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Structural magnetic resonance imaging data are frequently analysed to reveal morphological changes of the human brain in dementia.

Most contemporary imaging biomarkers are scalar values, such as the volume of a structure, and may miss the localized morpho-

logical variation of early presymptomatic disease progression. Neuroanatomical shape descriptors, however, can represent complex

geometric information of individual anatomical regions and may demonstrate increased sensitivity in association studies. Yet, they

remain largely unexplored. In this article, we introduce a novel technique to study shape asymmetries of neuroanatomical structures

across subcortical and cortical brain regions. We demonstrate that neurodegeneration of subcortical structures in Alzheimer’s disease

is not symmetric. The hippocampus shows a significant increase in asymmetry longitudinally and both hippocampus and amygdala

show a significantly higher asymmetry cross-sectionally concurrent with disease severity above and beyond an ageing effect. Our

results further suggest that the asymmetry in these structures is undirectional and that primarily the anterior hippocampus becomes

asymmetric. Based on longitudinal asymmetry measures we subsequently study the progression from mild cognitive impairment to

dementia, demonstrating that shape asymmetry in hippocampus, amygdala, caudate and cortex is predictive of disease onset. The

same analyses on scalar volume measurements did not produce any significant results, indicating that shape asymmetries, potentially

induced by morphometric changes in subnuclei, rather than size asymmetries are associated with disease progression and can yield a

powerful imaging biomarker for the early presymptomatic classification and prediction of Alzheimer’s disease. Because literature has

focused on contralateral volume differences, subcortical disease lateralization may have been overlooked thus far.
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Introduction
Alzheimer’s disease is the most common form of dementia

with incidence rates further increasing in the future due to

increasing life expectancy. Currently approved treatments

for Alzheimer’s disease relieve symptoms but do not

target the underlying causes of the disease. It is expected

that new treatment options will become available in the

future that directly interfere with disease pathways (e.g.

the amyloid cascade). Such treatment, however, requires

the early identification of individuals with an elevated risk

for developing dementia. Mild cognitive impairment (MCI)

is associated with isolated memory loss, a common precur-

sor to dementia in Alzheimer’s disease. The neuropatho-

logical substrates of MCI are heterogeneous (Schneider

et al., 2009) and, despite the high rate of progression to

Alzheimer’s disease, a significant number of patients with

MCI remain stable (Petersen et al., 2009). A more accurate

prediction of the likelihood for progression and the early

detection of the disease requires a better understanding of

disease trajectories. Longitudinal neuroimaging provides

unique opportunities for studying trajectories because the

measured atrophy correlates with neuron loss; imaging can

therefore indicate the onset of the impairment in close tem-

poral proximity (Jack et al., 2013).

A key aspect for studying dementia trajectories is to map

the spatial atrophy pattern across time. Early on, 18F-fluor-

odeoxyglucose PET indicated significant right/left and fron-

tal/parietal metabolic asymmetries in mild Alzheimer’s

disease (Grady et al., 1988; Haxby et al., 1990). This

in vivo pattern of hypometabolism is found in the vast

majority of clinically diagnosed Alzheimer’s disease patients

and in over 85% of pathologically confirmed Alzheimer’s

disease cases (Silverman et al., 2001). Furthermore, as

Alzheimer’s disease progresses, right/left asymmetries are

directionally stable and become more pronounced with

time (Haxby et al., 1990). Recent PET studies with
11C-Pittsburgh compound B showed an asymmetric spatial

distribution of amyloid-b and the positive correlation be-

tween asymmetries in amyloid-b deposition and hypometa-

bolism (Frings et al., 2015). Interestingly, disease severity

was neither related to asymmetries of amyloid-b load nor

to hypometabolism, suggesting that lateralization of path-

ology and neurodegeneration is not confined to disease

onset, but a core feature throughout disease stages. The

asymmetry in Alzheimer’s disease was further confirmed

in histopathological data (Stefanits et al., 2012). On MRI,

it was demonstrated that cortical atrophy occurred earlier

and progressed faster in the left hemisphere than in the

right in Alzheimer’s disease patients (Thompson et al.,

2007; Long et al., 2013). For subcortical structures the

effect of the progression of Alzheimer’s disease on anatom-

ical asymmetry has only been investigated for the hippo-

campus and is less clear. Fox et al. (1996) reported an

asymmetrical atrophy of the hippocampus that developed

for patients with Alzheimer’s disease, whereas more recent

studies reported a decrease or sign flip in volume asym-

metry for patients with dementia (Barnes et al., 2005; Shi

et al., 2009).

We believe that stronger anatomical asymmetries have so

far not been detected in MRI because volume measure-

ments have been used, which only provide a crude simpli-

fication of the full anatomical information. Instead, we

propose a measure of brain asymmetry that is based on

spectral shape descriptors from the BrainPrint (Wachinger

et al., 2015). Shape vectors are more sensitive to anatom-

ical variations and consequently have the potential to detect

finer localized variations, e.g. early morphological changes

in subnuclei. Different effects of Alzheimer’s disease on the

anterior versus the posterior hippocampus have, for in-

stance, been reported in Woolard and Heckers (2012),

supporting the assumption of increasing shape asym-

metry without any substantial volumetric differences.

Furthermore, recent analyses on high-field MRI suggest

focal insults in the hippocampal region caused by ageing

and dementia, where the subfields subiculum and CA1 are

associated with Alzheimer’s disease and the subfields CA3

and dentate gyrus are associated with ageing (Pievani et al.,

2011; Jagust, 2013). While the subfield segmentation is

challenging due to small intensity differences between sub-

fields, low resolution of in vivo MRI and partial volume

effects, neuroanatomical shape analysis is potentially sensi-

tive to such heterogeneous changes.

Next to retaining more geometrical information, the pro-

posed asymmetry measure offers several advantages: (i) it

completely avoids lateral processing bias as it works on

both hemispheres independently; (ii) it does not require

prior spatial alignment; (iii) it is not restricted to a specific

anatomical structure, supporting a brain-wide analysis; and

(iv) it presents a within-subject measure that identifies dir-

ectional and undirectional asymmetry. Directional asym-

metry refers to hemispheric differences that show a

stronger effect on one of the hemispheres, e.g. higher

changes on the left than on the right. Undirectional asym-

metry does not have a consistent hemispheric effect and

therefore refers to the magnitude of asymmetry independent

of direction. Our results suggest a strong increase in shape

asymmetry with the progression of dementia that is undir-

ectional. Alternative approaches, such as voxel-wise tech-

niques or statistical shape models compute statistics across

the population and are well suited for measuring direc-

tional asymmetry, but they cannot detect undirectional

asymmetry. We believe that the sensitive representation of

geometry together with ability to identify undirectional

asymmetry are key aspects for revealing increased asymme-

tries with the progression of dementia.

