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Abstract

The derivation of statistically optimal similarity measures for intensity-based
registration is possible by modeling the underlying image noise distribution.
The parameters of these distributions are, however, commonly set heuristi-
cally across all images. In this article, we show that the estimation of the
parameters on the present images largely improves the registration, which
is a consequence of the more accurate characterization of the image noise.
More precisely, instead of having constant parameters over the entire image
domain, we estimate them on patches, leading to a local adaptation of the
similarity measure. While this basic idea of creating locally adaptive metrics
is interesting for various fields of application, we present the derivation for
ultrasound imaging. The domain of ultrasound is particularly appealing for
this approach, due to the inherent contamination with speckle noise. Fur-
thermore, there exist detailed analyses of suitable noise distributions in the
literature. We present experiments for applying a bivariate Nakagami distri-
bution that facilitates modeling of several scattering scenarios prominent in
medical ultrasound. Depending on the number of scatterers per resolution
cell and the presence of coherent structures, different Nakagami parameters
are required to obtain a valid approximation of the intensity statistics and to
account for distributional locality. Our registration results on radio-frequency
ultrasound data confirm the theoretical necessity for a spatial adaptation of
similarity metrics.
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1. Introduction

Being a crucial component in several fields of application, registration
of images is of high interest in medical imaging. Generally, achieving this
automatically is impeded by image noise and artifacts. The alignment of ul-
trasound (US) images is considered to be especially challenging due to the in-
herent contamination of the images with speckle noise. Clinical applications
for ultrasound registration are panorama imaging [1, 2], elastography [3, 4],
tracking [5], and motion recovery [6]. The adaptation of similarity measures
in ultrasound registration to cope with issues related to noise is an active
field of research. A popular approach from speckle tracking is to replace
the common assumption of a Gaussian distribution in similarity measures
by ultrasound specific noise models. Commonly, a Rayleigh distribution is
assumed [6, 7, 8, 9].

In the field of segmentation and classification, research on various dis-
tributions for modeling ultrasound scattering has been performed over the
last years. We refer to [10] for a recent review. In this respect, it was
shown that the commonly applied Rayleigh distribution only models a spe-
cific scattering scenario. Alternative distributions were introduced that deal
with varying numbers of scatterers per resolution cell and the presence of
coherent structures [11]. Especially interesting is the Nakagami distribution,
because it allows for modeling a large number of scattering conditions, while
being computationally efficient [12]. Adaptation to various noise conditions
is achieved by setting the shape and scale parameter of the Nakagami distri-
bution accordingly.

We would like to benefit from the more accurate characterization of
speckle statistics of the Nakagami distribution for image registration. This
leads to our first major contribution, which is a Nakagami-based similarity
measure for the registration of ultrasound envelope data. It is, however,
not sufficient to set the Nakagami distribution parameters globally, because
they have to be adapted to the local scattering scenario. Our second major
contribution is therefore to adapt the similarity measure locally to various
scattering scenarios in the image. The focus of this article is on ultrasound
registration, however, the local adaptation of similarity measures is of gen-
eral interest and also applicable to other domains. To the best of the authors
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knowledge, this is the first time that the distribution parameters are esti-
mated on the images to adapt the similarity measure.

The organization of the manuscript is at follows. In section 2, we present
details about modeling speckle statistics. We provide details about the used
radio-frequency ultrasound data and introduce the Nakagami distribution.
In section 3, we incorporate the Nakagami distribution in a maximum like-
lihood framework for image registration. This is followed by the proposal
of our novel adaptive similarity measure. Finally, this section is concluded
with an elaboration on the estimation of the distribution parameters. In sec-
tion 4, we evaluate the performance on local block matching and global rigid
registration for several ultrasound datasets. The results of multiple random
registration studies show the improvement of the devised method.

