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Abstract. The segmentation of parotid glands in CT scans of patients with head and
neck cancer is an essential part of treatment planning. We introduce a new method
for the automatic segmentation of parotid glands that extends existing patch-based
approaches in three ways: (1) we promote the use of image features in combination
with patch intensity values to increase discrimination; (2) we work with larger search
windows than established methods by using an approximate nearest neighbor search;
and (3) we demonstrate that location information is a crucial discriminator and add
it explicitly to the description. In our experiments, we compare a large number of
features and introduce a new multi-scale descriptor. The best performance is achieved
with entropy image features in combination with patches and location information.

1 Introduction

Radiation therapy planning aims to maximize the radiation dose in the target region while
minimizing the dose in surrounding tissue. In intensity modulated radiation therapy, experts
delineate the most critical structures, also known as organs at risk, and use the generated
segmentations to reduce the irradiation of healthy tissue and potential side effects. The parotid
glands are critical salivary glands and organs at risk for treating patients with head and neck
cancer. The irradiation of the parotid glands can lead to xerostomia, a condition that interferes
with mastication, deglutition, and speech in patients. The automatic segmentation of parotid
glands is particularly challenging due to the low soft-tissue contrast in CT images and the
high anatomical variability of the glands among patients.

In this study, we propose a new atlas-based method to automatically segment the parotid
glands of patients with head and neck cancer. Instead of using deformable registration to create
correspondences between test and training images, as is common in atlas-based approaches, we
establish correspondences by directly comparing the image content of small regions. If image
intensities are used to represent the image content, this leads to patch-based segmentation
methods. Intensity values are, however, just one possible way to describe image content. We
present a natural generalization of patch-based approaches using image features to extract
additional discriminative information. We investigate the optimal selection and integration of
these features.

We build upon the non-local means (NLM) framework [2] for patch-based segmentation,
which produces state-of-the-art segmentation results [4,14]. The idea behind NLM is to com-
pare patches across the entire image domain and to let the comparison only depend on patch
intensity values, and not on location. In the actual implementation of NLM for image denois-
ing, the search window is restricted to 21 × 21 pixels to address computational concerns [2].
Similarly, [4, 14] restrict the search window to range from 9× 9× 9 to 15× 15× 15 voxels to
improve computational efficiency. In our study, we employ an efficient approximate nearest
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neighbor search allowing us to work with larger search windows that contain the entire parotid
gland. Counter-intuitively, larger search windows lead to less accurate segmentations. This sug-
gests that the spatial information implicitly incorporated into the comparison of patches on
restricting the search to small windows not only improves computational efficiency but also
has a direct influence on segmentation accuracy. Contrary to the idea behind NLM, we explic-
itly include location information in the comparison of patches as a descriptor, acting as a soft
constraint towards spatially closer patches. We find that considering location explicitly in this
way yields a significant improvement in segmentation results. This finding demonstrates the
importance of spatial information in patch-based segmentation and reaffirms our conclusion
that small search windows have a positive influence on segmentation accuracy.

The contributions of this work are: (1) an evaluation of different image features as de-
scriptors in a patch-based segmentation approach; (2) a modification of the NLM framework
for patch-based segmentation to use larger search windows in an approximate nearest neigh-
bor search; and (3) an explicit integration of location information as a descriptor. All of our
experiments segment the parotid glands of patients undergoing radiation therapy.

1.1 Related Work

The atlas-based segmentation of parotid glands with deformable registration was applied
in [7, 13]. In [3], atlas images were used to train an active shape model used to segment
the parotid glands. The refinement of head and neck segmentations based on classification
with features was proposed in [12]. In [6], label fusion was used to initialize a segmentation
pipeline employing statistical appearance models and geodesic active contours. Patch-based
segmentation approaches as described within the NLM framework were proposed in [4,14]. In
previous work, we used a patch-based approach to segment the parotid glands using the NLM
framework and a random forest classifier [16]. We also refined the initial segmentations based
on image contours with a Gaussian process regression. Sparse coding is a related extension of
patch-based segmentation which was combined with the Haar-wavelet, histogram of oriented
gradients and local binary patterns image features in [9].