Longitudinal trajectories during
cognitive decline

To derive disease trajectories of brain asymmetry, indivi-

duals should be ideally followed for the full time period of
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interest. This, however, creates numerous practical pro-

blems related to technology, funding, and logistics

(Thompson et al., 2011). One possible alternative is to

use cross-sectional designs, but they can confound within-

and between-individual variation (Schaie and Caskie,

2005). This is especially problematic for neurodegenerative

diseases where premature dropout may be caused by

advanced disease progression. The unstructured multi-

cohort longitudinal design in the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) presents an attractive alter-

native. On the one hand, it covers a wide age range by

collecting data from multiple age cohorts. On the other

hand, it can identify within-subject effects by following

individuals longitudinally for a certain time period, which

is typically only a fraction of the total age range of the

study (Thompson et al., 2011). Here we use mixed effects

models (Verbeke and Molenberghs, 2009; Thompson et al.,

2011; Fitzmaurice et al., 2012; Bernal et al., 2013) to dif-

ferentiate across- and within-individual variations in brain

asymmetry.

Survival analysis for predicting
progression to Alzheimer’s disease

In addition to the analysis of disease trajectories, we inves-

tigate whether brain asymmetry is significantly associated

with the progression of MCI patients to Alzheimer’s dis-

ease. This helps in understanding the nature of neurobiolo-

gical changes at a critical phase in the disease and in

assessing the response to treatment. Formulating the differ-

entiation between progressors and non-progressors as

group comparison is one possibility (Chetelat et al., 2005;

Jack et al., 2008a; Cuingnet et al., 2011), but it requires the

selection of an arbitrary time frame of progression (e.g. 18

or 36 months) and it does not account for censoring or

drop-out of individuals. Survival analysis (also time-to-

event analysis) presents an appropriate statistical treatment

of the progression to Alzheimer’s disease by explicitly mod-

elling the timing of the event and by considering the finite

follow-up time. Most prior studies in neuroimaging that

apply time-to-event analysis work with time-independent

explanatory variables (Devanand et al., 2007; Marcus

et al., 2007; Geerlings et al., 2008; Desikan et al., 2009,

2010; Vemuri et al., 2011; Da et al., 2014). Such models

only use the information from a single baseline scan and do

not integrate the information from follow-up assessments in

longitudinal studies, thus ignoring valuable data. A recent

approach proposes the application of survival analysis with

time-dependent variables (Sabuncu et al., 2014) to investi-

gate hippocampal volume and cortical thickness in a mass-

univariate analysis. In contrast, here we use time-varying

shape asymmetry measures derived from the BrainPrint for

studying progression to Alzheimer’s disease. We overcome

the challenge of integrating time-dependent variables that

require observations at all event time points by using the

previously mentioned mixed effects models for inference.

Materials and methods

Overview

Figure 1 presents a graphical overview of the computation of
brain asymmetry with the BrainPrint, which is an ensemble of
shape descriptors that are computed on cortical and subcortical
structures. The Mahalanobis distance between lateralized shapes
yields the measure of shape asymmetry. Due to the holistic
representation of brain morphology in the BrainPrint, we com-
pute shape asymmetries on 11 lateralized brain structures,
which is in contrast to previous studies on shape analysis in
Alzheimer’s disease that typically focused on the hippocampus
(Ferrarini et al., 2009; Gerardin et al., 2009; Costafreda et al.,
2011; Lindberg et al., 2012; Shen et al., 2012). The extensive
characterization of neuroanatomy is a promising avenue for
diagnosing Alzheimer’s disease, considering that it is associated
with global atrophy across the entire brain (Fjell et al., 2013).
Recent results for the prediction of dementia at an international
challenge (Bron et al., 2015) indicate the potential of BrainPrint
for studying Alzheimer’s disease (Wachinger et al., 2014;
Wachinger and Reuter, 2016). BrainPrint naturally extends
the contemporary region of interest-based volume and thickness
analysis with shape information. The significance of a descrip-
tive representations of the data is highlighted by results in pat-
tern recognition suggesting that it is less the classifier but rather
the representation that primarily impacts the performance of a
predictive model (Dickinson, 2009).

The brain descriptor BrainPrint

The BrainPrint (Wachinger et al., 2015) description is based
on the automated segmentation of anatomical brain structures
with FreeSurfer (Dale and Sereno, 1993; Dale et al., 1999;
Fischl et al., 1999a, b, 2002). Images are processed with the
longitudinal framework in FreeSurfer (Reuter et al., 2012),
which increases intraindividual measurement reliability while
avoiding potential processing bias (Reuter and Fischl, 2011).
After image segmentation, geometric representations (surface
and volumetric meshes) are extracted for the identified cortical
and subcortical structures via the marching cubes algorithm.
shapeDNA (Reuter et al., 2006) is used as the shape descriptor
of the individual structures, which performed among the best
in a comparison of methods for non-rigid 3D shape retrieval
(Lian et al., 2012). shapeDNA is based on the (normalized)
eigenvalues of the Laplace-Beltrami operator and, therefore,
isometry invariant (including rigid motion and reflections).
Eigenvalues of the Laplace-Beltrami operator � can be com-
puted via finite element analysis by solving the Laplacian
eigenvalue problem (Helmholtz equation) on the given shape:

�f ¼ ��f ð1Þ

The solution consists of eigenvalue �i 2 R and eigenfunction fi

pairs, sorted by eigenvalues, 0 � �1 � �2 � . . . (a positive
diverging sequence). The first l non-zero eigenvalues are com-
puted using the finite element methods and form the shape
DNA: � ¼ ð�1; . . . ; �lÞ, where we set l ¼ 50 in this study. To
achieve scale independence, we normalize the eigenvalues:

�0 ¼ vol
2
D�; ð2Þ
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where vol is the Riemannian volume of the D-dimensional
manifold (Reuter et al., 2006), i.e. the surface area for 2D
manifolds, or the volume for 3D solids.