1.1. Related Work

A large number of articles addresses the registration of ultrasound im-
ages [4, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Typical application
areas are (i) motion measurements in echocardiography for detecting and
characterizing abnormalities, (ii) breast deformation analysis to assess the
elastic properties of tissues, (iii) assessment of tissue strain with elastography,
and (iv) multi-view compounding. In [7], likelihood functions are presented
assuming a multiplicative Rayleigh noise. This is further extended in [6],
assuming that both, the moving and the fixed image, are affected by multi-
plicative speckle noise. Moreover, the log-compression is incorporated in the
imaging model to achieve better results on B-mode data. These similarity
metrics are successfully applied in [8, 9] for motion estimation with a block
matching approach. In [4], block matching with normalized cross-correlation
(NCC) is performed for flow and elasticity imaging. In [13, 16], a block
matching approach is applied to improve the quality of compounded images.
While Krücker et al . [13] evaluate several similarity measures, with the con-
clusion that sum of squared differences (SSD) is better suited for low noise
levels, Poon and Rohling [16] focus on NCC. Myronenko et al . [21] presented
similarity measures based on the bivariate Rayleigh and Nakagami distri-
butions. Contrarily to previous approaches, they do not work on B-mode
images but on log-compressed envelope data [21]. This is important because
B-mode images have corrupted speckle statistics due to applied non-linear
transformations, as will be discussed in more detail later on. For our own ap-
proach, we directly work on the envelope data. Common to all the presented
methods is that the parameters of the distributions are set heuristically on a
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Figure 1: Example ultrasound processing pipeline for RF to B-mode conversion.

global basis, which is at odds with the underlying local data variation. For
instance, the variance of the Rayleigh distribution is set to 2/π in [6], or the
shape and correlation parameters are set to m = 0.5, ρ = 0.8 in [21]. In the
proposed method, we exactly address this issue by locally estimating these
parameters on the images.

Next to ultrasound specific approaches, we also want to mention related
work in terms of general registration. A typical situation that challenges the
application of mutual information is the registration of images, which contain
high intensity non-uniformity due to the bias field. Approaches that address
this issue try to estimate the joint density in local regions or do a combination
of local and global estimation [22, 23]. This local adaptation is different to our
contribution, because no noise estimates are performed. Recently, learning-
based similarity measure were proposed for multi-modal registration [24, 25].
Supervised learning is performed on previously registered data to learn an
appropriate similarity function. The necessity of having access to correctly
aligned data for training is, however, a major drawback of these methods.
The adaptation of the distribution parameters in our approach could be
regarded as learning, with the learning being performed on the actual images.

2. Background on Ultrasound Data Statistics

2.1. Radio-frequency Data

The ultrasound data conventionally worked on is referred to as B-mode.
In order to get such an image, the raw analog-to-digital converted radio-
frequency (RF) data measured by the transducer undergoes several process-
ing steps (see figure 1). First, an envelope detection (e.g. Hilbert transform)
is performed in order to remove high frequency oscillations, while keeping
the outline of the original signal. This is followed by the application of a
non-linear intensity map (log-compression) to reduce the dynamic range of
the data. At the final stage of the pipeline, several proprietary image filters
specific for manufacturers of ultrasound machines are applied. Depending on
the transducer geometry, the correct geometric placement of the scan lines
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Figure 2: Various scattering scenarios per resolution cell. (1) Larger number of scatters
(2) with coherent structure. (3) Small number of scatters (4) with coherent structure.

is achieved with a scan-conversion. It transforms the data into Cartesian
coordinate frame entailing interpolation to form an image without gaps on a
regular grid. However, as the filtering is mainly meant to optimize data for
the human eye, the data flow through the pipeline incurs a loss of informa-
tion, which is naturally detrimental for machine processing.

Recent work suggests a benefit in using RF data for statistical processing.
Shankar [12] showed that the envelope of the RF signal can be modeled by the
Nakagami distribution and its parameters are suitable for tissue classifica-
tion [26]. In [27], a variant of the previous classification method is suggested,
using a small window kernel regression to guarantee locality. In [28], an
ultrasound specific auto-model is proposed by embedding the Nakagami dis-
tribution into a Markov random field (MRF) facilitating the classification of
cancerous breast tissue. Similarly, Klein et al . [29] developed a MRF-based
feature descriptor for tissue classification and image registration.

We apply a recently proposed method for the envelope detection of RF
data [30] based on the 2D analytic signal [31]. This estimates the envelope of
the signal in 2D instead of 1D. It was demonstrated that the incorporation of
lateral information leads to a more robust estimation of the local amplitude
from ultrasound RF data. Moreover, the extracted envelope bears superior
statistical properties, as evaluated with goodness-of-fit tests to Nakagami dis-
tributions [30]. Since we want to accurately model the statistical properties
of the envelope data in the derived likelihood functions, the calculation of
the 2D analytic signal for demodulation is advantageous for our application.