2 Method

2.1 Review of Non-Local Means Segmentation

Given an atlas A = (I,S) that contains images I = {I1, . . . , In} and their corresponding
segmentations S = {S1, . . . , Sn} over a common image domain Ω, our objective is to compute
the segmentation S of a new image I. Patch-based methods are based on the rationale that
locations with similar image content should have similar segmentations, where local image
content is represented by the intensity values in a patch centered at each voxel. Consider a
patch P (x) from the test image at a location x ∈ Ω and the collection of all patches in the
training images P. We find the closest patch Px in the training set

Px = arg min
P∈P
‖P (x)− P‖2. (1)

Associated to the image patch Px is the segmentation patch Sx, which is used to infer the
segmentation S(x) in the test image around that location. In addition to finding the nearest
neighbor Px = P 1

x , we identify the full set of k-nearest neighbor patches P 1
x , . . . , P

k
x . We

differentiate between two methods of label propagation: (1) point-wise (PW) estimation which
only considers the center location of the patch Sx[x]; and (2) multi-point (MP) estimation [14],
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which considers the entire segmentation patch Sx. The label map is computed under the two
approaches as

LPW(x) =

∑k
i=1 w(P (x), P ix) · Six[x]∑k

i=1 w(P (x), P ix)
, (2)

LMP(x) =

∑
y∈Nx

∑k
i=1 w(P (y), P iy) · Siy[x]∑

y∈Nx

∑k
i=1 w(P (y), P iy)

, (3)

where Nx is the patch neighborhood around x and Sy[x] is the label on the location x of the
segmentation patch Sy centered at y. The weight w is defined as

w(P, P ′) = exp

(
−‖P − P

′‖22
2σ2

)
. (4)

To obtain the segmentation of the image I, a label map is calculated for each parotid gland
and each voxel is assigned the label with the most votes.

2.2 Descriptor-Based Segmentation

We extend patch-based segmentation to descriptor-based segmentation by including image
features and location information as further descriptors of image content. Image features
can capture additional information about contours, gradients, and texture in the image. The
evaluated features are described in section 2.4. We also include location information in the
descriptor by adding the xyz-coordinates of the voxel x. Location information imposes a soft
spatial constraint on the nearest neighbor search which is especially important when working
with large search windows, as described in section 2.3. The descriptor vector D(x) is the
concatenation of a patch P (x), an image feature F (x), and location information L(x)

D(x) =


1

|P (x)|·σ2
P
P (x)

f
|F (x)|·σ2

F
F (x)

`
|L(x)|·σ2

L
L(x)

 , (5)

where f and ` are positive weights and each sub-vector is normalized by dividing by the
number of entries | · | and the corresponding variance σ2

· . These variances are calculated for
each sub-vector over the entire training set. This normalization permits direct control over
the expected contributions of each descriptor type to the magnitude of the squared distance
‖D −D′‖22 by varying f and `. The weight w in the label propagation is calculated with

w(D,D′) = exp

(
− ‖D −D

′‖22
2(1 + f + `)

)
. (6)

2.3 Nearest Neighbor Search

We evaluate three approaches to performing the k-nearest neighbor search in Eq. (1): a full,
a bounded and an approximate k-nearest neighbor search. The full nearest neighbor (FNN)
search searches over all locations in the domain of the organ to find nearest neighbors, follow-
ing the original idea behind non-local means. The bounded nearest neighbor (BNN) search
searches over all locations y within a sphere of radius r (‖y − x‖2 ≤ r). This approximates
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the search windows used in [4,14], where search is restricted to boxes of between 9×9×9 and
15× 15× 15 voxels to reduce computation time. To achieve a similar behavior, we set r = 5.

Disadvantages to these approaches include the high computational complexity of FNN
and the hard spatial cut-off imposed by BNN during search. As a compromise, we consider
an unbounded approximate nearest neighbor (ANN) search. We use the randomized kd-tree
algorithm implemented in FLANN [11]. Although the kd-tree algorithm is a frequently used
ANN, its performance generally decreases with high dimensional data. While this is true for
randomly generated data, it has been shown that the performance of kd-trees is high for
high dimensional data from image patches, likely due to strong correlations in images [11].
The randomized kd-tree algorithm splits data on a dimension randomly chosen among the
dimensions of highest variance, rather than that of highest variance as in the classic kd-tree
algorithm. Searching over multiple randomized kd-trees generally improves performance [11].
The randomized kd-tree algorithm in FLANN commonly provides more than 95% of the
correct neighbors and is two or more orders of magnitude faster than the exact search [11].

2.4 Image Features

For most of the image features considered, we process the entire image first to produce a
feature image and then extract a patch from the feature image, e.g., for filtering, the feature
corresponds to a patch of the filtered version of the image. The sizes of patches taken from
the feature image range from 1× 1× 1 to 5× 5× 5. For some features, we use the size of the
intensity patch P (x), which is 9× 9× 5 for most experiments.

Multi-Scale Patch: A disadvantage of patch-based approaches is the limited information
about spatial context, which leads to undesirable pairings in the k-nearest neighbor search.
We propose a new multi-scale patch that combines high resolution at its
center and low resolution in the surrounding area (see figure on the right).
In addition to the standard intensity patch P (x) in the center, we consider a
3× 3× 3 grid of blocks of the same size as P (x) centered at x and the mean
intensities of each block. This yields a vector of length 27 containing these
mean values which we concatenate with the vector of patch intensity values
P (x). This design is motivated by the human visual system, where spatial acuity peaks at
the central fovea and diminishes with distance. In this study, we consider only two scales;
however, this feature has a natural extension to additional scale levels.

