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Abstract. We present a new segmentation approach that combines the
strengths of label fusion and spectral clustering. The result is an atlas-
based segmentation method guided by contour and texture cues in the
test image. This offers advantages for datasets with high variability, mak-
ing the segmentation less prone to registration errors. We achieve the
integration by letting the weights of the graph Laplacian depend on im-
age data, as well as atlas-based label priors. The extracted contours are
converted to regions, arranged in a hierarchy depending on the strength
of the separating boundary. Finally, we construct the segmentation by a
region-wise, instead of voxel-wise, voting, increasing the robustness. Our
experiments on cardiac MRI show a clear improvement over majority
voting and intensity-weighted label fusion.

1 Introduction

Label fusion has gained much popularity in medical image segmentation. It ben-
efits from prior information in a form of images previously labeled by experts.
Instead of summarizing the data as a probabilistic atlas [2], label fusion algo-
rithms maintain and use all the labeled images [6, 9, 11]. In various comparisons,
label fusion outperforms alternative atlas-based segmentation strategies when
the anatomical variability is too large to be represented by mean statistics [6, 9].

In computer vision, spectral techniques, such as normalized cuts [12], are
commonly employed for segmentation. Central to these methods is the quantifi-
cation of pairwise similarities between points in the image, which serve as weights
for the graph Laplacian. Earlier work computed the similarity by comparing in-
tensity values [12]. Further studies introduced intervening contours, which relate
the similarity between two locations to the existence of a boundary separating
them [5]. In order to extract the boundary, image edges and textons are calcu-
lated to combine contour and texture cues [8]. The spectral framework constructs
a globally optimal partitioning based on these local measures. In a recent com-
parison [1], a multiscale version of normalized cuts outperformed other contour
detectors and produced excellent segmentation results on natural images.

The mentioned spectral algorithms, as well as active contour and level set
techniques, obtain impressive results by solely considering image cues. In con-
trast, label fusion segmentation is mainly based on intensity differences between
the images, but the contour information in the test image is rarely exploited.
Our method addresses exactly this issue and closes the gap between label fusion
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Fig. 1: Example segmentations of the left atrium of the heart. Automatic seg-
mentation is shown in yellow, expert labeling is shown in red.

techniques and spectral segmentation approaches. We combine image contour
cues and label information in the graph Laplacian to produce contours that
jointly depend on the atlas and the test image. Fig. 1 illustrates that this is
beneficial. Intensity-weighted label fusion [11] leads to an undersegmentation of
the left atrium of the heart (Fig. 1(a)). We observed this behavior in many cases.
Using image contours only faces challenges in identifying the correct boundaries,
especially for smooth intensity transitions (Fig. 1(b)). As a result, certain parts
are oversegmented while others, e.g., the veins, are cut off. The segmentation
with spectral label fusion, which fuses image and label information, leads to
the most accurate segmentation. The proposed algorithm constitutes a novel
approach to integrate prior information in spectral segmentation and leverages
state-of-the-art contour and region extraction methods to enhance label fusion.

1.1 Clinical Motivation

The proposed approach is well suited for delineating structures of high variabil-
ity, which are challenging to segment with atlas-based techniques due to difficul-
ties of inter-subject registration. With the integration of local image cues, the
method is less prone to alignment errors. We focus on the left atrium of the heart,
which exhibits large variations in the shape of the cavity and in the number and
location of pulmonary veins [4]. Its segmentation is of significant clinical rele-
vance, because one of the most common heart conditions is atrial fibrillation [4].
In atrial fibrillation, the left atrium no longer pumps blood into the left ventri-
cle efficiently but instead quivers in an abnormal way. The common treatment
is radio-frequency catheter ablation of ectopic foci [7]. Accurate segmentation
of the left atrium and its pulmonary venous drainages on contrast-enhanced
magnetic resonance angiography (MRA) images is essential for planning and
evaluating ablation procedures.

1.2 Related Work

In addition to prior work reviewed above, our work is also related to a rela-
tively new approach for brain image segmentation based on non-local means
filtering [3, 10]. The method compares image patches between the test subject



and the atlas images, with voting that depends on intensity differences between
these patches. In our application this technique seems less promising because we
work with contrast-enhanced MRA images, characterized by substantial inten-
sity variations. In [14], a local search on patches is performed to improve the
results after the atlas-based segmentation. Instead of refining the segmentation
through the integration of image information in a post-processing step, we con-
sider image and label information jointly in the graph Laplacian. Moreover, we
work on image contours that have advantages over comparing intensities [5].