5



2.2. Statistical Model

A multitude of distributions were proposed for modeling ultrasound enve-
lope statistics, among them there is Rayleigh [32], Rician [33], pre-Rician K [34],
generalized K [35], homodyned K [36], as well as Rician Inverse of the Gaus-
sian [37]. Some of them are specific for certain speckle assumptions whereas
others are able to model various scenarios. We illustrate four different scat-
tering scenarios in figure 2. For a large number of scatterers, see figure 2 (1),
the Rayleigh distribution presents a good approximation. In combination
with a coherent component, the Rician distribution is well suited [38], as
illustrated in (2). For a small number of scatterers, the K distribution and
homodyned K distribution, depending on whether a coherent component is
present, are proposed [36], depicted in (3) and (4), respectively. Due to their
inherent complexity, the practical applicability of these distributions is often
limited. Simpler but nonetheless extremely versatile, the Nakagami distri-
bution [39] was proposed, admitting an explicit analytical expression. In
particular, by varying the shape parameter of the Nakagami distribution, it
is possible to emulate other distributions such as Rayleigh, Rician or homo-
dyned K-distribution [40, 10]. It was shown to accurately model backscatter
characteristics of US envelope [12] data and is used in various applications
such as segmentation and classification, see [41, 26] and references therein.

The Nakagami distribution N (x | m,ω) belongs to the exponential family
and requires the specification of two parameters, m and ω, determining shape
and scale, respectively

N (x | m,ω) =
2mmx2m−1

Γ(m)ωm
exp

(
−m
ω
x2
)
,∀x ∈ R+. (1)

In figure 3, we show the histogram of two regions of the ultrasound image
together with the corresponding Nakagami MLE fit. The Nakagami param-
eters estimated on the same RF image are visualized in figure 4. The large
variation of the distribution parameters highlights the necessity of spatial
adaptation of noise models to accommodate for the speckle locality.

Imaging a static scene several times, the same speckle occurs in the
data [42]. Consequently, speckle is different to other types of noises, such as
electrical noise, which is entirely random. Generally speaking, speckle occurs
at structures that are rough with respect to the scale of the sound wavelength
λ (approx. in the range 0.1 ≤ λ ≤ 1.0 mm). In medical ultrasound, micro-
scopic inhomogeneities, due to the nature of tissue are responsible for char-
acteristic speckle. Given that different tissue exhibit characteristic spatial
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Figure 3: Left: Ultrasound image with two example regions. Middle and right: histograms
of the regions together with Nakagami MLE fits (red).

arrangement and size of particles responsible for speckle, texture modeling
has been proposed for tasks such as classification or registration [28, 41, 29].

3. Maximum Likelihood Ultrasound Registration

Considering ultrasound envelope images I and J together with the trans-
formation T , registration is formulated as maximum likelihood estimation [43,
44] by

T̂ = arg max
T

log p(I | J, T, ε) (2)

with T̂ the estimated transformation and noise ε. For the derivation of
SSD, correlation ratio, or mutual information, an additive Gaussian noise is
incorporated in the deduction [44].

3.1. Ultrasound Likelihood Functions

In the following, we present an overview of ultrasound similarity measures
proposed in the literature and derive a new locally adaptive Nakagami-based
metric. We list several imaging models and denote them with the initials of
the authors, prevailing in the literature.

SK1: Multiplicative Rayleigh Noise

In [7], an imaging model based on a multiplicative Rayleigh noise is pre-
sented

I = J · ε (3)
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Figure 4: Illustration of Nakagami MLE parameters shape m and scale ω, calculated
densely for one image of a human neck.

with ε Rayleigh distributed. This noise model considers only one image to
be degraded by noise, while the other one has to be noiseless. Knowing the
distribution p(ε), we have to find the distribution for the likelihood p(I |
J, T ). Assuming that we know the distribution of a random variable x and
we want to calculate the distribution of a random variable y, with both being
related by the function g, so y = g(x). The fundamental theorem [45, p.93]
states that the distribution of the random variable y is calculated with

p(y) =
p(x)

|g′(x)|
. (4)

In our case, we set g(x) = x · J and obtain dg(x)
dx

= J so that

p(I | J, T ) =
1

J
· p(ε). (5)

