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Abstract. We present a novel method for inferring tissue labels in atlas-
based image segmentation using Gaussian process regression. Atlas-based
segmentation results in probabilistic label maps that serve as input to
our method. We introduce a contour-driven prior distribution over la-
bel maps to incorporate image features of the input scan into the label
inference problem. The mean function of the Gaussian process poste-
rior distribution yields the MAP estimate of the label map and is used
in the subsequent voting. We demonstrate improved segmentation ac-
curacy when our approach is combined with two different patch-based
segmentation techniques. We focus on the segmentation of parotid glands
in CT scans of patients with head and neck cancer, which is important
for radiation therapy planning.

1 Introduction

Atlas-based segmentation extracts information from image collections with man-
ually labeled images to facilitate the automatic segmentation of new images.
Methods that use atlas information can be broadly classified into two groups.
The first group employs deformable registration to align atlas images to the novel
scan [6, 10]. The estimated deformation fields propagate labels from the atlas to
the new image. The second group searches for image patches most similar to the
voxel neighborhood [4, 11]. Since similar patches tend to share the segmentation
label, weighted voting based on patch similarity promises to produce accurate
segmentation.

High anatomical variability presents a serious challenge for atlas-based seg-
mentation. Registration approaches often fail to warp structures that vary sig-
nificantly in shape due to regularization constraints. Such inaccuracies cause
segmentation errors at the boundaries. Patch-based approaches also experience
difficulties in correctly segmenting regions close to the boundaries. Fig. 1 illus-
trates this problem for a patch-based segmentation of the left parotid gland. To
further investigate the source of errors, we examine patches in the atlas that are
the most similar to the one example patch in the image. According to the man-
ual labeling, the selected patch belongs to the left parotid gland. However, all of
the closest patches vote for background, yielding a wrong result. Such errors are
not surprising because it is possible that patches have a very similar appearance
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Fig. 1: Left: CT image with segmentation of left parotid (yellow: manual, red:
patch-based). Right: Magnification of the blue patch (top) with manual seg-
mentation (bottom). The four most similar patches in the repository vote for
background (black at the center location), although the patch belongs to the left
parotid. Intensity values of patches are normalized for visualization.

overall but vary slightly in the center. Such variations are especially problematic
close to organ boundaries, where they can cause segmentation errors.

We present a new probabilistic approach to atlas-based segmentation to in-
corporate image contour information into the decision on segmentation labels.
We achieve this by defining an image-specific distribution over label maps based
on Gaussian processes. We employ the concept of intervening contours [1] to
construct contour-driven covariance functions. A robust contour estimation is
obtained by calculating image and texture gradients on multiple scales. Con-
ditioning the distribution over label maps on the atlas information results in
label maps that are consistent with image contours while also accommodating
the label maps proposed by the atlas. We experiment with two patch-based seg-
mentation approaches to obtain the initial label maps that serve as input to our
algorithm.

We evaluate our approach by segmenting parotid glands in CT scans of pa-
tients with head and neck cancer. Radiation therapy motivates our work. Ra-
diation therapy planning aims to maximize the dose in the target region while
minimizing the radiation dose in the surrounding tissue. Intensity modulated
radiation therapy allows the more effective administration of the radiation dose
to reduce the damage to healthy cells. During the planning phase, experts delin-
eate most critical structures, also called organs at risk, to ensure low radiation
in these regions. The parotid glands are organs at risk for head and neck cancer
treatment because they are the most important salivary glands. Irradiation of the
parotid glands can lead to xerostomia, resulting in difficulties for mastication,
deglutition, and speech of the patients. Automatic segmentation is challenging
due to low soft-tissue contrast in CT images and high anatomical variability.

1.1 Related Work

Our work builds on previously mentioned atlas-based segmentation methods and
is related to algorithms for label refinement. Spectral label fusion [14] extracts
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superpixels from the image to perform region-based voting. It further relates to
an approach for the refinement of atlas propagation with graph cuts [12]. Regres-
sion has been previously used to estimate correlations of errors for atlas-based
segmentation [15]. Our probabilistic approach uses Gaussian processes, which
arise in numerous fields of machine learning [9]. In [13], Gaussian processes were
applied for image segmentation of natural images. In contrast to our work, the
identity covariance function was used, samples from the process are thresholded,
and no atlas information is available.

Atlas-based segmentation of parotid glands with deformable registration was
demonstrated in [5, 8]. In [3], the atlas images are used for training an active
shape model of parotid glands. The refinement of head and neck segmentations
based on classification with features was proposed in [7].

