variety of groupwise
registration approaches exist, including the sequential pairwise alignment with a
consecutive estimation of the global transformations [Joshi et al., 2004,Vercauteren
et al., 2006,Wachinger et al., 2007] or the simultaneous registration of all images [Zöllei
et al., 2003,Cootes et al., 2004,Zöllei et al., 2005,Twining et al., 2005,Learned-Miller,
2006, Wachinger et al., 2007, Sidorov et al., 2009]. The first approach is based on
pairwise registration and is modeled in the framework that has been described so
far. For the simultaneous registration, we have to generalize the framework, as it is
presented in the following.

Assume n images U = (u1, . . . , un) and the corresponding global transformations
T = (T 1, . . . , T n). Analogously to the pairwise case, we assign a description layer
dj to each image uj, with D = (d1, . . . , dn) the list of description layers. We apply
once again a graphical model to deduce the probabilities, where we only use the
plate for illustration because of the complexity. We show the graphical model in
figure 5.10, where we let each descriptor be dependent on a local neighborhood, and
let each descriptor depend on each other descriptor, leading to a complete graph in
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Figure 5.10: Probabilistic graphical model of the groupwise, contextual registra-
tion framework as a plate illustrated for four images u1, . . . , u4 and exemplary
3-neighborhood. The transformations are not displayed for clarity of presentation,
but they are analogously to figure 5.6(a) connected to the descriptor nodes.

the middle. Alternatively, hyper-edges [Zass and Shashua, 2008] could be used. This
graphical model factorizes to

p(U ,D, T ) = p(T ) · p(U) · p(d1|u1, T 1) · · · p(dn|dn−1, . . . , d1, un, T n) (5.36)

with p(T ) =
∏n

j=1 p(T
j) and p(U) =

∏n
j=1 p(u

j). We further deduce

p(dn|dn−1, . . . , d1, un, T n) =
p(dn−1, . . . , d1, un, T n|dn) · p(dn)

p(dn−1, . . . , d1, un, T n)
(5.37)

=
p(dn−1, . . . , d1|dn) · p(un, T n|dn) · p(dn)

p(dn−1, . . . , d1) · p(un, T n)
(5.38)

=
p(dn, . . . , d1)

p(dn−1, . . . , d1)
· p(u

n, T n|dn)

p(un, T n)
(5.39)

=
p(dn, . . . , d1)

p(dn−1, . . . , d1)
· p(d

n|un, T n) · p(un, T n)

p(dn) · p(un, T n)
(5.40)

=
p(dn, . . . , d1)

p(dn−1, . . . , d1) · p(dn)
· p(dn|un, T n). (5.41)

Two assumptions are incorporated to reach equation (5.38). First, the indepen-
dence p(d1, . . . , dn−1, un, T n) = p(d1, . . . , dn−1) · p(un, T n), which is justified because
the descriptor layers of the n − 1 images do not depend on the nth image and
transformation. Second, the conditional independence p(dn−1, . . . , d1, un, T n|dn) =
p(dn−1, . . . , d1|dn) · p(un, T n|dn), which is also justified with a similar argument
considering the conditioning on dn.

Applying this to all conditional probabilities in equation (5.36), the probabilities
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nicely cancel out, and we end up with

p(U ,D, T ) = p(d1, . . . , dn)︸ ︷︷ ︸
Similarity Term

·
n∏
j=1

p(T j) · p(uj)
p(dj)︸ ︷︷ ︸

Prior Terms

· p(dj | uj, T j)︸ ︷︷ ︸
Coupling Term

. (5.42)

Identically to the pairwise framework, we apply the Markov property to make a
descriptor dji from image j and location xi dependent on a local neighborhood N j

i

p(dj | uj, T j) =
N∏
i=1

p(dji | uj(N
j
i )). (5.43)

The marginal distributions p(T j), p(uj), p(dj)−1 are used to encode prior informa-
tion. The transformations are integrated in the creation of the description layers,
meaning that for a location xi of the global reference frame, descriptors d1

i , . . . , d
n
i

are provided. We obtain local image coordinates xji by applying the transformation
T j to the global coordinate xi, leading to xji = T j(xi).

The multivariate probability p(d1, . . . , dn) models the similarity between the
descriptors. We consider multivariate similarity measures in more details in chapter 7
and apply them for motion modeling in chapter 10. Moreover, we employ a groupwise
registration approach similar to [Joshi et al., 2004] for deformable mosaicing in
appendix B. Here we just present a concise description for completeness. [Twining
et al., 2004] propose the minimum descriptor length as similarity criterion for
group-wise registration. The rationale is that correctly aligned images can be
transmitted with a minimal amount of bits. [Learned-Miller, 2006] propose the
congealing framework for the alignment of a large number of binary images from
a database of handwritten digits and for the removal of unwanted bias fields in
magnetic resonance images. For the deduction of congealing, independent but not
identical distributions of the coordinate samples di and i.i.d. description layers dj

are considered, leading to

p(d1, . . . , dn) =
N∏
i=1

n∏
j=1

pi(dji ). (5.44)

In [Studholme and Cardenas, 2004], a joint density function for multivariate similarity
estimation is constructed, which has a problem for larger image sets. We present
an own approximation to the multivariate density function (cf. chapter 7), which is
based on the accumulation of pairwise estimates. This factorizes as

p(d1, . . . , dn) =
∏
j 6=k

p(dj|dk). (5.45)

We conclude this section by stating that the extension of the contextual framework
to groupwise registration is possible. It allows for modeling existing groupwise
registration approaches and holds the advantage of integrating local neighborhood
information.
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5.7 Conclusion and Future Work

We presented a novel probabilistic framework for image registration, which is general
enough to describe intensity-based, as well as geometry-based registration. The
proposed framework allows us to move from just modeling the similarity function
towards a modeling of larger parts of the registration process. The key extension
with respect to previous frameworks is the consideration of local neighborhood
information, so replacing the assumption of independent coordinate samples by
the Markov property. We reviewed various registration approaches and showed
how they can be modeled within our framework. This gave us the motivation to
introduce a continuum of registration approaches, limited by pure geometric and iconic
registration. We showed how to use the models to derive optimal descriptors, as well
as integrating the dynamic adaptation of descriptors during the registration. Finally,
we presented an extension for groupwise registration. The proposed framework
provides further insights about the relationship of various registration techniques,
and moreover, helps to understand and classify them.
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Chapter 6

Structural Representations for
Registration

The standard approach for multi-modal registration is to apply sophisticated similarity
metrics such as mutual information. The disadvantage of these metrics, in comparison
to measuring the intensity difference with e.g. L1 or L2 distance, is the increase in
computational complexity and consequently the increase in runtime of the registration.
An alternative approach, which has not yet gained much attention in the literature, is
to find image representations, so called structural representations that allow for the
application of the L1 and L2 distance for multi-modal images. This has not only the
advantage of a faster similarity calculation but enables also the application of more
sophisticated optimization strategies. In this chapter, we theoretically analyze the
requirements for structural representations. Further, we introduce two approaches
to create such representations, which are based on the calculation of patch entropy
and manifold learning, respectively. While the application of entropy has practical
advantages in terms of computational complexity, the usage of manifold learning
has theoretical advantages, by presenting an optimal approximation to one of the
theoretical requirements. We perform experiments on multiple datasets for rigid and
deformable registration with good results with respect to both runtime and quality of
alignment.

6.1 Introduction

The objective of image registration is to find the correct spatial alignment between
corresponding structures in images. This task is made difficult by intensity variations
between images. Such variations can originate from a multitude of sources, such as
illumination changes in optical images, field inhomogeneities in magnetic resonance
images, and simply, different imaging modalities. In chapter 5, we have already
discussed that a common approach in iconic registration is to integrate similarity
metrics that are robust to those intensity variations, assuming a functional or statis-
tical intensity relationship, instead of an identical one. On the other hand, geometric
registration approaches that build upon an automatic keypoint extraction and de-
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scription have to apply methods that are robust to intensity variations. Widespread
descriptors such as SIFT [Lowe, 2004] and GLOH [Mikolajczyk and Schmid, 2005]
achieve such robustness by building upon intensity differences, rather than absolute
intensity values, by calculating histograms of image gradients. The registration of
images from different modalities is, however, affected by more substantial intensity
variations.

In this chapter, we introduce a representation of images that is only dependent
on the depicted structures and not on the intensities used to encode them. Such a
structural representation can assist several image processing tasks, while we focus
on registration in this chapter. We obtain structural representations by calculating
a dense set of descriptors that capture the structural information of each of the
local patches. Subsequently, the input images are replaced by the dense set of
descriptors, on which a regular intensity-based registration is performed. This
guarantees a seamless integration into existing registration frameworks. Referring
back to chapter 5, we see that the structural representations correspond to the
description layers d and e. Since we do not allow for a dynamic adaptation of the
layers, the coupling terms are not relevant for the optimization, which is consequently
reduced to the similarity term p(e | d). The advantage of the structural representation
is that the simple L1 or L2 distance can be used for the registration of multi-modal
images. These metrics are computationally less expensive than mutual information
and enable therefore a faster registration. This is even more important for groupwise
registration, where the speed improvement becomes quadratic, as we discuss in
section 6.3.2. Additionally, more efficient optimization schemes can be applied
for multi-modal registration. Finally, L1 and L2 distances are better suited for
parallelization than complex multi-modal similarity measures, which is important
with respect to transferring the computation to GPUs for further speed-up.

In sections 6.3 and 6.4, we describe the integration of structural images for
registration and theoretically analyze the properties of a structural representation.
In section 6.5, we show that the minimal coding length for transferring a patch over
a channel, calculated with the Shannon entropy, properly captures the information
content of a patch invariant to the intensity. The created entropy images present an
exemplary structural representation. There is, however, a risk of ambiguities, i.e.
several patches can lead to the same entropy value. In order to address this issue,
we propose to integrate spatial information to the density estimation. In section 6.6,
we introduce an alternative structural representation, based on the application of
manifold learning. The representation created with Laplacian eigenmaps has superior
theoretical properties, because it optimally fulfills one of the requirements for a
structural representation, the preservation of locality. This means that patches,
which are close in high-dimensional patch space, are mapped to a close structural
representation. Moreover, this technique exploits the internal similarities across
modalities, similar to [Penney et al., 2008], for the structural embedding. We refer
to the images created with Laplacian eigenmaps shortly as Laplacian images. In
sections 6.7 and 6.8, we evaluate the performance of entropy and Laplacian images.
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6.2 Related Work

There are two groups of related work, first, methods that are related because they
deal with transforming a multi-modal registration to a mono-modal one, and second,
articles that are related to our proposed representations (see sections 6.2.1 and 6.2.2).

Techniques that reduce a multi-modal to a mono-modal registration can be
differentiated into two classes. The first ones try to simulate one modality from
the other. Examples are X-Ray to CT registration with the creation of digitally
reconstructed radiographs [Penney et al., 1998] and ultrasound to CT registration
with the simulation of ultrasound images [Wein et al., 2008]. In our case, we are
interested in a general structural representation, so that the application of these
specific approaches is not suitable.

The second group consists of methods that transfer both images into a third, arti-
ficial modality. Examples are (i) the application of morphological tools [Maintz et al.,
1997], (ii) recoloring images depending on the variances of the image regions [An-
dronache et al., 2008], (iii) the usage of edge- and ridge-information [Maintz et al.,
1996,Van den Elsen et al., 1995], (iv) cross-correlating gradient directions [Haber and
Modersitzki, 2007], and (v) the creation of shadow-invariant optical images [Pizarro
and Bartoli, 2007]. Approaches (ii) and (iv) use cross-correlation for the com-
parison, indicating that the description is not truly identical. The morphological
approach [Maintz et al., 1997] mainly leads to a surface extraction, and although it
employs gray values instead of only binary values, much internal information is lost.
Finally, edge, ridge, and gradient estimation is problematic for points where more
than two regions are meeting, e.g . T-junctions, as discussed in section 6.7.

Following the discussion in chapter 3, the analytic signal may be a suitable
candidate for a structural representation. Having the property of split of identity by
separating quantitative and qualitative information, the qualitative part expressed
with the local phase could be of interest. In our own tests, we have not achieved
convincing results, supposedly rooted in the high intensity variations of multi-modal
data. The local phase was applied for multi-modal registration in [Mellor and Brady,
2005,Zhang et al., 2007], but with mutual information as similarity measure. This
confirms our experience that the local phase is not directly suited for multi-modal
registration with L1 or L2 distance.

6.2.1 Entropy Images

Concepts from information theory, specifically the entropy, have a significant influence
on image registration. The widely utilized mutual information [Wells et al., 1996,
Collignon et al., 1995] is building upon the entropy calculation of joint and marginal
probability distributions. Similarly, the congealing framework [Learned-Miller, 2006,
Zöllei et al., 2005], which is commonly used for the simultaneous alignment of multiple
images, evaluates the entropy of a pixel stack. In [Buzug et al., 1997], the entropy of
the difference image is calculated to align mono-modal images. Also based on the
calculation of the entropy is the scale saliency algorithm [Kadir and Brady, 2001].
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Salient regions are identified in images with the criterion of unpredictability in feature
and scale space, where the local entropy is used for quantifying the unpredictability.

6.2.2 Laplacian Images

As we will describe in more details in section 6.6, the application of Laplacian images
for multi-modal registration relies on the assumption of similar internal similarities
in images across modalities. This was previously exploited in a novel framework
for multi-modal registration based on internal similarity [Penney et al., 2008]. The
two approaches are similar because small image patches are compared to find local
similarities inside images. The consecutive utilization of this information is, however,
entirely different. While in [Penney et al., 2008] a few internal similarity structures
are identified and then transferred to the image from the other modality, we use
all the patch information to build a neighborhood graph, approximating the patch
manifold embedded in high dimensions. The internal similarity in images is also
exploited in [Shechtman and Irani, 2007], however, only locally for constructing
image descriptors.

Finally related is the approach for learning similarity measures for multi-modal
registration [Lee et al., 2009]. For the supervised learning a max-margin structured
output learning is used. The approach seems related because also learning is con-
sidered, however, we are interested in finding structural representations, instead
of learning the similarity measure, and our unsupervised learning with Laplacian
eigenmaps does not need any training. The training is not simple because correctly
aligned images from the target modalities must be available. This is even more chal-
lenging for magnetic resonance images, which vary significantly in their appearance
for different echo and repetition times (TE/TR).

6.3 Structural Image Registration

Consider two images I, J : Ω→ I defined on the image grid Ω with intensity values
I = {1, . . . , λ}. The registration is formulated as

T̂ = arg max
T∈T

S(I, J(T )), (6.1)

with the space of transformations T and the similarity measure S. We have already
seen in chapter 5, that for a more complex intensity relationship than the identity,
such as an affine, a functional, or a statistical one, typical choices for S are the
correlation coefficient, correlation ratio, and mutual information, respectively. These
are, however, more computationally expensive than the L2 distance. Our goal is
therefore to find structural representations DI and DJ that replace I and J in the
optimization of equation (6.1) and for which we can apply mono-modal metrics. The
registration is then formulated as follows

T̂ = arg max
T∈T

S(DI , DJ(T )), (6.2)
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Registration FrameworkOriginal Structural

Similarity Measure

Registration FrameworkOriginal Structural
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Structural Image Representation for Image Registration - Wachinger, Navab 6
Figure 6.1: Schematic illustration of structural registration. From the original images,
structural representations are calculated. In this diagram, entropy images are shown.
Subsequently, these images are used in the standard intensity-based registration
framework, with L1 or L2 distance as possible similarity measures.

with S being the L1 or L2 distance, even for images from different modalities. We
illustrate the entire process schematically in figure 6.1.

6.3.1 Efficient Optimization

Besides the discussed similarity measure, an efficient optimization scheme is required
for a fast registration. With structural representations, we transfer a multi-modal to
a mono-modal registration problem; making a larger number of optimization methods
applicable. Such optimization schemes are based on the Fourier transform [Reddy
and Chatterji, 1996,Padfield, 2010] or the batch alignment by sparse and low-rank
decomposition [Peng et al., 2010]. Fourier-based approaches calculate the correlation
between images and assume linearly correlated images, analogously to [Peng et al.,
2010]. This assumption is generally too limiting for multi-modal registration. The
application of structural representations has the potential to make those approaches
even applicable to multi-modal registration. Moreover, the efficient second-order
minimization (ESM, [Benhimane and Malis, 2004]) is applicable in this case, which
is further discussed in chapter 7. ESM is an extension of Gauß-Newton and was
shown to converge faster than other gradient-based optimizers [Benhimane and
Malis, 2004, Vercauteren et al., 2007]. ESM builds a second-order approximation
of the cost function without the explicit calculation of the second derivative. The
structural representation of images enables the application of ESM for multi-modal
registration. Especially for deformable registration, the optimization of MI-based
similarity measure with Gauß-Newton schemes is problematic, because the appearing
non-sparse matrices lead to a high computational complexity [Modersitzki, 2009,
Ch.9].
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Weighting MaskPatch 2Patch 1 Patch 3

Figure 6.2: Patch 1 and 2 show the same structure but encoded with different
intensities. All three patches have the same entropy of 2.0749 using an identical
spatial weighting. Integrating a location dependent weighting with the modified
Gaußian weighting mask shown on the right, we can differentiate patch 3 from the
others.

6.3.2 Efficient Groupwise Registration

For groupwise registration it is even more important to have an efficient registration
process, since the computational cost increases significantly when moving to the
alignment of multiple images. In section 5.6, we have already mentioned that there
exist various techniques to measure the similarity of a group of images, such as the
congealing framework or the accumulation of pairwise estimates (APE). In chapter 7,
the derivation of APE is presented in details. As we will see, N · (N − 1) pairwise
similarity measures have to be calculated to estimate the similarity of the whole group
of images. Consequently, the influence of the speed-up of simple matching functions
is quadratic. To conclude, structural representations for multi-modal registration
enable the usage of an efficient optimizer, needing less steps, and further, they permit
a faster calculation of each update step.

6.4 Structural Representation

In this section, we analyze the theoretical requirements on a structural representation.
We break the problem of finding a structural representation for images down to the
simpler problem of finding a structural representation for image patches. We denote
patches that are defined on the local neighborhood Nx around x as Px : Nx → I.
Our objective is to find a function f : Px 7→ Dx that assigns each patch a descriptor
Dx such that the descriptor captures the structural information of the patch. Since
we calculate a descriptor for each location x, we obtain a new image with the original
intensities replaced by the descriptors. Moreover, we differentiate between patches
of different images, with Px being part of I and Qx being part of J , and further
f ′ : Qx 7→ D′x.

We define two patches Px, Py to be structurally equivalent Px ∼ Py, if there exists
a bijective function g : I → I such that

∀z ∈ Nx : Px(z) = g(Py(z)).
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For an illustration, the first two patches in figure 6.2 are structurally equivalent, in
contrast to the third one. The requirements f and f ′ have to fulfill are

(R1) Locality preservation:

||Px − Py|| < ε =⇒ ||f(Px)− f(Py)|| < ε′ (6.3)

(R2) Structural equivalence:

Px ∼ Qx ⇐⇒ f(Px) = f ′(Qx) (6.4)

with reasonable ε and ε′ depending on the chosen norm. The motivation behind the
first property is to ensure that similar patches are mapped to similar descriptors,
which is important for the robustness to noise and the capture range of the registration.
The second property states that descriptors are identical, if and only if the patches
are structurally equivalent. This ensures, on the one hand ’⇒’, the desired structural
representation, and on the other hand ’⇐’, a perfect discrimination of patches.
Generally, the discrimination for a dense descriptor is less critical than for a sparse
descriptor.

Note that in (R1) only patches from the same image are compared, because
the calculation of the norm ||.|| between patches from different modalities is not
meaningful. In contrast, we require the structural equivalence (R2) only for patches
of different images, because no intensity mapping is required in the same image. This
model is no longer satisfiable by a global function f , so that we have to employ a
local function for each modality, indicated with f and f ′.

6.4.1 Structural Equivalence vs. Modality Invariance

We would like to point out that the structural representation is different from a
modality invariant representation, which would be the final goal. Each imaging
device has its own characteristics, leading to images with specific artifacts and
noise. Also, structures visible in one of the images may not be observable in the
second one. As an example, compare the CT and MR images in figure 6.5, whose
appearances are significantly different. It is also clear that structural images cannot
detect structures, where there are none. However, we can expect to be robust to
such changes, so that those structures that are present in all images can guide the
registration. This problem is not specific to structural images, but is rooted in the
multi-modal registration scenario, and therefore also affects multi-modal measures
like MI. The application of robust metrics for comparing structural images, such as
the robust M-estimation [Li et al., 1998], can limit the influence of those outliers.

6.5 Entropy Images

A possible interpretation of the similarity between images is to consider whether
intensity changes occur at the same locations. An example to quantify the intensity
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Figure 6.3: Illustration of the process for calculating entropy images. For each pixel
in the image, the local neighborhood patch is selected. For these patches, the PDF of
the intensity is estimated, in this example with the Parzen-window method. Finally,
the entropy is computed and the result is stored in the corresponding location in
order to create the entropy image.

Figure 6.4: Multi-modal images (T1, T2, PD) from BrainWeb dataset together with
entropy images used for rigid registration.

change is the calculation of the image gradient [Haber and Modersitzki, 2007]. This
is, however, not suitable for a structural representation because of its dependency
on the similarity values. A more general concept is to quantify the information
content or, analogously, the bound for a lossless compression, as stated by Shannon’s
theorem, which is both achieved with the entropy. The Shannon entropy of a random
variable Y with possible values I is

H(Y ) = −
∑
i∈I

p(Y = i) · log p(Y = i), (6.5)

assuming p to be the probability density function of Y . Calculating the entropy on
a dense image grid leads to

DI
x = H(I|Nx). (6.6)

The construction of entropy images is illustrated in figure 6.3. We see that the entropy
images are directly fitting in the contextual probabilistic framework of chapter 5. DI

and DJ are the description layers, where each descriptor DI
x is dependent on a local

neighborhood Nx in the images.

86



6.5 Entropy Images

Figure 6.5: Images from RIRE dataset (T1, T2, PD, CT) together with entropy
images used for rigid registration.

6.5.1 Verification of Structural Properties

In this section, we verify whether the entropy images fulfill the theoretical require-
ments on a structural representation. Since the entropy is calculated on images from
both modalities, we do not have a local function f for every modality. We could
therefore only fulfill (R1) and (R2) if we relax the requirements and allow patches
Px, Qx to be from I as well as J . Verifying these relaxed requirements, we see that
(R1) is fulfilled because small changes in the patches also lead to small changes in
the entropy. This holds for changes in the distribution, where the probability is not
close to zero, because the derivative of the entropy is −(1 + log p(y)). The structural
equivalence, “⇒” of (R2), is also fulfilled because the value of the entropy is invariant
to the permutation of the bins in a histogram, which is the effect of the intensity
mapping g.

In order to be able to assess the discrimination ability of the descriptors,“⇐” of
(R2), we quantify the number of structurally different patches. Let λ = |I| be the
number of intensity levels, and k = |Nx| be the cardinality of the patch. We assume
λ ≥ k, with typical values for λ = 256 and k = 10 × 10. For these numbers, we
indicate the order of magnitude of the number of patches in the subsequent analysis.
The total number of different patches η1 is calculated with

η1 = λk ≈ 10240. (6.7)

The number of patches that vary in structure is equivalent to the Bell number B

η2 = B(k) =
1

e

∞∑
l=0

(
lk

l!

)
≈ 10115. (6.8)

This corresponds to the number of equivalence classes of the structural equivalence
relation ∼. Patch 1 and 2 in Fig. 6.2 are in the same class, and are therefore counted
only once. The Bell numbers generally indicate the number of ways a set with k
elements can be partitioned into nonempty subsets. This is also the number of
patches an optimal function f would be able to differentiate. From a practical
point of view, however, it would require more than 47 bytes per pixel to store up to
10115 different values, which could exceed the memory limit for volumetric data and
decelerate the registration.
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Figure 6.6: Multi-modal images (T1, T2, PD, CT) from RIRE dataset together with
entropy images used for deformable registration.

The number of different distributions is

η3 =

(
λ+ k − 1

k

)
≈ 1090, (6.9)

which corresponds to ball picking of unordered samples with replacement.
In order to make distributions fulfill the structural equivalence, we have to sort

the entries of the distribution
p′ = sort(p). (6.10)

The number of sorted distributions p′ is

η4 = P(k) ≈ 1

4k
√

3
eπ
√

2k/3 ≈ 108 (6.11)

with the partition function P. This represents the number of ways of writing an
integer as a sum of positive integers, where the order of addends is not considered
significant.

The final step, the mapping from ordered histograms to real values, is performed
with the entropy formula in equation (6.5). For k = 2, the entropy uniquely assigns
each ordered histogram a scalar. However, for k ≥ 3 the mapping is no longer
injective and consequently η4 presents an upper bound to the number of different
entropy values for patches. Generally, the desired number η2 is much higher than
the maximally achievable η4, so that “⇐” of property (R2) is not fulfilled. Although
the discrimination is more critical for a sparse than for a dense descriptor, we try to
improve it by adding a spatial weighting in the density estimation in section 6.5.2.2.

6.5.2 Details on Entropy Estimation

There are several processing steps in the entropy estimation that influence the
appearance of the entropy image, compare figures 6.5 and 6.6, where different
parameters are used to create the entropy images. We evaluate the effect of those
parameters for rigid and deformable registration. We present details about the
experimental setup of the evaluation in section 6.7.

6.5.2.1 Local Neighborhood

The size of the local neighborhood is important because it determines the cardinality
of the samples for the density estimation. Consequently, there is a trade-off between
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Figure 6.7: Images from RIRE dataset with PET image (PET of lower resolution,
128× 128) and corresponding entropy images.

a small local neighborhood, in order to keep the estimation local, and a large
neighborhood, to have sufficient statistics for an accurate estimation. For rigid
registration, we evaluate local neighborhoods ranging from 5× 5 to 21× 21 pixels,
where we found patches of size 11× 11 to be a good compromise. For deformable
registration, we prefer smaller patch sizes to have a more local description, and
therefore test them in the range from 5× 5 to 13× 13, with good results for 7× 7
patches. In 3D, we achieved good results with 9× 9× 9 patches, where we adapt the
neighborhood accordingly for anisotropic spacing.

An interesting effect of changing neighborhood sizes is the smoothness of the
entropy images. We show images that are created with patch sizes ranging from 5×5
to 21× 21 in figure 6.8. We observe smoother entropy images for larger patch sizes.
This is useful for registration, because a common approach is to perform registration
on several resolution and smoothness levels. However, instead of filtering with a
Gaußian kernel, we change the neighborhood size. The similarity graphs for various
neighborhood sizes for T1-PD registration in figure 6.8 show wider cost functions
for larger patch sizes, as we would expect them for Gaußian filtering with different
variances.

6.5.2.2 Spatially-weighted Density Estimation

We use histogramming and the kernel-based Parzen window method for the non-
parametric PDF estimation, with the latter yielding more robust results for a small
number of samples. For both, the bin size has to be specified. A large number of bins
makes the entropy image more sensitive to noise, while a low number deteriorates
the unique patch description.

As discussed previously, we are interested in increasing the discrimination of the
entropy estimation, because of the large difference between η2 and η4. Consider, for
instance, the three patches in Fig. 6.2. While it is desirable to assign patch 1 and 2
the same value, this does not hold for patch 3. However, the PDF is the same under
permutation of pixels in the patch, so that all three patches have the same entropy.
To address this issue, we propose to modify the density estimation with plug-in
estimators, which are entropy estimators that explicitly estimate the PDF. When
constructing the image histogram h, each pixel’s intensity has the same contribution
to the respective bin. We introduce a spatial weighting function ω : Nx → R,
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Figure 6.8: Entropy images for varying patch sizes of BrainWeb T1. Similarity plot
for rotation between entropy images of T1 and PD. Color of the curves as specified
below the images.

assigning a weight to each patch location. The histogram update changes to

∀y ∈ Nx : hx[I(y)] ← hx[I(y)] + ω(y). (6.12)

This is illustrated in Fig. 6.9. We obtain the Parzen window density estimation by
convolution with a Gaußian kernel and corresponding normalization.

In our experiments, we use a Gaußian, a modified Gaußian, and the identity as
weighting functions ω. The identity corresponds to the usual density estimation. For
the Gaußian we set ω(y) = Gσ(‖y − c‖) with c the patch center, see Fig. 6.10 for an
illustration. The discrimination between patches is not optimal because the Gaußian
is rotational symmetric. We therefore modify the Gaußian weighting function, see
Fig. 6.2, giving it a unique weight at each patch location. We assign similar values
to neighboring locations to ensure the locality preservation.

Although each location has a different weight for the modified Gaußian, the sum
of several values, as it is done in the histogram calculation, can lead to the same
value, and therefore ambiguities. An optimal assignment of weights to the |Nx| patch
locations in the weighting mask, so that they are unique with respect to addition
and that the dynamic range is minimal, is to use 21, 22, . . . , 2|Nx|. However, even
then the dynamic range is too high, considering 249 ≈ 1015, leading to locations that
become negligible in the entropy calculation.
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Patch

Histogram

Figure 6.9: The spatially varying weight for the histogram calculation is illustrated by
the size of the balls. The discrimination of patches is improved, because two patches
with the same intensity values, but at different locations, may lead to different
histograms. The discrimination is dependent on the selected spatial weighting.

Figure 6.10: Image patch (gray) with the corresponding spatial weighting (color)
used for the histogram calculation. Illustrated is a Gaußian weighting.

6.5.2.3 Intensity Normalization

In order to use the whole range of the histogram, we normalize the intensity values
of patches Px. For this, we can either use the global minimum and maximum

minx = inf
y∈Ω

I(y) maxx = sup
y∈Ω

I(y) (6.13)

or the local extrema of the patch

minx = inf
y∈Nx

I(y) maxx = sup
y∈Nx

I(y). (6.14)

Our experiments confirm that a global approach is better suited for rigid, while the
local approach is better suited for deformable registration. We show entropy images
with the global approach in figures 6.4, 6.5, and 6.7 whereas the local approach is
illustrated in figure 6.6.
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6.5.2.4 Entropy Measure

The Shannon entropy is one in a group of measures to calculate the entropy of a
random variable, so that we evaluate its influence on registration. A whole class of
entropy measures is deduced from the Rényi entropy [Rényi, 1961]

Hα(Y ) =
1

1− α
log

(∑
i∈I

p(Y = i)α

)
(6.15)

defined for α ≥ 0 and α 6= 1. For α → 1, it converges to the Shannon entropy,
H1 = H. Commonly used in the group of Rényi entropies is the case for α = 2.
An alternative entropy measure, not in the group of Rényi measures is the Burg
entropy [Mansoury and Pasha, 2008]

HBurg(Y ) =
∑
i∈I

log p(Y = i). (6.16)

6.6 Laplacian Images

As an alternative structural representation, we propose the application of manifold
learning. Laplacian eigenmaps present an optimal solution to one of the requirements
for a structural representation. This is the preservation of locality, meaning that
patches that are close in high-dimensional patch space are mapped to a close
structural representation. The requirement of structural equivalence across modalities
is guaranteed by the comparable internal similarity.

