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Abstract

We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape
information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D
Laplace-Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative charac-
terization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure
of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject
identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain
morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous
mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over
3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA
twin study. All processing steps for obtaining the compact representation are fully automated, making this processing
framework particularly attractive for handling large datasets.

Keywords: Brain Shape, Large Brain Datasets, Brain Similarity, Subject Identification, Brain Asymmetry,
Morphological Heritability

1. Introduction

Is it possible to identify individuals based only on the
shape of their brain? Are cortical folding patterns unique
to a person, similar to a fingerprint? Are brains really
highly symmetric? Is it likely that shape of individual
brain structures is heritable? To answer these questions,
we need an accurate characterization of brain morphology.
A common approach in brain morphometry is to quantify
the volumes of a set of brain structures (DeCarli et al.,
2005), which is, however, only a crude simplification of
the full anatomical information. Shape descriptors offer
a more informative representation of brain morphology,
adding additional information over volumetric measure-
ments. In this work we introduce BrainPrint, a holis-
tic representation of the brain anatomy, containing the
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shape information of an ensemble of cortical and subcor-
tical structures. The variety of structures included in the
BrainPrint yields an extensive characterization of brain
anatomy. Furthermore, working with shape representa-
tions, rather than directly with image intensities, has the
advantage of remaining more robust with respect to inten-
sity changes that may be caused by different scanner hard-
ware or protocols. We quantify the shape information by
calculating the spectrum of the Laplace-Beltrami operator
both for boundary representations (defined by triangular
surface meshes) and for volumetric representations (via
tetrahedral meshes). BrainPrint presents a higher dimen-
sional extension to the description of brain structures by
volume measurements and therefore naturally integrates
shape information into common ROI-based analysis. In
addition to allowing us to investigate the questions stated
above, the proposed approach provides new means to pur-
sue many interesting research directions in neuroscience
where brain morphometry, i.e., the study of brain struc-
ture and change, is of importance.

In this work, we use BrainPrint specifically to construct
a similarity measure between brain scans. An alterna-
tive approach to define pairwise similarities could be based
on image registration (Gerber et al., 2010; Hamm et al.,
2010). However, this is not an intrinsic measure as the
regularization term impacts the similarities. Furthermore,
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many applications require large datasets and the cost of
aligning a new scan to all scans in the database becomes
prohibitively expensive for a large number of scans. Brain-
Print introduces a new framework that is especially ben-
eficial when working with large datasets. The first step
extracts information from the image, based on the segmen-
tation of anatomical structures. The second step transfers
this information into a compact and discriminative repre-
sentation, the BrainPrint. Any further processing is con-
ducted on this representation, which requires significantly
less memory and enables easier modeling, computation,
and comparisons than working with the original scans.

Current studies in shape analysis mainly focus on single
structures, e.g ., the hippocampus (Golland et al., 2005;
Gerardin et al., 2009; Shen et al., 2012) or the ventri-
cles (Gerig et al., 2001a,b; Styner et al., 2005; Terriberry
et al., 2005). In studies of cortex, thickness and gyrifi-
cation measures are used (Batchelor et al., 2002; Luders
et al., 2006). In contrast, BrainPrint contains the shape
information of a large number of cortical and subcortical
structures. This holistic representation of brain morphol-
ogy offers advantages for studying the shape variability
within and across populations because additional infor-
mation is available for the statistical analysis. A second
advantage of BrainPrint is rooted in the intrinsic shape
description. This facilitates the statistical analysis be-
cause we can directly compute distances between shape
descriptors without the need for establishing direct cor-
respondences. Establishing correspondences is challeng-
ing and may involve computationally expensive shape reg-
istrations (Ng et al., 2014). The composition of differ-
ent information across structures and dimensions (surface,
volume) contained in BrainPrint and the use of intrin-
sic brain shape descriptors to define a distance function
distinguishes this work from previous studies in medical
shape analysis. A preliminary version of this work with a
focus on subject identification was presented at a confer-
ence (Wachinger et al., 2014b). The application of Brain-
Print for the prediction of Alzheimer’s disease won the
second prize at the challenge on Computer-Aided Diagno-
sis of Dementia (Wachinger et al., 2014a).

1.1. Related Work

A 3D object can be represented by the space that it
occupies (3D volume representation, e.g., voxels, tetrahe-
dra meshes) or by representing its boundary (2D surface
representation, e.g., triangle meshes). Reuter et al. (2006)
introduced the “shapeDNA” and demonstrated that the
spectra of 3D solid objects and their 2D boundary sur-
faces contain complementary information: the spectra of
the 2D boundary surface is capable of distinguishing two
isospectral 3D solids. Therefore, we propose to combine
the information from both the 3D solid and 2D boundary
shape representations.