A key property of the eigenvalues is their isometry invariance,
i.e. length-preserving deformations will not change the spectrum.
Isometry invariance includes rigid body motion as well as reflec-
tions and, therefore, permits the comparison of shapes across
individuals or hemispheres by directly comparing the
shapeDNA without any complex and potentially error-prone
image or geometry registration. A second property is that the
spectrum continuously changes with topology-preserving defor-
mations of the boundary of the object. These properties make
the shapeDNA well suited for comparing shapes, as initial align-
ment of the shapes can be completely avoided and similar shapes
will have a similar spectrum. We compute the spectra for all
subcortical structures on the 2D boundary surfaces (triangle
meshes) and for cortical structures on the full 3D solid (tetra-
hedra meshes created from white and pial surfaces), forming the
BrainPrint � ¼ ð�1; . . . ; ��Þ (Wachinger et al., 2015).

Figure 2 illustrates the first six non-constant eigenfunctions of
the hippocampus. The eigenfunctions show natural vibrations of
the shape when oscillating at a frequency specified by the square
root of the eigenvalue. For localizing shape changes of the hip-
pocampus, we use the level set analysis for the first eigenfunc-
tion as proposed for the caudate in Reuter et al. (2009).
Figure 2 illustrates level sets as green curves. We compute the
circumference of 100 level sets and average among 10 to
increase robustness to noise, yielding 10 length measurements
per hippocampus. The first eigenfunction presents a natural
parameterization of the hippocampus, which we use to localize
asymmetry by computing the difference of circumferences across
hemispheres and by computing statistics across the population.

Brain asymmetry from BrainPrint

Based on the BrainPrint, we measure the asymmetry of later-
alized brain structures. As shapeDNA is invariant to reflec-
tions, we can directly compute the Mahalanobis distance
between the descriptors of a lateralized brain structure s

Ys ¼k �
left
s � �

right
s k�s

; ð3Þ

with �s the covariance matrix across all individuals for struc-
ture s (Wachinger et al., 2015). The Mahalanobis distance
accounts for the covariance pattern in the data and supports
an equal contribution of all eigenvalues in the sequence. This
approach completely avoids lateral processing bias as it works
on both hemispheres independently. Due to the pose invar-
iance of spectral shape descriptors we can directly measure
shape asymmetry by computing the distance in a symmetric
fashion—a task that can be rather involved for most other
shape representations that first require the construction of
local correspondences. In fact, choosing a target hemisphere
for registration can potentially bias subsequent analyses.
When both hemispheres are not treated exactly the same,
e.g. one hemisphere remains untouched while the other gets
aligned and resampled, resulting interpolation artefacts can
easily cause spurious effects (Reuter and Fischl, 2011; Reuter
et al., 2012).

The asymmetry measure presents a within-subject measure
that can identify directional and undirectional asymmetry. The
difference of eigenvalues can be used to differentiate direc-
tional and undirectional asymmetry. We compute the asymme-
try for 11 lateralized structures: cerebral white matter, pial
region, cerebellum white/grey matter, lateral ventricles, hippo-
campus, amygdala, thalamus, caudate, putamen, and accum-
bens. For white matter and pial region, the analysis is
performed on volumetric meshes.

Mixed effects models

We used linear mixed effects models (Verbeke and Molenberghs,
2009; Thompson et al., 2011; Fitzmaurice et al., 2012; Bernal
et al., 2013) to study cross-sectional and longitudinal effects of
brain asymmetry. We denote the age at baseline for individual i
with Bi, the years-from-baseline at follow-up scan j with Xij,
and the diagnosis with Di. The linear model for the lateral
shape distance Yij as dependent variable is

Yij ¼ b0 þ b1Bi þ b2Xij þ b3Di þ b0i þ b1iXij; ð4Þ

where b0; b1;b2;b3 are fixed effects regression coefficients and
b0i;b1i are random effects regression coefficients. The random
effects enable modelling individual-specific intercept and slope

Figure 1 Overview of the computation of shape asymmetry with BrainPrint. Based on the brain segmentation, we create meshes from

lateralized structures, e.g. the hippocampus. The computation of the shape descriptor shapeDNA yields the characteristic spectrum of the shape,

�, that form the BrainPrint. The Mahalanobis distance between the spectra of both hemispheres results in the shape asymmetry.
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with respect to the time from the baseline. We also consider an
extended model with the addition of the interaction between
diagnosis and years-from-baseline (Xij �Di) to Equation 4,
allowing the longitudinal slopes to vary across the different
disease groups. Furthermore, we evaluated the interactions
between diagnosis and cognitive decline as well as diagnosis
and age, but they were not significant. Similarly, a quadratic
age term was not significant and a quadratic term for years-
from-baseline in the random effect was rejected based on
model comparison with AIC (Akaike information criterion)
and BIC (Bayesian information criterion). The following addi-
tional parameters are included as fixed effects (not shown in
Equation 4): years of education, sex, intracranial volume
(ICV), and presence of an APOE4 risk allele. The linear
mixed effects model is also used for the statistical analysis of
the level sets, where the dependent variable is the absolute
difference of the circumferences of level sets between left and
right hippocampus.

To analyse regional association of cortical atrophy with
increasing hippocampal asymmetry we use a linear model for
cortical thickness Tij

Tij ¼ b0 þ b1Yij þ b2Bi þ b0i; ð5Þ

where b0; b1;b2 are fixed effects regression coefficients for
intercept, time-varying hippocampal asymmetry Yij and base-
line age Bi of subject i. Again the fixed effects of sex, years of
education and presence of APOE4 risk allele are included (not
shown in the equation). b0i are random effects regression coef-
ficients for subject-specific offsets. The mass-univariate analysis
on the cortex is performed as described in Bernal-Rusiel et al.
(2013). P-values are false discovery rate (FDR) thresholded by
q ¼ 0:05 (Benjamini and Hochberg, 2000).