Manifold learning is an approach applied for non-linear dimensionality reduc-
tion and data representation. The task of dimensionality reduction is to find the
underlying structure in a large set of points embedded in a high-dimensional space
and to map these points to a low-dimensional space preserving the structure. For
manifold learning, being a specific type of non-linear dimensionality reduction, it is
assumed that data points are sampled from a low-dimensional manifold living in a
high-dimensional space. This implies that the data is really low dimensional and that
the data points change smoothly and continuously. Manifold learning has recently
gained much attention to assist image processing tasks such as segmentation [Zhang
et al., 2006], registration [Rohde et al., 2008, Hamm et al., 2009], tracking [Lee
and Elgammal, 2007], recognition [Arandjelovic and Cipolla, 2007], and computa-
tional anatomy [Gerber et al., 2009]. Common techniques for manifold learning are
Isomap [Tenenbaum et al., 2000], local linear embedding [Roweis and Saul, 2000], and
Laplacian eigenmaps [Belkin and Niyogi, 2003]. We focus on Laplacian eigenmaps
because the technique is well founded on mathematical concepts and computationally
efficient. We apply manifold learning also at later parts of this dissertation for
breathing gating (cf. chapter 9) and patient position detection (cf. appendix A).

An overview of the calculation of Laplacian images is presented in figure 6.11.
We use all the patches in an image to build a neighborhood graph, approximating
the manifold embedded in high dimensional patch space. Subsequently, the graph
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Input Image Manifold Graph Structural ImageEmbedding

align

Figure 6.11: Structural representation with Laplacian eigenmaps. Patches of images
lie on a manifold in high-dimensional patch space. The manifold is approximated
by the neighborhood graph. The low-dimensional embedding is calculated with the
graph Laplacian. Embeddings from different modalities have to be aligned to obtain
the final representation.

Laplacian is calculated to find an optimal mapping to low-dimensional space. Since
the embedding in low-dimensional space is arbitrary, as long as it preserves the
locality, we have to align embeddings from different modalities with an affine point-
based registration. This finally leads to the structural representation that is used in
the intensity-based registration

6.6.1 Laplacian Eigenmaps

Laplacian eigenmaps build upon the construction of a neighborhood graph that
approximates the manifold, on which the data points lie. Subsequently, the graph
Laplacian is applied to calculate a low-dimensional representation of the data that
preserves locality. Considering k points a1, . . . , ak in RN lying on a manifold M, we
want to find a set of corresponding points b1, . . . ,bk in the low-dimensional space
Rn (n� N). We define weights W between all pairs of input points, which reflect
the locality of points. One possibility for the weights proposed in [Belkin and Niyogi,
2003] is derived from the heat kernel

Wi,j = exp(−||ai − aj||22/t). (6.17)

The parameter t weights the influence of neighboring points. The optimization in
Laplacian eigenmaps that tries to preserve the locality of points in low-dimensional
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space is

arg min
{b1,...,bk}

∑
i,j

Wi,j · ||bj − bi||22. (6.18)

We see that points that are close in high-dimensional space should be arranged close
in low-dimensional space to avoid a high cost caused by the high weight. Calculating
the diagonal matrix Di,i =

∑
j Wi,j , we can construct the Laplacian matrix L of the

graph
L = D−W. (6.19)

With the relationship
∑

i,j Wi,j · ||bj − bi||22 = 2 · trace(B>DB − B>WB), the
optimization can be formulated as trace minimization

min
B ∈ Rk×n
B>DB = I

b(l)>D1 = 0

trace(B>LB) (6.20)

with B = [b1, . . . ,bk]
> and further considering column vectors b(l), enabling to write

B = [b(1), . . . ,b(n)]. The constraints guarantee, among others, the orthogonality of
the different dimensions, preventing a collapse onto a subspace of dimension less than
n. Many dimensionality reduction techniques can be formulated as trace optimization
problems [Kokiopoulou et al., 2011a]. The solution of the optimization problem is
given by the first n eigenvectors corresponding to the lowest, non-zero eigenvalues of
the generalized eigenvalue problem (D−W)v = λDv.

In [Belkin and Niyogi, 2003], a further derivation is presented for the Laplace
Beltrami operator, which is the analogon of the Laplacian of a graph on manifolds.
We assume a twice differentiable function m :M→ Rn, ai 7→ bi. It is shown that
the following holds for the relationship between the distances on the manifold and
embedding space

||m(ai)−m(aj)|| ≤ dM · ||∇m(ai)||+ o(dM), (6.21)

with ai, aj ∈ M and dM = distM(ai, aj) the manifold distance. We see that
||∇m(ai)|| indicates how close nearby points are mapped. Consequently, a map that
best preserves locality on average is found with the following minimization

arg min
||m||L2(M)=1

∫
M
||∇m(ai)||2 dai. (6.22)

It is this optimization problem, for which Laplacian eigenmaps provide an optimal
solution, by calculating eigenfunctions of the Laplace Beltrami operator.

6.6.2 Verification of Structural Properties

The optimal locality preservation as is provided by the Laplacian eigenmaps, see
equation (6.22), is exactly what was required for the structural representation in (R1).
We only have to identify the points ai, aj with the patches Px, Py. The mapping
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m is therefore a suitable candidate for the function that provides the structural
representation f .

For the second property (R2), we consider manifoldsM andM′ for two different
modalities with patches Px ∈M and Qx ∈M′. The mappings m and m′ provide m :
Px 7→ px and m′ : Qx 7→ qx, with px and qx being the low-dimensional representations.
Since the intensity, with which objects are depicted in the images, varies with the
modality, the two manifolds M and M′ are not directly comparable. Considering,
however, the assumption that the internal similarity of both modalities is equivalent,
as in [Penney et al., 2008], we conclude that the structure or shape of both manifolds
is similar. Since Laplacian eigenmaps preserve locality when embedding the manifold
in a low-dimensional space, this structure is preserved in low dimensions. We could
then directly use the coordinates of px as descriptor for the corresponding location
Dx. This is, however, not possible because the embedding of the structure in low-
dimensional space is arbitrary, as long as it preserves the locality. The embeddings
of both manifoldsM andM′ are therefore only similar when correcting for rotation,
translation, and scale. Consequently, an affine registration between the point sets
P = {px : x ∈ Ω} and Q = {qx : x ∈ Ω} has to be performed. Recently, an
affine ICP for point set alignment was proposed in [Du et al., 2010] that performs a
fast registration. The coordinates of the registered embeddings finally provide the
structural descriptors.

We conclude that m fulfills the requirements (R1) and (R2) for a structural
representation. It has therefore theoretical advantages in comparison to entropy
images, since they only fulfill the relaxed properties, and further, the preservation of
locality is optimal for m.

6.6.3 Application of Laplacian Eigenmaps

In our scenario, we consider one dimension of the ambient space for each image pixel
of the patches. We use patches of size 15× 15, so that N = 225. This size proved
to be a good compromise between too small patches that do not contain enough
structural information, and too large patches that contradict the required locality
and further lead to a higher computational burden.

We construct a graph with a node for each point Px and with edges connecting
neighboring nodes. The neighborhood can be defined with an δ-neighborhood around
each point, so Py is in the δ-neighborhood of Px if ||Px − Py||22 < δ. Although this
is geometrically motivated, a disadvantage is the selection of the parameter δ. In
our implementation, we search instead for the l = 500 nearest neighbors and add
edges between them in the adjacency graph. Further, heat kernel-based weights (cf.
equation (6.17)) are assigned to the edges with Wxy = e−||Px−Py ||

2
2/t.

We select n = 1 as dimension for the low-dimensional space. The reasons for
not increasing this value are, first, that we obtain good results, and second, that
for n > 1 we would have to store a vector in each pixel position instead of a
scalar. This increases the computational complexity and memory consumption of the
registration, and moreover, makes the visualization more challenging. Additionally,
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Figure 6.12: Similarity plots for RIRE dataset (black: SSD, blue: MI, red: eSSD).

the low dimensionality facilitates the affine alignment to a correction of scale and
shift. In fact, a robust normalization accounting for outliers and flipping, makes the
point-based registration in this case even superfluous. This holds the advantage of
making the Laplacian images more comparable to entropy images, because they, as
well, do not need any intermediary step.

Although the Laplacian images have superior theoretical properties than entropy
images, this comes at a much higher computational cost. For the construction of
the neighborhood graph, all patches have to be compared among each other. This
means that the computational complexity increases quadratically with the number
of patches. Thinking about its application for the alignment of volumetric data, this
becomes even more challenging for the comparison of all subvolumes. This is different
for entropy images, where the complexity increases only linearly. The Laplacian
images present a global approach to the creation of structural images, while the
entropy images work entirely locally.

6.7 Experiments with Entropy Images

For entropy images, we conduct experiments on T1, T2, and PD-weighted MR images
from the BrainWeb database1 and CT, T1, T2, PD, and PET (Positron Emission
Tomography) images from the Retrospective Image Registration Evaluation (RIRE)
database2. We work with BrainWeb images containing 3% noise and 20% intensity
non-uniformity, in order to achieve realistic results. For both databases the ground
truth alignment is provided. We depict axial slices of the original and entropy images
in figures 6.4, 6.5, 6.6, and 6.7. The average time for the creation of an entropy image
in C++ is 0.078s for a slice of 256× 256, and 11.01s for a volume of 512× 512× 29.

For our deformable experiments we use the freely available deformable registration
software DROP3, which applies free-form deformations based on cubic B-splines and
an efficient linear programming with a primal-dual scheme. To emphasize that we
consider deformable registration as an available tool, we perform all experiments with
the standard settings of DROP, without any optimization towards the application of
entropy images. This guarantees that similar results are obtainable with alternative

1http://www.bic.mni.mcgill.ca/brainweb/
2http://www.insight-journal.org/rire/
3http://www.mrf-registration.net
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Table 6.1: Pairwise random registration study for BrainWeb with translational error
t in mm, rotational error r in degree.

Data Set Sim tx ty tz rx ry rz tstd rstd ttotal rtotal

T1-T2 MI 0.189 0.247 0.162 0.430 0.331 0.122 1.570 2.849 0.376 0.579
T1-T2 eSSD 0.165 0.209 0.622 0.051 0.056 0.282 0.077 0.170 0.695 0.317

T1-PD MI 0.251 0.319 0.257 0.359 0.417 0.165 1.906 2.303 0.506 0.621
T1-PD eSSD 0.155 0.119 0.538 0.047 0.064 0.334 0.077 0.152 0.5929 0.365

T2-PD MI 0.171 0.112 0.143 0.192 0.156 0.119 0.792 0.861 0.274 0.290
T2-PD eSSD 0.046 0.041 0.141 0.045 0.040 0.044 0.039 0.025 0.161 0.085

registration approaches.

6.7.1 Rigid Registration

For rigid registration, the standard configuration for the entropy images is: 11× 11
patches (in 2D) and 9× 9× 9 patches (in 3D), 64 bins, Gaußian weighting, global
normalization, Parzen-window estimation, and Shannon entropy. We evaluate the
usage of SSD, MI, and SSD on entropy images (eSSD) for the rigid alignment
by analyzing the similarity plots for the various mutli-modal combinations of both
datasets, cf. Fig. 6.12. The plots are created by rotating the images around the image
center for the range of [-40◦, 40◦], with 0◦ corresponding to the correct alignment.
Generally, we observe that SSD fails, which was to be expected, whereas MI and
eSSD indicate the correct alignment. In most cases eSSD provides smoother curves
with a wider basin than MI, which is advantageous for registration, because it enables
a larger capture range. Remarkable is also the problem of MI for the registration of
PET images.

We further run a pairwise registration study for the various combinations of
the multi-modal volumes, with an initial random deviation of maximal ±20 mm in
translation and ±20◦ in rotation from the correct pose, to compare the performance
of eSSD and MI. For each configuration 100 registrations are performed using the
best neighbor optimizer. In tables 6.1 and 6.2, we show the absolute mean error for
each pose parameter and the total mean error for translation ttotal and rotation rtotal

for the two datasets. Additionally, we indicate the standard deviation of the error
for translation tstd and rotation rstd. Lowest errors are indicated in bold face in the
tables. On the BrainWeb dataset eSSD and MI lead to comparable results. The
large values of the standard deviation for MI indicate that some of the registrations
did not converge correctly. Compared to the low standard deviations for eSSD,
we conclude that the registration is more robust with eSSD. On the MR volumes
of the RIRE dataset, eSSD performs significantly better than MI, matching with
our observations from the similarity plots. For the alignment with CT volumes the
registration error increases for both eSSD and MI. The experiments for the PET
registration are performed on volumes with a lower resolution to match the resolution
of the PET volume (128× 128× 29). The registration with eSSD achieves excellent
results, in contrast to MI. The good registration results for eSSD on the RIRE
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Figure 6.13: Evaluation of error τ for deformable registration for varying bin number,
patch size, and spatial weighting on Brainweb.

Table 6.2: Pairwise random registration study for RIRE with translational error t in
mm, rotational error r in degree.

Data Set Sim tx ty tz rx ry rz tstd rstd ttotal rtotal

T1-T2 MI 0.719 0.395 1.531 1.594 2.252 1.467 0.235 0.177 1.754 3.139
T1-T2 eSSD 0.042 0.224 0.396 1.120 1.582 0.538 0.046 0.057 0.461 2.013

T1-PD MI 0.190 0.251 0.856 0.635 0.877 0.546 0.290 0.180 0.944 1.231
T1-PD eSSD 0.061 0.048 0.431 0.344 0.648 0.558 0.050 0.048 0.442 0.926

T2-PD MI 0.196 0.344 2.068 2.365 1.196 0.952 0.718 2.186 2.141 2.976
T2-PD eSSD 0.093 0.110 1.065 1.984 1.196 0.308 0.279 0.493 1.080 2.355

CT-T1 MI 1.925 1.004 1.312 1.718 2.951 0.763 2.394 5.529 2.710 3.951
CT-T1 eSSD 0.963 1.269 0.702 2.433 0.728 0.169 2.990 9.577 1.997 3.089

CT-T2 MI 4.567 1.501 2.314 3.896 9.738 1.332 4.543 9.783 5.806 11.634
CT-T2 eSSD 1.288 8.488 6.025 35.905 1.903 0.885 7.932 28.631 11.063 36.896

CT-PD MI 2.348 0.613 1.394 1.395 4.056 0.805 2.677 5.622 2.943 4.784
CT-PD eSSD 0.770 0.988 0.475 1.487 0.248 0.248 1.824 5.971 1.442 1.619

PET-T1 MI 9.071 7.730 13.409 29.226 23.578 4.945 13.373 22.343 20.869 46.234
PET-T1 eSSD 0.053 0.057 0.089 0.040 0.038 0.042 0.051 0.023 0.135 0.078

PET-T2 MI 9.027 8.566 11.631 35.444 22.239 5.522 11.545 20.217 20.705 52.131
PET-T2 eSSD 0.043 0.038 0.057 0.040 0.040 0.042 0.034 0.024 0.093 0.079

PET-PD MI 10.131 7.685 13.354 27.693 24.451 4.565 12.853 20.023 21.165 45.606
PET-PD eSSD 0.048 0.056 0.194 0.043 0.056 0.043 0.065 0.033 0.217 0.094

data are confirmed by the low standard deviations. Comparing the errors for the
different pose parameters, we observe that the translational error along the z-axis tz
is commonly larger than along the other axes. This is due to the lower resolution
along the z-axis. The low resolution is also the reason for the lower rotational error
around the z-axis rz in comparison to rx and ry.

We measure an average computation time for the evaluation of SSD being a factor
of 15 faster than MI. This leads to a quick amortization of the additional processing
time needed for the creation of the entropy images.

6.7.2 Deformable Registration

We first evaluate the application of gradient images [Haber and Modersitzki, 2007]
for deformable registration. In figure 6.14 we show two synthetic images that model
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Figure 6.14: Illustration of two synthetic multi-modal images (1st & 2nd) together
with a zoom on gradient fields (3rd & 4th), gradient fields of smoothed images (5th &
6th) and entropy images (7th & 8th). The best structural representation is achieved
with entropy images.

a possible multi-modal scenario, with image regions being depicted in different colors.
We calculate the gradient fields of both images and overlay them, once for the upper
and once for the lower T-junction. Further, we smooth the synthetic images to create
a more realistic scenario and show the gradient fields again. We observe that the
gradients are pointing in different directions, where the smoothing propagates this
effect to a larger region. In contrast, the entropy images consistently represent the
structure of the images, leading to good registration results.

On the medical databases, we deform one of the two images with a deformation
dg serving as ground truth. Next, we run the registration with the deformed
image as target and the image from the other modality as source to calculate the
estimated deformation dc. We calculate the average Euclidean difference of the

Table 6.3: Registration errors τ in mm for various configurations for calculating the
entropy images. (B: Brainweb, R: RIRE dataset)

Technique T1-T2B T1-PDB T2-PDB T1-T2R T1-PDR T2-PDR CT-T1R PET-T2R

NMI (reference) 0.63 0.79 0.66 0.94 1.04 1.33 1.84 3.42

Local Norm. 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64
Global Norm. 0.99 2.08 0.87 2.76 4.30 4.11 6.87 1.83

Parzen Window 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64
Histogramming 0.54 0.91 0.66 0.94 1.12 1.42 6.02 0.97

Shannon 0.42 0.58 0.56 0.48 0.44 0.41 5.86 0.64
Rényi, H2 0.47 1.11 0.64 0.49 0.54 0.64 6.39 1.25

Burg 1.82 4.61 2.43 2.81 2.37 2.68 6.71 3.46
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Figure 6.15: Evaluation of error τ for deformable registration for varying bin number,
patch size, and spatial weighting on RIRE.

deformation fields τ = 1
|Ω|
∑

x∈Ω ‖dc(x)− dg(x)‖ for quantifying the residual error of
the registration.

The results for the experiments are shown in figures 6.13 and 6.15, and table 6.3.
The error of the registration with the original images using normalized mutual
information is stated in the table as reference. The standard configuration for
the entropy image for deformable registration is: 7× 7 patches, 16 bins, Gaußian
weighting, local normalization, Parzen-window estimation, and Shannon entropy. In
our experiments, we evaluate each of the parameters by changing one of them from
the standard configuration and letting the others constant.

From figures 6.13 and 6.15, we see that best results are achieved around 16 bins.
While reducing it further to 8 bins also leads to good results, increasing it further
to 32 bins leads to an increase in error. A good compromise in the patch size for
the different datasets and modalities is approximately 7× 7. Larger patch sizes still
lead to good results on the RIRE images, but on the Brainweb images we observe
a significant increase of the error. Smaller patches lead to an inaccurate density
estimation because of the small number of samples. For the weighting, we observe
a general reduction of the error when using a more advanced weighting than the
standard identical one.

From table 6.3, we see that a local normalization of the intensity values and the
Parzen window method for the density estimation are essential for good deformable
registration results. For the entropy estimation, we obtain best results for the
Shannon entropy. The results for the special Rényi entropy H2 are comparable, while
the ones for the Burg entropy are not good.

The results of the deformable registration on T1, T2, and PD images show a
slight advantage for normalized mutual informaiton (NMI) on the Brainweb dataset,
while for the RIRE dataset the entropy images lead to a significant improvement.
The registration with CT and PET is more challenging, because of the significant
differences in the images. The registration of CT with entropy images is inferior to
NMI. For the registration of PET, entropy images are superior to NMI.

The registration with eSSD is on average 6.6 times faster than with NMI. This
includes the time for the creation of the entropy images.
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Figure 6.16: First line, synthetic images with bias field [Myronenko and Song, 2009b].
Second line, entropy images. Third line, similarity plot with SSD (blue), MI (black,
dashed), and eSSD (red).

6.7.3 Bias field

A typical situation that challenges the application of mutual information is the
registration of images, which contain high intensity non-uniformity due to the bias
field. Recently, the residual complexity [Myronenko and Song, 2009b] was presented
as a technique that can cope with such situations. The approach was motivated with
synthetic images, similar to those in figure 6.16. We create plots of SSD and MI by
translating the images, analogously to [Myronenko and Song, 2009b]. As expected,
they fail in indicating the correct alignment. In contrast, eSSD correctly indicates
the perfect alignment. There is an interesting parallel, because it was shown that
the usage of local statistics for the MI calculation [Yi and Soatto, 2009] is more
robust to intensity non-uniformity. For the calculation of entropy images we also
use local statistics. However, we have the advantage of estimating only marginal
instead of joint distributions, which is more robust for few samples from small local
neighborhoods.

6.8 Experiments with Laplacian Images

We have already mentioned in section 6.6.3 that the computational complexity of
the Laplacian images prohibits its practical usage on a large scale at the moment.
We nevertheless want to validate if the theoretical advantages also lead to better
registration results. We limit the analysis to 2D regions of the BrainWeb images
(3% noise, 20% intensity non-uniformity) and RIRE images. In figure 6.17, we show
the original images, the entropy images, and the Laplacian images. We can clearly
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Figure 6.17: T1 (left), T2 (middle), and PD (right) images. First line: original
images. Second line: entropy images. Third line: Laplacian images.

observe the different nature of the entropy and Laplacian images. Entropy images
resemble gradient images, pronouncing boundaries and changes in the images. The
Laplacian images, however, look like the original images, but with a different coloring.
We can further observe that the assumption of comparable internal similarities in
the images is justified, because the appearance of the Laplacian images across the
modalities is very similar. In figure 6.19, we show the results for the RIRE images
with T1, T2, and CT. The assumption of comparable internal similarity between
MR and CT brain is more challenging, because of the low contrast of internal brain
structures in CT.

In order to quantify the promising visual appearance for image registration,
we show surface plots of the similarity measures for rotation and translation in
figures 6.18 and 6.20, respectively. We compare the usage of the L2 distance on the
original images, MI on the original images, and L2 distance on entropy and Laplacian
images for all combinations of multi-modal alignment. The maxima indicate the best
alignment. MI shows a very sharp peak at the correct position, but seems to have a
limited capture range. Entropy images also indicate the correct position, but the
cost functions contain several local maxima. We observe the cost function with the
largest capture range for the Laplacian images.

Although similarity plots give a good intuition about the performance of different
similarity measures, it is only a registration study that indicates the final quality. We
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Figure 6.18: Plot of similarity measures with respect to rotation of images in
figure 6.17. Maxima indicate best alignment.

Table 6.4: Registration study for Laplacian images. RMS errors for translation t in
mm and rotation r in degree.

Datasets Similarity r tx ty RMS

T1-T2

L2 4.879 9.019 6.471 7.000
MI 2.325 3.768 5.226 3.954

Entropy 2.084 4.539 5.231 4.180
Laplacian 2.584 2.061 2.168 2.271

T1-PD

L2 2.760 6.422 5.755 5.227
MI 2.304 4.138 4.907 3.937

Entropy 2.283 4.782 4.750 4.108
Laplacian 1.750 3.007 1.929 2.297

T2-PD

L2 1.784 2.947 2.916 3.942
MI 2.161 4.628 3.812 3.680

Entropy 1.723 4.296 3.780 3.450
Laplacian 1.171 2.350 1.984 1.900

perform a registration study for all multi-modal image combinations. The random
starting position deviates up to ±15 mm in translation and ±15◦ in rotation from
the correct pose. We show the average absolute error for translation and rotation,
together with the overall root mean squared error (RMS), for 100 registration runs for
each configuration in table 6.4. We weight 1 mm equal to 1◦ to quantify translational
and angular displacement from the ground truth in one single value. We see that the
positive impression of the Laplacian images from the similarity plots is confirmed by
the registration results. We obtain a significantly lower error in comparison to MI
and entropy images. Our experiments therefore confirm the theoretical advantages
of Laplacian images in comparison to entropy images in practice.
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Figure 6.19: Left to right: T1, T2, and CT images. Next, corresponding Laplacian
images in same order.

6.9 Discussion

We extensively evaluated the performance of entropy images for rigid, deformable,
and groupwise registration. The results on the BrainWeb data are comparable to
the application of MI. The registration results on the RIRE database are dependent
on the modalities. We obtain very good results for the alignment of PET images,
and in most other cases we are comparable or slightly better than MI. Finally, we
indicated that entropy images are robust to intensity non-uniformity.

For the Laplacian images, we were able to validate that their superior theoretical
properties also lead to better registration results. The computational complexity
for the creation of these representations is, however, limiting. We think that the
juxtaposition of entropy and Laplacian images is interesting because they present
two completely different approaches for obtaining structural representations. While
entropy images could be seen as non-linear filtering of an image, the Laplacian images
identify self-similarities in an image. Entropy images present a local approach, and
Laplacian images a global approach to the calculation of structural representations.

Thinking along the line of entropy images, one could imagine several alternative
techniques to quantify the structure of a patch. We experimented, for instance, with
the compressibility of patches or the calculation of the entropy from gradient instead
of intensity histograms. These approaches, however, bear no obvious advantages
for our applications and are more complex to compute. We are convinced that
the simplicity of the entropy images together with the fast calculation and good
performance leads to a high practical value. Further, there are many articles in the
computer vision literature [Sizintsev et al., 2008,Wei and Tao, 2010] that deal with a
fast local histogram calculation, such as integral histograms, distributive histograms,
and the efficient histogram-based sliding window, that allow for a reduction of the
processing time for certain configurations of entropy images.

6.10 Conclusion

In this chapter, we analyzed structural image representations for multi-modal regis-
tration. We formulated theoretical properties that such a structural representation
should fulfill. Generally, the multi-modal registration with such representations has
the advantage that mono-modal metrics are applicable, as well as, more efficient
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optimization schemes. Throughout the chapter we introduced two possible structural
representations, the entropy and Laplacian images. The entropy images only fulfill
certain requirements of a relaxed version of the theoretical properties, however, they
are fast to compute and lead to good alignments, making them a very practical solu-
tion. The Laplacian images fulfill all the theoretical requirements, the preservation
of locality even optimally. These superior theoretical properties also lead to better
registration results; however, these advantages come at a significantly higher com-
putational cost. Finally, we think that the application of structural representations
for multi-modal registration is an interesting research direction, which presents an
alternative to the usage of sophisticated similarity metrics.
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(a) L2 Original, T1-T2
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(b) L2 Original, T1-PD
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(c) L2 Original, T2-PD
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(d) MI Original, T1-T2
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(e) MI Original, T1-PD
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(f) MI Original, T2-PD
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(g) L2 Entropy, T1-T2
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(h) L2 Entropy, T1-PD
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(i) L2 Entropy, T2-PD
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(j) L2 Laplacian, T1-T2
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(k) L2 Laplacian, T1-PD
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(l) L2 Laplacian, T2-PD

Figure 6.20: Plot of similarity measures with respect to translation in x and y
direction. Maxima indicate best alignment.
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Part III

ULTRASOUND MOSAICING

This part describes the first application: ultrasound mosaicing. We propose to
apply simultaneous registration for the alignment of a group of ultrasound images.
We further adapt the registration to ultrasound by introducing specific similarity
measures. The first contribution considers locally adaptive Nakagami-based metrics
and the second one separates reflectivity and scattering regions.





Chapter 7

Simultaneous Registration

We address the alignment of a group of images for ultrasound mosaicing with simul-
taneous registration. We introduce a new class of multivariate similarity measures,
referred to as accumulated pair-wise estimates (APE), and derive efficient optimiza-
tion methods for it. A strict mathematical deduction of APE is presented and a
connection to the congealing framework is established. Moreover, we address the
increased computational complexity of simultaneous registration by deriving efficient
gradient-based optimization strategies for APE: Gauß-Newton and the efficient second-
order minimization (ESM). The application of structural images is very interesting
in this context, because they enable the usage of ESM in multi-modal registration.
Finally, we evaluate the performance of the optimization strategies with respect to
the similarity measures, leading to very good results for ESM.

7.1 Introduction

In chapter 2, we stated typical disadvantages of ultrasound imaging, such as the
limited field of view and the viewing angle dependent artifacts. We also mentioned
that the combination of several images helps to alleviate such problems. Several fusion
approaches and their clinical importance were discussed in chapter 4, together with
the description of the acoustic impedance estimation. Essential for the combination
is, however, the identification of the correct alignment of the images. While this is
difficult for 2D data, because all images should lie on the same plane, the prevalence
of 3D imaging in ultrasound leads to a wide applicability of mosaicing.

The rigid intensity-based registration that we use for the alignment is not trivial
to compute because of the limited amount of overlap between the images [Wachinger
et al., 2007]. This limited overlap puts a special interest on the overlap invariance of
similarity measures. An additional difficulty lies in the interface enhancing nature
of ultrasound images, making acquisitions of the same object but from varying
viewing angles not necessarily look the same. The standard approach in mosaicing
is to find the global alignment of multiple images from a sequence of pairwise
ones [Gee et al., 2003,Poon and Rohling, 2005,Ni et al., 2008]. Drawbacks of such
approaches are that registration errors are accumulated and that only a fraction of the
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available information is taken into account. In our previous work [Wachinger et al.,
2007, Wachinger, 2007], we evaluated several registration strategies for mosaicing.
Next to the sequential pairwise approach, we also investigated the combination
of multiple pairwise registrations with a Lie group based normalization and the
application of simultaneous registration. The conclusion of this comparison was that
the best alignment is achieved with simultaneous registration. The reasons are that
the consideration of all images alleviates the overlap issue and that the optimization
on global transformations impedes the accumulation of errors.

7.1.1 Simultaneous Registration

Simultaneous registration is generally applied for aligning a group or population of
images to a canonical pose. Examples are the alignment of handwritten digits or face
images for their later identification [Learned-Miller, 2006, Huang et al., 2007, Cox
et al., 2008,Cox et al., 2009] and the alignment of 3D tomographic images for the
creation of an atlas [Zöllei et al., 2005]. First approaches to this groupwise registration
problem identified one image as template, and registered all other images to it with
a pair-wise approach. While this is a valid strategy for certain applications where
such a template exists, in most cases it leads to an undesired introduction of bias
with respect to the a priori chosen template. Simultaneous registration presents a
method to circumvent this problem, however, it necessitates multivariate similarity
measures and an optimization in a higher-dimensional space.

The direct estimation of multivariate measures with high-order joint density
functions is prohibitive, because for a reliable estimation of the joint density, the
number of samples would have to grow exponentially with the number of images;
however, it only grows linearly. Approximations are therefore necessary, like the
congealing framework presented by [Learned-Miller, 2006]. Another approach was
presented in [Wachinger et al., 2007], which accumulates pair-wise estimates (APE).
The derivation of APE was mainly based on analogies. Moreover, the relationship
between congealing and APE has not yet been investigated.

When aligning multiple data sets simultaneously, instead of successively, one has
to consider two consequences for the optimization method. First, the registration
scenario becomes more complex because the parameter space increases linearly with
the number of images. And second, the evaluation of the multivariate similarity
measure is more expensive. One is therefore interested in an efficient optimization
procedure, which finds the optima robustly and with a minimal amount of evaluations
of the objective function. We focus on gradient-based methods because they promise
a fast convergence rate due to the guidance of the process by the gradient.