Image Filtering: Additional image features are obtained by filtering the images and ex-
tracting patches from the filtered images. We consider mean, median, variance, Sobel, Gaus-
sian, Laplacian and Gabor wavelet [8, 10] filters. The mean, median and Gaussian filters we
apply have masks of size 9× 9× 5.

Entropy Image: Entropy images were proposed for the multi-modal registration of im-
ages in [15]. The information content of a patch is measured with the Shannon entropy which
is computed and stored at the center voxel of the patch. Repeating this calculation for all
voxels in the image yields the entropy image, which represents the structural information in
the image. Entropy image features have similarities to gradient magnitude features. However,
entropy image features provide a representation less dependent on actual intensity values.

Histogram of Oriented Gradients: To compute histogram of oriented gradients (HoG)
features, we calculate 3D image gradients in each patch of the image [5]. These gradients are
used to produce a histogram over gradient orientations, where the contribution of each gradi-
ent to the histogram is equal to its magnitude. Gradients created from image noise therefore
have lower impact than strong gradients at image boundaries. The histograms produced have
8 bins corresponding to the 8 octants that the 3D vector can lie in.
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Multi-scale Probability of Boundary: We compute the multi-scale probability of
boundary (mPb) as described in [1]. In the first step, we estimate image and texture gra-
dients per slice with the oriented gradient signal. This method calculates the χ2 distance
between the histograms of two half-discs at each location for various orientations and at mul-
tiple scales. Textons are calculated to quantify the texture by convolving the image with 17
Gaussian derivative and center-surround filters and subsequently clustering with k-means into
64 classes [1]. Image and texture gradients of multiple scales are added to yield the multi-scale
probability of boundary.

Local Binary Patterns: Local binary patterns (LBP) measure the relations between
a voxel and its neighbors, encoding these relations into a binary word and quantifying the
texture in a local region. LBP is primarily used for 2D images. We compared a 2D implemen-
tation applied on all slices in the volume with a 3D extension of LBP. The 3D extension was
motivated by spatio-temporal 2D+t video analysis and was implemented to use three orthog-
onal planes (LBP-TOP). The concurrence statistics for these three planes are concatenated.
We obtained a better performance from the 2D implementation and report only its results.

Haar-like Features: Haar-like features are computed by considering adjacent rectangular
regions at a specific location in a detection window, summing the pixel intensities in each
region and calculating the difference between these sums. The key advantage of Haar-like
features over most other features is their low computation time. Integral images permit the
rapid calculation of these features at many scales. Haar-like features bear a certain similarity
to Haar basis functions but also consider patterns that are more complex than Haar filters.

3 Experiments

To evaluate each of the methods described in section 2 and the effect of augmenting with
each of the features in section 2.4, we test on a data set of 18 CT scans of patients with head
and neck cancer. Each image was labeled by a trained anatomist for treatment planning. The
images contain between 80 and 200 axial slices with a slice thickness of 2.5mm. All images
were resampled to an in-plane resolution of 0.976mm. All 18 images have the left parotid
labeled. The right parotid gland was consumed by a tumor in one patient. Three of the 18
patients have dental artifacts that obscure the image intensity values in a region around the
parotid gland. We segment the left and right parotid glands in each of the 18 images with
a leave-one-out procedure, using the remaining 17 images to generate the atlas. To limit the
number of patches, we only consider every second patch in the training set in a way similar
to [14]. We measure segmentation quality by calculating the dice volume overlap score and
modified Hausdorff distance between the automatic and manual segmentations.

The standard configuration for our experiments uses 9 × 9 × 5 patches, computes k =
10 nearest neighbors and includes location information. We also consider omitting location
information, varying the parameter k, and patches of sizes ranging from 3×3×1 to 9×9×5.
We work with anisotropic patches to account for anisotropy in the CT data. We threshold
the image at −100 and 150 Hounsfield units to lessen the effects of dental artifacts and image
noise on the computed distances between descriptors.

3.1 Evaluation of Location and Label Propagation Methods

First we evaluate the inclusion of location information in the descriptor using a patch size
of 9 × 9 × 5. We also compare point-wise and multi-point label propagation methods. Fig-
ure 1 shows a statistical analysis of the segmentation results for these methods applied to
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Fig. 1. Comparison of dice volume overlap and modified Hausdorff distances (MHD) for point-
wise (PW), multipoint (MP) and the inclusion of location information (+Loc) for the left and right
parotid glands. In the plots, the red line indicates the median, the boxes extend to the 25th and 75th
percentiles, and the whiskers reach the most extreme values not considered outliers. *, ** and ***
indicate significance levels at 0.05, 0.01 and 0.001, respectively.