Cox proportional hazards model

We use the Cox proportional hazards model (Cox, 1972) for
analysing the progression to Alzheimer’s disease. Cox regres-
sion is a semi-parametric model; the baseline hazard function

is not specified and can therefore vary for each unique event
time adding flexibility. The hazard function hðtÞ represents the
instantaneous potential for an event at time t, given that no
event occurred up to time t. The classical Cox model assumes
time-independent explanatory variables and, therefore, only
relies on information from baseline scans. For integrating long-
itudinal data in the analysis, we consider an extended Cox
model that combines time-independent variables X and time-
dependent variables YðtÞ

hðt;X;YðtÞÞ ¼ h0ðtÞ � exp
Xp

i¼1
� iXi þ

Xq

j¼1
�jYjðtÞ

� �
; ð6Þ

where �1; . . . ; �p are coefficients of the time-independent vari-
ables and �1; . . . ; �q are coefficients of the time-dependent vari-
ables. The baseline hazard function h0ðtÞ is not explicitly
modelled in Cox, which requires partial likelihood maximiza-
tion for inferring the model coefficients. In contrast, parametric
hazard regression models can employ the more efficient max-
imum-likelihood estimates but involve making potentially arbi-
trary assumptions about the baseline hazard. With the Cox
model, we account for left truncation and right censoring of
the data.

As noted by Sabuncu et al. (2014), the fundamental chal-
lenge for using longitudinal data in a Cox regression model
with time-dependent variables is the necessity to observe all
time-dependent variables at each event time. Event times are
all time points where events occur across the entire population.
Consequently, we require observations for an individual at all
event times until he or she experiences the event or is censored.
However, scans are not available for all event times in typical
longitudinal neuroimaging studies. We therefore need to esti-
mate the imaging markers at times of the clinical events, for
which we use the mixed effects models. The improvement of
using mixed effects models for Cox regression in comparison
to line fitting is described in Sabuncu et al. (2014).

For the Cox proportional hazards model in Equation 6, we
include the following time-independent covariates: baseline
age, sex, ICV, APOE genotype status (true if carrier of e4

Figure 2 Hippocampus mesh and first six non-constant eigenfunctions of the Laplace-Beltrami operator calculated on the

surface. Sorted left to right, top to bottom. Increasing positive values of the eigenfunctions are shown in the colour gradient from red to yellow

and decreasing negative values are shown from dark blue to light blue. Level sets are shown in green.
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risk allele), and education. Time-varying variables are years-
from-baseline and lateral asymmetry. Testing the proportional
hazards assumption using Schoenfeld’s residuals results in a
significant violation for APOE4 (P50.05). We add the inter-
action between APOE4 and years-from-baseline to resolve the
violation. This interaction is supported by the assumption that
APOE4 accelerates atrophy during the prodromal phases of
Alzheimer’s disease (Jack et al., 2008b) and has also been
added in Sabuncu et al. (2014).

ADNI data

We use data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI, adni.loni.usc.edu), which was launched in
2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceu-
tical companies and non-profit organizations, as a $60 million,
5-year public–private partnership. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological
markers, and clinical and neuropsychological assessment can
be combined to measure the progression of MCI and early
Alzheimer’s disease. Determination of sensitive and specific
markers of very early Alzheimer’s disease progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the
time and cost of clinical trials. The principal investigator of
this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California, San Francisco. ADNI is the result
of efforts of many co-investigators from a broad range of
academic institutions and private corporations, and individuals
have been recruited from over 50 sites across the USA and
Canada. The follow-up duration of each group is specified in
the protocol for ADNI. For up-to-date information, see www.
adni-info.org.

Materials and data availability

shapeDNA and the BrainPrint software are available at http://
reuter.mit.edu/software/ and https://github.com/reuter-lab/
BrainPrint. ADNI data are available at adni.loni.usc.edu.

Results

Within- and across-individual changes
in asymmetry

Cases with at least three scans are selected from the ADNI

cohort, yielding n = 697 individuals with summary statistics

listed in Supplementary Table 1.

We use a mixed effects model that includes a global

intercept b0, age at baseline b1, years-from-baseline b2

and diagnosis [categorical variable b3 with four groups:

controls, MCI stable (MCI-s), MCI progressor (MCI-p)

and Alzheimer’s disease (AD)], where both the intercept

and years-from-baseline are modelled as random effects.

Years of education, sex, ICV, and presence of an APOE4

risk allele are included as additional fixed control variables.

The model is explicitly shown in Equation 4. Table 1

reports standardized regression coefficients and P-values

for the model. For the diagnosis variable, Table 1 shows

changes between adjacent diagnostic groups together with

the change from controls to Alzheimer’s disease. The asym-

metry of brain structures is the dependent variable, with

results for volume asymmetry (absolute lateral volume dif-

ference) on the top and for shape (BrainPrint) asymmetry

on the bottom. P-values that survive FDR correction

(Benjamini and Hochberg, 2000) (at q = 0.05) are printed

in bold.

Compared to volume asymmetry, shape asymmetry

demonstrates a stronger association with age, years from

baseline, and diagnosis for most structures. For volume

asymmetry, a substantial number of structures is significant

for the comparison of controls and Alzheimer’s disease yet,

almost no structure reaches significance for the more chal-

lenging differentiation between adjacent diagnostic groups,

with the exception of white matter and pial surfaces for

MCI-s ! MCI-p.

When working with shapes, white matter, cerebellum

cortex, hippocampus, amygdala, thalamus, caudate and

putamen show a significant lateral shape asymmetry

increase with age b1. For the longitudinal increase of

shape asymmetry with years-from-baseline b2, also the ven-

tricle and accumbens exhibit a significant effect. The long-

itudinal increase is usually two to five times stronger than

the cross-sectional, indicating that asymmetry tends to

increase faster as a function of within-individual change

in age than as a function of cohort age. The strongest long-

itudinal effects of shape asymmetry are present in hippo-

campus, amygdala and putamen.

Shape asymmetries of the hippocampus and amygdala

differ significantly across all diagnostic groups. Other

structures with significant effects across adjacent diagnostic

groups are white matter, pial, and caudate. Especially when

comparing controls and Alzheimer’s disease (CN ! AD)

shape asymmetries of almost all structures are significantly

different, except for ventricle and thalamus. To further

evaluate the association between asymmetry and cognitive

decline, we replaced the diagnosis in the mixed effects

models with outcomes from cognitive tests.

