

Sampling from Determinantal Point Processes for Scalable Manifold Learning

Christian Wachinger^{1,2}, Polina Golland¹
¹Computer Science and Artificial Intelligence Lab (CSAIL), MIT
²Massachusetts General Hospital, Harvard Medical School

Introduction

- Manifold learning is intractable for large datasets
- Approach: Select subset and use out-of-sample extension
- Challenges:
 - How to select a representative subset of points (landmarks)?
 - How to retain the geometry of the space after sampling?
- Contributions:
 - Efficient, approximate sampling from determinantal point processes on non-Euclidean geometries
 - Bhattacharyya distance for graph construction

Determinantal Point Process (DPP)

- Repulsive behavior between particles
- Global, negative correlations: diversity
- Given a positive semi-definite kernel K, sample subset J with probability:

- Sampling from DPPs as computationally complex as spectral decomposition
- Efficient approximation with linear complexity

Algorithm 1 Efficient approximation of DPP sampling

Efficient approximation of DPP sampling on manifolds

Require: Point set X, subset cardinality k, nearest neighbors m

- 1: Initialize $D = \mathbf{1}_n$
- 2: $\mathbf{for} \ 1 \ \mathbf{to} \ k \ \mathbf{do}$
- Select $i \in 1 \dots n$ with probability $p(i) \propto D_i$
- 4: $J \leftarrow J \cup i$
- 5: Calculate $\Delta_j = ||x_i x_j||, \ \forall j \in 1 \dots n$
- 6: Set m nearest neighbors as neighborhood \mathcal{N}_i based on $\{\Delta_j\}_{j=1...n}$
- 7: $D_j \leftarrow D_j \cdot f(\Delta_j), \ \forall j \in \mathcal{N}_i$
- 8: Optional: Calculate covariance C_i in local neighborhood \mathcal{N}_i around x_i
- 9: end for
- 10: **return** J and optionally $\{C_i\}_{i\in J}$

Matrix reconstruction error

Sampling	25	50	60	70	80	90	100
Uniform	70.4	8.0	4.8	2.8	1.7	0.73	0.44
K-means Uniform	28.1	3.8	2.3	1.4	0.8	0.40	0.24
K-means++ Seeding	50.1	5.8	3.0	1.7	1.0	0.68	0.35
K-means++	25.0	3.6	1.9	1.0	0.7	0.38	0.22
Efficient DPP	33.0	3.4	1.5	0.8	0.5	0.31	0.20

Similarity to K-means++ seeding

Higher probability for selecting green point with DPPs

→ More diverse subsets

Robust landmark selection

- Nearest neighbor graph construction suffers from sparse sampling
- Retain local geometry of original points by estimating the covariance matrix
- Bhattacharyya distance between Gaussian distributions $\mathcal{G}(x_i,C_i)$

$$B(\mathcal{G}_i, \mathcal{G}_j) = \frac{1}{8} (x_i - x_j)^{\top} C^{-1} (x_i - x_j) + \frac{1}{2} \ln \left(\frac{|C|}{\sqrt{|C_i||C_j|}} \right)$$

Algorithm summary

- 1. Select landmarks with approximate DPP sampling
- 2. Construct neighborhood graph on landmarks with Bhattacharyya distance
- 3. Calculate low-dimensional embedding based on neighborhood graph
- 4. Embed non-landmark points with out-of-sample extension

Embed 2,500 landmarks sampled from 10 million points

Varying number of NNs in graph construction

Experiments

- Embedding of handwritten digits (MNIST, 70K) and patches from head-and-neck CT scans (150K)
- Classification accuracy (nearest neighbor) for performance evaluation (10 numbers; 4 structures: Left/right parotid, brainstem, background)
- Laplacian eigenmaps
- Summary over 20 repetitions
- 15% faster than optimized K-means