Setting the variance of the Rayleigh distribution to 2
π

leads to the log-
likelihood function of SK1

log p(I | J, T ) = log
1

J
· p
(
I

J

)
(6)

≈ log

(
I

J2

)
− π

4

I2

J2
. (7)

A second noise model is proposed in [7] with a signal dependent Gaußian
noise, not further considered here.
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CD1: Division of Rayleigh Noises

A more realistic and refined model is proposed in [6], assuming that each
image is contaminated by a multiplicative Rayleigh noise ε1 and ε2, respec-
tively. Considering the underlying, noise-free scene S, the imaging model is
formulated as I = S · ε1 and J = S · ε2, leading to

I = J · ε1

ε2

= J · η (8)

with the division of probabilities η = ε1
ε2

. The distribution of the divisional
noise p(η) is calculated with [45, p.138]

p(η) =

∫ ∞
−∞

ε2 · p(ηε2, ε2) dε2. (9)

Considering the noise in the images to be independent

p(ε1, ε2) = p(ε1)p(ε2) (10)

, of equal variance, and Rayleigh distributed, the integration results in

p(η) =
2 · η

(η2 + 1)2
. (11)

Knowing the distribution p(η), we have to find the distribution for the likeli-
hood P (I | J, T ). This is obtained with the fundamental theorem [45, p.93],

setting g(x) = x · J , and leading with the derivative dg(x)
dx

= J to

p(I | J, T ) =
1

J
p(η) =

1

J

∫ ∞
−∞

ε2 · p(ηε2, ε2) dε2. (12)

The log-likelihood function of CD1 is

log p(I | J, T ) = log
1

J
· p
(
I

J

)
(13)

= log
1

J

2 · I
J((

I
J

)2
+ 1
)2 (14)

≈ log I − 2 log J − 2 log

[(
I

J

)2

+ 1

]
. (15)
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CD2: Logarithm of Division of Rayleigh Noises

The second model in [6] considers besides the noise contamination of both
images also the log-compressed nature of ultrasound images

log I = log(J · η) = log J + log η. (16)

With setting Ĩ = log I and J̃ = log J

η = exp(Ĩ − J̃). (17)

The likelihood function, applying the fundamental theorem again, but this
time with respect to the log-compressed images, is

p(Ĩ | J̃ , T ) = η · p(η). (18)

This is obtained with g(η) = log J + log η and the derivative g′(η) = 1
η
. The

log-likelihood function for CD2 is

log p(Ĩ | J̃ , T ) = log
exp(Ĩ)

exp(J̃)
· p(exp(Ĩ − J̃)) (19)

= log
exp(Ĩ)

exp(J̃)
· 2 · exp(Ĩ − J̃)[

exp(Ĩ − J̃)2 + 1
]2 (20)

= log
2 · exp(2(Ĩ − J̃))[

exp(2(Ĩ − J̃)) + 1
]2 (21)

≈ Ĩ − J̃ − log[exp(2(Ĩ − J̃)) + 1]. (22)

The application of the presented ultrasound specific likelihood terms for si-
multaneous registration is described in [46]. Working with B-mode images,
we achieved a superior performance with CD2 than with SSD and NCC.

3.2. Bivariate Nakagami

In this section, we present the proposed similarity measure based on the
Nakagami distribution. As explained in section 2, the Nakagami distribu-
tion is more appropriate for modeling speckle statistics in ultrasound than
the Rayleigh distribution, which is used in the likelihood functions that we
have discussed in section 3.1. For equation (12), a bivariate distribution is
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Figure 5: Illustration of the subdivision of the image domain into blocks and patches.

required, if no assumptions about independence are incorporated. Such as-
sumptions are applied for the derivation of CD1 and CD2, see equation (10),
in conjunction with Rayleigh distributions. Since speckle is due to physical
interaction of the beam with the tissue, the same speckle pattern appear un-
der constant acquisition conditions. In modern ultrasound systems with high
frame rates and for acquisitions from the same viewing-angle, it is therefore
reasonable to assume the random variables ε1 and ε2 to be correlated [42].
The bivariate Nakagami distribution is [21]

p(ε1, ε2) =
21−mmm+1(ε1ε2)m

σ2(m+1)(1− ρ)ρ(m−1)/2Γ(m)
e
−m(ε21+ε

2
2)