In this chapter, we address the previously mentioned problems of simultaneous
registration. First, we present a strict mathematical deduction of APE from a maxi-
mum likelihood framework. Second, we describe an extended version of congealing,
enriched with neighborhood information, which allows us to show the connection
between APE and congealing. Third, we derive efficient gradient-based optimization
strategies for simultaneous registration with APE as multivariate similarity frame-
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work. And finally, we use structural representations (cf. chapter 6) to apply ESM to
multi-modal registration.

7.1.2 Related Work

Simultaneous registration has many applications in computer vision, pattern recog-
nition, and medical imaging when it comes to the alignment of multiple images.
[Learned-Miller, 2006] propose the congealing framework for the alignment of a large
number of binary images from a database of handwritten digits and for the removal of
unwanted bias fields in magnetic resonance images. Congealing sums up the entropy
of pixel stacks over the image. [Huang et al., 2007] apply congealing to align 2D
face images, essential for their later identification. In [Learned-Miller, 2006,Huang
et al., 2007,Cox et al., 2008,Cox et al., 2009], a sequential update of the registration
parameters is performed. [Zöllei et al., 2005] use congealing for the simultaneous
alignment of a population of brain images for brain atlas construction. [Studholme
and Cardenas, 2004] construct a joint density function for multivariate similarity
estimation, which has the afore mentioned problem for larger image sets. [Cootes
et al., 2004] use the minimum description length for the alignment of a group of
images in order to create statistical shape models. This criterion demands a great
deal of memory so that it only works for a limited number of volumes [Zöllei et al.,
2005]. In [Sidorov et al., 2009] a stochastic optimization approach for groupwise
registration of face images is proposed. One image is selected at a time and aligned
to the remaining images using a similarity term that is close the voxel-wise variances,
see section 7.2.2.1. It is argued that by randomly selecting the image to update
the warp, an approximation to a fully simultaneous registration is achieved. [Wang
et al., 2009b] propose an attribute vector-guided groupwise registration algorithm
and show that including more attributes can improve the robustness of the algo-
rithm. [Wachinger et al., 2007] propose simultaneous registration for volumetric
mosaicing. This poses slightly different requirements on the multivariate similarity
measure, because the number of overlapping images varies and can be rather small
on specific locations. The therein introduced APE is flexible enough to deal with
such situations. APE is a general framework to extend pairwise to multivariate
similarity measures. The specific case of APE with sum of squared differences was
used by [Cox et al., 2008,Cox et al., 2009], referring to it as least squares congealing.

A good overview of gradient-based optimization methods is provided in [Baker
and Matthews, 2004] and [Madsen et al., 2004]. Based on their results, we do not
consider the Levenberg-Marquardt algorithm because of its very similar behavior
to Gauß-Newton. A new method, which is not covered in these articles, comes
from the field of vision-based control. It is an efficient-second order optimization
method introduced by [Benhimane and Malis, 2004]. They showed that ESM has
striking advantages in convergence rate and convergence frequency in comparison to
Gauß-Newton (GN) and steepest-descent (SD). [Vercauteren et al., 2007] achieve
good results for the pairwise alignment of 2D images with ESM.

Once the update is calculated, either an additive or a compositional scheme for
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updating the current transformation can be applied. In several articles [Chefd’hotel
et al., 2002,Baker and Matthews, 2004,Stefanescu et al., 2004,Vercauteren et al.,
2009] the advantages of a compositional update are noted, which we consequently
focus on in our work.

7.2 Multivariate Similarity Metrics

In this section, we present a deduction of APE from the maximum likelihood
framework in chapter 5 and show its connection to congealing. Considering n
images I = {I1, . . . , In} and the transformation parameters x, the ML estimation
for registration is formulated as:

x̂ = arg max
x

log p(I1, . . . , In; x). (7.1)

with the joint density function p, and the estimated alignment x̂. This corresponds
to the similarity term in equation (5.42) and is similar to the formulation in [Zöllei,
2006]. For notational ease, we will no longer consider x explicitly in the density
function.

7.2.1 Accumulated Pair-Wise Estimates

APE approximates the joint likelihood function with pair-wise estimates:

log p(I1, . . . , In) ≈
n∑
i=1

∑
j 6=i

log p(Ij|Ii). (7.2)

Assuming a Gaußian distribution of the density p, i.i.d. coordinate samples, and
various intensity mappings between the images, popular similarity measures such
as SSD, NCC, CR, MI can be derived from the log-likelihood term log p(Ij|Ii) as
discussed in chapter 5. APE therefore presents a framework for a class of similarity
measures.

In order to deduce APE, we first derive a pair-wise approximation with respect
to image In using the product rule and conditional independence:

p(I1, . . . , In)
Prod.Rule

= p(I1, . . . , In−1|In) · p(In) (7.3)

Cond.Indep.
=

n−1∏
i=1

p(Ii|In) · p(In). (7.4)

Second, we take the n-th power of the joint density function and perform the
derivation of equation (7.4) with respect to each of the images, leading to:

p(I1, . . . , In)n =
n∏
i=1

p(Ii) ·
n∏
i=1

∏
j 6=i

p(Ij|Ii). (7.5)
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Third the logarithm is applied:

log p(I1, . . . , In)n =
n∑
i=1

log p(Ii) +
n∑
i=1

∑
j 6=i

log p(Ij|Ii)

leading to the desired approximation of the high dimensional density:

log p(I1, . . . , In) =
1

n

n∑
i=1

log p(Ii) +
1

n

n∑
i=1

∑
j 6=i

log p(Ij|Ii) (7.6)

≈
n∑
i=1

∑
j 6=i

log p(Ij|Ii) (7.7)

wherein we no longer consider the multiplicative constant 1
n

and the prior term∑n
i=1 log p(Ii). The prior may, however, be used in future applications to incorporate

further knowledge about the registration problem. The presented deduction is not
limited to similarity measures and presents a general approximation of higher order
densities by pairwise ones.

7.2.2 Congealing

In the congealing framework [Learned-Miller, 2006], independent but not identical
distributions of the coordinate samples sk ∈ Ω on the grid Ω are assumed:

p(I1, . . . , In) =
∏
sk∈Ω

pk(I1(sk), . . . , In(sk)). (7.8)

Assuming further i.i.d. input images Ii leads to:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

pk(Ii(sk)). (7.9)

The idea of congealing is schematically illustrated in figure 7.1. In the following, we
derive a more general form of congealing that applies, instead of the assumption of
independent images, the Markov property. This means that images are independent,
if we know a certain local neighborhood of images around the current one. While the
consideration of neighboring pixels, surrounding a sample sk, was already discussed
in [Learned-Miller, 2006], referred to as pixel cylinder, the consideration of neighboring
images has not yet been proposed. So, instead of independent images, we assume
that each image Ii depends on a certain neighborhood Ni of images:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

pk(Ii(sk)|INi(sk)). (7.10)

We refer to this approximation as Markov-congealing. The size of the neighborhood
depends on the structure in the image stack. If there is no further information about
the images, considering a total neighborhood seems reasonable. If there is, however,
a certain order or evolution in the stack (camera parameters, motion, etc.), the
neighborhood can be chosen appropriately to reflect this structure.
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…

Figure 7.1: The idea of congealing is to focus the similarity estimation at a specific
location sk along all the images.

7.2.2.1 Voxel-wise Variances

The Markov-congealing allows us to derive the voxel-wise variances as proposed
in [Wachinger et al., 2007] and applied in [Sidorov et al., 2009]. The term voxel-wise
estimation [Zöllei et al., 2005] is used, since the approach taken in the congealing
framework focuses on certain pixel or voxel locations at a time. Voxel-wise variances
combine the approach of a voxel-wise similarity estimation with the assumptions
underlying SSD, which are Gaußian distributed intensity values and the identity as
intensity mapping.

We incorporate the neighborhood information by estimating the mean µk for
each voxel location sk with:

µk =
1

n

n∑
l=1

Il(sk). (7.11)

Following the formal definition of a local neighborhood Ni in the Markov sense, the
calculation of the mean should not include the image Ii itself [Li, 2009]. This leads,
however, to higher computational costs because for each image and for each voxel
location a different mean has to be calculated. We therefore go ahead with the more
practical approximation, leading to:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

1√
2πσ

exp

(
−(Ii(sk)− µk)2

2σ2

)
. (7.12)

This leads to the formula for voxel-wise SSD:

log p(I1, . . . , In) ≈ −
∑
sk∈Ω

n∑
i=1

(Ii(sk)− µk)2 (7.13)

= −
∑
sk∈Ω

Var[I(sk)] (7.14)

with I(sk) the intensities at location sk across all images. Looking at equation (7.13),
we see that voxel-wise SSD leads to the calculation of the variance at each location
and subsequently accumulates the values. The variance is one of the measures to
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express the statistical dispersion of a random variable [Bishop, 2006]. In contrast
to entropy, which measures the structuredness of a variable, it can only deal with
mono-modal matchings. An interesting equality exists between voxel-wise SSD and
APE SSD:

∑
sk∈Ω

n∑
i=1

(Ii(sk)− µk)2 !
=

1

2n

n∑
i=1

n∑
j=1

∑
sk∈Ω

(Ii(sk)− Ij(sk))2. (7.15)

We show the key steps of the proof of the equality, starting from the left-hand
side in equation (7.15) and neglecting the summation over the spatial locations:

n∑
i=1

(Ii(sk)− µk)2 =
n∑
i=1

I2
i (sk)− 2 · Ii(sk) ·

(
1

n

n∑
j=1

Ij(sk)

)
+

1

n2

(
n∑
j=1

Ij(sk)

)2


(7.16)

=
n∑
i=1

I2
i (sk)−

2

n

n∑
i=1

n∑
j=1

Ii(sk)Ij(sk) +
1

n

n∑
i=1

n∑
j=1

Ii(sk)Ij(sk).

(7.17)

The right-hand term deduces to:

1

2n

n∑
i=1

n∑
j=1

(Ii(sk)− Ij(sk))2 =
1

2n

n∑
i=1

n∑
j=1

[
I2
i (sk) + I2

j (sk)− 2 · Ii(sk)Ij(sk)
]

(7.18)

=
n∑
i=1

I2
i (sk)−

1

n

n∑
i=1

n∑
j=1

Ii(sk)Ij(sk). (7.19)

This equality between APE SSD and voxel-wise SSD is a reason and motivation to
investigate the general relationship between APE and Congealing.

7.2.3 Comparison of APE and Congealing

In the last sections, we discussed APE and congealing as separate approximations
to the high dimensional density and demonstrated the equality for SSD. In this
section, we investigate if there is a direct theoretical relationship between these
two approaches. It is in fact possible to deduce a connection between APE and
Markov-congealing. We show the connection between the two approximations, by
starting with the Markov-congealing, equation (7.10), and derive the formula of APE,
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equation (7.6), from it:

p(I1, . . . , In) =
∏
sk∈Ω

n∏
i=1

pk(Ii(sk)|INi(sk)) (7.20)

Bayes
=

∏
sk∈Ω

n∏
i=1

pk(INi(sk)|Ii(sk))
pk(Ii(sk))

pk(INi(sk))
(7.21)

C.Idp.
=

∏
sk∈Ω

n∏
i=1

[∏
j∈Ni

pk(Ij(sk)|Ii(sk))

]
pk(Ii(sk))

pk(INi(sk))
(7.22)

Idp.
=
∏
sk∈Ω

n∏
i=1

[∏
j∈Ni

pk(Ij(sk)|Ii(sk))

]
pk(Ii(sk))∏

j∈Ni p
k(Ij(sk))

(7.23)

Applying the logarithm and assuming a total neighborhood leads to:

log p(I1, . . . , In) =
∑
sk∈Ω

n∑
i=1

∑
j 6=i

(
log pk(Ij(sk)|Ii(sk))− log pk(Ij(sk))

)
(7.24)

+
∑
sk∈Ω

n∑
i=1

log pk(Ii(sk)). (7.25)

An assumption that is different between the pair-wise and voxel-wise approaches, per
design, is that the voxel-wise coordinate samples are not identically distributed. To
relate the two approaches, we set the distribution of the coordinate samples identical:

log p(I1, . . . , In) =
n∑
i=1

∑
j 6=i

(log p(Ij|Ii)− log p(Ij)) +
n∑
i=1

log p(Ii) (7.26)

=
n∑
i=1

∑
j 6=i

log p(Ij|Ii) +
n∑
i=1

log p(Ii)−
n∑
i=1

∑
j 6=i

log p(Ij) (7.27)

=
n∑
i=1

∑
j 6=i

log p(Ij|Ii) +
n∑
i=1

log p(Ii)− (n− 1)
n∑
j=1

log p(Ij) (7.28)

Comparing this result to APE in equation (7.6), we observe that both are equivalent
up to the term −(n− 1)

∑n
j=1 log p(Ij). Again assuming that no prior information is

available, we conclude that the approximations with APE and Markov-congealing
are equal, under the consideration of (i) a total neighborhood, (ii) conditional
independent images, and (iii) an identical distribution of coordinate samples. While
(iii) was explicitly chosen by the design of congealing and (ii) by the deduction of
APE, the novel part is the neighborhood (i), which relates these two approaches. The
Markov-congealing in equation (7.10) presents therefore an intermediate between
APE and congealing.

To conclude, for congealing no specific distribution has to be selected, because
the similarity can directly be calculated with the sample entropy. Markov-congealing
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and APE do not present actual similarity measures, but frameworks, where further
information about the distribution has to be provided to derive similarity measures.
Incorporating e.g . a Gaußian distribution and an identity intensity mapping leads to
SSD like extensions. APE, in contrast to congealing, assumes an identical distribution
of coordinate samples, which makes a reliable estimation for a small number of
overlapping images possible. For congealing, a larger number is necessary, because
the estimation is done with the information at one location at a time. Consequently,
the choice, which multivariate similarity approximation to choose, is application
dependent. We will focus on APE because of its versatility.

7.3 Efficient Optimization Methods

In this section, we present efficient gradient-based optimization methods for simul-
taneous registration. More precisely, we focus on APE as similarity measure and
3D rigid transformations as transformation model, where the parameterization can
be easily adapted to different types of alignments. In contrast to [Learned-Miller,
2006,Huang et al., 2007,Cox et al., 2008,Cox et al., 2009], we do not update one
parameter at a time, but update all parameters at once. Problems with the sequential
update are illustrated in [Cox et al., 2009].

7.3.1 Transformation Parameterization

We parameterize the spatial transformations with Lie groups because 3D rigid
transformations do not form a vector space. We perform a geometric optimization
using local canonical coordinates. It has the advantage that the geometric structure
of the group is taken care of intrinsically [Lee and Moore, 2005,Mahony and Manton,
2002]. This enables us to use an unconstrained optimization. Alternatively, one
could embed them into the Euclidean space and perform a constrained optimization
with Lagrange multipliers.

Each rigid 3D transformation x is an element of SE(3), the special Euclidean
group. It is possible to describe them with a 4 × 4 matrix having the following
structure:

x =

[
R t
0 1

]
(7.29)

with the rotational part R, element of the special orthogonal group R ∈ SO(3), and
the translational part t ∈ R3.

SE(3) forms a manifold and is a group under standard matrix multiplication,
therefore it is a Lie group. On Lie groups, the tangent space at the group identity
defines a Lie algebra. The Lie algebra captures the local structure of the Lie group.
The Lie algebra of SE(3) is denoted by se(3), and is defined by:

se(3) =

{[
Υ v
0 0

]
|Υ ∈ R3×3,v ∈ R3,Υ> = −Υ

}
.
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The standard basis of se(3) is L = {l1, . . . , l6} with:

l1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 l2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 l3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (7.30)

l4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 l5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 l6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (7.31)

Each element H ∈ se(3) can be expressed as a linear combination of matrices H =∑6
i=1 hili with hi varying over the manifold [Zefran et al., 1998] and h = [h1, . . . , h6]>.

The exponential map relates the Lie algebra to the Lie group:

exp : se(3)→ SE(3) (7.32)

H 7→ exp

(
6∑
i=1

hili

)
=
∞∑
j=0

1

j!

(
6∑
i=1

hili

)j

.

It exists an open cube V around 0 in se(3) and an open neighborhood U of the
identity matrix I ∈ SE(3) such that the group exponential is smooth and one-to-one
onto, with a smooth inverse, therefore a diffeomorphism. An explicit expression for
the calculation of the exponential for elements in SE(3) exists, as shown in [Murray
et al., 1994, pp.413]. For the restriction to SO(3), the explicit formula is known as
Rodrigues’ formula.

Using the local coordinate charts, there exists for any y ∈ SE(3) in some neigh-
borhood of x a vector in the tangent space H ∈ se(3), such that:

y = x ◦ exp(H) = x ◦ exp

(
6∑
i=1

hili

)
. (7.33)

Let us further denote the transformation of a point p = [x, y, z, 1]> ∈ R4 in homoge-
neous coordinates through the mapping y ∈ SE(3) with w(y,p):

w : SE(3)× R4 → R4 (7.34)

(y,p) 7→ w(y,p) = p′. (7.35)

Finally, for ease of notation we define an extension of the exponential, enabling the
direct application of the parameter vector exp(h) := exp(H).

7.3.2 Optimization Methods

The global transformation x = [x1, . . . ,xn], with xi ∈ SE(3), maps the points from
each of the image spaces to the joint image space, R4 → R4,p 7→ w(xi,p). The cost
function E that we want to optimize is a sum of squared smooth functions:

E(x) =
∑
i 6=j

Fi,j(x) =
∑
i 6=j

1

2
||fi,j(x)||2 (7.36)
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with Fi,j representing the pair-wise similarity measure.
Regarding equation (7.36), we see that we deal with a non-linear least-squares

problem. Therefore, efficient optimization methods were proposed that achieve in
many cases linear, or even quadratic, convergence without the explicit calculation of
the second derivatives.

The starting point of all the following optimization methods is a Taylor expansion
of the cost function around the current transformation x along the gradient direction
h:

E(x ◦ exp(h)) ≈ E(x) + JE(x) · h +
1

2
h> ·HE(x) · h (7.37)

with JE(x) = ∂E(x◦exp(h))
∂h

∣∣∣
h=0

and HE(x) = ∂2E(x◦exp(h))
∂h2

∣∣∣
h=0

the Jacobian and

Hessian, respectively, of E at the point x. The global gradient direction h is a
combination of local elements hi, resulting in h = [h1, . . . ,hn]. The Newton (NT)
method then has the following compositional update:

HFi,jh
NT
i,j = −J>Fi,j x← x ◦ exp(hNT). (7.38)

The global update hNT is obtained by summing up the pairwise updates, following
the structure of the cost function E in equation (7.36), leading to

hNT =

[∑
i

hNT
i,1 , . . . ,

∑
i

hNT
i,n

]
. (7.39)

Unfortunately, the explicit calculation of the Hessian causes problems because it is
numerically not well-behaved and computationally expensive, so that its usage is not
recommended [Baker and Matthews, 2004]. In the field of non-linear least squares
optimization most of the methods use an approximation of the Hessian [Madsen
et al., 2004]. In the following we present different possibilities for approximating the
Hessian by a positive definite matrix Ĥ.

7.3.2.1 Steepest-Descent

For SD, the Hessian is approximated by the identity Ĥ = α · I, leading to the update:

α · hSD = −J>E(x) x← x ◦ exp(hSD)

with α the step length. Consequently, SD only considers a first-order Taylor expansion
of E and has linear convergence.

7.3.2.2 Gauß-Newton

The approximation of the Hessian for Gauß-Newton is based on a linear approximation
of the components of f in a neighborhood of x. For small ||h|| we obtain from the
Taylor expansion:

f(x ◦ exp(h)) ≈ f(x) + Jf (x) · h. (7.40)
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For notational ease, we often write f instead of fi,j when no reference to the images
i and j is necessary. Setting this linear approximation in our cost function E, as
defined in equation (7.36), gives:

E(x ◦ exp(h)) ≈
∑
i 6=j

1

2
||fi,j(x ◦ exp(h))||2 (7.41)

=
∑
i 6=j

1

2
fi,j(x ◦ exp(h))>fi,j(x ◦ exp(h)) (7.42)

=
∑
i 6=j

(
Fi,j(x) + h>J>fi,j fi,j +

1

2
h>J>fi,jJfi,jh

)
. (7.43)

By comparison with equation (7.37), and considering the gradient JF = J>f f , we can

see that the Hessian is approximated by Ĥ = J>f Jf .

We get the global Gauß-Newton step hGN by the pairwise optimal steps hGN
i,j ,

analogously to the Newton method, see equation (7.39). This leads to the update:

(J>fi,jJfi,j)h
GN
i,j = −J>fi,j fi,j x← x ◦ exp(hGN)

with hGN =
[∑

i h
GN
i,1 , . . . ,

∑
i h

GN
i,n

]
. Gauß-Newton has only in specific cases quadratic

convergence [Madsen et al., 2004,Benhimane and Malis, 2004].

7.3.2.3 ESM

The efficient second-order minimization procedure originally comes from the field
of vision-based control [Benhimane and Malis, 2004]. It is an extension of GN and
incorporates further knowledge about the specificity of the optimization problem in
order to achieve better results.

More precisely, ESM uses the fact, that if the images are aligned with the optimal
transformation, the images and therefore also their gradients should be very similar
to each other. This can be used to ameliorate the search direction of the Newton
methods. For the standard Newton method, the first- and second-order derivatives
around x are used to build a second-order approximation, see equation (7.38). The
Gauß-Newton method neglects the second derivative and can therefore only build
a first-order approximation. For ESM, the first-order derivatives around x and
x ◦ exp(h) are used to build a second-order approximation without the necessity of
an explicit calculation of a second-order derivative.

To deduce the ESM, we start with a second-order Taylor approximation of the
function f :

f(x ◦ exp(h)) ≈ f(x) + Jf (x) · h +
1

2
h> ·Hf (x) · h. (7.44)

Subsequently, we do a second Taylor expansion around x, but this time of the
Jacobian of f :

Jf (x ◦ exp(h)) ≈ Jf (x) + Hf (x) · h. (7.45)
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Plugging this first-order series in the approximation shown in equation (7.44), we
get a second-order approximation without second-order derivatives:

f(x ◦ exp(h)) ≈ f(x) +
1

2
[Jf (x) + Jf (x ◦ exp(h))] · h. (7.46)

The problem about this approximation is the calculation of the Jacobian Jf (x ◦
exp(h)), which is dependent on the update h that we want to solve for. We illustrate
a solution for this problem in section 7.3.3.3.

Comparing equations (7.46) and (7.40) shows the similarity between the Gauß-
Newton and ESM procedure. For the development of the update rule we proceed
therefore analogously to Gauß-Newton. The only difference is the usage of JESM

f =
1
2
[Jf (x) + Jf (x ◦ exp(h))] instead of only Jf (x). This leads to an approximation of

the Hessian by Ĥ = JESM>

f JESM
f . The compositional update is:(

JESM>

fi,j
JESM
fi,j

)
hESM
fi,j

= −JESM>

fi,j
fi,j x← x ◦ exp(hESM)

with hESM =
[∑

i h
ESM
i,1 , . . . ,

∑
i h

ESM
i,n

]
. ESM has a quadratic convergence rate

[Benhimane and Malis, 2004].

7.3.3 Gradient Calculation

In the last section, we introduced the gradients JE, Jf , and JESM
f without further

explaining their calculation. This will be the subject of this part, together with an
analysis on how the gradient calculation changes for different similarity measures.

7.3.3.1 Steepest-Descent

We begin with the gradient for the general cost function E by considering one moving
image at a time. W.l.o.g., we assume Ii as fixed and Ij as moving image leading to
Fi,j(x ◦ exp(h)) = SM(Ii(x), Ij(x ◦ exp(h)), with SM a pair-wise similarity measure.
The point-wise gradient has the form:

[JE(x)]p =

[
∂E(x ◦ exp(h))

∂h

∣∣∣∣
h=0

]
p

(7.47)

=
∑
i 6=j

∂SM(Ii(x), Ij(x ◦ exp(h)); p)

∂h

∣∣∣∣
h=0

=
∑
i 6=j

[JSMi,j
(x)]p · [JIj(x)]p · [Jw(x)]p · Je(x).

Note that in order to avoid working with the large update vector h we calculate local
updates hi,j. These are combined cf. equation (7.39) to form the global update.
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The Jacobian [JSM(x)]p is a scalar value, corresponding to the derivative of the
similarity measure:

[JSMi,j
(x)]p =

∂SM(Ii(x), Ij(x ◦ exp(h)); p)

∂h

∣∣∣∣
h=0

=
∂SM(Ii(x), I; p)

∂I

∣∣∣∣
I=Ij(x◦exp(0))=Ij(x)

= ∇SM(Ii(x), Ij(x); p). (7.48)

The Jacobian [JIj (x)]p is a matrix of dimension (1× 3), corresponding to the spatial
derivative of the moving image under the current transformation x:

[JIj(x)]p =
∂Ij(w(x ◦ exp(h),p))

∂h

∣∣∣∣
h=0

(7.49)

=
∂Ij(w(x, w(exp(h),p)))

∂h

∣∣∣∣
h=0

(7.50)

=
∂Ij(w(x, z))

∂z

∣∣∣∣
z=w(exp(0),p)=p

(7.51)

= ∇Ij(w(x,p)). (7.52)

The Jacobian [Jw(x)]p is of dimension (3× 16), corresponding to the derivative of
the vector w(Z,p) with respect to the elements of the matrix Z:

[Jw(x)]p =
∂w(x ◦ exp(h),p)

∂h

∣∣∣∣
h=0

(7.53)

=
∂w(Z,p)

∂Z

∣∣∣∣
Z=x◦exp(0)=x

(7.54)

=

 p> 0 0 0
0 p> 0 0
0 0 p> 0

 . (7.55)

The Jacobian Je(x) is of dimension (16× 6), corresponding to the derivative of the
exponential mapping with respect to each of the transformation parameters hi:

Je(x)i =
∂ exp(h)

∂hi

∣∣∣∣
h=0

=
∂ exp(

∑6
i=1 hili)

∂hi

∣∣∣∣∣
h=0

(7.56)

= exp

(
6∑
i=1

hili

)∣∣∣∣∣
h=0

· li = li (7.57)

Stacking the vectorized basis vectors [li]v of se(3) leads to:

Je(x) = [[l1]v, . . . , [l6]v] . (7.58)

Analyzing the Jacobian matrices further, not focusing on a specific point but in
their general form, we see that their layout is:
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=

Gradient Scheme

Figure 7.2: Schematic illustration of the Jacobian matrices and the resulting update.
Only the colored boxes are unequal zero.

• JSMi,j
is a 1×N vector containing the derivatives of the similarity metric

• JIj is an N × 3N matrix with the image gradients in all 3 directions on the
diagonals

• Jw is a 3N × 16 matrix

• Je is a 16× 6 matrix

with N = |Ω| the number of points in the grid. The product of the Jacobians Jw · Je
for one specific point p has the form

[Jw]p · Je =

 0 pz −py 1 0 0
−pz 0 px 0 1 0
py −px 0 0 0 1.

 (7.59)

The extension of the product to N points leads to a matrix with the following
structure:

Jw · Je =



0 p1
z −p1

y 1 0 0
...

...
...

...
...

...
0 pNz −pNy 1 0 0
−p1

z 0 p1
x 0 1 0

...
...

...
...

...
...

−pNz 0 pNx 0 1 0
p1
y −p1

x 0 0 0 1
...

...
...

...
...

...
pNy −pNx 0 0 0 1


. (7.60)

We schematically depict the scheme of the Jacobian matrices in figure 7.2. The
illustration is corresponding to an image consisting of N = 4 pixels, 3 dimensions,
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and 3 transformation parameters (3 translations). The calculation of the Jacobian of
the cost function corresponds to an accumulation of all point-wise Jacobians:

JE(x) =
∑
p∈Ω

[JE(x)]p. (7.61)

7.3.3.2 Gauß-Newton

For the derivation of the gradient Jf , which is part of the Gauß-Newton optimization,
we have to guarantee that the cost function fulfills further presumptions. The
Gauß-Newton procedure was deduced by starting at a least-squares problem E(x) =∑

i 6=j
1
2
||fi,j(x)||2, see equation (7.36). When considering SSD we can simply set

E(x) =
∑

i 6=j SSDi,j(x), since SSD is intrinsically a least-squares problem.
This is not the case for other similarity measures like correlation ratio or mutual

information. In order to ensure the least-squares nature, we square the similarity
measures, leading to E(x) =

∑
i 6=j ||SMi,j(x)||2. Obviously, optimizing the squared

similarity measure has far-ranging consequences, which we investigate further in
section 7.3.3.4. The gradient Jf is then calculated as:

[Jfi,j(x)]p =

[
∂fi,j(x ◦ exp(h))

∂h

∣∣∣∣
h=0

]
p

(7.62)

=
∂SM(Ii(x), Ij(x ◦ exp(h)); p)

∂h

∣∣∣∣
h=0

(7.63)

= [JSMi,j
(x)]p · [JIj(x)]p · [Jw(x)]p · Je(x). (7.64)

Stacking all the point-wise derivatives leads to the Jacobian of f :

Jfi,j(x) =

 [Jfi,j(x)]p1

...
[Jfi,j(x)]p|Ω|

 . (7.65)

7.3.3.3 ESM

The last gradient that remains is JESM
f for the ESM. Here we also consider the squared

similarity measures like for GN. The calculation of JESM
f is difficult because part of its

calculation is Jf (x ◦ exp(h)), which depends on h that we want to solve for. In order
to address this issue, [Benhimane and Malis, 2004] consider the optimal update step
hopt for the current location x, leading to the perfect alignment xopt = x ◦ exp(hopt).
To consider the influence of this optimal update step for the product:

Jfi,j(x ◦ exp(hopt)) · hopt =
∂fi,j(x ◦ exp(h))

∂h

∣∣∣∣
h=hopt

· hopt,

we have to analyze each of the four factors resulting from the derivation, see equa-
tion (7.64).
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We proceed from right to left, starting with Je. [Benhimane, 2006, pp. 157]
present a proof that:

Je(x) · hopt = Je(x
opt) · hopt

utilizing the properties of the Lie algebra and the exponential map. Next, the
derivative of the transformation Jw is the same for x and x ◦ exp(hopt) [Benhimane
and Malis, 2004]. In order to have an approximation of the third term, the main
assumption of ESM is incorporated. The gradient of the perfectly aligned image
∇Ij(x ◦ exp(hopt)) can be approximated by the gradient of the fixed image ∇Ii(x),
leading to:

JIj(x ◦ exp(hopt)) ≈ JIi(x). (7.66)

This takes the specificity of our optimization problem into account, because for image
registration the possibility exists to approximate this gradient. Naturally, this is
only feasible for images of the same modality. The last term is the derivative of
the similarity measure, which we approximate by JSM(x). This finally leads to the
overall approximation:

Jfi,j(x ◦ exp(hopt)) ≈ JSMi,j
(x) · JIi(x) · Jw(x) · Je(x). (7.67)

Considering the definition of the gradient JESM
f = 1

2
(Jf (x) + Jf (x ◦ exp(h))), and

equations (7.64) and (7.67), we finally get:

JESM
fi,j

=
1

2
· JSMi,j

· [JIi + JIj ] · Jw · Je. (7.68)

evaluated at the current alignment x.