Supplementary Table 3 reports results for the Mini-

Mental State Examination (MMSE), Clinical Dementia

Rating sum of boxes (CDR-SB) together with the

Alzheimer’s Disease Assessment Scale (ADAS) with 11

and 13 items. A separate model is estimated for each

score. Consistent with the previous results, the strongest

and most significant effect is present for the hippocampus

and amygdala. Also highly significant across all scores are

caudate and cerebellum cortex. For all significant structures

we see higher asymmetry for advanced cognitive decline.

We visualize the change in asymmetry for hippocampus,

amygdala, and caudate in Fig. 3, which displays the esti-

mated intra- and interindividual change of the lateral shape

asymmetry. Solid lines depict the global age effect, where

the offset is determined by the diagnostic group variable.

Short line ticks depict the longitudinal intraindividual effect

which, except for Fig. 3B, is fixed across age and group.
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The plots confirm the higher intraindividual increase in

asymmetry compared to across the age effect. We further

see a separation of disease groups for hippocampus and

amygdala, consistent with the significant effected reported

in Table 1. The model in Equation 4 (used for Fig. 3A, C

and D) assumes a constant slope for the intraindividual

change across all disease groups. The extended model con-

tains the interaction between years-from-baseline and diag-

nosis (Xij �Di), which increases its flexibility and permits

estimating different slopes for each disease group. In the

extended model, we only detect a significant impact of

the interaction for the hippocampus [MCI-c: 0.12

(P = 0.005); AD: 0.12 (P = 0.020)], with the corresponding

model plotted in Fig. 3B. Note, that the intraindividual

increase for MCI progressor and Alzheimer’s disease is

similar and much steeper than for MCI stable. The control

group shows almost no intraindividual increase in asymme-

try, only with respect to age. The interaction between age

and disease (different slopes of the permanent lines) was

not significant.

The Mahalanobis distance measures the magnitude in

shape asymmetry, but does not indicate the direction. To

investigate whether the asymmetry is directional, we eval-

uated the linear mixed effects model for eigenvalue

differences across hemispheres of the hippocampus and

the amygdala. Table 2 reports the model coefficients for

the eigenvalue difference and absolute eigenvalue differ-

ence. Results are shown for six eigenvalues of the hippo-

campus, corresponding to the six eigenfunctions shown in

Fig. 2, and for three eigenvalues of the amygdala. The

results indicate that there are significantly higher associa-

tions for the absolute differences than for the differences,

indicating that the pattern of asymmetry is not directional.

This is consistent with our results on volume asymmetry,

where also the absolute volume difference showed stronger

associations than the volume difference. For the interpreta-

tion of the eigenvalues, it is instructive to consider the

eigenfunctions in Fig. 2, which capture different shape

characteristics of the hippocampus, such as length, curva-

ture, thickness, and width.

To localize the part of the hippocampus asymmetry

that shows the strongest association with Alzheimer’s

disease, we use the level-set analysis. We compute the

mixed effects model on the absolute difference of level

set lengths across hemispheres. Figure 2 illustrates the

level sets as green curves of the first eigenfunction.

Supplementary Fig. 1 visualizes the P-values for compar-

ing controls and Alzheimer’s disease (CN!AD). The

Table 1 Standardized regression coefficients and P-values (in parentheses, bold values survive FDR correction at

q = 0.05) for the analysis of lateral asymmetry with the linear mixed effects model

b1 b2 b3 (Diagnosis)

Structure (Age) (Years-from-Bl) CN ! MCI-s MCI-s ! MCI-p MCI-p ! AD CN ! AD

Volume asymmetry

White matter 0.010 (0.039) 0.054 (0.000) 0.20 (0.010) 0.27 (0.002) 0.17 (0.085) 0.64 (0.000)

Pial 0.003 (0.448) 0.022 (0.167) 0.18 (0.011) 0.28 (0.000) 0.03 (0.707) 0.49 (0.000)

Ventricle 0.016 (0.002) 0.058 (0.000) 0.09 (0.249) 0.02 (0.807) �0.07 (0.474) 0.05 (0.627)

Cerebellum white matter 0.007 (0.179) 0.031 (0.048) 0.07 (0.376) 0.03 (0.756) 0.03 (0.768) 0.13 (0.166)

Cerebellum cortex 0.001 (0.885) �0.014 (0.214) 0.04 (0.623) �0.02 (0.824) �0.10 (0.355) -0.08 (0.442)

Hippocampus 0.011 (0.053) 0.013 (0.198) 0.13 (0.165) 0.02 (0.863) 0.09 (0.415) 0.24 (0.024)

Amygdala 0.009 (0.110) �0.004 (0.653) �0.05 (0.562) 0.07 (0.500) �0.03 (0.779) -0.02 (0.888)

Thalamus 0.006 (0.273) 0.029 (0.071) 0.09 (0.259) 0.03 (0.737) 0.02 (0.814) 0.15 (0.118)

Caudate 0.019 (0.000) 0.017 (0.193) 0.13 (0.126) 0.01 (0.927) 0.22 (0.031) 0.36 (0.000)

Putamen 0.012 (0.035) 0.036 (0.004) �0.10 (0.259) 0.12 (0.218) 0.10 (0.340) 0.13 (0.216)

Accumbens 0.004 (0.406) �0.032 (0.024) �0.01 (0.928) �0.05 (0.616) 0.04 (0.708) -0.02 (0.864)

Shape asymmetry

White matter 0.021 (0.000) 0.043 (0.000) 0.10 (0.241) 0.29 (0.004) �0.04 (0.725) 0.35 (0.001)

Pial 0.004 (0.350) �0.011 (0.486) 0.18 (0.012) 0.18 (0.029) �0.06 (0.474) 0.30 (0.000)

Ventricle 0.007 (0.212) �0.026 (0.056) �0.01 (0.890) �0.06 (0.510) 0.08 (0.415) 0.01 (0.920)

Cerebellum white matter 0.006 (0.171) 0.006 (0.726) 0.15 (0.026) �0.06 (0.440) 0.10 (0.248) 0.19 (0.017)

Cerebellum cortex 0.009 (0.030) 0.042 (0.023) 0.08 (0.237) 0.06 (0.442) 0.10 (0.262) 0.24 (0.003)

Hippocampus 0.029 (0.000) 0.060 (0.000) 0.19 (0.007) 0.31 (0.000) 0.25 (0.003) 0.75 (0.000)