2(1−ρ)σ2 Im−1

(
−
m
√
ρε1ε2

(1− ρ)σ2

)
(23)

with ρ being a squared correlation coefficient, Im−1 is a modified Bessel func-
tion of the first kind of order m − 1, and the distribution widths σ2 are
equal. Incorporating the bivariate Nakagami in the conditional density in
equation (12) leads to

p(I|J, T ) =
1

J

∫ ∞
−∞

ε2 · p(ηε2, ε2) dε2 (24)

=
1

J
2(1− ρ)m

Γ(2m)

Γ(m)2

η2m−1

(η2 + 1)2m

(
1− 4ρη2

(η2 + 1)2

)− 2m+1
2

(25)

=
1

J

2(1− ρ)m

β(m)
· 1

η
· η2m

(η2 + 1)2m
·
(

1− 4ρη2

(η2 + 1)2

)− 2m+1
2

(26)
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with β(m) = Γ(m)2

Γ(2m)
. More details on the deduction, however, assuming log-

compressed envelope data and therefore a different imaging model, are pre-
sented in [47]. Finally, computing the log-likelihood yields the Nakagami-
based similarity measure

log p(I|J, T )

= − log J + log
2(1− ρ)m

β(m)
− log η + 2m log

(
η

η2 + 1

)
− 2m+ 1

2
log

(
1− 4ρη2

(η2 + 1)2

)
= − log J − log

(
I

J

)
+ 2m log

( (
I
J

)(
I
J

)2
+ 1

)
− 2m+ 1

2
log

(
1−

4ρ
(
I
J

)2
(
(
I
J

)2
+ 1)2

)
.

(27)

3.3. Parameter estimation

We mentioned previously that the Nakagami distribution can character-
ize different scattering scenarios when setting the distribution parameters
appropriately. In this part, we describe how we instantiate the bivariate
Nakagami model in each iteration of the similarity computation. Specifi-
cally, this requires the specification of a shape parameter m as well as a
correlation coefficient ρ, see equation (27). Considering the need for high
locality, the patch size has to be kept at minimum. However, this sparsity
constraint is detrimental for the computation of the m parameter of the bi-
variate Nakagami distribution. Additionally, because of the high frequency
of this similarity computation, complexity has to be kept at bare minimum.
Therefore, we decided to use a fast approximation scheme. The distribution
parameters are calculated separately for the moving (mI , ωI) and the fixed
patches (mJ , ωJ) with maximum likelihood estimation (MLE). Then, given
the individual MLE parameters, the joint shape parameter m of the bivariate
Nakagami is approximated by (mI +mJ)/2.
For computing the correlation coefficient ρ for the bivariate Nakagami, prob-
ably the most obvious way is to directly use the corresponding intensities of
the patches. However, due to the noise-susceptibility of ultrasound, a proba-
bilistic correlation score was chosen in order to increase the overall reliability.
In this respect, we employ the Bhattacharyya coefficient (BC)

BC(p, q) =

∫ √
p(x)q(x) dx (28)
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Figure 6: Similarity plots for various measures. Blue circle: correct alignment, black
cross: similarity maximum. X axis indicates x-translation from -20 to +20 pixels and Y
axis indicates y-translation from -80 to +80 pixels.

NakAdNakFixNCCSSD

Figure 7: Similarity plots for various measures. Blue circle: correct alignment, black
cross: similarity maximum. X axis indicates x-translation from -20 to +20 pixels and Y
axis indicates y-translation from -80 to +80 pixels.

with 0 ≤ BC ≤ 1, which is a measure of the relative overlap between two
probability distributions p and q. In our case, the distributions correspond to
the Nakagami MLE estimates of the moving and the fixed image, respectively.

4. Experiments

For our experiments we use a clinical ultrasound system from Ultrasonix
(Richmond, Canada). All acquisitions are performed with a linear transducer
at 3.3 MHz. The RF data is sampled with 40 MHz and is readily accessi-
ble from the system. Depending on the depth setting, the images have a
resolution between 1157 and 2080 pixels in axial, and 256 pixels in lateral
direction. The images were acquired from the human neck on four healthy
volunteers in the age range of 25 to 35. Each dataset consists of a moving
and a fixed image.
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Figure 8: Boxplots of errors from random registration study for block matching.