7.3.3.4 Gradient of Similarity Measures

As mentioned in the last section, we optimize the squared similarity measures for
NCC, CR, and MI to ensure the least-squares nature of the optimization problem.
For sum of squared differences this is not necessary. The interesting question is
about the consequences of optimizing the squared function instead. Assuming a
function φ and its squared version Φ = φ2. The first and second derivatives of Φ are
Φ′ = 2 ·φ ·φ′ and Φ′′ = 2 · (φ′)2 + 2 ·φ ·φ′′. These indicate that there are new extrema
for φ = 0 and that they change their type for φ < 0, which is problematic. NCC,
CR, and MI have a lower bound, which is -1 and 0, respectively. This enables to
avoid these optimization problems, by adding a constant ν to the similarity measures
SMi,j + ν, guaranteeing that they are in the positive range.

We list the actual derivatives of the similarity measures in [Wachinger and Navab,
2009b], but they can also be found in e.g . [Hermosillo et al., 2002]. Note that for
the calculation of the update h of the least-squares problems, either an LU- or
Cholesky-decomposition could be used on the normal equations (J>f Jf )h = −Jf f , or
a QR-decomposition on Jfh = −f . Since the normal equations worsen the numerical
condition of the problem, the QR-decomposition presents the stabler choice.

125



Chapter 7: Simultaneous Registration

7.3.3.5 Relationship to Forward/Inverse Compositional Update

In [Baker and Matthews, 2004], the differences between forward and inverse com-
positional updates are discussed. The inverse update scheme has computational
advantages, because the image gradient can be pre-computed. In our case of simulta-
neous registration, where all images move, we are no longer able to pre-compute the
gradient image, and consequently the difference vanishes. It is, however, interesting
to look at ESM from this perspective, because instead of either considering the
gradient of the fixed or moving image, both gradients are combined. Hence, ESM
presents a combination of forward and inverse compositional update.

7.4 Multi-Modal Registration with ESM

The fundamental assumption of ESM, the approximation JIj (x ◦ exp(hopt)) ≈ JIi(x),
prevents its direct application to multi-modal registration. The reason is that for
multi-modal images, the gradient directions and orientations are not comparable. A
solution to address this issues has, however, been presented in chapter 6, with the
creation of structural images. Since they convert a multi-modal to a mono-modal
registration problem, they make the approximation in equation (7.66) meaningful
and ESM therefore applicable.

Another positive aspect of structural representations is a faster similarity evalua-
tion, due to the reduced computationally complexity of the metrics. This is even more
important for simultaneous registration, where the multivariate similarity metrics
are more demanding to calculate. For the case of APE, the influence of the faster
similarity evaluation is quadratic, since all combinations of pair-wise estimates are
calculated in equation (7.36).

A final advantage of structural representations in combination with ESM, that
we want to mention, concerns the validation of registration results. The validation
of rigid registration is generally easier than the validation of deformable registration,
because under the assumption of a rigid object, it is possible to measure the camera
pose to obtain ground truth data. The drawback is, however, that there are rarely
volumetric acquisitions of group of images from a static object. One example concerns
volumetric ultrasound acquisitions with a tracked ultrasound transducer. Another
interesting application is the alignment of multi-modal volumes for neurosurgery.
Effort has been taken to exactly measure the location with bone-implanted fiducial
markers in order to provide ground truth data [West et al., 1997]. This data is
well suited for rigid registration experiments because the acquisitions are performed
within a short time frame, and further, the skull provides a rigid frame limiting
deformations. Since this is a multi-modal scenario, the validation is only possible in
combination with structural representations. The structural representation that we
employ in combination with ESM are entropy images.
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Figure 7.3: Mosaic of baby phantom from 4 acquisitions.

7.5 Experiments

We perform experiments for two different applications to test APE in combination
with the described optimization procedures. One application is the registration of
multiple ultrasound volumes for volumetric ultrasound mosaicing and the second
application is the alignment of a group of multi-modal volumes.

7.5.1 Ultrasound Mosaicing

For ultrasound mosaicing, the experiments were conducted on four 3D ultrasound
acquisitions from a baby phantom, having a resolution of 64× 64× 64 voxels, see
figure 7.3. We displaced the volumes randomly from the correct position, guaranteeing
an accumulated residual error of 30 over all the volumes. We weight 1mm equal to 1◦

to make translational and angular displacement from the ground truth comparable.
Starting from the random initial position we run 100 simultaneous registrations for
each configuration to assess its performance.

In figures 7.4 and 7.5, the averaged residual error is plotted with respect to the
iteration number. For SSD, see figure 7.4(a), we only have one plot because we
do not have to consider the squared variant of it, as already mentioned. The best
performance is obtained with ESM, leading to the fastest convergence. But also
the Gauß-Newton method leads to a robust convergence. Steepest-descent does
not perform well. Although it seems to approach the correct alignment nicely at
the beginning, it diverges into another optimum. In the table in figure 7.4(b), the
number of registrations that diverged are listed. We consider a registration diverged,
if the residual error after 30 steps is larger than half the initial error.

For CR, see figure 7.4(c), the results for GN and ESM are not good. All of the
100 runs diverged. Steepest-descent, although slower, performs better. The situation
changes a lot, when optimizing the squared function, see figure 7.4(d). The ESM
quickly approaches the correct alignment. Also GN improves, but the result is still
not convincing. We also plot the curve for SD as reference, although it is the one of
CR, because we do not use the squared variant for SD.

For NCC and MI, see figure 7.5, the situation is pretty similar to CR. The
performance of GN and ESM when using the non-squared similarity measures is
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Figure 7.4: Plot of the average residual error for each iteration step for SSD, CR,
and squared CR. Comparing CR and squared CR shows the improved performance
of GN and ESM. ESM converges the fastest and leads to the smallest residual error.

insufficient, leading to a high divergence rate. The situation improves enormously
when optimizing the squared function instead. ESM always performs better than
GN, both, with respect to speed and robustness. Furthermore, the performance of
SD is interesting. Although the convergence is slower, compared to the others, it
is in most cases robust. All the registrations are performed on an Intel dual-core
2.4 GHz processor having 2 GB of RAM. The time for one registration, where we
allowed for 30 iterations, is below one minute.

7.5.2 Multi-Modal Registration

For multi-modal registration, we conduct experiments on T1, T2, and PD-weighted
MR images from the BrainWeb database1 and CT, T1, T2, and PD images from the
Retrospective Image Registration Evaluation (RIRE) database2. These are the same

1http://www.bic.mni.mcgill.ca/brainweb/
2http://www.insight-journal.org/rire/
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Figure 7.5: Plot of the average residual error for each iteration step for NCC, squared
NCC, MI, and squared MI. The convergence of GN and ESM is significantly improved
for the squared similarity measures. ESM is converging the fastest.

images that we used in chapter 6. Cross-sectional slices of the original volumes and
entropy volumes for Brainweb are shown in figure 6.4 and for RIRE in figure 6.5.
For the calculation of the entropy images, we use 9 × 9 × 9 sub-volumes in the
case of isotropic voxel spacing. For anisotropic spacing we adapt the neighborhood
accordingly. Further, we perform a spatially weighted density estimation using a
Gaußian weighting scheme together with a kernel-based Parzen window method.
We select 64 bins and a global normalization of the intensity values. The Shannon
entropy is chosen to measure the entropy.

In the simultaneous registration study, we compare ESM on entropy volumes to
Gauß-Newton on entropy and original volumes. For Gauß-Newton on the original
volumes, we select mutual information as similarity metric, which is corresponding
to the sate-of-the-art configuration. Further, we use SSD as similarity measure for
the registration with entropy volumes. We run 50 registrations, each starting from
a random initial position. Each initial position has an accumulated RMS error of
45 over all volumes from the correct alignment, again weighting 1mm equal to 1◦.
The average residual error for each step is shown in figure 7.6. We observe that for
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Figure 7.6: Multi-modal simultaneous registration for BrainWeb (left) and RIRE
(right) volumes. For GN and ESM SSD on the entropy volumes is used, for GN MI
mutual information on the original volumes.

the BrainWeb dataset the convergence of GN on the original volumes with MI and
GN on the entropy images with SSD is identical, as to be expected. ESM converges,
however, significantly faster than GN. On the RIRE data, most registrations do not
converge for GN on the original volumes. GN with entropy images leads to good
registration results. The convergence of ESM is, however, once again significantly
faster than the one of GN.

7.6 Discussion

The experiments show the good performance of simultaneous registration using
the APE framework and gradient-based optimization. The performance of the
optimization methods, however, depends on the chosen similarity measure. In our
experiments, the squared versions of NCC, CR, and MI perform better for GN and
ESM. For all measures, the fastest approximation to the correct results is obtained
with ESM. In most cases GN was faster than SD.

The convergence graphs are not all monotonic, as one would expect; approaching
the ground truth further with each iteration until the convergence is achieved.
The reasons for the increase lie, one the one hand, in the averaging over the 100
registrations, thus diverging trials lead to a large residual error that is averaged over.
And on the other hand, we see the reasons in the complex registration scenario. For
ultrasound mosaicing, the volumes are inherently contaminated by speckle patterns,
making it a difficult registration problem. Analogously, the registration of multi-
modal volumes is challenging. The performance of ESM indicates that it is more
robust in such noisy scenarios because the gradient information of both images is
considered. Finally, our results show that structural representations and ESM nicely
complement each other.
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7.7 Conclusion

We presented further insights into multivariate similarity measures and optimization
methods for simultaneous registration of multiple images. First, we deduced APE
from a ML framework and showed its relation to the congealing framework. This
required an extension of the congealing framework with neighborhood information.
Second, we focused on efficient optimization methods for APE. We started the
deduction of the optimization methods from the same Taylor expansion, to provide
the reader a good overview of the methods and further insights into the relatively
unknown ESM. We further presented the optimization of intrinsically non-squared
similarity metrics in a least-squares optimization framework. Finally, we illustrated
the application of ESM for multi-modal registration with structural representations.
Our experiments showed a superior performance of ESM with respect to speed and
accuracy for the case of ultrasound mosaicing and multi-modal registration.

7.8 Future Work

In recent years, other techniques than gradient-based optimization schemes were
used for image registration. Next to the already mentioned Fourier-based tech-
niques [Reddy and Chatterji, 1996,Padfield, 2010] or the batch alignment by sparse
and low-rank decomposition [Peng et al., 2010], alternative approaches include the
usage of stochastic optimization [Wells et al., 1996,Cole-Rhodes et al., 2003], discrete
optimization [Zikic et al., 2010] and convex optimization [Kokiopoulou and Frossard,
2009,Kokiopoulou et al., 2011b]. For discrete optimization, it is possible to converge
to strong optima, however, this is dependent on the generally sparse discretization
of the search space. Optimization methods that try to combine both approaches,
in a discrete-continuous optimization were proposed [Trobin et al., 2008,Lempitsky
et al., 2008]. Convex optimization gained much popularity in computer vision and
pattern recognition. Typical tasks such as segmentation [Chan et al., 2006] and re-
construction [Kolev et al., 2009] are formulated as convex optimization problems. For
registration, only limited work is available for affine 2D [Kokiopoulou and Frossard,
2009] and recently for affine 3D [Kokiopoulou et al., 2011b] alignment. The principle
is to approximate the images with convex atoms. The application of affine transfor-
mations does not change the convexity of the approximation. Comparing two images,
which is done by calculating the difference, leads to a difference of convex functions
(DC). For DC cost functions, DC programming methods can be applied the find
the global optimum, e.g . the cutting plane algorithm [Kokiopoulou and Frossard,
2009]. The registration with such registration algorithms is so far limited to pairwise,
mono-modal, affine alignment. It would be interesting to extend such approaches to
the alignment of images from different modalities, to groups of images, and to more
general transformation models.
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Chapter 8

Ultrasound Specific Similarity
Measures

In this chapter, we combine the maximum likelihood framework for registration of
chapter 5 with the theory of speckle statistics and sound propagation of chapter 2.
After presenting an overview of imaging models and similarity metrics introduced
in the literature, we propose a locally adaptive Nakagami-based similarity measure.
Moreover, we illustrate that the viewing angle dependency of ultrasound applies an
implicit weighting on the images, negatively affecting the registration process. To
address this issue, we additionally introduce a new matching function separating
reflectivity and scattering regions, which are the results of two different types of
physical interactions of the ultrasound beam with tissue.

8.1 Introduction

In [Wachinger et al., 2007], it was shown that the pairwise registration of ultrasound
images is challenging due to the missing overlap invariance of similarity measures,
favoring a total overlap of the images. The application of simultaneous registration is a
possible solution to this problem, as discussed in chapter 7. Faced with the registration
of only two images, this approach is, however, not applicable. Hence, we try to adapt
similarity measures to the particularities of ultrasound, as stated in chapter 2, to
improve their performance. Especially important is to take speckle characteristics
into account by selecting appropriate noise distributions. The developed measures
can directly be applied for simultaneous registration, where more accurate pairwise
estimates yield a more accurate groupwise estimate with APE.

In section 8.3, we will present an overview of imaging models and similarity
measures presented in the literature. Further, we introduce a new spatially adaptive
metric for envelope data based on the Nakagami distribution. In section 8.4, we focus
on the effects of the viewing angle dependency of ultrasound for registration. A first
attempt is to apply a model of ultrasound reflection to reweight ultrasound images,
trying to make them viewing angle independent. Due to a lack of accuracy of the
model, we propose a new matching function, separating reflection and scattering.
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8.2 Related Work

A large number of articles address the registration of ultrasound images [Strintzis
and Kokkinidis, 1997, Krücker et al., 2002, Cohen and Dinstein, 2002, Xiao et al.,
2002,Boukerroui et al., 2003,Revell et al., 2004,Zikic et al., 2006,Poon and Rohling,
2005, Wachinger et al., 2007, Grau et al., 2007, Basarab et al., 2007, Elen et al.,
2008,Esther Leung et al., 2008,Myronenko et al., 2009]. Typical application areas
are (i) motion measurements in echocardiography for detecting and characterizing
abnormalities, (ii) breast deformation analysis to assess the elastic properties of tissues,
(iii) assessment of tissue strain with elastography, and (iv) multi-view compounding.
In [Strintzis and Kokkinidis, 1997], likelihood functions are presented assuming a
multiplicative Rayleigh noise. This is further extended in [Cohen and Dinstein, 2002],
assuming that both, the moving and the fixed image, are affected by multiplicative
speckle noise. Moreover, the log-compression is incorporated into the imaging model
to achieve better results on B-mode data. These similarity metrics are successfully
applied in [Boukerroui et al., 2003,Revell et al., 2004] for motion estimation with a
block matching approach. In [Basarab et al., 2007], block matching with normalized
cross-correlation is performed for ultrasound flow and elasticity imaging. [Krücker
et al., 2002,Poon and Rohling, 2005] apply a block matching approach to improve
the quality of the compounded images. While [Krücker et al., 2002] evaluate several
similarity measures, with the conclusion that SSD is better suited for low noise
levels, [Poon and Rohling, 2005] entirely focus on NCC. In [Myronenko et al., 2009],
similarity measures based on the bivariate Rayleigh and Nakagami distribution
are presented. Common to all the presented methods is that the parameters of
the distributions are set heuristically on a global basis, which is at odds with the
underlying local data variation.

One of the contributions of this chapter is a locally adaptive similarity measure.
There are several approaches that are related in terms of general registration not
focusing on ultrasound. A typical situation that challenges the application of mutual
information is the registration of images, which contain high intensity non-uniformity
due to the bias field, see section 6.7.3. Approaches that address this issue try to
estimate the joint density in local regions or do a combination of local and global
estimation [Loeckx et al., 2010,Zhuang et al., 2009]. This local adaptation is different
from our contribution, because no noise estimates are performed. Further, the
estimation of joint densities is complicated for small regions, as required for local
MI. Recently, learning-based similarity measure were proposed for multi-modal
registration [Lee et al., 2009,Bronstein et al., 2010]. Supervised learning is performed
on previously registered data to learn an appropriate similarity function. A major
drawback of these methods is the necessity of having access to correctly aligned data
for training. The adaptation of the distribution parameters in our approach could
be regarded as learning, with the learning being directly performed on the actual
images.
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1

2

21

Figure 8.1: Left: Ultrasound image with two example regions. Middle and right:
histograms of the regions together with Nakagami MLE fits (red).

8.3 Ultrasound Specific Likelihood Functions

In the field of segmentation and classification, research on various distributions for
modeling ultrasound scattering has been performed over the last years. In section 2.4,
we illustrated that the commonly used Rayleigh distribution only models a specific
scattering scenario. Alternative distributions were introduced that deal with varying
numbers of scatterers per resolution cell and with the presence of coherent structures.
Especially interesting is the Nakagami distribution, because it allows for modeling a
large number of scattering conditions, while being computationally efficient [Shankar,
2000]. Adaptation to various noise conditions is achieved by setting the shape m and
scale ω parameter accordingly. In figure 8.1, we show the histogram of two regions
of the ultrasound image together with the corresponding Nakagami MLE fit. We
observe a large disparity of the histograms. The Nakagami parameters estimated for
each patch on the same RF image are visualized in figure 8.2. The large variation of
the distribution parameters highlights the necessity of spatial adaptation of noise
models to accommodate for the speckle locality.

A Nakagami-based similarity measure has recently been proposed in [Myronenko
et al., 2009]. It is problematic that the parameters of the distribution are, first, set
globally on the entire image, and second, determined heuristically. As mentioned
above, the advantage of the Nakagami distribution is to model various scattering
scenarios; however, this requires specifying the parameters adequately. Since multiple
scattering scenarios are usually present within an ultrasound image, as illustrated
in figures 8.1 and 8.2, we argue that a local adaptation increases the descriptive-
ness. While this analysis focuses on ultrasound registration, the local adaptation of
similarity measures is of general interest and is also applicable to other domains.

8.3.1 Ultrasound Likelihood Functions

In the following, we present an overview of ultrasound similarity measures proposed
in the literature and derive a new locally adaptive Nakagami-based metric. The
likelihood functions are incorporated in the maximum likelihood estimation for
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Figure 8.2: Illustration of Nakagami MLE parameters shape m and scale ω, calculated
densely on the ultrasound image in figure 8.3.

registration as discussed in chapter 5. Considering ultrasound envelope images I and
J together with the transformation T , registration is formulated as

T̂ = arg max
T

log p(I | J, T, ε) (8.1)

with T̂ the estimated transformation and noise ε. Below, we list several imaging
models and denote them with the initials of the authors, prevailing in the literature.

SK1: Multiplicative Rayleigh Noise

In [Strintzis and Kokkinidis, 1997], an imaging model based on a multiplicative
Rayleigh noise is presented

I = J · ε (8.2)

with ε Rayleigh distributed. This noise model considers only one image to be
degraded by noise, while the other one has to be noiseless. Knowing the distribution
p(ε), we have to find the distribution for the likelihood p(I | J, T ). Assuming that
we know the distribution of a random variable x and we want to calculate the
distribution of a random variable y, with both being related by the function g, so
y = g(x). The fundamental theorem [Papoulis and Pillai, 1991, p.93] states that the
distribution of the random variable y is calculated with

p(y) =
p(x)

|g′(x)|
. (8.3)

In our case, we set g(x) = x · J and obtain dg(x)
dx

= J so that

p(I | J, T ) =
1

J
· p(ε). (8.4)
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Setting the variance of the Rayleigh distribution to 2
π

leads to the log-likelihood
function of SK1

log p(I | J, T ) = log
1

J
· p
(
I

J

)
(8.5)

≈ log

(
I

J2

)
− π

4

I2

J2
. (8.6)

A second noise model is proposed in [Strintzis and Kokkinidis, 1997] with a signal
dependent Gaußian noise, not further considered here.

CD1: Division of Rayleigh Noises

A more realistic and refined model is proposed in [Cohen and Dinstein, 2002],
assuming that each image is contaminated by a multiplicative Rayleigh noise ε1 and
ε2, respectively. Considering the underlying, noise-free scene S, the imaging model
is formulated as I = S · ε1 and J = S · ε2, leading to

I = J · ε1

ε2

= J · η (8.7)

with the division of probabilities η = ε1
ε2

. The distribution of the divisional noise p(η)
is calculated with [Papoulis and Pillai, 1991, p.138]

p(η) =

∫ ∞
−∞

ε2 · p(ηε2, ε2) dε2. (8.8)

Considering the noise in the images to be independent p(ε1, ε2) = p(ε1)p(ε2), of equal
variance, and Rayleigh distributed, the integration results in

p(η) =
2 · η

(η2 + 1)2
. (8.9)

The log-likelihood function of CD1 is

log p(I | J, T ) = log
1

J
· p
(
I

J

)
(8.10)

= log
1

J

2 · I
J((

I
J

)2
+ 1
)2 (8.11)

≈ log I − 2 log J − 2 log

[(
I

J

)2

+ 1

]
. (8.12)

CD2: Logarithm of Division of Rayleigh Noises

The second model in [Cohen and Dinstein, 2002] considers next to the noise contami-
nation of both images also the log-compressed nature of ultrasound images

log I = log(J · η) = log J + log η. (8.13)
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With setting Ĩ = log I and J̃ = log J

η = exp(Ĩ − J̃). (8.14)

The likelihood function, applying the fundamental theorem again, but this time with
respect to the log-compressed images, is

p(Ĩ | J̃ , T ) = η · p(η). (8.15)

This is obtained with g(η) = log J + log η and the derivative g′(η) = 1
η
. The

log-likelihood function for CD2 is

log p(Ĩ | J̃ , T ) = log
exp(Ĩ)

exp(J̃)
· p(exp(Ĩ − J̃)) (8.16)

= log
exp(Ĩ)

exp(J̃)
· 2 · exp(Ĩ − J̃)[

exp(Ĩ − J̃)2 + 1
]2 (8.17)

= log
2 · exp(2(Ĩ − J̃))[

exp(2(Ĩ − J̃)) + 1
]2 (8.18)

≈ Ĩ − J̃ − log[exp(2(Ĩ − J̃)) + 1]. (8.19)

The application of the presented ultrasound specific likelihood terms for simultaneous
registration is presented in [Wachinger and Navab, 2008]. Working with B-mode
images, we achieved a superior performance with CD2 than with SSD and NCC.

Locally Adaptive Nakagami-Based

As explained in section 2.4, the Nakagami distribution is well suited for modeling
speckle statistics in ultrasound. We also discussed that many of the theoretical
properties are lost by a conversion to B-mode, see section 2.4.6. Since we are
interested in adapting the similarity measure to various scattering scenarios, we
directly work with envelope data in order to achieve meaningful results. This is
different to [Strintzis and Kokkinidis, 1997,Cohen and Dinstein, 2002,Myronenko
et al., 2009] that work on B-mode.

For the calculation of divisional noises in equation (8.8), a bivariate distribution
is required, if no assumptions about independence are incorporated as in [Cohen and
Dinstein, 2002]. Since speckle is due to physical interaction of the beam with the
tissue, the same speckle patterns appear under constant acquisition conditions. In
modern ultrasound systems with high frame rates and for acquisitions from the same
viewing angle, it is therefore reasonable to assume the random variables ε1 and ε2 to
be correlated [Cobbold, 2007]. The bivariate Nakagami distribution is [Myronenko
et al., 2009]

p(ε1, ε2) =
mm+1(ε1ε2)m

2m−1σ2(m+1)(1− ρ)ρ(m−1)/2Γ(m)
exp

(
−m(ε2

1 + ε2
2)

2(1− ρ)σ2

)
Im−1

(
−
m
√
ρε1ε2

(1− ρ)σ2

)
(8.20)
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Figure 8.3: Left: Illustration of the subdivision of the image domain into blocks and
patches. Right: Boxplot of errors from rigid registration study.

with ρ being a squared correlation coefficient, the distribution widths σ2 being equal,
and a modified Bessel function of the first kind of order m− 1

Im−1(z) =
∞∑
k=0

z2k+m−1

22k+m−1Γ(k +m)k!
. (8.21)

Incorporating the bivariate Nakagami distribution in the conditional density leads to

p(I|J, T ) =
1

J
p(η) =

1

J

∫ ∞
−∞

ε2 · p(ηε2, ε2) dε2 (8.22)

=
1

J
2(1− ρ)m

Γ(2m)

Γ(m)2

η2m−1

(η2 + 1)2m

(
1− 4ρη2

(η2 + 1)2

)− 2m+1
2

(8.23)

=
1

J

2(1− ρ)m

β(m)
· 1

η
· η2m

(η2 + 1)2m
·
(

1− 4ρη2

(η2 + 1)2

)− 2m+1
2

(8.24)

with β(m) = Γ(m)2

Γ(2m)
. More details on the deduction, however, assuming log-compressed

envelope data and therefore a different imaging model, are presented in [Myronenko,
2010]. Finally, computing the log-likelihood yields the Nakagami-based similarity
measure

log p(I|J, T )

= − log J + log
2(1− ρ)m

β(m)
− log η + 2m log

(
η

η2 + 1

)
− 2m+ 1

2
log

(
1− 4ρη2

(η2 + 1)2

)
(8.25)

≈ − log J − log

(
I

J

)
+ 2m log

( (
I
J

)(
I
J

)2
+ 1

)
− 2m+ 1

2
log

(
1−

4ρ
(
I
J

)2

(
(
I
J

)2
+ 1)2

)
.

(8.26)
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NakAdNakFixNCCSSD

Figure 8.4: Similarity plots for various measures. Blue circle: correct alignment,
black cross: similarity maximum.

8.3.2 Parameter estimation

During each iteration of the similarity computation, the bivariate Nakagami model
has to be instantiated. This requires the specification of a shape parameter m as
well as a correlation coefficient ρ, see equation (8.26). Considering the need for high
locality, the patch size has to be kept at minimum. However, this sparsity constraint
is detrimental for the computation of the m parameter of the bivariate Nakagami
distribution. Additionally, because of the high frequency of this computation,
complexity has to be kept at bare minimum. Therefore, we decided to use a fast
approximation scheme. The distribution parameters are calculated separately for the
moving (mI , ωI) and the fixed patches (mJ , ωJ) with maximum likelihood estimation.
Then, given the individual MLE parameters, the joint shape parameter m of the
bivariate Nakagami is approximated by m = (mI +mJ)/2.

For computing the correlation coefficient ρ for the bivariate Nakagami, probably
the most obvious way is to directly use the corresponding intensities of the patches.
However, due to the noise-susceptibility of ultrasound, a probabilistic correlation
score was chosen in order to increase the overall reliability. In this respect, we employ
the Bhattacharyya coefficient (BC)

BC(p, q) =

∫ √
p(x)q(x) dx (8.27)

with 0 ≤ BC ≤ 1, which is a measure of the relative overlap between two probability
distributions p and q. In our case, the distributions correspond to the Nakagami
MLE estimates of the moving and the fixed image, respectively.

8.3.3 Experiments

Experiments are performed on several RF datasets, acquired with a linear transducer
at 3.3 MHz. The RF data is sampled with 40 MHz. We calculate the RF envelope
with the 2D analytic signal, as presented in chapter 3. It is important to remark that
we directly benefit from the improved statistical properties of the envelope resulting
from the 2D analytic signal in this application. Depending on the depth setting, the
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NakAdNakFixNCCSSD

Figure 8.5: Similarity plots for various measures. Blue circle: correct alignment,
black cross: similarity maximum.

SSD NCC NakFix NakAd

Dataset 1 9.3 9.9 10.4 9.1
Dataset 2 9.8 10.1 10.2 9.2
Dataset 3 9.9 10.4 11.1 9.5
Dataset 4 15.7 15.7 17.0 13.8

Table 8.1: Median of errors of random registration study for various datasets and
similarity metrics. Lowest errors are indicated in boldface.

images have a resolution between 1157 and 2080 pixels in axial, and 256 pixels in
lateral direction. Each dataset consists of a moving and a fixed image. We perform
block matching on 100 blocks in the images, which are equally distributed across the
image. This is schematically illustrated in figure 8.3. For each block, we have the
coordinates from a manual alignment, serving as ground truth data. We compare
SSD and NCC with the similarity measure presented in equation (8.26). Once we
use heuristic values for the distribution parameters, referred to as NakFix, and once
we estimate them on the images, referred to as NakAd. For the heuristic case, we
choose the parameters used in [Myronenko et al., 2009] m = 0.5 and ρ = 0.8. NakFix
is therefore the analogon of the similarity measure presented in [Myronenko et al.,
2009] for not log-compressed envelope data.

To compare the different similarity measures, we extract a patch of 91× 11 pixels
in the moving image and shift it over the block in the fixed image. The distribution
parameters are estimated on these patches. We illustrate similarity plots for two
different blocks in figures 8.4 and 8.5. In both cases, SSD and NCC are not able to
correctly indicate the correct alignment. Moreover, the similarity plot of NCC shows
several local minima. Also the maximum of NakFix is far off the correct alignment.
Interestingly, the adaptation of the parameters, as it is done in NakAd, significantly
changes the similarity function, leading to good results in these cases.

The similarity plots provide a first impression of the performance, which we
further evaluate by performing block matching. As discussed in section 8.2, block
matching is commonly applied in ultrasound registration. We extract patches from
the moving image and try to find the corresponding patch in the fixed image. For
each image, this is done for one patch per block, so on 100 patches. Since we know

141



Chapter 8: Ultrasound Specific Similarity Measures

SSD NCC NakFix NakAd 
0

50

100

150

(a) Dataset 1

SSD NCC NakFix NakAd 
0

20

40

60

80

(b) Dataset 2

SSD NCC NakFix NakAd 
0

20

40

60

(c) Dataset 3

SSD NCC NakFix NakAd 
0

20

40

60

80

100

120

(d) Dataset 4

Figure 8.6: Boxplots of errors from random registration study for block matching.

the alignment of the blocks, we can calculate the Mahalanobis distance with respect
to the ground truth position, serving as error measure. We select the Mahalanobis
distance to compensate for the significantly higher resolution in axial direction. To
be able to perform statistics on the results of the registration, we perform a random
registration study. For this we randomly displace the patch 100 times from the
ground truth position, with maximal initial deviation of ±40 pixels in axial and
±10 pixels in lateral direction. The errors over all patches and all runs are shown
in the boxplots in figure 8.6. We list the median errors in table 8.1. We observe
that the median, the box, and the whiskers are lowest for NakAd in all cases. The
performance of SSD and NCC is comparable, with slight advantages for NCC with
respect to the whiskers. The performance of NakFix for datasets 1 - 3 is slightly
worse than NakAd. For dataset 4, NakFix is not leading to good results.

Next to the analysis of the presented similarity measure for block matching,
we also perform experiments for global rigid registration. Therefore, the image
is separated into blocks, as already discussed previously. This time, we estimate
the parameters for each block and evaluate the similarity measure on the block.
Accumulating the similarity estimates from all blocks leads to the global similarity
estimate. We also perform a random registration study with 100 runs and initial
deviations up to ±240 pixels in axial and ±70 pixels in lateral direction. The results
are shown in figure 8.3. The median errors are SSD: 57.8, NCC: 23.4, NakFix:
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4.1, and NackAd: 2.1. NCC performs better than SSD, but the best results are
obtained for the Nakagami-based similarity measures, with the proposed adaptive
version outperforming the fixed version. Our results therefore confirm the theoretical
advantages of applying a more adequate noise model and the local adaptation of the
similarity measure.