Amygdala 0.024 (0.000) 0.065 (0.000) 0.21 (0.005) 0.31 (0.000) 0.35 (0.000) 0.87 (0.000)

Thalamus 0.015 (0.002) 0.034 (0.039) �0.14 (0.076) 0.01 (0.882) 0.14 (0.146) 0.01 (0.890)

Caudate 0.015 (0.001) 0.057 (0.001) �0.02 (0.837) 0.21 (0.010) 0.15 (0.103) 0.34 (0.000)

Putamen 0.021 (0.000) 0.057 (0.000) 0.09 (0.312) �0.01 (0.907) 0.21 (0.040) 0.29 (0.003)

Accumbens 0.003 (0.522) 0.055 (0.001) 0.10 (0.193) 0.06 (0.489) 0.03 (0.746) 0.19 (0.033)

Results are shown for volume (top) and shape/BrainPrint (bottom) asymmetry of neuroanatomical structures. The diagnostic label b3 is a categorical variable with four groups: controls

(CN), MCI stable (MCI-s), MCI progressor (MCI-p), and Alzheimer’s disease (AD). The coefficient b1 is associated to baseline age and b2 to years-from-baseline. P-values are rounded

to three decimal places.
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posterior region is not significantly associated with diag-

nosis, while the anterior region shows the strongest asso-

ciation (P5 10�5).

To further investigate connections between increasing

asymmetry and cortical thickness changes, we estimate a

slightly different mixed effects model (Equation 5) on the

cortex for the mass-univariate analysis of thickness as the

dependent variable employing all available subjects and

time points. Here, we include a global intercept b0 and

the time-varying hippocampal asymmetry measure b1.

Further, baseline age, sex, years of education, and presence

of an APOE4 risk allele are again included as additional

fixed control variables. The intercept is modelled as a

random effect. Figure 4 shows the significance map for

the longitudinal effect b1 of hippocampal asymmetry after

FDR thresholding, highlighting cortical regions where grey

matter atrophy is significantly associated with within-sub-

ject increases in hippocampal asymmetry, when controlling

for age, sex, education, and APOE4 status.

Progression from mild cognitive
impairment to Alzheimer’s disease

For studying the progression from MCI to Alzheimer’s

disease, we used n = 374 individuals with MCI, with

diagnostic and demographic information reported in

Supplementary Table 2.

For the Cox proportional hazards model with time-vary-

ing variables in Equation 3, we evaluate the lateral asym-

metry for each of the 11 brain structures with respect to

shape (BrainPrint) and size (volume). In addition, we com-

pute a classical Cox model on baseline measurements of the

BrainPrint, yielding 33 Cox models in total. Table 3

reports hazard ratios (HR), confidence intervals (CI), and

estimates of statistical significance with the Wald test for

the asymmetry component in each model. Figure 5 visua-

lizes the significance for subcortical structures with the

BrainPrint. The only component that exhibits a significant

effect for all models is the interaction between APOE4 and

Figure 3 Longitudinal analysis of standardized lateral asymmetry measures of the hippocampus (A and B), amygdala (C), and

caudate (D). Lines and ticks illustrate estimates of the different linear mixed effects models. The global age effect (fixed across groups) is

depicted by the slope of the long solid lines, the group effect is the offset showing increased asymmetry with advanced disease stage. Short line

ticks depict longitudinal slopes. They are parallel across time and group (in A, C and D) and can vary across group (in B), depicting the model for

the hippocampus with an additional (significant) interaction term between years-from-baseline and diagnosis, showing increasing asymmetry

slopes across groups concordant with disease stage. Diagnostic groups are shown in colour and the order of the lines follows the order of the

legend from top to bottom. AD = Alzheimer’s disease; MCI-P = MCI progressor; MCI-S = MCI stable; CN = controls.

3260 | BRAIN 2016: 139; 3253–3266 C. Wachinger et al.

http://brain.oxfordjournals.org/lookup/suppl/doi:10.1093/brain/aww243/-/DC1


years-from-baseline. In addition to the significance of sepa-

rate variables in the model, tests of the overall goodness of

fit with the Wald test showed significance for all models.

Structures that show significant results for the BrainPrint

are cortical structures, hippocampus, amygdala, and cau-

date. For volume asymmetry measurements, none of the

structures demonstrate a significant effect in the model.

For the model with BrainPrint baseline measurements, hip-

pocampus, amygdala, and putamen have P-values below

0.05, but they are not significant after FDR correction.

All significant structures have a hazard ratio 41, which

means that the increase in asymmetry raises the risk for

progression to Alzheimer’s disease.

Discussion
Here we present the first method for shape-based asymme-

try analysis of dementia. Our method does not require

registration, and avoids interpolation artefacts and lateral

processing bias by treating both hemispheres exactly the

same. We, furthermore, analyse a variety of different sub-

cortical and cortical structures.

Previous studies on hippocampal asymmetry based on

volumetry and small sample sizes have not found

significant increases with dementia (Fox et al., 1996;

Barnes et al., 2005; Shi et al., 2009). Here we demonstrate

a clear increase in shape asymmetry of the hippocampus

and amygdala concurrent with disease progression

(Table 1). We report significant differences in asymmetry

across all four diagnostic categories (CN, MCI-s, MCI-p,

AD) and observe a similar spacing in baseline asymmetry

across diagnostic groups, with MCI progressors about half-

way between MCI stable and Alzheimer’s disease patients

(Fig. 3). These results are further supported by the signifi-

cant association between asymmetry and cognitive test

scores (MMSE, CDR-SB, ADAS11, ADAS13)

(Supplementary Table 3) and by within-subject associations

of hippocampal asymmetry increase with cortical atrophy

(Fig. 4), notably in the temporal lobe (both hemispheres)

and superior frontal regions (left hemisphere). The detected

increase of subcortical asymmetry is consistent with pre-

vious findings from PET imaging that demonstrated asym-

metric hypometabolism (Grady et al., 1988; Haxby et al.,

1990) and an asymmetric distribution of amyloid-b (Frings

et al., 2015), as well as cortical asymmetries (Thompson

et al., 2007; Long et al., 2013). The lack of significant

asymmetry findings from previous volumetric studies sug-

gests a heterogeneous effect of neurodegenerative mechan-

isms on subcortical structures that causes neuroanatomical

Table 2 Standardized regression coefficients and P-values (in parentheses, bold values survive FDR correction at

q = 0.05) for the analysis of lateral asymmetry of the hippocampus (top) and amygdala (bottom) with the linear

mixed effects model

b1 b2 b3 (Diagnosis)

