C. Wachinger, M. Toews, G. Langs, W. Wells, P. Golland

Whole-Body Segmentation

• Large field of view, large image matrix

Source: visceral.eu

Steps: 1. Extraction 2. Matching 3. Voting 4. Segmentation

Test Image

Steps: 1. Extraction 2. Matching 3. Voting 4. Segmentation

Test Image

Steps: 1. Extraction 2. Matching 3. Voting 4. Segmentation

Training Images and Segmentations

<u>Votes:</u>

- r.Kidney
- r.Kidney
- Liver

Steps: 1. Extraction 2. Matching **3. Voting** 4. Segmentation

Training Images and Segmentations

<u>Votes:</u>

- r.Kidney
- r.Kidney
- Liver

Steps: 1. Extraction 2. Matching **3. Voting** 4. Segmentation

Test Image

Test Image

Difference to state-of-the-art: Sparse Correspondences

Patch-Based (NLM)

Related Work

- Segmenting large field-of-view scans
 - Entangled Decision Forests (Montillo, IPMI 2011)
 - Discriminative / Generative Model (Iglesias, IPMI 2011)
 - Local / Global Context (Lay, IPMI 2013)
- Organ Detection
 - Marginal Space Learning (Zheng, IPMI 2009)
 - Regression Forests (Criminisi, MedIA 2013)

Require a training stage.

Related Work

- Data
 - VISCERAL Challenge (Langs, 2013; Del Toro, 2014)
 - Multi-atlas segmentation
 - Del Toro, ISBI challenge, 2014
 - Goksel, ISBI challenge, 2014
- Keypoints 3D SIFT
 - Image alignment (Toews, IPMI 2013, MedIA 2013)
 - Neurolmaging (Toews, Neurolmage 2010)
 - Big data analysis (Poster #7)

Method

- 1. Keypoint extraction
- 2. Matching
- 3. Voting
- 4. Segmentation

Keypoint Detection

Difference-of-Gaussian scale-space extrema

$$\{(x_i, \sigma_i)\} = \text{local} \max_{x, \sigma} \left| \frac{dI(x, \sigma)}{d\sigma} \right|$$

- x: Location
- σ : Scale

Keypoint Description

- Encode local image content
- Gradient orientation histogram (GoH)
 - Quantization: 8 blocks x 8 orientation bins

Keypoint Matching

• Find nearest neighbors

$$\begin{array}{ll} \underset{\mathcal{F} \in \mathcal{F}_{I_i}}{\text{minimize}} & \|F^D - \mathcal{F}^D\|\\\\ \text{subject to} & \varepsilon_{\sigma}^{-1} \leq \frac{F^{\sigma}}{\mathcal{F}^{\sigma}} \leq \varepsilon_{\sigma}\\\\ \end{array}$$

F

• Estimate global translation t_i

Keypoint Matching

• Find nearest neighbors

$$\begin{split} \underset{\mathcal{F} \in \mathcal{F}_{I_i}}{\text{minimize}} & \|F^D - \mathcal{F}^D\|\\ \text{subject to} & \varepsilon_{\sigma}^{-1} \leq \frac{F^{\sigma}}{\mathcal{F}^{\sigma}} \leq \varepsilon_{\sigma},\\ & \|F^x - \mathcal{F}^{x+t_i}\|_2 < \varepsilon_x \end{split}$$

 ε_x : keep 10% of closest matches

F

Distribution Over Matches

• Consistency of matches between two images

Kernel Density Estimation

Training Images

Test

$$\hat{L} = \underset{l \in \{1, \dots, \eta\}}{\operatorname{arg\,max}} p(L = l, F, \mathcal{L}, \mathcal{F})$$

Segmentation Transfer
Infer segmentation S

$$I = \sum_{m \in \mathcal{M}} \sum_{L} p(S, I, S, \mathcal{I}, \mathcal{L}, L, m)$$

$$= \sum_{m \in \mathcal{M}} \sum_{L} p(S|L, S, m) \cdot p(I|\mathcal{I}, m) \cdot p(L|m) \cdot p(m)$$

$$p(S|L, S, m) \propto \begin{cases} 1 & \text{if } S^{L} = S_{m}^{L}, \\ 0 & \text{otherwise} \end{cases}$$

$$p(I(x)|\mathcal{I}, m) = \frac{1}{\sqrt{2\pi\nu}} \exp\left(-\frac{(I(x) - \mathcal{I}_{m}(x))^{2}}{2\nu^{2}}\right)$$
Background for less than 15%

 $p(L|m) \propto p(L) \cdot \delta(\mathcal{L}_m, \hat{L})$

No improvement with organwide affine transformation

Experiments

- VISICERAL (re-sampled to 2mm)
 - 20 contrast-enhanced CT (ceCT), 200 x 200 x 349
 - 20 whole-body CT (wbCT), 217 x 217 x 695
 - 10 organs
- Leave-one-out procedure
- Comparison to multi-atlas segmentation
 - Majority Voting
 - Locally-weighted voting (Sabuncu, TMI 2010)
 - Deformable registration: ANTS (Avants, 2008)

Keypoint Voting Statistics

Contrast enhanced CT

Organs	Liver	Spleen	Aorta	Trachea	r.Lung	l.Lung	r.Kid	l.Kid	r.PM	l.PM	Bckgrnd
# Keypts	13.6	4.0	7.6	3.0	29.7	24.7	12.1	12.2	2.5	3.0	526.0
% Labeled	73	89	98	100	95	92	98	99	94	92	33
% Correct	87	91	97	99	100	100	98	100	99	93	0

No background keypoints in training set

Segmentation Accuracy

Contrast enhanced CT

Bars: Mean Error bars: standard error

Segmentation Accuracy

Whole-body CT

Bars: Mean Error bars: standard error

Runtime

Segmentation Accuracy

Vary number of training images

Limited Field-of-View

• Kidneys

Spleen

- Out of the box registration fails
- Add neighboring keypoints to vote for spleen

Funding Sources

- Humboldt foundation
- National Alliance for Medical Image Computing (U54-EB005149)
- NeuroImaging Analysis Center (P41-EB015902)
- Wistron Corporation

Conclusions

- Keypoint transfer segmentation
 - Maps entire organs
 - Sparse correspondences
- Generative models for inferring labels and segmentation
- Characteristics
 - Robust to variations in field-of-view
 - Computationally efficient