8.4 Viewing Angle Dependency

In the last section, we presented various models to account for speckle noise. The
proposed similarity measure assumes correlated speckle in the images, which is likely
the case for images acquired from a similar pose. For volumetric mosaicing, we
commonly have a limited number of acquisitions from largely varying poses in order
to gain field of view. Especially when scanning parts that show strong reflections
such as bone, diaphragm, or kidney surface, the viewing angle dependency has to
be taken into account. Already in our previous experiments, we noted problems
with the overlap invariance of the similarity measures, favoring a total overlap of the
images [Wachinger et al., 2007]. The reasons for this could either be rooted in the
similarity measures themselves, as [Cahill et al., 2008] addressed, or in the ultrasound
images. We show that the viewing angle dependency of ultrasound images not only
causes angle dependent artifacts like shadow, but also puts an implicit weighting on
the images, favoring a total overlap.

To illustrate the problems that affect the registration process when working
with viewing angle dependent ultrasound images, we create two artificial images
acquired with a curved linear probe, see figure 8.7. The images show a region of high
reflectivity, having a cosine intensity profile, and a scattering region. Multiplicative
Rayleigh distributed noise is added to the images (log-compressed) to simulate the
speckle noise of the ultrasound images. The correct alignment of the two images,
which can be acquired with lateral displacement, corresponds to an overlap of the
scattering regions. However, as we show in the similarity plot of figure 8.7, similarity
measures like CD2 favor a total overlap of the images (0 displacement). The reason
is the dominance of the reflectivity structure, leaving only a local minimum at the
desired position.

To address this issue, we first evaluate methods for reweighting ultrasound images,
making them viewing angle independent. However, currently used ultrasonic imaging
models are not accurate enough, as we will show, to allow such a reweighting. We
instead propose a new ultrasound matching function, consisting of a first term,
measuring the alignment of reflectivity structures, and a second term, measuring the
alignment of the remaining texture. This new matching function has advantages for
US-US, as well as, US-CT registration.

8.4.1 Reweighting Ultrasound Images

A first attempt, when thinking about the problem, is to identify structures of high
reflectivity, calculate the incidence angle of the beam, and use the ultrasonic imaging
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Figure 8.7: Artificial ultrasound images showing reflection, scatter, and speckle.
Similarity plot using CD2 along lateral direction.

model as shown in equation (2.8)

Ir(x) = Ii(x) · cosm θi(x) · ζI(x), (8.28)

to reweight the image, with ζI the reflection coefficient. The result would be the
creation of normalized ultrasound images being less or not at all viewing angle
dependent. In the case of our example, the reflectivity region would result in a
constant similarity value for translations in lateral direction, so that the scattering
region would dominate the registration process.

In the following, we will investigate whether the presented ultrasound model is
accurate enough for reweighting the images. We acquired ultrasound B-mode and
RF images with a curved linear transducer in a water bath with just one object in it,
having a diffuse surface, usually used for single wall calibration, see figure 8.8. The
reflection coefficient ζI(x) is the same for every beam, as we have the common water-
object boundary. The incident intensity Ii(x) is dependent on the attenuation of
the beam along its way to the boundary. The attenuation coefficient, which includes
absorption and scattering effects, is 2.2 · 10−3 dB

cm·MHz
for water. In comparison, the

attenuation coefficients for fat (0.6 dB
cm·MHz

), liver (0.9 dB
cm·MHz

), and kidney (1.0 dB
cm·MHz

),
are about three orders of magnitude larger. Further, the length of the beam in
the middle and the one on the side vary about 2 cm (1.93 cm exactly). This leads
to an attenuation of 22.8 · 10−3 dB by using an acquisition frequency of 2.6 MHz,
considering also the way back to the transducer. Since the ratio of change of intensity
I1
I0

is close to 1 for values close to 0 dB, we can neglect the effect of attenuation for
our experiment.

The received signal, therefore only depends on the incident angle of the beam.
The subsequent cost function has to be minimized in order to find the optimal
exponent m, characterizing best the type of the interface

C(m) =

∫ (
|Ir(x)|

cosm θi(x)
− ζI(x) · Ii(x)

)2

dx (8.29)

d C(m)

dm
=

∫
2

(
|Ir(x)|

cosm θi(x)
− ζI(x)Ii(x)

)
|Ir(x)| · ln(cos θi(x)) · cos−m θi(x) dx

with ζI(x) · Ii(x) being constant for all x on the surface and corresponding to the
measured reflectivity of the middle beam, and |Ir(x)| the absolute value of the
received signal.
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Figure 8.8: Reweighting experiment on ultrasound RF data.

We plot the cost function in figure 8.8(b), where a gradient descent optimization
with the above stated gradient of the cost function leads to m = 34.52. In figure 8.8(c),
we show the intensity profile of the RF data, together with the optimal cosine variant.
The advantage of working with RF data is that no further processing steps or filters
are applied on the data, making a meaningful evaluation of the model possible. In
figure 8.8(e), we show the reweighted RF signal with cos34.52. As can be seen, the
result is not satisfying because instead of having a constant intensity profile, we have
a ”W” shaped one. For other interfaces it may be possible to find an exponent m so
that reweighting works, however, this would only characterize this specific type of
interface and would not be generally applicable. We conclude that the ultrasound
model in equation (8.28) is usually not accurate enough to allow for reweighting
ultrasound images, in order to make them viewing angle independent.

This finding also affects an algorithm for US-CT registration [Wein et al., 2008],
which bases upon the simulation of ultrasound images, applying this ultrasonic
imaging model. In the next section, we introduce a new ultrasound matching scheme,
usable for US-US and US-CT registration, to address this issue.
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8.4.2 A New Ultrasound Matching Scheme

As we concluded, a correction of the angle dependency of the images with the current
model is not feasible. Our approach is therefore to separate reflection and scattering,
which are the results of two different physical interactions of the beam with the tissue,
combined in one image. Reflection occurs at large scale tissue boundaries and is
viewing angle dependent. Scattering is caused by microscopic tissue inhomogeneities
and provides the internal texture of the organs. Scattering is to a certain extent
dependent on the direction of insonification because the ultrasound point spread
functions are not spherically symmetric. However, since we are not able to match
single scattering responses from the resolution cells, it is more appropriate to consider
entire scattering regions, and the echogeneity of these regions does not change with
the viewing angle. In the following, we first present the method that we use for the
crucial identification of regions of reflectivity in the ultrasound images, and then we
describe the new matching function.

Reflectivity Regions

We use the local phase φ, as described in chapter 3, for identifying regions of
reflectivity because it provides us with structural information independent of the
brightness and contrast [Grau et al., 2007]. This independence is very important for
the extraction of reflectivity regions, since the absolute intensity of the reflection
varies with the incident angle. The local phase was already used by [Mulet-Parada
and Noble, 2000] for boundary detection in echocardiography. Recently, [Hacihaliloglu
et al., 2008] achieved good results in segmenting bone in ultrasound images employing
the local phase. [Mellor and Brady, 2005] apply mutual information on local phase
images for multi-modal image registration. [Grau et al., 2007, Zhang et al., 2007]
use the local phase for aligning 3D echocardiographic sequences. We threshold the
phase image with a value τ to obtain a binary mask, indicating reflectivity regions.
Analogously to the identification in chapter 4, we use τ = 0.7 for all experiments,
showing that this is not a crucial parameter. Alternatively, the local phase values
could directly be used as weights, resulting in a fuzzy like mask.

Matching Function

Since the local phase image provides us with structural information, building a
matching function upon this like in [Grau et al., 2007] would already significantly
reduce the effects of the viewing angle dependency on the registration. However,
this also leads to the following drawbacks: First, we would be completely dependent
on the outcome of the algorithm calculating the local phase. And second, texture
information in the form of scattering regions would not be integrated. Focusing
on boundaries seems totally fine for echcardiographic applications, where not much
texturing exists, but for other applications, like abdominal ones, this is not optimal.
Consequently, we propose a hybrid matching function which considers both, feature-
and intensity-based aspects by using reflection and texture.
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Figure 8.9: Similarity plots for images from Figure 8.7 along lateral direction using
SSD.

Considering two images I and J , an image grid Ω, regions of reflectivity ΛI =
{x ∈ Ω|φI(x) > τ} and ΛJ = {x ∈ Ω|φJ(x) > τ}, further Λ = ΛI ∪ΛJ , the matching
function is

M(I, J) =MT
Ω\Λ(I, J) + λ · MR

Ω(φI , φJ) (8.30)

with MT
Ω\Λ measuring the similarity of the texture regions, excluding reflectivity

regions Ω \ Λ, and with MR
Ω(φI , φJ) measuring the similarity of the phase images on

the entire grid Ω. The matching function can be easily extended to the multivariate
case with APE (cf. chapter 7).

Suitable similarity measures for MT are, next to standard measures like SSD,
NCC, and mutual information, the previously discussed ultrasound specific similarity
measures. For them it is important to consider whether RF or B-mode data is used.
Suitable similarity measures for MR are once again the standard measures, and the
similarity measure proposed in [Grau et al., 2007], taking the cosine of the phase
difference. The disadvantage, when choosing two different similarity measures, is
that the correct selection of the weighting term λ is important, since it has to map
the similarity score into a comparable range. Even when working with normalized
images, the outcomes of the similarity measures are not directly comparable, so that
we perform the experiments with the same similarity measures for both terms and
simply set λ = 1.

With regard to the probabilistic framework of chapter 5, the presented metric
integrates as hybrid approach. The description layers are once the phase images and
once the original images. The restriction of the similarity evaluation on the original
images to non-reflectivity regions, Ω \ Λ, is modeled with the keypoint mechanism
for geometric registration.

8.4.3 Experiments

Figure 8.9 shows the results of the new matching function with SSD as similarity
metric for texture and reflection for the data set illustrated in figure 8.7. Comparing
the similarity plots for CD2 and MT , which both use the texture, we can see the
improvement of not considering the reflectivity region Λ in the calculation. We
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Figure 8.10: Ultrasound images acquired from laterally displace positions. Similarity
plots for SSD and the different parts from our new matching scheme.

selected CD2 because the images are log-compressed. The plot of the term MR,
measuring the similarity of the phase images is very smooth, however, does not
indicate the correct alignment at 30. Combining both curves,M, leads to an accurate
cost function with wider capture range than MT .

We also conducted experiments for US-US registration on ultrasound images
acquired with a curved linear transducer, see figure 8.10. The images are acquired
from an ultrasound phantom, with a true displacement of 88.0 mm. The bony
structure on the left side of the first image is depicted in the middle of the second
image. The similarity plots for SSD, NCC, and CD2 are comparable, with SSD
indicating the correct alignment at 96.8 mm. The combined cost function, with NCC
as similarity measure for both terms, indicates the correct alignment at 88.8 mm,
which is close to the true displacement.

8.5 Conclusion

The alignment of ultrasound images is complicated by the viewing angle dependent
nature of the images and their inherent contamination by speckle noise. We introduced
a locally-adaptive similarity measure based on the bivariate Nakagami distribution.
As discussed above, the adaptation of the similarity measure to various scattering
scenarios is necessary to model the noise correctly. Moreover, we analyzed the effects
of the viewing angle dependency on the registration process. This is especially
important for acquisitions at different poses and of regions with strong reflections.
Due to a lack of accuracy of reweighting, we introduced a new hybrid matching
scheme for ultrasound images, incorporating feature- and intensity-based aspects.
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Part IV

MOTION MODELING

This part is about the second clinical application of this dissertation: motion modeling.
First, we address the creation of 4D data by retrospective gating, proposing a purely
image-based system with manifold learning. Second, we introduce a new registration
technique for time-resolved data, considering the spatial and temporal components
simultaneously to guarantee a smooth deformation field along the temporal direction.





Chapter 9

Image-Based Breathing Gating

Respiratory motion is a challenging factor for image acquisition and image-guided
procedures in the abdominal and thoracic region. In order to address the issues
arising from respiratory motion, it is often necessary to detect the respiratory signal.
In this chapter, we propose a novel, purely image-based retrospective respiratory
gating method for ultrasound and MRI. Further, we use this technique to provide a
solution for breathing-affected 4D ultrasound acquisitions with a wobbler probe, and
similarly, the creation of 4D MR with a slice stacking approach. We achieve the
gating with Laplacian eigenmaps, which assign to each image frame a coordinate
in low-dimensional space by respecting the neighborhood relationship, making them
well suited for analyzing the breathing cycle. We validate the image-based gating on
several ultrasound and MR datasets by comparing to alternative gating approaches.

9.1 Introduction

Respiration is a cyclic, irregular motion that leads to deformations in the abdominal
and thoracic region. The respiratory signal monitors the current breathing phase
of the patient. For numerous applications, it is necessary to assign to each image
the corresponding respiratory phase in which it was acquired. One example is the
previously discussed image mosaicing, where only the fusion of images from the same
breathing state leads to consistent panorama images. An alternative to breathing
gating are breath-hold acquisitions, but they further complicate the procedure
and are dependent on the patient’s ability for breath-hold. Another application is
radiation therapy, where organ motion due to respiration can lead to inaccuracies
during target localization [Flampouri et al., 2006]. These inaccuracies require the
treatment margins to be much larger than the tumor size, resulting in exposure of
the healthy tissue in the surroundings to a high radiation dose [Colgan et al., 2008].
It is therefore necessary to study the respiratory motion in the planning process to
decrease treatment margins. For an accurate analysis, 4D imaging techniques are
necessary in order to handle the motion of the organs over time [Remmert et al.,
2007, Li et al., 2008]. Prospective and retrospective gating methods exist, with
advantages of retrospective approaches being discussed in [Rohlfing et al., 2001].
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Figure 9.1: Wobbler angle (blue) and respiratory phase (gray) over time. Dashed
lines indicate respiratory change d within one sweep. Dash dotted line indicates
frames from same angle over several breathing cycles.

We describe the creation of 4D ultrasound and 4D MR data with a retrospective
approach in further details throughout the chapter. 4D data is a prerequisite for
the motion modeling with deformable registration in chapter 10.

The measurement of the breathing phase is generally achieved with external
gating systems, attached to the patient. The disadvantages of the usage of such
systems are long setup times, the prolongation of the overall acquisition, and its
high costs. Additionally, the image data stream and the respiratory signal have to
be synchronized, which is not trivial. For certain imaging devices, such as CT and
MR scanners, solutions for the synchronization exist, however, we are not aware
of such a possibility for ultrasound; leaving the synchronization to the user. The
consequence is that gating systems are rarely used in practice. We propose a purely
image-based retrospective respiratory gating system using manifold learning. The
proposed method is fully automatic and does not need any prior information about
the anatomy, training data, or user interaction. The basic performance of our
algorithm is to assign to a stream of images acquired from the same position over
time the corresponding respiratory signal. In the following, we explain how we us
this basic technique for creating 4D data.

9.1.1 4D Ultrasound with Wobbler

One application that we investigate in more details, and for which we have not yet
found a solution proposed in the literature, is the acquisition of breathing-affected
4D ultrasound with a mechanically steered transducer, also referred to as wobbler.
The problem for using a wobbler in such a scenario is that images in one sweep do
not contain consistent information, but represent the anatomy in different breathing
states. We illustrate this in figure 9.1, where we schematically plot the deviation
angle of the wobbler together with the respiratory signal over time. The phase
difference d indicates the range of breathing phases accumulated in one sweep. We
propose to select all frames acquired from the same angle (dash dotted line) and to
apply the image-based gating on each of these sets of images. Having the respiratory
signal estimated for each angle, we align these local curves and apply a robust spline
curve fitting to create a globally consistent respiratory signal. This, consequently,
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Figure 9.2: (a) Sagittal slices from the volume of interest. Data slices D1, D2, D3

and the dedicated navigator slice, N . (b) The interleaved acquisition of data and
navigator slices. Solid squares indicate navigator slices while the others indicate data
slices with the position number displayed in the boxes. In this case only 3 positions
are illustrated. Courtesy of Martin von Siebenthal [von Siebenthal et al., 2007].

allows us to reconstruct volumes for specific breathing stages.
An alternative to the application of a wobbler to obtain 4D ultrasound would

be a native 3D transducer with elements arranged on a 2D array. Such systems,
however, are still expensive and the access to data streaming and radio frequency
data is very restricted. Our proposed method is, nevertheless, also interesting in
conjunction with 2D array transducers, because we can perform the breathing-gating
on the acquired volumetric data.

9.1.2 4D MRI with Navigator Slices

Several techniques based on MRI have been proposed in the literature to handle
the respiratory motion. Among these are breath-hold and slice stacking techniques.
The problem with breath-hold is that patients may not be able to hold their breath
during the acquisition. [von Siebenthal et al., 2007] use the slice stacking method
where 2D slices from different locations having the same breathing state are stacked
together to reconstruct a 3D image for that state. They acquire dedicated high
quality slices, called navigator slices, at a fixed location to determine a similarity
criterion for sorting the data slices.

The acquisition process for the slice stacking approach is illustrated in figure 9.2.
It is differentiated between data slices Dp

i with p indicating the position and i
indicating time and navigator slices Ni. As already mentioned, the navigator slices
are acquired at a fixed location and are used to estimate the breathing phase. An
alternating acquisition scheme,

{. . . , Ni, D
p
i+1, Ni+2, D

p+1
i+3 , Ni+4, D

p+2
i+5 , . . .}, (9.1)

is applied to interleave the data slices and navigator slices, as shown in figure 9.2.
Further details about the acquisition process are presented in [von Siebenthal, 2008].

153



Chapter 9: Image-Based Breathing Gating

In order to find data slices that are acquired in the same breathing state, its
surrounding navigator slices are compared. The rationale is to assume that if the
enclosing navigator slices are similar, then the data slices are in the same breathing
state. For comparing navigator slices, non-rigid registrations are performed [von
Siebenthal et al., 2007]. Although this produces the desired results, the processing
time, ranging from 10 to 100 hours, is the major drawback of this method for usage
in clinical practice. Our proposed method is able to recover the breathing signal
from the navigator slices within seconds. It can either be applied on its own or as a
pre-processing step for the non-rigid registration by defining a search window. This
significantly reduces the processing time for the non-rigid registration because of the
pre-selection of navigator slices to be registered.

9.2 Related work

There are many articles on image-based gating in ultrasound for detecting the cardiac
motion [Treece et al., 2002,Zhu et al., 2003,de Winter et al., 2003,Karadayi et al.,
2006]. These approaches apply techniques that are either (i) specific to detecting
the cardiac signal e.g . centroid algorithm [Karadayi et al., 2006], (ii) based on user
interaction [Treece et al., 2002], or (iii) designed for intravascular ultrasound [Zhu
et al., 2003,de Winter et al., 2003]. In [Sundar et al., 2009a], a general technique
for breathing gating is proposed and applied to ultrasound data. It bases on the
phase correlation technique to estimate the motion between successive frames. The
breathing phase is estimated from the energy change between consecutive frames.
The inherent limitation of the phase correlation algorithm is that it finds the global
translation in the image plane. Considering that ultrasound images and MR slices
are 2D cross sections of the body, the organ motion is not necessarily in-plane, and
consequently, there is no uniform global translation. This issue is further discussed
in section 9.4. In [von Siebenthal, 2008], the non-rigid registration of navigator slices
is applied for image-based breathing gating in MRI.

We already presented an overview of manifold learning approaches and ap-
plications in section 6.6.1. Interesting in regard to our approach is the 4D CT
reconstruction of the lung [Georg et al., 2008]. Manifold learning is performed on
slabs, where a manual inspection is necessary to crop the slabs to contain only lung
tissue. Further, Isomap is used to create the low-dimensional embedding. In our
work, we deal with the specific challenges of the integration of 4D ultrasound wobbler
data and 4D MRI slice stacking, because each 4D imaging technique has its own
acquisition protocol. Especially in 4D MRI, there is always a trade-off between
acquisition speed, image resolution, and signal-to-noise ratio (SNR) which makes it
more challenging than 4D CT. To this end, we focus on Laplacian eigenmaps, since
it provided us with better results in comparison to Isomap.
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9.3 Manifold Learning for Gating

The general idea of manifold learning is to project a manifold in high-dimensional
space RN to a low-dimensional space Rn, while preserving the local neighborhood,
as described in section 6.6.1. For our applications, we consider one dimension of
the ambient space for each image pixel, so N is corresponding to the resolution of
the images. For the low-dimensional space, we investigated n = {1, 3} as possible
dimensions; experiments with n = 2 led to similar results than n = 1. Considering k
images U = {u1, . . . ,uk} that are acquired over several breathing cycles, the manifold
learning m assigns to each image a coordinate in the low-dimensional space φi

m : RN → Rn (9.2)

ui 7→ φi, (9.3)

with 1 ≤ i ≤ k. The suggestion that images during free breathing lie on a low-
dimensional manifold in the ambient space seems to be justified because variations
between neighboring slices are smooth, and further, slices from the same respiratory
phase but different acquisition times are similar. Each image in the respiratory
cycle corresponds to a point in high-dimensional space. During breathing, we move
back and forth along this manifold or trajectory in high-dimensional space. The
underlying optimization problem of manifold learning tries to optimally preserve
local information, meaning that similar images are mapped to similar positions in the
low-dimensional space. With manifold learning, we are therefore able to project the
manifold in high-dimensional space, with the images lying on it, to low dimensions.
Consequently, it is reasonable to use φi as an estimate for the respiratory phase.
Important to notice is that we do not use a parameterization of the expected motion,
as it is the case in [Sundar et al., 2009a] with global translation. The proposed
method can therefore deal with complex motion patterns, e.g . local translation,
rotation, deformation, out-of-plane motion, because the low-dimensional embedding
is only based on the similarity of images.

9.3.1 Laplacian Eigenmaps

We propose the application of Laplacian eigenmaps [Belkin and Niyogi, 2003], for the
respiratory phase estimation because the technique is well founded on mathematical
concepts (Laplace Beltrami operator) and computationally efficient. Laplacian
eigenmaps build upon the construction of a graph, which represents the neighborhood
information of the dataset. Subsequently, the graph Laplacian is applied to calculate
a low-dimensional representation.

We construct a graph with a node for each point ui and with edges connecting
neighboring nodes. We select for each image ui the l nearest neighbors, by evaluating
the norm ||ui − uι||22. Further, heat kernel-based weights are assigned to the edges
with Wiι = e−||ui−uι||

2
2/t. The similarity measure is important for the neighborhood

selection and weighting, where the calculation of the Euclidean norm between the
points is equivalent to calculating SSD between the images. We also experiment
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with the correlation coefficient as similarity measure, which is up to additive and
multiplicative constants equivalent to the calculation of SSD on normalized input
images [Viola, 1995]. We therefore only have to normalize the input images to
achieve the performance of the correlation coefficient. The normalization is done
by subtracting the mean and by dividing by the standard deviation. Once the
neighborhood graph is constructed, the eigenvectors of the graph Laplacian provide
the embedding map.

9.3.2 Global Consistency in 4D US

The image acquisition processes for US and MR bear certain similarities, however,
the existence of navigator slices for MR facilitates the application. For MR, we only
perform the manifold learning on navigator slices, which are acquired at the same
position, leading directly to a global respiratory signal. For ultrasound, we do not
have those specific slices and therefore have to perform the manifold learning on the
data slices. The idea is to estimate a local breathing signal for each deflection angle
and, subsequently, calculate the global respiratory signal from the local ones.

Given U the set of all acquired images, we partition the set in disjunct subsets
U1, . . . ,Uα, corresponding to the number of different deflection angles α of the
wobbler (dash dotted region in figure 9.1). We perform the manifold learning for
each of the subsets separately mj(ui) = φji , with 1 ≤ j ≤ α. So depending on the
acquisition angle of the ultrasound image ui, the corresponding manifold learning
mj is performed. Considering all the phases estimated from one angle, we have the
local respiratory signals Φj = {φj1, . . . , φjv}, with v the number of frames per angle.
Each local signal contains a consistent estimation of the breathing signal. It is,
however, not possible to directly compare local signals, because the 1D projection of
the manifold learning can be in an arbitrary range. This is illustrated in figure 9.3(a)
with exemplary three local signals corresponding to three angular positions. A simple
normalization of each of the local signals Φj is not sufficient because the extreme
positions of the breathing cycle may not be reached within them. Consequently, we
affinely register local signals in order to retrieve the best scaling sj and translation tj

Φj 7→ sj · Φj + tj. (9.4)

Note that this is a 1D affine registration and that scaling and translation are only
performed in breathing phase direction (y-axis). We do not have to register in
temporal direction, because the acquisition time of the images is provided by the
ultrasound system. This is, in fact, a groupwise registration scenario, where we
choose to align each pair of neighboring curves with a pairwise registration, starting
from the middle one. As cost function serves the distance between curves. The
result of the alignment is shown in figure 9.3(b).

The values of the partial signals Φj are now comparable, but may still contain
outliers. Consequently, we apply a robust curve fitting to all the sample points to
retrieve the global breathing signal. We experimented with various curve models,
including Fourier, sum of sine waves, and splines. We achieved best results with
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Figure 9.3: (a) Local breathing signals from manifold learning before alignment.
Illustrated is the case for 3 angles (3 colors). X-axis indicates ultrasound frame
number. (b) Local breathing signals after alignment. (c) Reconstructed global
breathing signal (red) is calculated by robustly fitting a spline curve through the
aligned local signals (green crosses). The ground truth signal is shown in blue.
Dotted lines indicate the separation of the breathing cycle into several stages. For
each stage a volume is compounded.

fitting a spline curve because it allows for the most flexibility, which is important
due to irregularity of free breathing. The value of the fitted curve represents the
breathing phase of the ultrasound frames, see figure 9.3(c). The proposed method is
not limited to analyzing breathing motion, but could also be applied for studying
cardiac motion. For the cardiac application, the motion curve was reported to be
more regular [Brant and Helms, 2007], so that a Fourier-based curve model may be
more appropriate [Ionasec et al., 2010].

In a final step, the breathing cycle is classified into several breathing stages. For
each of the breathing stages, the ultrasound frames along the various angles are
gathered, and compounded into a final volume, see figures 9.3(c) and 9.4.

9.4 Experiments for 4D Ultrasound

For our experiments, we use an ultrasound system from Ultrasonix (Richmond,
Canada) and an optical tracking system from A.R.T. (Weilheim, Germany). Both
systems are connected to a workstation PC. For the synchronization, we time stamp
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Figure 9.4: 3D rendering of compounded volume and cross-sectional views for one of
the breathing stages.

the data on the tracking system and use a network time server to calculate the time
offset. For the ultrasound data, we use the direct streaming of B-mode images over
the network. We perform tests on multiple patient datasets acquired from different
positions, focusing on the liver and kidney.

In order to validate our results, we compare them to the measurements of an
external gating system. In [Martinez-Möller et al., 2007], four different gating systems
are compared with the best results for an elastic belt and an optical tracking system.
We use the optical tracking and place a tracking target, consisting of 7 retro-reflective
marker balls, on the chest of the patient. Our setup is more accurate than the one
in [Martinez-Möller et al., 2007] for PET tracking, because our field of view is not
hindered by the tube, enabling the tracking with four cameras from different views.
Since we are only interested in the relative motion of the tracking target, and not in
the absolute pose, constant target offsets and calibration errors do not influence the
result; leading to a precise monitoring of the respiratory motion. The tracking system
provides the pose of the tracking target in 3D space, which consists of 3 translational
and 3 rotational components. We apply a principal component analysis of the 6D
tracking data to find the principal component along which direction we measure the
breathing motion. This is, for instance, done analogously for motion modeling in
lung radiotherapy [McClelland et al., 2006]. Further, we low-pass filter the signal to
remove cardiac motion and extract the respiratory signal. We refer to the tracked
signal as ground truth, which is not completely correct because it contains tracking
errors. However, it is the best that can currently be achieved [Martinez-Möller et al.,
2007] and is sufficient to validate the performance of our image-based approach.

We compare our approach to the phase correlation technique applied in [Sundar
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Figure 9.5: Analysis of the gating techniques for synthetic images. Three different
motion scenarios are illustrated in the top row. The corresponding gating curves for
the phase correlation are shown in the middle row. The last row shows results for
manifold learning. Note that in this case the gating results for all three scenarios are
identical and corresponding to the surrogate signal.

et al., 2009a] 1. Unfortunately, with this technique, we do not achieve meaningful
results for our datasets. We think that this is due to the limitation of the approach
to approximate the 3D motion with a global translation in 2D. In order to illustrate
this limitation, we produced synthetic images that show periodic motion. The first
scenario consists of a rectangle moving up and down, see figure 9.5. For the second,
we add a fixed rectangle, and for the third we add a rectangle that grows and shrinks.
We plot the corresponding energy curves of the phase correlation technique. We
further show the gating results for our manifold learning approach in figure 9.5,
which are identical for all three scenarios and corresponding to the ground truth
signal. The result with the phase correlation technique for the first scenario (blue) is
approximating the true signal. The addition of a fixed object (red) leads to a signal
with double frequency and the addition of the shrinking/growing object (green),
leads to a further distortion of the motion signal. Since the results are already not
optimal for this easy synthetic case, it is comprehensible that this approach is not
best suited for breathing estimation in a noisy ultrasound or MR environment with
3D anatomy moving in and out of plane. Additional results of the phase correlation
technique on real data are discussed in the following paragraphs.

The resolution of our ultrasound images is 640× 480 pixels. We downsample the
images in each direction by a factor of 2, leading to N = 1

4
· 640 · 480. This enables a

1We want to thank the authors of [Sundar et al., 2009a] for sharing source code.
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Figure 9.6: 2D Ultrasound images over time from liver (abdomen, right upper
quadrant, oblique section) and kidney (left lateral decubitus position, right intercostal
flank section).
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Figure 9.7: Breathing gating results for 2D (red solid: estimated signal, blue dashed:
ground truth, green dash-dotted: phase correlation).

faster processing and leads to no noticeable degradation of the manifold learning.
We show excerpts of two datasets in figure 9.6. We perform all our experiments with
a graph neighborhood of l = 14. The number of images for manifold learning varies
between 100 and 300, where we did not notice a dependency of the performance on
the number of input samples. For the low-dimensional space, we perform experiments
with embeddings to 1D and 3D. In the case of ultrasound images, the results are
very similar, so that we concentrate on the 1D case.