(Age) (Years-from-Bl) CN ! MCI-s MCI-s ! MCI-p MCI-p ! AD CN ! AD

Eigenvalue difference for hippocampus

Eigenvalue 1 0.003 (0.922) �0.013 (0.218) �0.141 (0.043) 0.074 (0.346) �0.088 (0.295) �0.156 (0.051)

Eigenvalue 2 0.201 (0.050) 0.025 (0.639) �0.273 (0.305) 0.602 (0.043) 0.025 (0.939) 0.354 (0.246)

Eigenvalue 3 0.128 (0.468) 0.090 (0.334) �0.387 (0.397) �0.083 (0.871) 0.388 (0.485) �0.082 (0.876)

Eigenvalue 4 0.202 (0.279) 0.186 (0.062) �0.218 (0.651) 0.812 (0.133) �0.134 (0.819) 0.460 (0.407)

Eigenvalue 5 �0.050 (0.761) 0.208 (0.033) 0.533 (0.208) 0.091 (0.847) 0.631 (0.220) 1.255 (0.010)

Eigenvalue 6 �0.210 (0.240) 0.120 (0.223) �0.513 (0.268) 0.598 (0.248) �0.123 (0.826) �0.038 (0.943)

Absolute eigenvalue difference for hippocampus

Eigenvalue 1 0.029 (0.106) �0.003 (0.746) �0.020 (0.654) 0.058 (0.255) 0.072 (0.194) 0.110 (0.036)

Eigenvalue 2 0.164 (0.018) 0.091 (0.034) 0.367 (0.040) 0.483 (0.015) 0.759 (0.001) 1.609 (0.000)

Eigenvalue 3 0.403 (0.000) 0.134 (0.069) 0.530 (0.064) 0.256 (0.423) 1.038 (0.003) 1.824 (0.000)

Eigenvalue 4 0.536 (0.000) 0.111 (0.114) 0.289 (0.308) 0.996 (0.002) 0.341 (0.324) 1.626 (0.000)

Eigenvalue 5 0.487 (0.000) 0.121 (0.053) 0.051 (0.842) 1.183 (0.000) 0.347 (0.266) 1.581 (0.000)

Eigenvalue 6 0.428 (0.000) 0.115 (0.108) 0.619 (0.034) 0.934 (0.004) 0.280 (0.431) 1.833 (0.000)

Eigenvalue difference for amygdala

Eigenvalue 1 �0.000 (0.995) �0.029 (0.202) �0.077 (0.651) 0.124 (0.516) �0.201 (0.328) �0.154 (0.427)

Eigenvalue 2 0.180 (0.029) 0.030 (0.467) 0.131 (0.538) �0.083 (0.729) 0.545 (0.035) 0.593 (0.015)

Eigenvalue 3 �0.019 (0.798) 0.000 (1.000) 0.206 (0.291) �0.120 (0.584) 0.214 (0.369) 0.301 (0.184)

Absolute eigenvalue difference for amygdala

Eigenvalue 1 0.111 (0.006) 0.033 (0.110) 0.075 (0.472) 0.176 (0.131) 0.309 (0.014) 0.559 (0.000)

Eigenvalue 2 0.104 (0.023) 0.061 (0.056) 0.235 (0.047) 0.330 (0.013) 0.561 (0.000) 1.126 (0.000)

Eigenvalue 3 0.092 (0.111) 0.071 (0.029) 0.212 (0.154) 0.261 (0.117) 0.152 (0.404) 0.625 (0.000)

The model is similar to the one in Table 1 with the dependent variable replaced by the (absolute) difference of the eigenvalues. The diagnostic label b3 is a categorical variable with

four groups: controls (CN), MCI stable (MCI-s), MCI progressor (MCI-p), and Alzheimer’s disease (AD). The coefficient b1 is associated to baseline age and b2 to years-from-baseline.

P-values are rounded to three decimal places. The six eigenfunctions of the hippocampus corresponding to the eigenvalues are shown in Fig. 2.
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shape variations. This view is supported by findings that

Alzheimer’s disease is more prominent in specific subfields

of the hippocampus (Pievani et al., 2011; Jagust, 2013) and

subnuclei of the amygdala (Mukai et al., 1994). Due to an

increase in sensitivity to local shape changes, our shape

asymmetry analysis can detect these subtle effects earlier

than volumetry.

Our results on the difference of eigenvalues for the hip-

pocampus and amygdala indicate that the increase in asym-

metry is undirectional (Table 2). These results are further

supported by results of volume asymmetry, where absolute

volume differences show a more significant association to

diagnosis than plain differences. These results support the

notion that there is no dominant direction of hemispheric

Figure 4 Significance map from a two-sided test. FDR thresholded at q = 0.05, yellow: P � 0.0001. Showing regions where within-subject

cortical thickness loss (atrophy) is significantly associated with hippocampal asymmetry increase, controlling for age, sex, education and presence

of APOE4 (unsigned testing).

Table 3 Coefficients from the Cox proportional hazards model for the lateral asymmetry computed with the

BrainPrint and volume

Structure BrainPrint (time-varying) Volume (time-varying) BrainPrint (baseline)

HR CI P HR CI P HR CI P

White matter 1.23 1.03�1.45 0.019 1.15 0.98�1.35 0.089 1.10 0.93�1.29 0.268

Pial 1.21 1.03�1.43 0.024 1.08 0.91�1.29 0.385 1.08 0.91�1.28 0.388

Ventricle 0.88 0.73�1.08 0.221 1.02 0.84�1.22 0.863 0.87 0.72�1.05 0.156

Cerebellum white matter 1.00 0.82�1.21 0.967 0.95 0.78�1.16 0.616 0.95 0.79�1.14 0.604