2 Method

Given a novel image I, we aim to infer segmentation S based on an atlas
that contains images I = {I1, . . . , In} and segmentations S = {S1, . . . , Sn}.
A probabilistic label map L = {L1, . . . , Lm} specifies the likelihood for each
label l ∈ {1, . . . ,m}, i.e., Ll(x) = p(S(x) = l|I, I,S) and serves as an interme-
diate segmentation result. The estimated segmentation Ŝ at voxel x is obtained
by choosing the label with highest probability at voxel x. A perfect label map
assigns probability one to the correct label for each location. Atlas-based meth-
ods produce label map Lo, which might be susceptible to errors, motivating the
model Ll

o = Ll + ε, where Ll is the underlying true label map for label l. Un-
der the assumption of independent and identically distributed noise, we have
Ll
o(x) = Ll(x) + ε(x) for all locations x in the image, with ε ∼ N (0, σ2). The

assumption of independent Gaussian noise may interfere with the normalization
requirements

(∑
l L

l
o(x) = 1 and 0 ≤ Ll

o(x) ≤ 1
)
, which can be satisfied with a

subsequent normalization step. In our application, this is not necessary because
we decide on the segmentation based on the maximal value across label maps.
We drop the label index l in the following discussion, to simplify notation.

2.1 Atlas-based Segmentation

We briefly review two atlas-based segmentation methods we use to obtain the
initial label map Lo. We focus on patch-based approaches because they are well
suited to handle the high variability of parotid glands. Further, standardized
intensity values of CT images make patches comparable across subjects. Prior
to segmentation, we define regions of interest (ROI) that surround the parotid
glands to restrict the search. Such regions could be obtained from a coarse reg-
istration. We exploit the knowledge that the parotid glands are adjacent to the
mandible bone, which we detect with a simple template matching method.

The first baseline method is the non-local means (NLM) segmentation [4,
11]. For each location x within the ROI, we create the surrounding patch Px of
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size 7 × 7 × 3 and retrieve the N = 10 closest patches P with corresponding
labels L from the repository. The label map is obtained as a weighted sum [4]:

Lo(x) =

∑N
i=1 wi,xLi∑N
i=1 wi,x

with wi,x = exp

(
− ‖Pi − Px‖22

minj ‖Pj − Px‖2

)
. (1)

The second approach uses a random forest classifier [2] to predict the segmen-
tation label Lo(x) for each location in the ROI. In contrast to NLM labeling, the
classifier has to be trained first. In our experiments, we randomly select six pa-
tients for training. We train different classifiers for left and right parotid glands
on patches selected from the ROI. We choose 500 trees per random forest with
12 predictors sampled for splitting at each node.

2.2 Gaussian Process Regression for Label Inference

Our approach to inferring the latent label map L from Lo employs a distribution
over label maps p(L). In contrast to most atlas-based methods that make deci-
sions at each voxel separately and do not consider contour information, we choose
a label distribution that models the relationship between locations, exploiting the
contour information in image I. Stochastic processes offer a versatile framework
to model interactions between possibly infinite number of random variables. We
view label maps as realizations from a Gaussian process, L ∼ GP(m, k), with
mean m and covariance k. Gaussian processes are entirely characterized by mean
and covariance functions and have the property that every finite subset is dis-
tributed according to a multivariate Gaussian distribution [9].

To obtain the posterior distribution over label maps, we condition the distri-
bution of label maps L on the labels Lo implied by the atlas:

p(L|Lo) ∼ N (µ, Σ) (2)

with mean and covariance

µ = m +K · [K + σ2I]−1 · (Lo −m), (3)

Σ = K −K · [K + σ2I]−1 ·K, (4)

where I is the identity matrix and σ2 is the noise variance. The mean vector m
and the kernel matrix K are constructed from the mean function m and kernel
function k, respectively. We use the Cholesky factorization for the matrix inver-
sion. The maximum a posteriori label map coincides with the mean label map for
Gaussian distributions, LMAP = arg maxL p(L|Lo) = arg maxLN (L;µ, Σ) = µ.
Performing this estimation for all labels yields segmentation:

Ŝ(x) = arg max
l

µl(x). (5)

The mean function m causes a constant additive shift of all label maps µl and
therefore does not influence the segmentation result Ŝ, motivating the choice of
m = 0. Fig. 2 illustrates the key steps of the segmentation process.
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Fig. 2: Gaussian process segmentation of parotid gland. The initial label from the
atlas-based segmentation only partially agrees with the manual segmentation.
We extract contours from the image and use them in the kernel function k
that allows us to sample label maps L ∼ GP(0, k), supported by the image.
Conditioning these on the atlas labels results in an improved segmentation.