In figure 9.7, we show the result of the respiratory gating for one of the 2D
datasets together with the ground truth signal. For comparison, we also plot the
result of the phase correlation technique, which confirms the findings of the synthetic
experiments. We calculate the correlation coefficient (CC) between the detected and
ground truth signal for multiple 2D datasets, cf. table 9.1. It is remarkable that the
ground truth signal is almost perfectly detected. All peaks in the ground truth signal
also appear in the detection. Further, the calculation of the correlation, which is in
the range of 95%, confirms the visual similarity of the graphs. We also experimented
with normalizing the images before passing them to the manifold learning, noticed
however no significant improvement.
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Table 9.1: 2D+t results

2D Correlation Coeff

liver1 95.4 %
liver2 94.4 %
liver3 93.6 %
kidney 97.3 %

Table 9.2: 3D+t results

3D Correlation Coeff

liver 30◦ 94.3 %
liver 45◦ 95.8 %
liver 60◦ 96.8 %

kidney 45◦ 94.4 %

Figure 9.8: Sample slices selected from one breathing cycle. Red-square markers
indicate the slice locations in the signal. The auxiliary line assists in observing the
liver movement.

For the 4D experiments, we show the result of a fitted curve in figure 9.3. We
also calculate the correlation coefficient between the fitted curves and ground truth
for four datasets, see table 9.2. We experimented with three different angular ranges,
30◦, 45◦, and 60◦ (maximum of probe), for which the probe steers to 15, 21, and 29
different angular positions. We split the breathing signal into 9 different breathing
stages, and compound a 3D volume for each of the stages. A volume rendering of
one of the volumes is shown in figure 9.4.

We perform statical tests to analyze the significance of our results. Under the
null-hypothesis H0 that the correlation between tracking and gating is lower than
93.6%, we obtain a p-value lower than p < 0.005. The null-hypothesis can therefore
be rejected and the result is considered to be statistically significant.

All image-based approaches rely on ultrasound acquisitions from the same position,
because otherwise it is not possible to differentiate between probe motion and
breathing motion. To investigate this assumption, we attached a tracking target to
the transducer and analyzed its trajectory. This analysis showed only a negligible
deviation. The still position therefore does not limit the applicability of our method,
which is also confirmed by our good gating results.
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Figure 9.9: Breathing gating results for MRI navigator slices from ETH dataset
(red solid: estimated signal, blue dashed: ground truth, green dash-dotted: phase
correlation). The correlation between the manifold learning and ground truth is 98%,
between phase correlation and ground truth is 2%.

9.5 Experiments for 4D MRI

We perform experiments on four different MRI datasets to evaluate the proposed
method. Two of them originate from ETH and two from UCL. For each dataset,
diaphragm tracking is performed to have a ground truth (GT) signal to compare
to [Timinger et al., 2005,Nguyen et al., 2009,King et al., 2009,Rijkhorst et al., 2010].
The general disadvantage of diaphragm tracking is its limitation to certain slice
positions and orientations. For our experiments this is fine because we only need a
reference signal and we can select the slice with the best visibility of the diaphragm
for tracking. A further advantage of the proposed method is that it is applicable
to almost any slice orientation and position, as is shown in following. Moreover,
diaphragm tracking necessitates the manual placement of a tracking window, while
the proposed method is totally automatic.

9.5.1 ETH Datasets

The first dataset is the navigator slices acquired at ETH [von Siebenthal et al., 2007],
as described in section 9.1.2. These slices have a spatial resolution of 255× 255, a
temporal resolution of about 2.7 Hz, and are acquired with a Philips 1.5T Achieva.
The sagittal plane was chosen as the imaging plane due to its ease of tracking
vascular structure with minimal out-of-plane motion, since the dominant motion of
the liver is in the superior-inferior direction [Rohlfing et al., 2004]. A reconstructed
breathing cycle with sample MR images is shown in figure 9.8. We further show a
comparison between the reconstructed signal of all navigator slices and the ground
truth respiratory signal in figure 9.9. The visual similarity of the curves is confirmed
by a correlation of 98%. Also illustrated is the signal obtained from the phase
correlation technique, leading to a correlation of 2%.

The proposed approach is computationally much more efficient than [von Sieben-
thal et al., 2007]. In our case, most costly is the calculation of the neighborhood graph
with the weights. Assuming k images, SSD has to be calculated O(k2) times. In [von
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Figure 9.10: The three graphs show the correlation coefficient of the estimated signal
with the ground truth for the different orientations of the ETH dataset. For each
slice position and orientation, a separate gating is performed, leading to 537 separate
gatings in this experiment. The images in the second row are cross-sections, with the
x-axis of the graph and the image corresponding. To provide an overview of sagittal
slices, for instance, we show an axial view.

Siebenthal et al., 2007], a deformable registration between all image combinations
is calculated, leading to O(k2) deformable registrations. Since SSD is evaluated in
each iteration of the registration, we clearly see the computational benefit of our
approach.

The second dataset is the publicly available 4D data from ETH2, which is created
following the slice stacking principle. Each volume consists of 256× 256× 25 voxels
with a spatial resolution of 1.37 × 1.37 × 4mm3. 14 volumes are available for one
breathing cycle. We perform manifold learning on 2D slices at all possible positions
and orientations, leading to 537 separately estimated respiratory signals with manifold
learning in this experiment. This provides further insights whether certain regions or
orientations are better suited for gating, which is further discussed in section 9.6. We
plot the correlation coefficient with respect to the GT signal for all orientations and
positions in figure 9.10. Also in this figure, we show cross-sectional views, to have a
better overview to which slice position and orientation a specific result corresponds.
We further perform a statistical analysis of these results, which is summarized in
table 9.3. We exclude the results of coronal slices showing only background from
the statistics. Shown is the mean correlation coefficient, the standard deviation, and
the correlation coefficient of the null-hypothesis of the t-test such that we obtain

2http://www.vision.ee.ethz.ch/4dmri/
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Table 9.3: Statistical analysis of results for gating on MRI. Correlation coefficients
are calculated for all orientations and all positions for 3 datasets. Mean CC and
standard deviations for each orientation are indicated. We further calculated the CC
for the null hypothesis such that the p-value of a one-tailed t-test is p < 0.005.

Datasets Orientation # of Pos. Mean CC STD CC CC s.t. (p < 0.005)

ETH
Sagittal 25 98.5 % 0.90 98.0 %
Coronal 256 99.2 % 0.31 99.1 %

Axial 256 99.1 % 0.66 99.0 %

UCL
Sagittal 78 97.1 % 1.37 96.7 %
Coronal 143 95.4 % 2.61 94.8 %

Axial 288 94.2 % 4.46 93.5 %

UCL (filtered)
Sagittal 78 97.7 % 0.94 97.4 %
Coronal 143 95.7 % 2.60 95.1 %

Axial 288 94.4 % 3.19 93.9 %

UCL Mot. Mod.
Sagittal 160 98.9 % 0.54 98.8 %
Coronal 190 98.7 % 0.98 98.5 %

Axial 200 98.5 % 1.13 98.3 %

significant results (p < 0.005). Consider the coronal ETH slices, the hypothesis
that the correlation between the ground truth and tracking signal is above 99.1%
is statistically significant (p < 0.005). The CC in the test is lower for the sagittal
direction because of the lower number of slices, which is determining the degrees of
freedom of the student’s t distribution function. But nevertheless, the CC is in the
range of 98.0% to 99.1%.

9.5.2 UCL Datasets

The third dataset is from UCL and consists of free-breathing MR scans with a field
of view covering the whole abdomen. A balanced-SSFP sequence (TR/TE=4.3/1.46
ms, 30◦ flip angle) was used to obtain high-resolution 4D dynamic scans during
free breathing using a 1.5 T MR scanner (Philips Achieva, Best, The Netherlands)
at Guy’s Hospital, London. Parallel imaging with a 32-channel coil array using a
SENSE acceleration factor of 4.6 resulted in scan times of approximately one second
per dynamic volume. Since the largest liver motion normally occurs in the sagittal
plane [von Siebenthal et al., 2007,Rijkhorst et al., 2010], the highest reconstruction
resolution of 1.4 × 1.4 mm was chosen in this plane, resulting in a slice thickness
of 4 mm. 25 volumes were acquired over 4 breathing cycles. Once again, manifold
learning is performed on 2D slices for all possible positions and orientations. We
plot the correlation coefficient with respect to the GT signal for all orientations in
figure 9.11. The statistical analysis is summarized in table 9.3. In contrast to the
ETH dataset, the UCL dataset contains more noise. This is comprehensible because
the ETH dataset is the result of a sophisticated and time consuming slice stacking
approach, while the volumes of the UCL dataset are acquired in real-time with a
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Figure 9.11: The three graphs show the correlation coefficient of the estimated signal
with the ground truth for the different orientations of the UCL dataset. The red
solid line shows the results of gating on original data, the blue dashed line shows the
results on filtered data. For each slice position and orientation, a separate gating
with only those slices is performed, leading to 509 separate gatings in this experiment.
The images in the second row are cross-sections, with the x-axis of the graph and
the image corresponding. To provide an overview of coronal slices, for instance, we
show a sagittal view.

fast imaging protocol. This leads to slightly worse gating results. We are, however,
able to improve the result by pre-processing the data with median filtering. The
results of the gating on the original slices and noise reduced slices are shown in
figure 9.11. The results of the statistical analysis are summarized in table 9.3. The
mean CC before filtering ranges between 94.2% and 97.1%, while after the filtering
it is between 94.4% and 97.7%. The standard deviation is decreased by about 40%
in sagittal and axial orientations after filtering.

The fourth 4D dataset is created by using a motion model similar to the one
presented in [Rijkhorst et al., 2010]. A set of dynamic 4D MR data was acquired
as described above, and tissue displacements throughout the liver were computed
by registering each volume within the set to a reference volume using a non-rigid
fluid registration method [Crum et al., 2005]. A ground truth surrogate respiratory
signal is computed by positioning a sector inside each MR volume, and using a
navigator window at the location of the diaphragm. By combining the signal with
the registration results, a second order polynomial is fitted at each spatial location,
allowing for the creation of motion fields at arbitrary time points. We apply the

165



Chapter 9: Image-Based Breathing Gating

50 100 150

0

0.2

0.4

0.6

0.8

1

50 100 150

50

100

150

200

0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

50 100 150 200

50

100

150

0 50 100 150

0

0.2

0.4

0.6

0.8

1

50 100 150

50

100

150

200

Sagittal View Coronal View Coronal View

Coronal Gating Axial Gating Sagittal GatingCC CC CC

Pos Pos Pos

Figure 9.12: The three graphs show the correlation coefficient of the estimated signal
with the ground truth for the different orientations of UCL dataset created with
the motion model. For each slice position and orientation, a separate gating with
only those slices is performed, leading to 550 gatings in this experiment. The images
in the second row are cross-sections, with the x-axis of the graph and the image
corresponding. To provide an overview of coronal slices, for instance, we show a
sagittal view.

motion model to a separately obtained breath-hold 3D MRI to create 4D MRI.
Once again, manifold learning is performed on 2D slices at all possible positions and
orientations. We plot the correlation coefficient with respect to the GT signal for
all orientations in figure 9.12. The last position on sagittal slices is constant, due
to boundary effects of the motion model, and does consequently not lead to usable
gating results. The statistical analysis is summarized in table 9.3, with the mean
CC ranging between 98.5% and 98.9%.

9.5.3 Embedding Dimensionality

In this section, we want to further analyze the dimensionality of the embedding space
and perform experiments for 3D and 1D. The projection of the ETH navigator slices
to 1D space is shown in figure 9.13, and the projection to 3D space in figure 9.15. We
arbitrarily select one of the slices as reference slice. We then look for the closest points
in 1D and 3D space with respect to the reference image, calling them the best match
in 1D and 3D, respectively. As distance measure we use the Euclidean distance. The
image corresponding to the 1D best match is shown in the left column of figure 9.14,
and the 3D best match is shown in the right column. Considering the auxiliary
lines, circles, and arrows, we observe that the breathing state of the reference image
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Figure 9.13: Calculated respiratory signal from 1D. X axis shows the slice numbers.
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Figure 9.14: Results using 1D and 3D
signals. Top row: reference slice, twice.
Bottom row left: best match using 1D
signal. Bottom row right: best match
using 3D signal. Red line, circle and
arrow assist comparison.
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Figure 9.15: Scatter plot of manifold
learning results using 3D. Red-diamond:
reference slice, green-circle: 3D best
match, black-square: 1D best match

and 1D best match is not equivalent. In contrast, the slice corresponding to the 3D
best match is almost completely identical to the reference image. Showing that the
embedding to 3D has advantages in finding similar slices. In order to get further
insights, we also show the best match in 3D on the 1D signal in figure 9.13 and the
best match in 1D on the 3D plot in figure 9.15. We observe that the 1D best match
is pretty far away from the reference image in the 3D plot.

For some applications, like finding the closest slice, the embedding into 3D is fine.
For other purposes, such as visualization, instantiation of a motion model [Rijkhorst
et al., 2010], or comparison to a 1D ground truth, a 1D signal is more appropriate.
If we want to reduce the 3D signal to 1D, we have to perform another dimensionality
reduction. The successive application of multiple manifold learning causes no prob-
lems. In figure 9.16(a), we compare the direct embedding to 1D and the combination
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Figure 9.16: Gating experiment performed on the ETH navigator slices and UCL
data to evaluate the difference between a direct 1D embedding and a 3D embedding
with a successive 1D reduction. For the ETH data, the CC between the direct
embedding to 1D and the GT is 98.2% and the CC between the 3D→1D embedding
and GT is 98.8%. For the UCL data, the CC between the direct embedding to 1D
and the GT is 99.8% and the CC between the 3D→1D embedding and GT is 99.9%.

of first an embedding to 3D and a successive reduction to 1D on navigator slices. We
observe that the plots are very similar, which is confirmed by correlations of 98.2%
and 98.8%, respectively. We perform the same experiment on the UCL motion model
data, with the results shown in figure 9.16(b). The correlations are 99.8% and 99.9%,
respectively. These results show that two successive dimensionality reductions do
not significantly improve the result and that a direct embedding to 1D is reasonable,
if a 1D signal is needed.

9.6 Discussion

For ultrasound, we achieved correlations between the proposed method and external
gating of around 95%. For the ETH and UCL motion model data, the correlation
is in the range of 98%. For the UCL free-breathing MR data it is in the range of
95%, with a slight improvement after filtering. The very low standard deviation is
noticeable. This shows that the proposed method is very versatile and leads in almost
all scenarios to excellent gating results. For the two UCL datasets, we achieved the
lowest performance on axial slices, and the best results on sagittal slices. This is
in line with previous observations [von Siebenthal et al., 2007]. The slightly lower
correlation for the sagittal planes on the ETH data is a bit surprising and may be
due to the large slice thickness.

Our experiments have further shown that the phase correlation technique was
not able to extract the respiratory signal from the data. Diaphragm tracking is
a valid alternative, does however request user interaction by placing the window
and is further limited to views showing the diaphragm. Our results show that the
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proposed method can be applied to arbitrary orientations and that even gating on
axial planes leads to good results. For ultrasound, diaphragm tracking is even more
limited, because it is difficult to have a nice view of the diaphragm during the entire
breathing cycle; showing a clear advantage of our method.

The respiratory signal is displaying the current respiratory state of the patient. It
is, however, not entirely clear, how this state is defined. One possibility would be to
measure the amount of air in the lungs; another possibility would be to measure the
displacement of the diaphragm. While there is definitely a high correlation between
such quantifications, they are not identical. Since we want to automatically extract
the respiratory signal from the data, it is important for our evaluation to relate to a
ground truth respiratory signal. Due to the lack of a global consensus, we compared
our results to the tracking results from an external tracking system and the tracking
of the diaphragm, which are both commonly used procedures. We also want to point
out that these respiratory signals are prone to errors during acquisition; however, the
error is generally low enough to make the comparison in our scenario meaningful.

The discussion about the definition of the respiratory signal is continued when
it comes to the dimensionality. Our experiments show, that we achieve a better
discrimination for MR with an embedding to 3D than 1D. The 3D signal over time
can definitely not be as nicely visualized as the 1D signal, however, it may as well
be considered as an adequate representation. The question whether we first have to
extract a 1D signal out of the 3D signal to have a usable respiratory signal cannot
be generally answered, but is dependent on the specific application. If the interest
lies in finding the closest slice, as it is the case for 4D imaging, this search can
directly be performed in 3D space. For an easy visualization and comparison to an
alternative gating signal, we may however be interested in a 1D signal. We showed in
our experiments that a 1D signal can be obtained from a 3D embedding through the
subsequent application of a second manifold learning, the performance is, however,
similar to a direct reduction to 1D.

9.7 Conclusion

We presented an automatic, image-based respiratory gating method for ultrasound
and MR using manifold learning. Moreover, we proposed a solution for acquiring 4D
breathing data with a wobbler probe and also acquiring 4D MR with the slice stacking
approach. Our method has the advantage that it is fully automatic and does not
require a training phase or prior information about the underlying anatomy, nor the
interaction of the user. To analyze the performance of our algorithm for ultrasound,
we performed experiments on various datasets showing different organs and sections.
The results of these experiments were very good, for both, 2D and 3D ultrasound data
over time. For MRI, we worked on four different datasets and performed manifold
learning on all positions and orientations. A comparison to a tracking-based gating
approach is performed, leading to almost similar results and very high correlation.
Finally, our approach presents an attractive alternative to external tracking and
gating systems with their various setup issues and synchronization problems.
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Chapter 10

Temporal Groupwise Registration
for Motion Modeling

We present a novel method for the registration of time-resolved image sequences for
motion modeling, called Spatio-Temporal grOupwise Registration using free-form
deforMations (STORM). It is a simultaneous registration method, applying APE
as similarity measure and FFD B-splines as transformation model. Furthermore,
STORM is a spatio-temporal registration method meaning that both, the spatial
and the temporal information, are utilized during the registration. This ensures the
smoothness and consistency of the resulting deformation fields, which is especially
important for motion modeling. Experiments are conducted on synthetic and medical
images. Results show the good performance and the robustness of the proposed ap-
proach with respect to artifacts, as well as, its ability to correct for larger deformation
in comparison to standard pairwise techniques.

10.1 Introduction

In radiation therapy, target localization is one of the biggest challenges, since
the exposition of healthy tissue to ionizing radiation should be kept as low as
possible [Colgan et al., 2008]. Organ motion due to respiration, however, can lead
to inaccuracies during target localization [Flampouri et al., 2006]. Modeling and
analyzing organ motion is therefore important for such applications. Thanks to
dynamic imaging modalities, which provide time-resolved images of the anatomy, the
modeling of organ motion becomes feasible. Time-resolved images are extensively
used to study cardiac [King et al., 2010, Klein and Huesman, 2002, Peyrat et al.,
2010], lung [Bystrov et al., 2009, Castillo et al., 2010, Flampouri et al., 2006] and
liver [Rohlfing et al., 2004,von Siebenthal, 2008] motion.

The creation of motion models necessitates the non-rigid alignment of time-
resolved volumes. The standard approach is, first, to perform pairwise registrations,
and second, to combine the deformation fields to create the motion model. This
can result in inconsistent and non-smooth motion fields along the temporal direc-
tion [Sundar et al., 2009b]. In applications, such as radiotherapy, it is, however,
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crucial to ensure smoothness and consistency over time to estimate the delivered
dose accurately at any time point in the image sequence [McClelland et al., 2006].
Further, the pairwise registration approach has the disadvantage that either, all
registrations are performed towards one target leading to large displacements fields,
or, registrations between adjacent volumes are calculated causing the accumulation
of errors in the image sequence [Castillo et al., 2010].

Methods that address the issue of incorporating temporal information [Bai and
Brady, 2009,Ledesma-Carbayo et al., 2005] still have the problem of fixed reference
image selection. Although there are spatio-temporal methods that avoid the selection
of a reference image in the sequence, either their main focus is to register two different
image sequences [Perperidis et al., 2005,Peyrat et al., 2010], or to register two image
sequences with the second one being the replication of the reference image [Sundar
et al., 2009b]. On the other hand, groupwise registration techniques are proposed
that address the choice of the reference image, as discussed in chapter 7. Although,
their application areas are quite different from motion modeling, the main goal of
these approaches is to reduce the bias introduced by a fixed reference image [Joshi
et al., 2004,Crum et al., 2004].

In this chapter, we propose a new registration method for the deformable alignment
of time-resolved images. Instead of applying pairwise registrations, we perform a
simultaneous registration of all images in the sequence. This eliminates the bias
introduced by reference image selection and the error accumulation during the
sequential registration. The second novelty of our approach addresses the need
for a smooth deformation field. Instead of having a separate deformation field for
each image, we create one deformation field that is one dimension higher than the
image dimension. Since we work with free-form deformations (FFDs) based on
B-splines, this intrinsically ensures that we obtain a smooth deformation field at
each update step, also along the temporal direction. This leads to further advantages
for the registration method because it is more robust to outliers, can handle large
deformations, and allows for temporal interpolation, which differentiates it from
existing approaches. From a technical point of view, the method proposed in this
chapter is an extension of the mosaicing approach in chapter 7, where we employed
APE with a rigid transformation model, to FFDs with an additional temporal
dimension.

10.2 Related Work

Approaches aiming at the registration of time-resolved image sequences mainly
focus on 4D modeling of organ motion of heart, liver or lung. [Klein and Huesman,
2002] use 4D deformable image registration to compensate for the cardiac motion in
PET images, following a pairwise approach. [Rohlfing et al., 2004] apply intensity-
based deformable registration on gated MR images to model liver motion during a
respiratory cycle. They register each volumetric phase image to a reference image
by using the displacement field computed for the previous volumetric image as the
initial deformation. [Sarrut et al., 2006] simulate a 4D CT image of the thorax by
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first registering end-diastole and end-systole images and then linearly interpolate
images in between. These methods either do not use temporal information or fix a
reference frame during the registration. [Sundar et al., 2009b] address the temporal
smoothness problem by considering motion estimation as the registration of two
4D image sequences. The second sequence was, however, created by replicating the
end-diastolic image. This means that although this method addresses the problem
of temporal smoothness, the existence of the reference image still remains an issue.

Simultaneous registration approaches align groups of images without the necessity
of reference selection. We refer to chapter 7 for related work on simultaneous
registration. Most related to our approach is the method in [Balci et al., 2007],
combining the congealing framework with free-form deformations for the deformable
registration of a group of brain images. A drawback of simultaneous registration
approaches is that they do not take temporal information into account, since they are
not designed for motion estimation. [Bystrov et al., 2009] try to address both aspects,
temporal smoothness and reference image selection, but the method is limited to
local motion trajectories.

10.3 Temporal Groupwise Registration

Assuming n images I1, . . . , In, with Ii : Ω → R,Ω ⊂ RN , we stack the images and
create an image I of dimension N + 1

I = [I1, I2, . . . , In], (10.1)

with I : Ω× {1, . . . , n} → R. The transformation T : RN+1 → RN+1 is defined as

Tα(x) = x + Dα(x) (10.2)

with the spatial coordinate x ∈ I and Dα the deformation field with deformation
parameters α. We denote the warped images with I↓(x) = I(T(x)). In the following
sections, we describe the main components of our registration method: transformation
model, similarity metric, and optimization method.

10.3.1 Transformation Model

We use FFD B-splines to model non-rigid motion [Rueckert et al., 1999], with an
additional dimension along the temporal direction. For the temporal direction, we
can set B-spline functions of a different order or we can adapt the spacing between
the control points to model the desired smoothness along the temporal direction. We
derive the formulas for N = 2 to make it more comprehensible, leading to x = [x, y, t].
The extension to arbitrary dimensions is straightforward. α is defined as a grid of
nx × ny × nt control points on image I with spacings δx, δy and δt. Applying cubic
B-splines we obtain

Dα(x) =
3∑

a=0

3∑
b=0

3∑
c=0

Ba(r)Bb(s)Bc(u) ·α(̃i+ a, j̃ + b, k̃ + c) (10.3)
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where

ĩ =

⌊
x

δx

⌋
− 1, j̃ =

⌊
y

δy

⌋
− 1, k̃ =

⌊
t

δt

⌋
− 1 (10.4)

r =
x

δx
−
⌊
x

δx

⌋
, s =

y

δy
−
⌊
y

δy

⌋
, u =

t

δt
−
⌊
t

δt

⌋
(10.5)

and B0 to B3 are cubic B-spline basis functions. For the interpolation of 2D + t
dimensional data we have

α(i, j, k) =

αx(i, j, k)
αy(i, j, k)
αt(i, j, k)

 .

Consequently, the number of B-spline coefficients is 3 · nx · ny · nt.

10.3.2 Accumulated Pairwise Estimates

We apply accumulated pairwise estimates (cf. chapter 7) as similarity measure,
focusing on SSD. In order to describe it in the scope of this temporally extended
framework, we use the following notation. Be v ∈ Ω and g, h ∈ {1, . . . , n}. The point
x that is related to the spatial location v and the temporal location g is denoted by
xgv = [v, g]. Therefore, we can access the same pixel by Ig(v) = I(xgv), leading to
the cost function

C(α) =
1

2

∑
g 6=h

||I↓g − I
↓
h||

2 (10.6)

=
1

2

∑
g 6=h

||fg,h(α)||2 =
1

2

∑
g 6=h

fg,h(α)>fg,h(α) =
∑
g 6=h

Fg,h(α) (10.7)

=
1

2

∑
g 6=h

∑
v∈Ω

(I(Tα(xgv))− I(Tα(xhv)))2. (10.8)

with fg,h(α) = I↓g − I
↓
h the difference image as vector and Fg,h(α) the similarity value

between two images.

10.3.3 Optimization

Simultaneous registration leads to a computationally challenging optimization prob-
lem because of the increase of the parameter space and the more complex evaluation
of the similarity metric, as discussed in chapter 7. This is even more challenging
for deformable than for rigid registration. Interestingly, we have fewer parameters
to optimize for the (N + 1)D deformation field, as we would have for n separate
ND fields. To address the computational complexity, we again use gradient-based
optimization procedures, this time in combination with stochastic sampling in the
spatial domain [Viola and Wells, 1997, Zöllei et al., 2005, Balci et al., 2007]. The
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stochastic sampling significantly reduces the computational cost. It is further noted
in [Viola and Wells, 1997] that the noisy estimate of the gradient can reduce the
problem of local minima. The update of the parameters is calculated by

α← α + u (10.9)

with u being the current update. For steepest-descent, we have

uSD = τ · ∂C(α)

∂α
= τ

∑
g 6=h

∂Fg,h(α)

∂α
= τ

∑
g 6=h

fg,h,(α)> · Jfg,h(α) (10.10)

with the Jacobian Jfg,h and the step length τ , which is determined by a line search.
For Gauß-Newton, we have to solve the linear system

(J>fg,hJfg,h)uGN
g,h = −J>fg,hfg,h, (10.11)

where a QR-decomposition of Jfg,hh
GN
g,h = −fg,h leads to a stable and efficient solution.

The global update is calculated with uGN =
∑

g,h uGN
g,h . See chapter 7 for more details

on optimization techniques.

10.3.3.1 Point-Wise Derivatives

Considering the moving image h, the partial derivative with respect to control point
αi,j,k along direction x, with other directions analogously, is

∂C(α)

∂αi,j,kx

= −
∑
g 6=h

∑
v∈Ω

(I↓g (v)− I↓h(v)) · ∇I↓h(v) ·

Bdh(rh)Beh(sh)Bfh(uh)
0
0

 (10.12)

with ∇I↓h(v) = (∇xI
↓
h(v),∇yI

↓
h(v),∇tI

↓
h(v)) and rh, sh, uh as defined in equa-

tion (10.5) with respect to the location xhv and

dh = i−
⌊
x

δx

⌋
+ 1, eh = j −

⌊
y

δy

⌋
+ 1, fh = k −

⌊
h

δt

⌋
+ 1. (10.13)

We consider Bdh(rh) = 0 for dh < 0 and dh > 3, analogously for Beh(sh) and Bfh(uh).
The derivative is unequal zero only in a neighborhood of the control point. We use
the shorter notation Bi,j,k

v,h := Bdh(rh)Beh(sh)Bfh(uh) to indicate the dependency of
the B-spline product on the spatial coordinate [v, h] and on the grid location i, j, k.

Combining the derivatives along all directions leads to

∂C(α)

∂αi,j,k
=
∑
g 6=h

∑
v∈Ω

(I↓g (v)− I↓h(v)) ·

∇xI
↓
h(v)

∇yI
↓(v)

∇tI
↓
h(v)

> ·
B

i,j,k
v,h 0 0

0 Bi,j,k
v,h 0

0 0 Bi,j,k
v,h

 (10.14)

=
∑
g 6=h

∑
v∈Ω

(I↓g (v)− I↓h(v)) · ∇I↓h(v) ·Bi,j,k
v,h . (10.15)
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10.3.3.2 Global Derivatives

With the insights and notation introduced in the point-wise case, we can now describe
the global update with respect to all parameters α. The Jacobian Jfg,h with M = |Ω|
is

Jfg,h(α) =


∂I↓g (v1)−I↓h(v1)

∂α1,1,1 . . .
∂I↓g (v1)−I↓h(v1)

∂αnx,ny,nz

...
. . .

...
∂I↓g (vM )−I↓h(vM )

∂α1,1,1 . . .
∂I↓g (vM )−I↓h(vM )

∂αnx,ny,nz

 (10.16)

= −


∇I↓h(v1) ·B1,1,1

v1,h
. . . ∇I↓h(v1) ·Bnx,ny ,nz

v1,h
...

. . .
...

∇I↓h(vM ) ·B1,1,1
vM ,h

. . .∇I↓h(vM ) ·Bnx,ny ,nz
vM ,h

 (10.17)

= −

∇I
↓
h(v1)

. . .

∇I↓h(vM )


B1,1,1

v1,h
. . .B

nx,ny ,nz
v1,h

...
. . .

...

B1,1,1
vM ,h

. . .B
nx,ny ,nz
vM ,h

 (10.18)

= −∇I↓h ·Bh (10.19)

where the matrix Bh contains the B-spline weights for all spatial locations and grid
locations with respect to image h. This leads to the global update for steepest-descent

uSD =
∂C(α)

∂α
= −

∑
g 6=h

fg,h,(α)> · ∇I↓h ·Bh (10.20)

and for Gauß-Newton we solve the overdetermined system

−∇I↓h ·Bh · ug,h = (∇I↓h ·Bh)
>fg,h (10.21)

with a QR-decomposition. Note that the Jacobian is very sparse and therefore
sparse QR-solvers significantly improve the performance. The dimensionalities of
the involved entities are

fg,h ∈ RM×1 ∇I↓h ∈ RM×3M (10.22)

Bh ∈ R3·M×3·nx·ny ·nt Jg,h ∈ RM×3·nx·ny ·nt . (10.23)

10.3.4 Implementation Details

We position the images along the temporal direction, reflecting its acquisition time.
Alternatively, one could decide to use different criteria to position the images along
the temporal direction, such as amount of change. For some applications it may
further be useful to allow for deformations along the temporal direction, if there is
uncertainty about the exact acquisition time, or different parts of the image were
acquired at different time points. For our application, we do not need this flexibility
so that we set the update along the temporal direction to zero.
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We apply a multi-resolution approach to reduce computational cost and to increase
robustness to local minima. Further, we apply a multi-grid approach, with several
grid refinements on each image resolution, to capture large displacements, as well
as, fine details. In order to guarantee smoothness and consistency over time, we
use a a single control point grid of one higher dimension and overlay this onto the
(N + 1)D image. For the temporal dimension, we use fewer control points than the
number of images to increase the dependency between the images and, at the same
time, to further decrease the computational cost. The software is developed using
open-source libraries ITK and VTK.