Cerebellum cortex 1.05 0.88�1.26 0.569 1.01 0.84�1.21 0.913 0.88 0.73�1.07 0.207

Hippocampus 1.34 1.13�1.58 0.001 1.05 0.87�1.25 0.618 1.22 1.03�1.44 0.023

Amygdala 1.30 1.09�1.54 0.003 1.04 0.86�1.25 0.717 1.22 1.03�1.44 0.021

Thalamus 0.98 0.81�1.19 0.873 1.10 0.92�1.33 0.295 1.10 0.92�1.32 0.304

Caudate 1.27 1.07�1.52 0.007 1.02 0.85�1.23 0.798 1.14 0.98�1.34 0.095

Putamen 1.15 0.96�1.37 0.137 1.17 1.00�1.37 0.053 1.23 1.03�1.47 0.019

Accumbens 1.05 0.87�1.27 0.596 0.95 0.78�1.15 0.572 1.08 0.90�1.30 0.413

For the BrainPrint, we evaluated the Cox model with time-varying variables and with baseline measurements, respectively. We report the hazard ratio (HR), the confidence interval

(CI), and the P-value (P) from the Wald test (bold values survive FDR correction at q = 0.05).
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asymmetry; it is rather the magnitude of the asymmetry

that shows significant association with dementia progres-

sion. This objects a tentative explanation of higher asym-

metry from a possible bias in clinically diagnosing

Alzheimer’s disease from symptoms potentially more

related to left hemisphere atrophy (language-based tests

for memory assessment), which could result in directional

asymmetry. Alternative approaches, such as voxel-based

techniques (VBM, TBM) and statistical shape models, are

not well suited for identifying undirectional asymmetry

because they average across the population on each hemi-

sphere. In contrast, the proposed shape asymmetry presents

a within-subject measure of asymmetry that identifies direc-

tional and undirectional asymmetry.

Previous studies on hippocampal asymmetry mainly con-

sidered cross-sectional data. Here we find a two to five

times higher longitudinal intraindividual increase in asym-

metry relative to the cross-sectional age effect (Table 1).

These results are in line with previous longitudinal results

on cortical thickness (Thompson et al., 2011). Multiple

sources of between-patient variation can cause these differ-

ences. Most prominent is the healthy survivor effect: indi-

viduals with advanced disease progression or low cognitive

performance may be more likely to drop-out, thus causing

cross-sectional results to be overly optimistic. Sampling var-

iations can further be amplified by non-linear disease tra-

jectories that cause spurious effects in linear models.

Evidence for non-linearity is visible in the hippocampus,

where the differences in slopes across diagnostic groups is

especially pronounced. With the availability of longer

follow-up periods and additional time points in the

future, the integration of non-linear models may therefore

be appropriate. The slope of the MCI progressors is sub-

stantially higher than for those that remain stable, as

shown by the results of the extended model with the inter-

action term (Fig. 3B). The longitudinal change of MCI

progressors is close to Alzheimer’s disease patients,

indicating that progressors are on a similar disease trajec-

tory of cognitive decline as Alzheimer’s disease patients.

The pronounced longitudinal increase in shape asymmetry

of progressors allows improved differentiations of progres-

sors from non-progressors when incorporating intraindivi-

dual asymmetry changes into the predictive model.

The differentiation between stable MCI and those who

progress to Alzheimer’s disease is of high clinical relevance,

e.g. for selection into disease-modifying therapies or drug

trials. Our results from the time-to-event analysis demon-

strate that asymmetry is predictive for progression from

MCI to Alzheimer’s disease for hippocampus, amygdala,

caudate and cortex (Table 3 and Fig. 5). Shape asymmetry

in these structures may therefore serve as a sensitive bio-

marker for the progression to Alzheimer’s disease. So far,

brain asymmetry has not been used for predicting

Alzheimer’s disease in a time-to-event analysis. A compar-

ison of models with time-varying variables and with base-

line measurements shows the advantage of including

follow-up measurements in the prediction.

Our results show that shape asymmetry is more predictive

of Alzheimer’s disease than volume asymmetry. In addition

to the results in the mixed effects model, the benefit of

shape asymmetry is highlighted in the comparison to

volume asymmetry for the progression to Alzheimer’s

disease in the Cox model, where volumetry did not yield

any significant results. This suggests that the coarse repre-

sentation of a structure by only its volume neglects impor-

tant information for modelling the onset of dementia. Note,

that the asymmetry measure enters all our statistical models

as a single scalar value, independent of whether the distance

is computed on a high-dimensional shape signature or on

the one-dimensional volume. This allows a direct compar-

ison of the BrainPrint and the volume-based models and

clearly highlights the importance of a discriminative geo-

metric representation for quantifying brain asymmetry.

The advantage of shape representations is also underlined

Figure 5 Visualization of the P-values of the cox regression model for BrainPrint with time-varying variables on subcortical

structures.

Increased asymmetries in dementia BRAIN 2016: 139; 3253–3266 | 3263



by the level set analysis of the hippocampus, which shows

a heterogeneous disease effect across the structure

(Supplementary Fig. 1). The anterior hippocampus is pri-

marily implicated by the increase in asymmetry as dementia

progresses, consistent with findings from Woolard and

Heckers (2012). Such focal effects are likely to be missed

by volumetry but high-dimensional shape vectors are sensi-

tive to such localized changes.

Ageing is characterized by a multifaceted set of neurobio-

logical cascades that occur at different rates in different

people together with complex and often interdependent

effects on cognitive decline (Buckner, 2004). It is therefore

not surprising that we detect increasing shape asymmetry in

ageing in addition to cognitive decline. The distinction

between ageing and dementia-related processes is difficult

because regions that accommodate neural systems with

high susceptibility to deleterious factors are likely affected

by both (Jagust, 2013). While there is a certain overlap, our

results also indicate that hippocampus and amygdala show

high disease-related effects. In contrast, putamen, thalamus,

and white matter show strong ageing associations while

being only weakly associated to cognitive decline. Our

whole-brain asymmetry analysis, which is in contrast to

previous studies that focused on the hippocampus alone,

offers new opportunities for disentangling ageing and

dementia-related asymmetry increase. The change in asym-

metry with age may be a sign of brain plasticity, the adap-

tation of brain structure throughout life, which is critical

for human cognitive evolution (Gómez-Robles et al., 2013).

Neuroanatomical asymmetry may be correlated with

changes in brain function, which are known to be influ-

enced by a person’s life experience. The discriminative ana-

lysis of neuroanatomical asymmetry for the whole brain

may enable a more detailed analysis of dementia in the

future, e.g. the identification of subgroups.
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