2.3 Contour-Driven Distributions over Label Maps

The distribution over label maps p(L) is determined by the covariance or ker-
nel function k. We seek label maps that are supported by intensity and texture
features in the input image I. In the first step, we estimate image and texture
gradients per slice with the oriented gradient signal, following closely the con-
struction in [1]. This method calculates the χ2 distance between the histograms
of two half-discs at each location for various orientations and at multiple scales.
Textons are calculated to quantify the texture by convolving the image with
17 Gaussian derivative and center-surround filters and subsequently clustering
with K-means into 64 classes [1]. Image and texture gradients of multiple scales
are added to yield the multi-scale contour Γ . We use the contour information
to calculate weights between in-plane points x and x′, following the concept of
intervening contours [1] by identifying the maximum response along the line xx′:

k(x, x′) = exp

(
− max

y∈xx′
{Γ (y)}/ρ

)
. (6)

We set the scale parameter to ρ = 0.1 and only consider locations within the
ROI that are at most 20 pixels away from each other, giving rise to sparse kernel
matrices. High weights are assigned to pairs of points that are not separated by
a contour and these points are subsequently encouraged to share the same label.

Fig. 2 shows samples drawn from the prior distribution p(L), where we have
overlaid the manual segmentation for reference. We observe that the prior pro-
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Fig. 3: Dice volume overlap and modified Hausdorff distance for left and right
parotid glands. Red line indicates the median, the boxes extend to the 25th

and 75th percentiles, and the whiskers reach to the most extreme values not
considered outliers (red crosses). *, **, and *** indicate significance levels at
0.05, 0.01, and 0.001. For each baseline method (NLM, RF), the performance of
the basic method, the variant that employs spectral label fusion (SLF) [14] and
the variant based on Gaussian processes proposed here (GP) is reported.

motes label maps that follow image structures. In this example, labels are propa-
gated to the thin ends of the left parotid gland, which improves the segmentation
in comparison to the initial labeling.

3 Experiments

We evaluate the method on 16 CT scans of patients with head and neck cancer.
Each image was labeled by a trained anatomist for treatment planning. Images
contain between 80 and 200 axial slices with a slice thickness of 2.5mm. The
in-plane resolution is 0.9mm, slice size is 512 × 512 pixels. All 16 images have
the left parotid gland labeled. The right parotid gland was consumed by a tu-
mor in one patient. Experiments are performed on 10 datasets for left parotid
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(a) NLM (b) NLM+SLF (c) NLM+GP

(d) RF (e) RF+SLF (f) RF+GP

Fig. 4: Examples of automatic segmentation results for different methods are
shown in yellow. Manual delineations are shown in red.

gland and 9 datasets for right parotid gland that have not been selected for
training the RF classifiers. We quantify the segmentation quality by calculating
the Dice volume overlap score and modified Hausdorff distance between the au-
tomatic and manual segmentations. We compare our method to spectral label
fusion (SLF) [14], which was previously demonstrated to refine segmentations
based on image contours.

Fig. 3 presents the results for both parotid glands for different algorithms and
σ2 = 1. Non-local means (NLM) and random forests (RF) serve as initial label
maps. The segmentation with NLM leads to many false positives, causing worse
performance than RF. Applying spectral label fusion improves the segmentation
results. The Gaussian process (GP) segmentation achieves the significantly best
results in our experiments. A reason for the improvement of GP in comparison
to SLF is that SLF votes on small image regions. If these regions are not well
defined or if the baseline segmentation algorithm cannot gather enough votes
in a region, this can cause large errors. The outlier of zero dice overlap for
NLM+SLF of the left parotid illustrates this case. Fig. 4 shows example results
for all methods.

4 Conclusion

We proposed a novel probabilistic approach for improving atlas-based segmenta-
tion. The key contribution is a contour-driven distribution over label maps that
is supported by features in the image. We employ Gaussian process regression
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to obtain MAP estimates of label maps, on which the voting is performed. The
initial label map is estimated with two different patch-based segmentation ap-
proaches, non-local means segmentation and random forest classification. Our
experiments in segmentation of the parotid glands show improved performance
when the proposed method is used to refine the atlas-based label maps.
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