  

(d) MP: 0.1839 (e) PW: 0.1408 (f) Test Image

(a) MP+Location: 0.8743 (b) PW+Location: 0.8271 (c) Expert Segmentation
  

(d) MP: 0.1839 (e) PW: 0.1408 (f) Test Image

(a) MP+Location: 0.8743 (b) PW+Location: 0.8271 (c) Expert Segmentation

Fig. 2. Comparison of segmentation results for left parotid gland of a patient with dental artifacts.
The four segmentation methods evaluated are: (a) multi-point with location; (b) point-wise with
location; (d) multi-point; and (e) point-wise. We also show the Dice scores for this subject for each
method. The expert segmentation is shown in (c) and the CT slice with dental artifacts in (f).

the left parotid gland quantified with Dice and Modified Hausdorff distance. We measure
a significant improvement using multi-point (MP) label propagation over point-wise (PW)
label propagation, which is consistent with results in [14]. We further observe a significant
improvement for including location information (Loc) in the descriptor. On including loca-
tion information, multi-point (MP+Loc) still yields a significant improvement over point-wise
label propagation (PW+Loc).

As shown in Figure 1, there are three outlying Dice scores in the results of the point-wise
and multi-point labeling of the left parotid. These outliers correspond to patients with dental
artifacts. Figure 2 shows qualitative segmentation results for one of the subjects with dental
artifacts together with the corresponding Dice scores. The CT slice of the test image shown
demonstrates the strong impact of the dental artifact on the image. Including location infor-
mation yields a clear improvement in the generated segmentation as illustrated by Figure 2
and the Dice increase of roughly 0.7. In this case, location information spatially regulates the
segmentation, impeding the selection of patches from distant locations in the training images
that have similar intensity patches due to the artifacts but correspond to a different anatom-
ical structure. Furthermore, the multi-point approach smoothes the generated segmentation
along the boundary of the parotid gland and yields a single connected component.
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Fig. 3. Left: Mean Dice volume overlap scores for segmentations of the left parotid generated such that
D(x) contains: (1) patch intensity values; (2) HoG features; (3) patch intensity values and location
information; (4) patch intensity values and HoG features; (5) HoG features and location information;
and (6) patch intensity values, location information and HoG features. Right: Comparison of different
features used in addition to the intensity patch and the location information. Plot of the mean Dice.

3.2 Comparison of Features

In this section, we evaluate the inclusion of image features into the descriptor, in addition
to patch intensity values and location information. Figure 3 plots the mean Dice scores for
several different classes of compositions of the descriptor D(x) against patch size, using HoG
as a representative feature. Using HoG alone as the descriptor leads to a worse performance
than using only patch intensites. However, combining both HoG and patch intensities yields
an improvement. Adding location information improves the results of all three of these combi-
nations, resulting in an upward translation of their respective patch-size-Dice curves. The best
results are achieved on including patch intensities, image features and location information
in the descriptor. Based on these results, we select a patch size of 9 × 9 × 5 and include all
three sub-vectors in the descriptor D(x) to test the performance of each feature.

Figure 3 shows the segmentation results for the left parotid gland on including the features
from section 2.4. We omit the results for the right parotid which are similar to those for the left
due to space constraints. Entropy image features perform considerably better than all other
image features; and Entropy image, Sobel and HoG features are the three image features with
the highest mean Dice scores. The only feature that performs slightly worse than including
no additional image features in D(x) is the mean image. The major difference between the
results for the left and right parotids is that LBP is one of the better performing features for
the left parotid but one of the worse performing features for the right, dropping from 4th to
10th place in relative feature rankings.

Other than these differences, the relative order of the performances of each feature is
consistent from the left to right parotid glands. The three worst-performing features for both
parotid glands are the median, Gaussian and mean filtered image features, all of which are
features extracted from smoothed versions of the original image. The best performing features
measure contours in the images (entropy, Sobel, HoG, mPb). It seems reasonable that adding
contour information to the descriptor improves performance since this highlights the change
from foreground to background in patches. Instead of only matching patches that have overall
a similar appearance, this also ensures that they show similar contours. The performance for
texture measures such as LBP is not as consistent between the left and right parotids. An
interesting direction for future research is to investigate combinations of several features.
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4 Conclusions

We introduced a descriptor-based approach for image segmentation, focusing on the identifi-
cation of parotid glands in head and neck images, and proposed a descriptor containing patch
intensity values, image features and location information. We also proposed to use an approxi-
mate nearest neighbor search for non-local means segmentation which enabled us to use much
larger search windows than previous studies using NLM. Our results demonstrate the impor-
tance of location information when working with large search windows and the advantage of
applying a soft constraint favoring close locations over a hard cut-off. Furthermore, we found
that the inclusion of image features yields a clear improvement in segmentation accuracy.
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