Recently, an algorithm based on graph cuts has been demonstrated for the re-
finement of atlas propagation [13, 15]. In contrast to this method, we apply tech-
niques from spectral clustering and combine gradient and texture cues, leading
to a region-based voting on an oversegmentation of the image. In [7], the segmen-
tation of the left atrium is obtained by extracting the blood pool with intensity
thresholding, which is sensitive to intensity variations. Intensity-weighted label
fusion achieved accurate results for the segmentation of the left atrium in [4].
We therefore treat this label fusion technique as a baseline for comparison.

2 Method

Spectral label fusion consists of three steps, as illustrated in Fig. 2. The first step
extracts the boundaries from the image and label map, joins them in the spectral
framework, and produces weighted contours. In the second step, these contours
give rise to regions, partitioning the image. In the third step, we assign a label to
each region based on the input label map, producing the final segmentation. We
formulate segmentation as a binary labeling problem; for a multi-label problem
the same procedure is repeated for each label.

2.1 Input Data

The new image I to be segmented and the probabilistic label map L̂ are the in-
puts to the algorithm. Any atlas-based approach, parametric or non-parametric,
can be employed to create the label map, which serves as atlas-based label prior.
In this work, we adapt the label fusion approach and register each of the im-
ages in the training set to image I with a variant of the diffeomorphic demons
algorithm, iteratively fitting a polynomial transfer function to compensate for
intensity differences in the MRA images [4]. We use I = {I1, . . . , In} to denote
the transformed and intensity corrected training images. We apply the estimated
warps to the labels, leading to propagated labels L = {L1, . . . , Ln}. Following
the formulation in [4, 11], we compute the MAP labeling at location x:

L̂(x) = arg max
l
p(L(x) = l, I(x)|L, I) = arg max

l

n∑
i=1

p(L(x) = l|Li) · p(I(x)|Ii).

(1)
The label likelihood p(L(x) = l|Li) ∝ exp(κDl

i) serves as soft vote, weighted by

the image likelihood p(I(x)|Ii) ∝ exp(− (I(x)−Ii(x))2
2σ2 ). Dl

i is the signed distance
transform of label l in the warped label map Li. We set κ = 1.5 and σ2 = 1.
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Fig. 2: Overview of spectral label fusion.

2.2 Contours

We employ the concept of intervening contours to calculate the weights in the
graph Laplacian, which leads to better results than the comparison of intensity
values [5]. The first step is to estimate the probability Pb(x) of a contour in each
slice of the image I at location x. We choose to employ the oriented gradient
signal [1]. The method robustly estimates the image gradient by calculating the
χ2 distance between the histograms of two half-discs at each location for various
orientations. Depending on the size of the disc, we obtain gradient estimates on
multiple scales. To quantify the texture in the image, we calculate textons by
convolving the image with 17 Gaussian derivative and center-surround filters [8].
We obtain 64 different textons with a K-means clustering in the 17-dimensional
space. The image and texton gradients of multiple scales are added, resulting in
the multiscale contour probability mPb(x) [1], as illustrated in Fig. 2. We use
mPb to calculate weights between points i and j in the image, following the
concept of intervening contours by identifying the maximum along the line ij:

W I
ij = exp

(
−max
x∈ij
{mPb(x)}

)
. (2)

Analogously, we estimate the probability of a contour in the label map L̂, denoted
by lP b, and derive the weights

WL
ij = exp

(
−max
x∈ij
{lP b(x)}

)
. (3)

For computational efficiency the weights are only calculated within a radius
r = 5, yielding sparse matrices [1].

Once the image and label weights are computed, we combine them in the
joint weight matrix

W = W I +WL. (4)

The generalized eigenvalue decomposition (D−W )v = λDv gives rise to eigen-
vectors vk that partition the image based on image and label cues, with Dii =



∑
iWij . We consider the 16 eigenvectors corresponding to the smallest non-

zero eigenvalues λk. Instead of performing a K-means clustering in the 16 di-
mensional space [12], which tends to break up uniform regions [1], we obtain
the spectral boundary sPb by summing up the gradients of the eigenvectors
sPb =

∑16
k=1

1√
λk
· ∇vk. While mPb contains responses to all edges, sPb only

shows the most salient structures in the image. The global contour is obtained
by combining both maps to take advantage of the two characteristics, i.e.,
gPb = mPb+ γ · sPb, where γ is a weighting constant.

2.3 From Contours to Regions

In the second step, we use the extracted contours gPb to partition the image into
regions. These regions form an oversegmentation of the image. Consequently, the
left atrium and veins do not correspond to one but several regions. The size of
these regions is subject to a trade-off. Large regions provide stability in the face
of registration errors, but they are also more likely to miss the actual organ
boundary. To enable adaptive region size selection, we use the strength of the
extracted boundaries to build a hierarchical segmentation. At the lowest level,
we have the finest partition of the image, and the higher levels contain larger
regions implied by stronger contours.