10.3.5 Advantages of STORM for Motion Modeling

After having described the method, we want to point out the advantages of STORM
for motion modeling.

(A) Smooth and Temporally Consistent Deformation Field: Current ap-
proaches perform first the registration of the images, and then the combination
and regularization of the transformation fields. The problem is that for the
regularization step, the image information is no longer considered, and therefore
transformation fields may be created that do not match to the underlying images.
In contrast, our single B-spline deformation field across all the images intrinsi-
cally guarantees a smooth and consistent transformation along the temporal
direction in each update step. Similarity and regularization aspects are jointly
optimized.

(B) Robustness Against Outliers: Dynamic imaging is more challenging than its
static counterpart, causing more artifacts and noise in the images. Our method
is robust to such effects because the (N + 1)D deformation field interlaces
neighboring images, with the number of control points determining to which
extent. Images containing outliers can therefore still be correctly aligned, if
neighboring images drive the registration.

(C) Handling Large Displacements: During the registration of time-resolved
images, one of the main issues is the registration of distant images. If the
displacement between the images is too large, pairwise methods fail to find
the mapping. By incorporation temporal information and using groupwise
registration, STORM is able to better handle large displacements in the sequence.

(D) Time Interpolation: In some applications, it is desirable to see the organ at
a specific state of the motion [Ehrhardt et al., 2006,Schreibmann et al., 2006].
However, due to the low temporal resolution of time-resolved images, this is
not always possible. Thanks to the higher dimensional deformation field of
STORM, it is feasible to resample images for any time point by applying the
inverse mapping.
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Figure 10.1: Input and output sequences together with the statistics images for
growing ring experiment.

.

(a) (b) (c) (d)

Figure 10.2: (a) (N + 1)D image. (b) (N + 1)D wireframe mesh. (c) ND meshes in
(N + 1)D. (d) A cut-plane from the (N + 1)D mesh along the temporal direction.

(E) Tracking using deformation field: In 4D radiation therapy, it is necessary
to extract motion trajectories of a tumor region, in order to perform the pre-
operative dosimetry planning [Flampouri et al., 2006]. Our approach enables
tracking of certain structures by clipping the (N + 1)D deformation field along
the temporal dimension.

10.4 Experiments and Results

In order to evaluate the performance of STORM, we experiment with temporally-
related synthetic and medical data sets. In addition to using visual inspection for
qualitative evaluation, mean and standard deviation (STD) along the temporal
direction are computed for the quantitative validation. For clarity of presentation,
every second image is shown for each sequence.

10.4.1 Synthetic Data

Synthetic image sequences are created by applying gradually increasing deformations
to a template image to simulate a smooth deformation over time, reflecting a smooth
motion. The experiments are conducted to demonstrate the advantages listed in
section 10.3.5. For each experiment a multi-resolution setting with 30 iterations
on the highest level that is increased by a factor of 1.2 for each lower level is used

178



10.4 Experiments and Results

Figure 10.3: Input and output sequences together with the statistics images for the
black sheep experiment using our method and Balci’s method.

together with 8 control points in spatial dimensions and 7 control points in the
temporal dimension.

Growing Ring

The input images shown in Fig. 10.1 are binary images of a continuously growing
ring of size 100× 100 pixels. The registered images are also shown in the same figure.
We observe that all images are correctly aligned to the initially unknown target. The
wireframe meshes are presented to visualize the deformations. The direction of the
displacements is encoded in the meshes with the hue component. Mean and STD
images, calculated along the temporal direction, confirm the correct registration. The
mean image clearly shows the ring, and the STD image only shows small deviations
on the edges of the ring caused by interpolation artifacts. The (N + 1)D image
and the control point grid are shown in Figs. 10.2(a) and 10.2(b), respectively. The
visualization of the ND meshes in (N+1)D is shown in Fig. 10.2(c). The deformation
along the temporal direction can be observed by clipping the (N+1)D deformed mesh
along the time-axis as shown in Fig. 10.2(d). The smoothness and consistency of the
deformation along the temporal dimension in this figure, as well as, the smoothness
of the change of colors in Fig. 10.2(c) demonstrates the advantages (A) and (E).

Black Sheep

In this experiment, the same growing ring sequence is used with an outlier image
introduced to create a ‘black sheep’ in the sequence. The input images are shown in
Fig. 10.3. The registration result that we expect, having the smoothness of motion
in mind, is the alignment of the inner ring with the others, while treating the outer
ring as a separate structure. We compare our method to the groupwise registration
method proposed in [Balci et al., 2007]. The results for the two methods are shown
in Fig. 10.3. Looking at the final alignment in Balci’s case, it is clear that it does
not fulfill the expectations since the outer ring is aligned with the others instead of
the inner, real one. In our case, however, the outer ring is identified correctly and
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Figure 10.4: Input and output sequences together with the statistics images for first
vs. last experiment. Last row: Results for experiment with pairwise registration
method.

excluded from the final alignment as expected. These findings are also supported by
the STD and mean images shown in the same figure. The reason for the failure of
Balci’s method and the success of our method is the consideration of the temporal
relationship during the registration, making the method more robust against outliers,
as noted in (B).

First vs. Last

In this case, STORM is tested on a data set with large displacements between
the first and last image to model large motion deformations. A randomly created
B-spline deformation field is asymmetrically applied to a template image of size
100×100 pixels. The goal of this experiment is to demonstrate advantage (C) and the
insufficiency of pairwise registration in such cases. In Fig. 10.4, the input sequence is
shown where the middle image is used for creating the sequence. The results in the
same figure show that the images are aligned up to some small structures which are
difficult for many registration algorithms using FFDs. For the pairwise registration,
after trying different implementations of demons algorithm available in ITK, we
decided to use the diffeomorphic demons proposed in [Vercauteren et al., 2008a],
since it achieved the best performance. After registering the first image (moving)
to the last image (fixed) in the sequence, we show the deformed moving image in
Fig. 10.4. The dissimilarity between the registration result and the fixed image shows
that the large deformation is difficult to handle by pairwise methods.

Time Interpolation

In this experiment, we want to illustrate advantage (D), the interpolation of images
along the temporal dimension. For this we use the sequence in Fig. 10.5, where
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Figure 10.5: Illustration of interpolation in time using STORM. Time interpolation
and naive interpolation are compared by showing the difference images to the original
image.

we omit the indicated image and try to reconstruct it. First, the registration of
the reduced sequence is performed. Second, the temporally adjacent images to
the reconstructed time point are selected. Third, a linear intensity interpolation
between the neighboring, deformed images is performed - with more emphasis
to the temporally closer image. Fourth, the inverse transformation is applied to
the interpolated image [Rueckert et al., 2006], creating the reconstruction. For
validation, we compare the reconstructed image to the original image in the sequence
by calculating the difference image. Further, we perform a näıve reconstruction
by intensity interpolation of the input images. The results clearly show the good
performance of the proposed time interpolation.

10.4.2 Medical Data

First, a time-resolved image sequence consisting of 10 MR images is used. The images
are so called “navigator slices” that are used for 4D MRI reconstruction in [von
Siebenthal, 2008]. The images of size 255× 255 pixels and temporal resolution 2.7
Hz are acquired from the liver using the sagittal plane with Philips 1.5T Achieva
during one respiratory cycle. The second experiment is done with a CT sequence
extracted from the POPI-model [Vandemeulebroucke et al., 2007] which consists of
10 volumes corresponding to phases of a respiratory cycle1. The images are of size
482×141 pixels and correspond to the sagittal planes in the posterior thoracic region.
A multi-level control point grid and image pyramids are used with 3 resolution levels
for images and 2 levels for control point grids. For each level of the control point
grid, registration is performed at each level of the image pyramid. 20 iterations are
used for the finest level of the control point grid and image pyramid. This number is
increased by a factor of 1.2 for each image level and doubled for each control point
grid level.

1The data was obtained from the Léon Bérard Cancer Center & CREATIS lab, Lyon, France.
http://www.creatis.insa-lyon.fr/rio/popi-model
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Figure 10.6: Experiment with MRI sequence. Input, output sequences and mean,
STD images before and after the registration.
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Figure 10.7: (a) (N + 1)D deformation field. (b) A temporal slice from (N + 1)D
mesh. (c) A closer look into the mesh in (b). (d) The breathing curve for the data
set. Note the similarity between the curves in (c) and the curve in (d). The color
coded deformation on the mesh shows the direction of motion along the time-axis.
Individual lines can be seen as the local motion paths.

MRI Sequence

An excerpt from the 10 images in the sequence is shown in Fig. 10.6. The first and
the last images in the sequence correspond to the exhale state of the respiration. We
perform registration on the sequence using STORM, with the results being presented
in the same figure. The visual inspection and also the calculated statistics images
show the good performance of our method for aligning the sequence, and therefore its
applicability for registering real medical images. We present the (N+1)D deformation
field and a slice along the temporal dimension from the (N+1)D mesh in Figs. 10.7(a)
and 10.7(b). Furthermore, we recover the breathing curve for this sequence, see
figure 10.7(d), using the image-based gating technique (cf. chapter 9). The similarity
between the breathing curve and the deformation field in temporal direction in
Fig. 10.7(c) suggests the correspondence between the motion track recovered by both
methods.

CT Sequence

We perform registration using 10 images. The results are presented in Fig. 10.8.
The mean and the STD images in the same figure show the very good performance
of STORM on the thoracic images. The high STD around the upper edge of the
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Figure 10.8: Experiment with CT sequence. Input, output sequences and mean,
STD images before and after the registration.
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Figure 10.9: (a) (N + 1)D deformation field. (b) A temporal slice from (N + 1)D
mesh. (c) A closer look into the mesh in (b). (d) The breathing curve for the data
set. Note the similarity between the curves in (c) and the curve in (d). The color
coded deformation on the mesh shows the direction of motion along the time-axis.
Individual lines can be seen as the local motion paths.

liver is due to the image construction artifacts, which is quite visible in the input
images. We again present images of the (N + 1)D deformation field and the mesh.
Furthermore, as done for the MRI sequence, we recover the breathing curve, see
Fig. 10.9(d). The breathing signal from manifold learning is once again similar to
the recovered motion trajectories of STORM.

10.5 Motion Modeling in Ultrasound

Ultrasound is in comparison to CT and MR rarely used for motion modeling. Con-
sidering the degradation of ultrasound images by speckle noise and artifacts, this is
comprehensible. Further, standard 2D+t acquisitions are not sufficient to account
for complex 3D motion [Ledesma-Carbayo et al., 2005]. With the method presented
in chapter 9, we are, however, able to construct 3D+t US data, which is well suited
for motion modeling. Moreover, the typical advantages of ultrasound (non ionizing,
portable, cheap) make it also an interesting alternative for motion modeling, if the
challenging task of motion estimation could be reliably performed. STORM seems to
be well suited for this task, because it was designed for delivering robust registration
results. This is, on the one hand, due to the application of multivariate similarity
measures, which proved advantages for ultrasound registration (cf. chapter 7). And,
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Figure 10.10: Top left: seed points for random walks segmentation. Top right:
volume rendering with segmented liver mesh. Bottom left: volume rendering with
deformation field. Bottom right: volume rendering with deformation field and mesh.
For the illustrations the data of the first experiment is used (cf. figure 10.11).

on the other hand, due to the imposed temporal constraints across images, which
potentially limit the influence of reverberation, mirror, and shadow artifacts (cf.
advantage (B)). An interesting application for US motion modeling may come up in
combination with high-intensity focused ultrasound (HIFU) [Kennedy et al., 2003]
to more accurately heat and destroy pathogenic tissue. Currently MR guidance is
performed for targeting [Tempany et al., 2003].

In our study, we concentrate on modeling the motion of the liver, for which we
have not found any previous references. Existing approaches for US motion estimation
mainly focus on cardiac and breast applications [Boukerroui et al., 2003,Ledesma-
Carbayo et al., 2005,Elen et al., 2008,Esther Leung et al., 2008,Myronenko et al.,
2009]. Our process for motion modeling is as follows. First, we acquire a sequence of
ultrasound frames with the wobbler transducer during free breathing. From them we
create consistent 4D ultrasound data by applying the presented image-based gating
approach. The advantage is that we can directly save the data on the ultrasound
system without the need of synchronization to an external gating system. Next,
a groupwise deformable registration of the volumes is performed with STORM.
The resulting deformation field can directly be used for analyzing the motion. We
additionally apply the deformation to a segmentation of one of the volumes, which
enables to propagate the segmentation over time and therefore to achieve a 4D
segmentation. For the initial segmentation, we use random walks [Grady, 2006],
where a manual placement of seed points in two slices of the volumes proved to be
sufficient to attain good segmentation results (cf. figure 10.10).

We evaluate the motion modeling on several 4D ultrasound data sets, where we
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Figure 10.11: First experiment with US sequence. Input, output sequences and mean,
STD images before and after the registration.

show the results of two experiments in figures 10.11 and 10.12. The first sequence
consists of 5 acquisition over the breathing cycle, the second one consists of 8
acquisitions, where we show an excerpt of 5 images. The number of control points
along the temporal direction is half the number of volumes plus the additional
3 control points necessary for cubic B-splines, leading to 5 and 7 control points
in the experiments, respectively. The images have a resolution of 200 × 100 × 50
voxels. Comparing the mean and STD images before and after the registration we
observe a clear improvement. The mean images before the registration show several
diaphragms, while we have one clear diaphragm afterwards, which indicates a correct
alignment. The same observation holds for the STD images. In figure 10.10 we
illustrate the deformation field of the fourth volume with respect to the first volume
in the sequence. Moreover, we show the mesh of the segmentation of the liver which
is deformed by the calculated deformation field.

The similarity measures we apply in this study are the multivariate extensions of
SSD and NCC (normalization of volumes) with APE. In chapter 8, we discussed fur-
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Figure 10.12: Second experiment with US sequence. Input, output sequences and
mean, STD images before and after the registration.

ther possibilities for adapting the similarity evaluation to ultrasound. The separation
of reflectivity and scattering does not seem to be beneficial in this scenario, although
there are large reflections at the diaphragm, because we acquire images from the
same position. Further, the locally adaptive Nakagami-based metric is designed for
RF data, while we currently work with 4D B-mode. The acquisition of 4D RF data
is possible; however, the complex scan geometry necessitates the interpolation of
values for the scan conversion, which may affect the distribution. This is subject of
ongoing research. Integrating the discussed CD2 may lead to slight improvements,
which has to be validated in future work.

10.6 Discussion and Conclusion

In this chapter, we have proposed a novel approach for the registration of time-
resolved image sequences by taking advantage of groupwise registration. Unlike
traditional methods, a single higher dimensional B-splines based transformation was
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used. This provides the possibility of having a deformation field also in between
the images. Thanks to this feature, we were able to interpolate images in the
temporal direction, which is necessary in many applications. APE was adapted to
the registration of time-resolved images sequences.

Experiments on synthetic images revealed STORM’s advantages in different
scenarios over the classical pairwise and groupwise registration methods. It was
shown that STORM is more robust against outliers and large deformations within
the sequence. The results showed that the use of temporal information ensures the
consistency and smoothness in the deformation field along the temporal direction.
Moreover, the integration of groupwise registration helped to handle large deforma-
tions within the sequence. We performed time interpolation by reconstructing images
at any time point in the sequence, which is especially important for applications like
radiotherapy treatment planning or 4D image reconstruction. Experiments on CT,
MRI and US sequences showed the good performance of STORM on real medical
images. It was one of the first times that ultrasound was used for modeling the
motion of the liver. Finally, we obtained 4D segmentations by propagating the initial
segmentation over time with the deformation field.

10.7 Annex: Towards a Lie Group Optimization

with FFD B-splines

FFD B-spline deformation fields are by construction smooth, but they are not easily
invertible. Applications like computational anatomy and the presented temporal
interpolation of images rely on invertible transformations. Commonly applied are
diffeomorphisms, which are differentiable deformations with differentiable inverse.
In [Vercauteren et al., 2009], a method is presented to construct diffeomorphic
transformations from vector fields with the exponential map. Similar to rigid trans-
formations in chapter 7, diffeomorphisms do not form a vector space. Diffeomorphisms
are a group under composition, enabling to put a Lie group structure on the space of
diffeomorphisms [Vercauteren, 2008]. Having the Lie group property, it is possible to
perform efficient optimization with ESM. In our scenario, we apply the exponential
map on vector fields parameterized by FFD B-splines to achieve diffeomorphisms.
Working with parameterized transformations reduces the number of variables to
optimize, which is especially important for simultaneous temporal registration.

Denoting the Lie group of diffeomorphisms as G. On Lie groups, the tangent
space at the group identity defines a Lie algebra. The Lie algebra captures the local
structure of the Lie group. The Lie algebra of G is denoted by g. Let L = n · |Ω|
be the number of voxels and K = nx · ny · nt the number of control points. The Lie
algebra is spanned by B-spline basis functions bl ∈ RL×1 with 1 ≤ l ≤ K. Each
basis function bl contains the B-spline weights of the control point l with respect to
all spatial coordinates x ∈ Ω× {1, . . . , n}. It holds therefore blm = Bi,j,k

x , which we
have defined in section 10.3.3.1, with index m corresponding to x. Stacking all basis
functions leads to the matrix B = (b1, . . . ,bK). Each element U ∈ g is expressed as
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a linear combination of basis functions

U =
K∑
i=1

bi · [αix, αiy, αit] = B ·α (10.24)

with local coordinates αix, α
i
y, α

i
t and

α =

 α1
x α1

y α1
t

...
...

...
αKx αKy αKt

 . (10.25)

The entries of α are the B-spline coefficients. The exponential map relates the Lie
algebra to the Lie group:

exp : g→ G (10.26)

U 7→ exp(U) = exp (Bα) =
∞∑
j=0

1

j!
(Bα)j .

For the optimization, the idea is to find from a current diffeomorphism T ∈ G
the update U and to apply the intrinsic update rule on the Lie group with the
exponential map

T← T ◦ exp(U). (10.27)

Important in this case is to have a fast calculation of the exponential. Dealing with
stationary speed vector fields, it is possible to apply the sum and square algorithm
(SSA) to calculate the exponential [Arsigny et al., 2006, Vercauteren et al., 2009].
In [Bossa et al., 2008] it was shown that SSA achieves best results in realistic
registration scenarios in comparison to alternative approximations of the exponential.
It bases on the property of one-parameter subgroups that for an integer η holds

exp(U) = exp(η−1 · U)η. (10.28)

The idea of SSA is to make the maximal displacement in the vector field, max ||U||,
smaller than 0.5 times the voxel spacing. The deformation field corresponding to
this vector field is therefore a diffeomorphism. Moreover, since diffeomorphisms are a
group with respect to composition, the squaring of the deformation fields leads again
to a diffeomorphism. In details, for the SSA as in [Arsigny et al., 2006,Vercauteren
et al., 2009] we select η such that

max ||2−η · U|| ≤ 0.5 · voxel spacing. (10.29)

An explicit first order integration leads to V = Id + 2−η · U . Finally, a recursive
squaring is η times performed V ← V ◦V, leading to the transformation. A big
advantage when working with FFDs is that we only have to impose constraints on
the maximal displacement with respect to the grid spacing. It was shown in [Choi
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and Lee, 2000, Rueckert et al., 2006] that for FFDs based on cubic B-splines it is
sufficient to impose

max ||2−η ·α|| < 0.4 · grid spacing, (10.30)

to obtain diffeomorphisms, setting V = Id + B(2−η · α). Since the grid spacing is
much larger than the voxel spacing, η will be smaller and therefore fewer squarings
necessary.

It is problematic with the composition of deformations resulting from B-spline
vector fields that the composed result cannot necessarily be expressed on the same
basis [Hagenlocker and Fujimura, 1998,Rueckert et al., 2006], while we would like
to keep the same parameterization throughout the optimization. To address this
issue, we assume that the current transformation T is related to a B-spline vector
field. Consequently, there exists an element in the Lie algebra T ∈ g such that
T = exp(T ), resulting in the update exp(T ) ◦ exp(U). The task is to find a vector
field Z(T + U) such that

exp(T ) ◦ exp(U) ≈ exp(Z(T + U)). (10.31)

Theoretically, this poses problems because we deal with an infinite dimensional
space, which has a Lie group structure but is not an actual Lie group [Vercauteren
et al., 2008b]. In practice, it was shown [Bossa et al., 2007] that the Baker-Campell-
Hausdorff (BCH) formula can be successfully applied for diffeomorphisms. By using
the first terms of the BCH, good results for the approximation were reported for brain
atlas construction [Bossa et al., 2007]. The approximation advocated in [Vercauteren
et al., 2008b] is

Z(T ,U) := T + U . (10.32)

Since both vector fields are defined on the same B-spline grid, we have

Z(T ,U) = T + U = B ·αT + B ·αU = B(αT + αU) (10.33)

with αT the B-spline coefficients for the vector field T and analogously for αU . This
leads to the approximation of the composition by adding the B-spline coefficients
and applying the exponential

exp(T ) ◦ exp(U) ≈ exp(B(αT + αU)). (10.34)

The incorporated assumption that we know the B-spline coefficients for T is no
limitation because we start the registration with the identity T = I, which corresponds
to αT = 0.

Let us further denote the transformation of a point p = [x, y, t]> ∈ R3 through
the mapping exp(T ) ∈ G with w(exp(T ),p)

w : G× R3 → R3 (10.35)

(exp(T ),p) 7→ w(exp(T ),p) = exp(T )[p] = δp · exp(T ), (10.36)

which corresponds to the selection of an element in the dense field, exp(T )[p], or
expressed in terms of a matrix-vector multiplication, δp · exp(T ), with δp ∈ R1×L

everywhere zero except for being one at the position of p.
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10.7.1 Optimization on Lie Groups

With the presented update step and Lie group parameterization in the last section,
we can directly apply the presented optimization methods for Lie groups of chapter 7.
For simplicity, we consider the specific case of SSD, as earlier in this chapter.

10.7.1.1 Gauß-Newton

The Jacobian of the difference vector fg,h used for Gauß-Newton has the form (cf.
equation (7.64))

[Jfg,h(exp(T ))]p = −[JIh(exp(T ))]p · [Jw(exp(T ))]p · Je(exp(T )) (10.37)

with

1. [JIh(exp(T ))]p = ∇I↓h(w(Id,p)) = ∇I↓h(p) ∈ R3×3

2. [Jw(exp(T ))]p = ∂w(Z,p)
∂Z

∣∣∣
Z=exp(0)=Id

=

δp

δp

δp

 =

0 . . . 010 . . . 0
0 . . . 010 . . . 0
0 . . . 010 . . . 0

 ∈ R3×L

3. Je(exp(T )) = ∂ exp(B·α)
∂α

∣∣∣
α=0

= exp (B ·α)|α=0 · B = B ∈ RL×K

This is very similar to the Jacobian derived in equation (10.17), with a slight
discrepancy due to different paramterization and indices.

10.7.1.2 ESM

The presented parameterization of the deformation as elements of a Lie group enables
the application of ESM. The gradient for ESM is

JESM
fg,h

(exp(T )) = Jfg,h(exp(T )) + Jfg,h(exp(T ) ◦ exp(Uopt)), (10.38)

considering the optimal alignment exp(T opt) = exp(T ) ◦ exp(Uopt). We again
approximate the gradient of the perfectly aligned moving image with the fixed image

[JIh(exp(T opt))]p ≈ [JIg(exp(T ))]p. (10.39)

Further, considering the results from chapter 7 that

[Jw(exp(T opt))]p = [Jw(exp(T ))]p (10.40)

Je(exp(T opt)) ·αopt = Je(exp(T )) ·αopt (10.41)

we obtain for the gradient of ESM[
JESM
fg,h

]
p

= −([JIg(exp(T ))]p + [JIh(exp(T ))]p) · [Jw(exp(T ))]p · Je(exp(T ))

= −(∇I↓g (p) +∇I↓h(p)) ·

δp

δp

δp

 · B. (10.42)

With the Jacobian we are able to calculate the update field U , which is composed
with the current transformation T , as described in equation (10.34).
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Chapter 11

Conclusion

In this dissertation, we discussed a variety of improvements in the field of image
registration and ultrasound imaging. The main focus was set on the alignment of
ultrasound images, where a good understanding of ultrasound imaging and image
registration is necessary to adapt the methods accordingly. Finally, all advancements
showed its potential in ultrasound mosaicing and motion modeling.

Ultrasound

We presented an overview of ultrasound imaging, studied models for wave propagation
and analyzed scattering statistics. The described concepts served as basis for the
following adaptation of methods to ultrasound. We proposed the application of the
2D analytic signal for extracting the envelope of RF data. This leads to improved
statistical properties, which we illustrated with goodness-of-fit tests. We benefited
from these properties for the design of ultrasound specific similarity measures, where
we intended to exactly model the statistics. Moreover, the local phase was used to
identify structures of high reflectivity. Next, the quality of ultrasound can further be
improved by combining the information from several views. The fusion is challenging
because of the viewing angle dependency of ultrasound. Consequently, we presented
a new method that tries to estimate the acoustic impedance from multiple views.

Registration

After discussing the modality that we mainly work on, we continued with an overview
of the main methodological component, image registration. We devised a novel
probabilistic framework that allows describing a large number of registration tech-
niques. The framework incorporated, in contrast to previous ones, neighborhood
information. The dependencies were structured by introducing an additional layer
of random variables, which can be seen as descriptors. This allowed us to model
registration techniques in the continuum of intensity- and feature-based approaches.
Moreover, we took a closer look on current multi-modal registration approaches
and proposed a new technique with structural representations. The aim of these
representations is to capture the structural information in images, which should be
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the same across modalities. Consequently, we were able to perform multi-modal
registration in a mono-modal framework. This enabled the application of a larger
variety optimization techniques and a faster similarity evaluation, which is especially
interesting for groupwise registration. The specific representations we presented
are entropy and Laplacian images. Laplacian images have theoretical advantages;
however, the high computational cost limits their application.

Ultrasound Mosaicing

The first clinical application, where we combined ultrasound imaging and registration,
was ultrasound mosaicing. We illustrated that the application of simultaneous
registration is advantageous to deal with the particularities of ultrasound. By taking
all the image information into account, we achieved more robust registration results.
We deduced a new class of multivariate similarity measures and presented efficient
gradient-based optimization schemes for them. Most prominently, we applied the
efficient second-order minimization, which achieved the fastest convergence in our
experiments. In combination with structural images, we even managed to perform
simultaneous, multi-modal registration with ESM. Moreover, we devised similarity
measures that account for the viewing angle dependency and noise statistics in
ultrasound. A new similarity measure was proposed that adapts itself to the local
region, where the similarity has to be estimated. We achieved this, on the one
hand, by having a distribution, which is flexible enough to well characterize several
scattering scenarios, and on the other hand, by estimating the parameters of the
distribution on local patches. The adaptation led to improvements for block-matching
and rigid registration. In a second approach, we considered ultrasound images with
strong reflectivity in the context of mosaicing in more details, which cause problems
due to the viewing angle dependency. The presented approach split images into parts
of high reflectivity, corresponding the large tissue interfaces, and speckle regions,
corresponding to microscopic tissue inhomogeneities.

Motion Modeling

For ultrasound mosaicing, we assumed a rigid registration scenario. In the last part
of the dissertation, we extended this to cope with deformations, which is required for
motion modeling. Dealing with a non-rigid scenario has far-reaching consequences,
complicating the image acquisition. We proposed an image-based gating system for
the creation of breathing-affected 4D data. The respiratory signal was extracted
from the image information with manifold learning. The algorithm is completely
automatic and not limited to a specific body part, as it is the case for diaphragm
tracking. In comparison to an external gating system, we achieved very good results.
After the creation of 4D images, we calculate the motion fields with deformable
registration. We devised a new algorithm that takes the specificity of the problem,
the smooth deformation along temporal direction, into account. This was achieved
by working with a single 4D deformation field, instead of multiple 3D deformation
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fields. Moreover, the simultaneous registration approach taken has advantages in
regard to template selection and large displacements. As a special feature, the
4D deformation field allowed for the interpolation of volumes at arbitrary image
points. Our experimental evaluation on MR, CT, and ultrasound images showed the
robustness and quality of the approach. Finally, we were able to demonstrate that
4D motion modeling of the liver in ultrasound is feasible.
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Chapter 12

Perspectives

In this dissertation, we discussed several subjects in medical image analysis and
presented extensions to the state of the art. These extensions are, however, only
small steps on a long journey of discovery. We try to indicate further steps that may
be worth taking.

Ultrasound

In the future, with the increasing distribution of 2D array transducers in the market,
the access to 3D RF data may be easier. Since RF data comes with a higher resolution
than B-mode images and shows the raw measured signals, we consider it the data type
of choice when working with ultrasound. The increased resolution leads to a higher
computational burden, but with the increasing computation power and possibilities
for downsampling this is no real limitation. As indicated in the thesis, working with
RF data is advantageous when incorporating ultrasound noise statistics, which is
necessary to improve the results on processing ultrasound images. With this being
said, future 3D mosaicing and motion modeling can benefit from the integration of
RF data. In this regard, the calculation of the local amplitude with the 3D analytic
signal, instead of the 2D analytic signal, would be interesting. Unfortunately, such
an extension has not yet been proposed. Also challenging when working with the 2D
or 3D analytic signals is the complex geometry of curved transducers.

In inhomogeneous regions of ultrasound images, e.g . at boundaries, the Nakagami
distribution does not lead to good fits. We would require a mixture of Nakagami to
well approximate the distribution in such cases. This could lead to improvements in
the quantification of the statistical properties of the 2D analytic signal, and further,
may allow the design of superior similarity measures. The reasons why we have not
yet taken this step are the challenging derivation of the formulas and the increasing
complexity of the calculation of the estimates.

The outcome of the envelope estimation with the 2D analytic signal is influenced
by a set of parameters. Depending on the purpose of the image, if it is presented
to a physician or if it serves as input for further computational tasks, different
parameters may have to be selected. This goes in the direction of application specific
imaging. Going one step further, we could directly integrate this in the image
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acquisition process. Examples may be the acquisition of ultrasound images with
several frequencies, with several focal zones to clearly capture the boundary, and the
inclusion of beam steering to obtain responses from different insonification angles.
Such images may not lead to visually pleasing results, but they may be well suited for
the subsequent analysis and improve the results of segmentation, classification, and
registration. The adaptation requires the close collaboration of researchers, who work
on the physics of ultrasound imaging and develop acquisition protocols, as well as
scientists, who work on processing these images. Such a close collaboration will also
be necessary for addressing the challenging task of acoustic impedance estimation.
Only the application of a precise model for ultrasound propagation, together with
accurate data, will result in realistic estimates of the impedance.

Registration

With the presented probabilistic framework, various registration techniques can be
modeled. Further, certain pre-processing steps can be derived as being optimal in
a maximum likelihood sense under the consideration of specific assumptions. We
exemplified this for a number of approaches, while in future work, more techniques
could be investigated. It would be very interesting to try to implement this theoretic
model and perform registrations with it. In its most general form, it is very generic
and an implementation is not directly feasible. Limiting the model to certain
descriptors in a hybrid registration setting together with a flexible adaptation of the
description layers, could lead to nice practical results of the presented concepts.