We perform block matching on 100 blocks in the images, which are equally
distributed across the image. This is schematically illustrated in figure 5.
For each block, we have the coordinates from a manual alignment, serving as
ground truth data. We compare SSD and NCC with the similarity measure
presented in equation (27). Once we use heuristic values for the distribution
parameters, referred to as NakFix, and once we estimate them on the images,
referred to as NakAd. For the heuristic case, we choose the parameters used
in [21]m = 0.5 and ρ = 0.8. NakFix is therefore the analogon of the similarity
measure presented in [21] for not log-compressed envelope data.

To compare the different similarity measures, we extract a patch of 91×11
pixels in the moving image and shift it over the block in the fixed image.
The distribution parameters are estimated on these patches. The patch size
is a tradeoff between sufficient statistics for parameter estimation and the
detection of fine grained deformations. We illustrate similarity plots for two
different blocks in figures 6 and 7. In both cases, SSD and NCC are not able
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Dataset SSD NCC NakFix NakAd

Dataset 1 9.3 9.9 10.4 9.1
Dataset 2 9.8 10.1 10.2 9.2
Dataset 3 9.9 10.4 11.1 9.5
Dataset 4 15.7 15.7 17.0 13.8

Table 1: Median errors of random registration study for various datasets and similarity
metrics.

to correctly indicate the correct alignment. Moreover, the similarity plot of
NCC shows several local minima. Also the maximum of NakFix is far off
the correct alignment. Interestingly, the adaptation of the parameters, as it
is done in NakAd, significantly changed the similarity function, leading to
good results in this case.

The similarity plots provide a first impression of the performance, which
we further evaluate by performing block matching. As discussed in sec-
tion 1.1, block matching is commonly applied in ultrasound registration. We
extract patches from the moving image and try to find the corresponding
patch in the fixed image. For each image, this is done for one patch per
block, so on 100 patches. Since we know the alignment of the blocks, we can
calculate the Mahalanobis distance with respect to the ground truth position,
serving as error measure. We select the Mahalanobis distance to compen-
sate for the significantly higher resolution in axial direction. To be able to
perform statistics on the results of the registration, we perform a random
registration study. For this we randomly displace the patch 100 times from
the ground truth position, with maximal initial deviation of ±40 pixels in
axial and ±10 pixels in lateral direction. The errors over all patches and all
runs are shown in the boxplots in figure 8 for 4 datasets. We list the median
errors in table 1. We observe that the median, the box, and the whiskers are
lowest for NakAd in all cases. The performance of SSD and NCC is com-
parable, with slight advantages for NCC with respect to the whiskers. The
performance of NakFix for datasets 1 - 3 is slightly worse than NakAd. For
dataset 4, NakFix is not leading to good results.

In addition to the analysis of the presented similarity measure for block
matching, we also perform experiments for global rigid registration. There-
fore, the image is separated into blocks, as already discussed previously.
This time, we estimate the parameters for each block and evaluate the simi-
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Figure 9: Boxplot of errors from rigid registration study.

larity measure on the block. Accumulating the similarity estimates from all
blocks leads to the global similarity estimate. We also perform a random
registration study with 100 runs and initial deviations up to ±240 pixels in
axial and ±70 pixels in lateral direction. The results are shown in figure 9.
The median errors are SSD: 57.8, NCC: 23.4, NakFix: 4.1, and NackAd:
2.1. NCC performs better than SSD, but the best results are obtained for
the Nakagami-based similarity measures, with the proposed adaptive version
outperforming the fixed version.

5. Conclusion

The major contributions of the article are: (i) the introduction of a sim-
ilarity measure based on the bivariate Nakagami distribution for the reg-
istration of envelope ultrasound data, and (ii) the local adaptation of the
similarity measure by estimating the distribution parameters on the ultra-
sound images. As discussed in the article, the adaptation of the similarity
measure to various scattering scenarios is necessary to model the noise cor-
rectly, and therefore to perform a more appropriate similarity estimation.
Experiments are performed on ultrasound RF data. The results from block
matching indicate the improvement of incorporating the Nakagami distribu-
tion and the necessity of locally adapting the parameters. Moreover, a clear
improvement of the proposed similarity measures is shown for the case of
global rigid registration.
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