Specifically, we use the oriented watershed transform to create the finest
partition [1]. We experimented with the watershed in 2D and 3D. For the 3D
watershed, we apply a 3D closing operation of the contours to prevent leakage in
out-of-plane direction. Next, we employ the ultrametric contour map (UCM) [1]
to represent the hierarchical segmentation, illustrated in Fig. 2. We clearly see
that the strong boundary of the atrium appears in the UCM. We select the
segmentation scale in the hierarchy by thresholding with parameter ρ.

2.4 Voting on Regions

One of the limitations of the current label fusion framework [11] is the assump-
tion of independence of voxel samples, which is generally not justified for medical
images. It is more appropriate to consider independence with respect to a lo-
cal neighborhood, applying the Markov property in the derivation. Crucial is
the selection of image-specific neighborhoods that capture the relevant informa-
tion. The regions constructed in the previous step can naturally serve as such
neighborhoods. We obtain the region-based MAP estimation by considering the
location x as random variable and marginalizing over it

L̃R = arg max
l

∑
x∈R

p(LR = l|L, x)p(IR|I, x)p(x) (5)

= arg max
l

∑
x∈R

n∑
i=1

exp

(
κDl

i(x)− (I(x)− Ii(x))2

2σ2

)
, (6)

where LR and IR denote the region R in the label map and the intensity image,
respectively. Since we aggregate the voting information over the entire region,
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Fig. 3: Dice volume overlap (left) and modified Hausdorff distance (right). Red
line indicates median, the boxes extend to the 25th and 75th percentiles, and the
whiskers reach to the most extreme values not considered outliers (red crosses).
Significance was evaluated using a single-sided paired t-test with IW as baseline.

the resulting method is more robust to registration errors and noise than a voxel-
based approach.

3 Experiments

To evaluate the proposed method, we automatically segment the left atrium of
the heart in a set of 16 electro-cardiogram gated (0.2 mmol/kg) Gadolinium-
DTPA contrast-enhanced cardiac MRA images (CIDA sequence, TR=4.3ms,
TE=2.0ms, θ = 40◦, in-plane resolution varying from 0.51mm to 0.68mm, slice
thickness varying from 1.2mm to 1.7mm, 512 × 512 × 96, -80 kHz bandwidth,
atrial diastolic ECG timing to counteract considerable volume changes of the left
atrium). The left atrium was manually segmented in each image by an expert.
For all the experiments we set γ = 2.5, giving higher weight to the spectral
component. We set ρ = 0.2 for the 2D and ρ = 0 for the 3D watershed after
inspecting the UCM. We perform leave-one-out experiments by treating one
subject as the test image and the remaining 15 subjects as the training set. We
use the Dice score and the modified (average) Hausdorff distance between the
automatic and expert segmentations as quantitative measures of segmentation
quality. We compare our method to majority voting (MV) and intensity-weighted
label fusion (IW) [11].

We apply a median filter in a 5×5×5 window to the spectral segmentations.
In-plane filtering has little effect; filtering improves the consistency and closes
holes in out-of-plane direction. The application of the filter on MV and IW seg-
mentations led to a deterioration on all subjects. We therefore present unfiltered
results for these cases. Fig. 1 illustrates the results of IW and the 2D spec-
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Fig. 4: Examples of automatic segmentation results for different subjects are
shown in yellow. Manual delineations are shown in red.

tral label fusion, together with an approach that considers only image contours,
W = W I . Fig. 3 presents dice volume overlap and modified Hausdorff distance
for each algorithm. The improvements in segmentation accuracy between the
proposed method and IW are statistically significant (p<10−5). At first glance,
it may seem surprising that the 2D algorithm leads to better results than the 3D
version. The anisotropic resolution of the data presents a challenge for extract-
ing meaningful 3D regions. A further inspection of the results in each subject
reveals that the values for IW are always better than the ones for MV, and the
values of the 2D spectral method are consistently better than the ones for IW.

Fig. 4 illustrates the segmentation results for MV, IW, and 2D spectral fu-
sion for several subjects. We see that spectral fusion better captures the organ
boundary. This is supported by the clearly lower Hausdorff distances in Fig. 3.
On the images for Subject 1 in Fig. 4, we observe that spectral label fusion
achieves a better separation between the veins and atrium. This case is particu-
larly challenging because the gap is small and registration errors of misaligning
either the vein or the atrium lead to a closure. By integrating the image cues
and voting on regions, we achieve a more accurate segmentation.

4 Conclusion

We presented spectral label fusion, a new approach for multi-atlas image seg-
mentation. It combines the strengths of label fusion with advanced spectral seg-



mentation. The integration of label cues into the spectral framework results in
improved segmentation performance for the left atrium of the heart. The ex-
tracted image regions form a nested collection of segmentations and support a
region-based voting scheme. The resulting method is more robust to registration
errors than a voxel-wise approach.
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