For multi-modal registration, we presented two exemplary structural representa-
tions, which originate from completely different fields and lead to different structural
images. These are definitely not the only structural representations that exist and
more appropriate ones may still be discovered. In order to make the Laplacian images
applicable in practice, more efficient ways for their calculation have to be investigated.
Possible directions are to move away from the dense setting and to concentrate on
keypoint locations, or to apply other dimensionality reduction techniques.

Optimization

Gradient-based registration approaches are more efficient because they use the
additional information provided by the gradient of the cost function to direct the
search. A remaining problem is, however, that such methods are prone to local
optima. In segmentation and reconstruction, there is a growing interest in convex
formulations. The optimization of a strictly convex cost function leads to the global
optimum. Recently, a convex formulation of 2D [Kokiopoulou and Frossard, 2009]
and 3D [Kokiopoulou et al., 2011b] registration was proposed. It is limited to an
affine transformation model and SSD as cost function. With the proposed structural
representations, we could apply the convex registration in multi-modal scenarios.
Moreover, an extension of the convex formulation to simultaneous registration would
be interesting.
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Motion Modeling

The presented image-based gating approach is retrospective. For the investigated
application of creating 4D data, this is not an issue. There are, however, situations
like the instantiation of a motion model that require a real-time gating signal. This is
problematic with manifold learning techniques because they only provide a mapping
for the points in the data set and not for the entire space. Methods exist to address
this out-of-sample problem. A naive approach for our application may be as follows.
We acquire data over a couple of breathing cycles and perform manifold learning on
them. This data can be seen as training data. After the gating, we know for each
frame in the training set the corresponding breathing phase. In the second stage,
we try to perform the gating in real-time. For this, we only have to find for every
incoming frame the closest frame in the training data set and assign the breathing
phase. Efficient techniques in this direction are proposed in computer vision for image
retrieval. An alternative approach would be the application of different dimensionality
reduction techniques, which map the entire space and therefore directly allow for
mapping new images to low dimensions. Such approaches may, however, be less
accurate.

For motion modeling, we are interest in a smooth deformation field along the
temporal direction, as previously mentioned. Having a smooth deformation within
the image domain may, however, lead to inaccuracies. During breathing the liver
slides along the peritoneum, which is not well characterized by a smooth motion field.
The integration of an explicit regularization term in the deformable registration,
which would have to be location dependent, is a possible solution. For ultrasound,
this is less problematic than for MR and CT because of the limited field of view.

Finally, it is not possible to end this thesis having only quoted a French mathe-
matician. We finish therefore with the words of Carl Friedrich Gauß [Gauß, 1808]:

It is not knowledge, but the act of learning, not possession but the act of
getting there, which grants the greatest enjoyment. When I have clarified
and exhausted a subject, then I turn away from it, in order to go into
darkness again.
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Appendix A

Manifold Learning for Patient
Position Detection in MRI

Magnetic resonance imaging is performed without ionizing radiation, however, the
applied radio frequency power leads to heating, which is dependent on the body part
being imaged. Determining the patient position in the scanner allows to better monitor
the absorbed power and therefore to optimize the image acquisition. Low-resolution
images, acquired during the initial placement of the patient in the scanner, are
exploited for detecting the patient position. We use Laplacian eigenmaps to learn
the low-dimensional manifold embedded in the high-dimensional image space. Our
experiments clearly show that the presumption of the slices lying on a low dimensional
manifold is justified. We obtain very good classification results with a nearest neighbor
classifier operating on the low-dimensional embedding.

A.1 Introduction

Current magnetic resonance scanners allow the acquisition of high resolution images.
However, this comes with a higher dose of radio frequency power applied to the
patient. This leads to heating in the body, which has to be monitored by measuring
the specific absorption rate (SAR). The limits for the maximal SAR depend on the
patient position inside the scanner. If the position is not known, the lowest SAR
limit along the body, which is in the neck area, is to be set to the global limit [Keil
et al., 2006]. Determining the patient position within the MR scanner enables to
exploit the maximal image resolution by imposing an SAR model, which is adapted
to the body region.

In our previous work [Keil et al., 2006], we proposed to use the novel move during
scan imaging protocol to determine the patient position. This enables the acquisition
of low-resolution images during the initial positioning of the patient in the scanner.
It has the advantage that the workflow does not have to be altered, ensuring its
seamless integration. During the acquisition, the bed moves with a relatively high
but constant speed, leading to low-resolution slices of 64 × 64 pixels and a slice
spacing of 7.5 mm to 15 mm (see Figure A.1 for examples and a coronal view).
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Figure A.1: Low dimensional embedding of manifold using Laplacian eigenmaps (w/
Nbh, w/ normalization) with ground truth labeling. Below, coronal plane of move
during scan volume.

The objective of patient position detection is to classify these slices according to
different regions of the body such as head, abdomen, and lower leg. In [Keil et al.,
2006], principal component analysis (PCA) is used to reduce the dimensionality
before the classification is performed. PCA [Pearson, 1901] and also the independent
component analysis (ICA) [Hyvärinen et al., 2001] find a set of basis images, and
represent an input image as linear combination of those. However, the representation
of images as a linear combination of those basis images may require many of those
for an accurate representation, and further, the internal structure may not be
easy to identify by analyzing the weighting parameters. Having data that lies on
a low-dimensional manifold living in a high-dimensional space, more appropriate
methods were proposed that respect this structure, cf. section 6.6.1. In this chapter,
we evaluate those methods for patient position detection, focusing on Laplacian
eigenmaps [Belkin and Niyogi, 2003], with exemplary low-dimensional embeddings
shown in Figures A.1 and A.2. Additionally, we investigate if the MR slices lie on a
manifold with intrinsic low dimensionality. In order to achieve good classification
results, we adapt manifold learning methods by integrating the consideration of
neighboring slices and a preceding normalization. The classification is performed
with a nearest neighbor classifier.

204



A.2 Background

−5 −4 −3 −2 −1 0 1

x 10
−3

−4

−2

0

2

4

6

x 10
−3

 

 
head
neck
lung
abdomen
upper leg
knee & lower leg

(a) Laplacian eigenmaps, w/o Nbh, w/o
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(b) Laplacian eigenmaps, w/ Nbh, w/o
normalization.
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(c) Isomap, w/ Nbh, w/ normal.
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(d) PCA, w/ Nbh, w/ normalization

Figure A.2: Low dimensional embeddings. Data labeling with ground truth segmen-
tation.

A.2 Background

The task of dimensionality reduction is to find the underlying structure in a large
set of points embedded in a high dimensional space. The advantages of a successful
dimensionality reduction are: first, it assists the classification because a direct
classification in high-dimensional space does not respect the manifold structure
whereas the classification on the low-dimensional embedding does. And second,
the lower-dimensional embedding enables to visualize the manifold and, therefore,
indicates whether a classification seems feasible.

Manifold learning for dimensionality reduction has recently gained much attention
to assist image processing tasks, as described in section 6.6.1. The applications vary
by using either the intensity image as input or calculating coordinate transformations,
for instance diffeomorphic warps [Souvenir and Pless, 2007,Gerber et al., 2009,Hamm
et al., 2009], between the images, which subsequently serve as input. The calculation
of the deformation field makes sense, if all images to be analyzed show similar objects
e.g . brain images. In our application, we have to deal with images from all body
parts, for which it would not be possible to register one to the other. We therefore
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Table A.1: Results of classification for Laplacian eigenmaps with neighborhood and
image normalization. The overall correct classification rate is 94.0%.

Recognized Class Labels in %
Head Neck Lung Abd. U. Leg L. Leg

Head 95.0 5.0 0.0 0.0 0.0 0.0
Neck 25.9 69.0 5.2 0.0 0.0 0.0
Lung 0.0 0.9 92.0 6.9 0.3 0.0
Abd. 0.0 0.0 2.0 97.2 0.8 0.0

U. Leg 0.0 0.0 0.0 2.1 84.5 13.5
L. Leg 0.0 0.0 0.0 0.0 1.6 98.4

directly perform the dimensionality reduction on the original images. The suggestion
that the MR slices lie on a low-dimensional manifold in the ambient space seems to
be justified because variations between neighboring slices are smooth, and further,
slices from the same body position but different patients are similar.

A.3 Position Detection

In this section we describe the details of the proposed manifold learning approach.
Throughout, we consider one dimension of the ambient space for each image pixel.
Considering k points x1, . . . ,xk in RN lying on a manifold, we want to find a set of
corresponding points y1, . . . ,yk in the low-dimensional space Rn (n� N).

A.3.1 Pre-Processing

Precedent to applying the dimensionality reduction, we normalize the intensity values
in the images. Inhomogeneities and imaging artifacts lead to variation in the intensity
values making the normalization necessary. Further, we integrated neighborhood
information to make each slice also dependent on its locally neighboring slices. The
idea is similar to the consideration of neighborhood information in many image
processing tasks by looking not only at single pixel intensities but the local context,
to make the processing more robust (cf. chapter 5). In our case, we create a new
data point x′i by concatenating it with exactly those neighbors of distance m away

x′i = [xi−m, xi, xi+m]. (A.1)

The concatenation leads to input slices with three times higher dimensionality. In
order to avoid the dimensionality growth, we downsample the data points x′i by the
factor 3, so that the input dimensionality remains N .
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Table A.2: Results of classification for Laplacian eigenmaps w/o neighborhood but
w/ image normalization. The overall correct classification rate is 92.6%.

Recognized Class Labels in %
Head Neck Lung Abd. U. Leg L. Leg

Head 95.7 2.8 0.0 0.0 0.0 1.4
Neck 60.3 34.5 5.2 0.0 0.0 0.0
Lung 0.3 0.3 91.7 6.6 0.9 0.3
Abd. 0.0 0.0 2.7 96.4 1.0 0.0

U. Leg 0.0 0.0 1.8 1.8 83.8 12.6
L. Leg 0.0 0.0 0.0 0.0 3.3 96.7

Table A.3: Results of classification for Laplacian eigenmaps w/o neighborhood and
w/o image normalization. The overall correct classification rate is 90.0%.

Recognized Class Labels in %
Head Neck Lung Abd. U. Leg L. Leg

Head 90.1 2.6 0.0 0.0 0.0 7.4
Neck 62.1 6.9 5.2 0.0 6.9 19.0
Lung 0.0 0.0 92.6 4.6 1.7 1.1
Abd. 0.0 0.0 2.7 96.5 0.8 0.0

U. Leg 0.0 0.0 6.4 2.1 86.1 5.5
L. Leg 7.2 0.2 0.0 0.0 3.0 89.6

A.3.2 Laplacian Eigenmaps

We construct a graph with a node for each point xi and with edges connecting the l
nearest neighboring nodes. Heat kernel-based weights are assigned to the edges with
Wij = e−||xi−xj ||

2
2/t. Once the neighborhood graph is constructed, the eigenvectors of

the graph Laplacian provide the embedding map. In our implementation we choose
to consider the 40 nearest neighbors, so l = 40 and, further, dimension n = 2 as
intrinsic manifold dimensionality with N = 64×64 the dimensionality of the ambient
space. In our experiments, we found out that n = 1 is not sufficient for correctly
distinguishing the classes and the good results for n = 2 make a further increase
superfluous.

A.3.3 Classification

The dimensionality reduction significantly facilitates the classification and simple
classifiers, such as k-nearest neighbors (KNN), can be applied for performing the
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classification in the low-dimensional space. Following the comparison of supervised
learning algorithms [Caruana and Niculescu-Mizil, 2006], random forests and decision
trees outperform KNN, and therefore could lead to further improvements of the
classification results.

A.4 Experiments

We evaluate the manifold learning embedding on 13 whole-body data sets, consisting
of acquisition from male and female patients. Further, some acquisitions were done
with a pillow below the legs and the position of the arms varies. A manual labeling
of the data sets was done, assigning to each slice one of the 6 classes: head, neck,
lung, abdomen, upper leg, and lower leg. We perform the dimensionality reduction
with Laplacian eigenmaps, Isomap, and PCA, see Figures A.1 and A.2. PCA is used
to compare to our previous work [Keil et al., 2006] and illustrate the advantages
of the non-linear embedding methods. We further evaluate the influence of image
normalization and the integration of the neighboring slices.

Next to graphs of the 2D dimensional embedding of the data, we also present
classification results with KNN. To quantify the performance we perform a cross-
validation with a leave-one-out strategy. In Tables A.1 to A.5, we show the results
of the study of the selected approaches. Each row indicates the percentage of a slice
being assigned to one of the 6 classes. Looking at Table A.1, for instance, head slices
are assigned with 95% to the head class and with 5% to the neck class.

We obtain the highest overall correct classification rate of 94.0% with Laplacian
eigenmaps in combination with the normalization of the images and neighborhood
integration. In Table A.1, it can be seen that especially the classification of the head
and lower leg slices is very accurate, which is important to determine if the patient
moves in head or feet first. Remarkable is that in the case of wrong classifications,
labels from neighboring classes are assigned, so that, for example, no head slice
wrongly got detected as abdomen or leg. This does not hold for the classification
without normalization or neighborhood. For Isomap, the classification accuracy is
lower, however, also there the wrong assignments are limited to neighboring classes.
The results for PCA show the lowest classification performance.

The low correct classification results for the neck are due to a significantly lower
number of slices for training, where even for the medical expert, it is difficult to
uniquely assign the transition from head to neck and neck to shoulders.

A.5 Conclusion

We proposed the application of manifold learning techniques for patient position
detection. Our results clearly indicate that the image slices lie on a low-dimensional
manifold embedded in the high-dimensional image space. We proposed to apply
Laplacian eigenmaps for manifold learning and achieved superior results in comparison
to Isomap. Moreover, the proposed adaptation of the method to the specific scenario
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Table A.4: Results of classification for Isomap w/ neighborhood and w/ image
normalization. The overall correct classification rate is 90.1%.

Recognized Class Labels in %
Head Neck Lung Abd. U. Leg L. Leg

Head 93.3 6.7 0.0 0.0 0.0 0.0
Neck 29.3 60.3 10.3 0.0 0.0 0.0
Lung 0.0 1.1 92.6 6.3 0.0 0.0
Abd. 0.0 0.0 7.7 89.3 2.9 0.0

U. Leg 0.0 0.0 0.0 3.7 86.3 10.0
L. Leg 0.0 0.0 0.0 0.0 7.4 92.6

Table A.5: Results of classification for PCA w/ neighborhood and w/ image normal-
ization. The overall correct classification rate is 80.0%.

Recognized Class Labels in %
Head Neck Lung Abd. U. Leg L. Leg

Head 82.0 7.0 0.7 0.0 0.0 10.3
Neck 31.0 25.9 3.4 13.8 0.0 25.9
Lung 0.0 0.3 56.9 42.0 0.0 0.9
Abd. 0.0 0.0 16.1 82.0 1.8 0.0

U. Leg 4.6 0.0 0.0 4.8 82.9 7.8
L. Leg 7.9 0.1 0.5 0.0 2.4 89.1

by the consideration of neighboring slices and image normalization led to a further
improvement of recognition rates. For the evaluation, we performed a classification
with KNN and subsequent cross-validation, leading to very good results.

209



Chapter A: Manifold Learning for Patient Position Detection in MRI

210



Appendix B

Deformable Mosaicing for
Whole-body MRI

Whole-body magnetic resonance imaging is an emerging application gaining vast
clinical interest over the last years. Although recent technological advances shortened
the longish acquisition time, this is still the limiting factor, avoiding its wide-spread
clinical usage. The acquisition of images with large field of view helps to relieve
this drawback, but leads to significantly distorted images. Therefore, we propose
a deformable mosaicing approach, based on the simultaneous registration to linear
weighted averages, to correct for distortions in the overlapping area. This method
produces good results on in-vivo data and has the advantage that a seamless integration
into the clinical workflow is possible.

B.1 Introduction

Whole-body (WB) magnetic resonance imaging is becoming a popular clinical tool
due to the recent technological advances in MRI, making faster acquisitions possible.
Unlike CT, the acquisition of high-resolution MR images is not feasible during
continuous table movement, making a multi-station scanning necessary to cover
larger body regions. The compounding of the partially overlapping volumes is
straightforward, since the MR scanner keeps track of their exact spatial locations.

The creation of WB images further increases the number of clinical applications
for MRI, so far reserved for other modalities, see section B.2. From a current
perspective, the major disadvantage using MRI for WB imaging in comparison to
CT is the longer scanning time. In this chapter, we use MR acquisitions with a large
field of view (FOV), enabling to cover with the same number of scans larger parts
of the body. This, however, leads to a degradation of the images by geometrical
distortion artifacts towards the boundaries, further described in section B.3. We
propose a novel method, originating from groupwise registration (cf. chapter 7), to
correct for the geometrical distortion in the overlapping area, see section B.4. Our
experiments show the good results on in-vivo data, see section B.5.

211



Chapter B: Deformable Mosaicing for Whole-body MRI

B.2 Clinical Applications of WB-MRI

Recent advances in MRI such as multi-channel receiver, parallel imaging techniques,
and automated table movement make high-resolution WB-MRI clinically feasible
[Schmidt et al., 2007].

First clinical studies show its value in oncological

Figure B.1: WB-MRI from
3 stations. Gray bars show
overlap.

applications, which focus on the search for metastases
of cancer patients in the whole body. [Lauenstein et al.,
2004] found out that WB-MRI compares well with stan-
dard methods such as CT, PET, and nuclear scintig-
raphy for the detection of cerebral, pulmonary, and
hepatic lesions and is more sensitive for the detection of
hepatic and osseous metastases. Additionally, the excel-
lent contrast of MRI provides further information about
soft tissue and organs to the physician, supporting his
diagnosis [Goyen, 2007].

Non-oncological applications are whole-body fat
measurement to evaluate body composition and mus-
cular infections, angiography for the diagnosis of atheroscle-
rosis, and virtual autopsy in forensic science [Goyen,
2007]. WB-MRI is also the method of choice for screen-
ing and prevention purposes, which is ethically ques-
tionable with CT due to radiation exposure of healthy
persons. Moreover, contrast agents used for MRI to
highlight specific organs or the vascular tree are rela-
tively safe in comparison to iodine based ones used for
CT [Goyen, 2007].

These reasons indicate that MRI is challenging CT
as standard WB imaging modality. For head and ab-
domen, the superior performance of MR was already
noted, but imaging the lungs is still delicate [Goyen,
2007]. The major drawback, however, remains the
longer acquisition time with MRI. We address this issue
by using scans with a larger FOV, allowing for covering
an equivalent region with less stations. They have the
same resolution as scans with a regular FOV, leading
to the same acquisition time, but an increased voxel
spacing, leading to a negligible loss of image quality. Typical is a normal FOV of
35 cm and an enlarged one of 50 cm. A disadvantage of the enlarged FOV is that
spins are excited, which are farther away from the magnetic iso-center and therefore
more sensitive to geometrical distortions, see section B.3.
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B.3 Geometrical Distortion in MRI

Essential for MRI is to know the resonance frequency at each position within the
FOV, to relate the frequency spectrum of the received RF impulses to the right
spatial location. The Lamor equation relates precession frequency of nuclear spins $
to the magnetic field, composed of the static field B0 and the slice and row selection
gradient fields Gz and Gx, respectively

$(x, z) = γ(B0 + x ·Gx + z ·Gz) (B.1)

with γ the gyromagnetic ratio. Inhomogeneity of the static field or nonlinearity
of gradient fields, more prominent farther away from the magnetic iso-center, lead
to uncertainties, causing geometrical distortion artifacts. More specifically, these
artifacts are referred to be system-specific artifacts in contrast to patient-induced
artifacts arising from susceptibility effects, chemical shift, and flow [Doran et al.,
2005]. Scanner with higher field strength and shorter bore magnets, the current
trend in MRI, are more sensitive to distortion effects, putting its correction back
into focus [Doran et al., 2005].

In the literature, mainly system-specific artifacts are discussed. [Chang and
Fitzpatrick, 1992] correct for B0 distortion by acquiring two almost identical images
only differing in the polarity of the read-out gradient. This enables for an exact
correction of B0 distortion. In follow-up articles [Kannengiesser et al., 1999] and
[Reinsberg et al., 2005] refine this method by using deformable image registration
techniques to make it also applicable to real MR images and not only phantom scans.
This approach is hardly applicable in the clinical workflow because acquisition time
would double.

[Doran et al., 2005] analyze the distortion with phantom scans and apply the
deduced correction field to medical data. It is doubtful if corrections based on
phantom scans make sense because it is not feasible to build a phantom duplicating
a biological system, and distortions calculated at fiducial locations have to be
interpolated to create a dense mapping, which limits the accuracy [Chang and
Fitzpatrick, 1992]. Our approach has the advantage that no additional images have
to be acquired, enabling a seamless integration in the clinical workflow. Additionally,
the correction is not limited to system-induced distortions but also covers patient-
induced ones.

B.4 Deformable Mosaicing

In order to introduce our approach of deformable mosaicing, we define the two
volumes to be stitched as I1 : Ω1 ⊂ R3 → R and I2 : Ω2 ⊂ R3 → R. The overlapping
domain is denoted as Ωo = Ω1 ∩ Ω2. Since the overlap Ωo is the only part where
the two images share any information, a naive approach for the mosaicing could be
defined as an optimization problem with respect to a certain similarity measure ρ(·)

T̂1,2 = arg min
T1,2

∫
Ωo

ρ(I1(T1(x))− I2(T2(x))) dx (B.2)
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where x = (x, y, z) denotes a voxel position, and T1,2 are the parameters of the
transformations T1 and T2 relating the two volumes in the spatial domain. The
most common approach in pairwise registration is to assume that one of the two
transformations is equal to the identity transformation. In our case, such an approach
would lead to several problems: (i) through the selection of a moving and a fixed
image, we would introduce a certain bias on the mosaicing result, (ii) since both
volumes are distorted due to the inhomogeneous magnetic field in the overlap volume,
none of them is actually representing a good reference for the mosaicing, and (iii)
a registration performed only within the overlap may result in discontinuities with
respect to the rest of the volumes. In order to overcome these problems, we propose
an iterative simultaneous registration using a linear weighted average. The idea of the
weighted average is to account for the underlying physical properties of increasing
distortions towards the volume boundaries. Assuming that the boundary information
is less reliable, we would like to reduce its influence to the registration.

B.4.1 Simultaneous Registration to Linear Weighted Aver-
age

Let us define another volume S : Ωs on the union of the two volume domains
Ωs = Ω1 ∪ Ω2. The intensities of S are set using our average model, or

S(x) =


f(x), if x ∈ Ωo

I1(T1(x)), if x ∈ Ω1 \ Ω2

I2(T2(x)), if x ∈ Ω2 \ Ω1

(B.3)

where f(·) is a function computing the linear weighting in the overlap volume, or

f(x) = (1− h(x)) · I1(T1(x)) + h(x) · I2(T2(x)). (B.4)

The linear function h(·) has a range of (0, 1) and is defined for the overlap domain Ωo

with respect to the stitching direction. In our application, this direction is usually
along the head-feet axis which corresponds to the y-axis of our common 3D coordinate
system for all the MRI volumes.

The setup for the deformable stitching and the initialization of the linear weighted
average is illustrated in Fig. B.2. We can reformulate the naive registration in
Eq. (B.2) in order to pose a simultaneous registration based on the linear weighted
average S. In terms of an energy function (which is to be minimized), we define

Edata(T1,2) =
2∑
i=1

∫
Ωo

ρ(S(x)− Ii(Ti(x))) dx. (B.5)

In order to reduce the dimensionality of the problem, we consider free-form
deformations [Rueckert et al., 1999] as the transformation model for the two images.
A deformation grid G : [1, K] × [1, L] × [1,M ] is superimposed onto the volume
domain Ωs. By deforming the grid (with a 3D displacement vector dp for each
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Figure B.2: Synthetic example of a deformable stitching. The first and second
image are to be stitched where both are significantly distorted. The initialization of
our linear weighted average is shown in the third image. The horizontal gray lines
indicate the borders of the overlap area. Fourth to sixth image is an illustration
of the registration progress and the iterative improvement of the linear weighted
average.

control point) the underlying structures are aligned. The transformation of a voxel
x can be expressed using a combination of basis functions, or

T (x) = x +D(x) with D(x) =
∑
p∈G

η(|x− p|) dp (B.6)

where η(·) is the weighting function (based on cubic B-Splines) measuring the
contribution of the control point p to the displacement field D.

Now, we can rewrite the objective function defined in Eq. (B.5) based on the two
deformation grids G1 and G2, or

Edata(T1,2) =
2∑
i=1

1

|Gi|
∑
p∈Gi

∫
Ωo

η̂(|x− p|) · ρ(S(x)− Ii(Ti(x))) dx. (B.7)

where η̂(·) computes the influence of a voxel x to a control point p. Such a function
acts as a projection of the distance/similarity measure computed from the volume
domain back to the coarser level of control points. Different definitions of the η̂(·)
have to be considered with respect to the used similarity measure. We use NCC,
which is robust to intensity variations common in MRI. We define

η̂(|x− p|) =

{
1, if η(|x− p|) > 0

0 otherwise
. (B.8)

Basically, this function masks voxels influenced by a control point p resulting in a
local image patch centered at the control point. From this patch, a local similarity
measure can then be computed.

The simultaneous registration to an average should overcome the problems for
the reference selection, mentioned before. This is very similar to atlas construction
approaches where the average is used as the reference image in order to achieve an
unbiased coordinate frame (e.g. for shape models) [Joshi et al., 2004]. In addition,
we try to account for the increasing distortions using a linear weighted average.
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B.4.2 Optimization through Discrete Labeling

We propose to define the simultaneous registration as a discrete optimization problem.
Discrete optimization has been recently shown to provide very good results in the
case of standard pairwise registration [Glocker et al., 2007]. Based on the previous
assumptions, we define a set of discrete variables Gmrf = G1∪G2. Thus, each variable
corresponds to a control point of one of the two deformation grids. Similar to [Glocker
et al., 2007], we consider a discrete set of labels L = {l1, ..., li} corresponding to a
quantized version of the deformation space Θ = {d1, ...,di}. A label assignment lp
to a grid node p is associated with displacing the node by the corresponding vector
dlp . If a label is assigned to every node we get a discrete labeling l. A popular model
for representing discrete labeling problems are Markov Random Fields (MRFs) [Li,
2001]. The general form of a first-order MRF is

Emrf(l) =
∑

p∈Gmrf

Vp(lp) +
∑

(p,q)∈Emrf

Vpq(lp, lq) (B.9)

where Vp(·) are the unary potentials representing the data term, Vpq(·, ·) are the
pairwise potentials representing the smoothness term, and Emrf represents the neigh-
borhood system represented by edges between nodes. We define the unary potentials
(in iteration t) according to our data term ∀p ∈ Gi as

Vp(lp) =

∫
Ωo

η̂(|x− p|) · ρ(S(x)− Ii(T t−1
i (x) + dlp))dx. (B.10)

The pairwise potentials encode a penalty term for assigning different labels to
neighboring nodes. The FFD transformation model already inherits some im-
plicit smoothness properties. Additionally, one can consider explicit regularization
constraints on the grid domain using the pairwise potentials. These are defined
∀(p,q) ∈ Emrf ∧ p,q ∈ Gi as

Vpq(lp, lq) = λ
∣∣(Ri(p) + dlp)− (Ri(q) + dlq)

∣∣ (B.11)

where λ denotes a weighting factor for the smoothness term and Ri(·) back-projects
the accumulated displacement field (of iteration t− 1) on the control point level

Ri(p) =

∫
Ωs

η̂(|x− p|)Dt−1
i (x) dx. (B.12)

In contrast to the data term energy, the smoothness energy affects the whole stitching
domain Ωs. Such an approach together with the use of smooth FFD transformations
guarantees continuous and seamless transitions between the overlapping and non-
overlapping areas of the stitched volume while the actual stitch is (softly) constrained
to the volume of overlap.

Many optimization algorithms exist for efficiently solving discrete labeling prob-
lems in forms of an MRF [Li, 2001]. We use a recently proposed method called
Fast-PD [Komodakis et al., 2007].

216



B.5 Experimental Validation

Figure B.3: The two rows are magnifications of the stitching areas of the WB-MRI
shown in Fig. B.1. Left: Initial average. Middle: Final stitching result after 3
optimization cycles. Right: Reference scan where the overlap volume is centered
within the MR scanner. Our method is able to reproduce similar smooth and
continuous transitions as present in the reference images.

B.4.3 Iterative Multi-Scale Approach

We propose to embed the simultaneous registration into a common iterative multi-
scale approach. The simultaneous registration of the two volumes I1 and I2 to the
linear weighted average S is performed in a pyramidal setup where different levels of
resolution for the volume as well as for the deformation grids are considered. On each
level, several discrete labelings are computed where the set of displacements Θ is
successively refined each time and the displacement fields are incrementally updated.
After the registration converges, the linear weighted average S is recomputed and a
new registration cycle is started. In Fig. B.2 three of such cycles are illustrated for
the case of synthetic data. Usually, only a few cycles are needed until the average
shows no dramatic changes anymore.

B.5 Experimental Validation

We evaluate our method on 8 whole-body T1- and T2-weighted data sets from three
different Siemens MR scanners: Avanto 1.5T, Trio 3T, and Espree 1.5T. The overlaps
vary between 5 and 27 cm. For all stitching results, we obtained very positive
feedback from our clinical experts in the radiology department who inspected the
images visually. An example mosaic is shown in Fig. B.1, consisting of three volumes
having a FOV of 50×50×28 cm3, a resolution of 448×448×35 voxel, and an overlap
of 5 cm. In Fig. B.3, one can clearly see the influence of the distortion by regarding
the initial average, and the improvement after the deformation by comparing the
result to the reference scan. The final resolution for the 3 station stitch shown in
Fig. B.1 is 448× 1256× 35 where the two stitches take together approximately 25
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Figure B.4: Stitching of 3 spine volumes. Top: initial average. Bottom: result. Gray
bars indicate overlap.

min of computational time.
To illustrate that the proposed method also works for varying overlaps, we show

the stitching of 3 volumes for whole-spine MR, see Fig. B.4. The first overlap is
with 15.2 cm very large and our method arrives at producing a sharper average. The
second one, with only 1.4 cm, shows discontinuities in the initial average, which are
removed after deformable mosaicing.

B.6 Conclusion

Speeding up the acquisition for WB-MRI with large FOV images leads to significant
distortions towards the boundaries. Methods for distortion correction proposed
in the literature are not applicable to the WB imaging setup because they either
elongate the workflow or only correct for specific system-induced distortions. So far,
the overlap in WB-MRI has not been used to correct for distortion. We propose the
usage of simultaneous deformable registration in a mosaicing scenario. Key for the
simultaneous registration is the creation of a linearly weighted average, each of the
two images is registered to. Our experiments on synthetic and in-vivo data show
the ability of the method to correct for distortions. The unaltered clinical workflow
makes our approach very interesting for being integrated into further MR scanner
generations.
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