While previous work focused on the analysis of the
shapeDNA for single brain structures (Bates et al., 2011;
Reuter et al., 2007, 2009), to the best of our knowledge this

is the first study that evaluates its application to cortical
and a wide range of subcortical structures. Importantly,
we investigate the joint modeling of the ensemble. Addi-
tionally, most prior work computes the shapeDNA for tri-
angular surface meshes (Bates et al., 2011; Bernardis et al.,
2012; Niethammer et al., 2007), while we also work with
tetrahedral volume tessellations. Given that the Laplace
spectra are isometry invariant, the 2D boundary repre-
sentation alone may yield a weaker descriptor, due to the
large set of potential (near-) isometric deformations. For
example, a closed 2D surface with a protrusion pointing
inwards yields the same descriptor as one with the protru-
sion pointing outwards, while the spectra of the enclosed
3D solids differ.

Spectral methods based on eigenfunctions of the
Laplace-Beltrami operator (LBO) have been used to study
cortical folding variability (Germanaud et al., 2012) with
applications to developmental diseases such as micro-
cephaly (Germanaud et al., 2014). Lai et al. (2009) pro-
posed nodal counts as a possibly more discriminative de-
scriptor than the LBO spectrum for shapes like caudate,
hippocampus, and putamen. Seo and Chung (2011) stud-
ied the compression power of LBO eigenfunctions and com-
pared it to spherical harmonics. LBO eigenfunctions have
been used for matching (Lombaert et al., 2013) and for
lobar segmentation (Lefevre et al., 2014).

An alternative to structure-specific or region-specific
analysis is a voxel-wise comparison. Voxel-, deformation-,
and tensor-based morphometry requires deformable reg-
istration of images to align corresponding structures. For
voxel-based morphometry the spatial distribution of tissue
is analyzed in each voxel (Good et al., 2002). Deformation-
and tensor-based morphometry build on properties of de-
formation fields (Davatzikos et al., 1996; Miller et al.,
1997). Deformation fields have further been used for mea-
suring similarity between scans (Gerber et al., 2010; Hamm
et al., 2010; Aljabar et al., 2010; Wolz et al., 2010). Based
on the similarity structure, a nearest neighbor graph is
constructed and spectral methods yield a low-dimensional
embedding. For large repositories, the pairwise alignment
of all scans to define the similarity can be computationally
prohibitive. Aljabar et al. (2008) derived image similari-
ties from anatomical segmentation overlaps. Zhu et al.
(2011) find nearest neighbors by combining edge extrac-
tion with spatial pyramid matching. BrainPrint relates to
these approaches because it provides a measure of brain
similarity.

1.2. Outline

We introduce BrainPrint in Sec. 2 and describe the
datasets in Sec. 3. Abstractly, we can compute distances
between brains with BrainPrint, which is interesting for
numerous applications in neuroimaging. We highlight four
applications in Secs. 4 - 7, where we derive the neces-
sary methodology for each application of BrainPrint. The
heterogeneity of the applications also requires a different
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Figure 1: Overview of the computation of BrainPrint. First, MRI scans are processed with FreeSurfer to obtain
segmentations of cortical and subcortical structures. Second, a mesh is created for each brain structure. Third, the
shapeDNA is computed for all of the η meshes, constituting the BrainPrint.

validation procedure for each application. The first ap-
plication is the identification of subjects. Given a new
scan, we aim to identify the subject based on a database
of brain scans. For this purpose, we derive a robust classi-
fier, where each structure in the BrainPrint votes indepen-
dently. In a second application, we investigate the simi-
larity structure that BrainPrint imposes on the dataset
by predicting associated non-imaging data, e.g ., age and
sex. The third application studies lateral brain asym-
metry, where we compare cortical and subcortical struc-
tures across hemispheres. We investigate different types of
asymmetry, e.g ., directional and fluctuating, and evaluate
the dependence of asymmetry on age and sex. Specifically
for the striatum, we analyze within-subject changes with
a multicohort longitudinal model. In the last application,
we study the genetic influence on brain morphology by an-
alyzing the differences between monozygotic and dizygotic
twins.

2. BrainPrint

An overview for the computation of the BrainPrint is
shown in Fig. 1. First, we segment anatomical structures
from brain scans with FreeSurfer (Dale and Sereno, 1993;
Dale et al., 1999; Fischl et al., 1999a,b, 2002). Second, we
create meshes for all cortical and subcortical structures of
interest. Finally, we compute compact shape representa-
tions for all structures, constituting the BrainPrint. This
representation is lightweight, consuming less than 9 kByte
for a scan, which makes all further processing steps effi-
cient in terms of both memory and computation. Brain-
Print focuses entirely on the geometric properties of the
brain and consequently it is a characterization that is ro-
bust to intensity variations between scans. Such variations
may be introduced by imaging artifacts, inhomogeneities,
and scanning protocols. BrainPrint is therefore well suited
to operating on large databases with images acquired at
different centers and scanners.

In this work we use the shapeDNA (Reuter et al., 2006)
as a shape descriptor, which performed among the best
in a comparison of methods for non-rigid 3D shape re-

trieval (Lian et al., 2012). The ShapeDNA is computed
from the intrinsic geometry of an object by calculating
the Laplace-Beltrami spectrum. Considering the Laplace-
Beltrami operator ∆, we obtain the spectrum by solving
the Laplacian eigenvalue problem (Helmholtz equation)

∆f = −λf. (1)

The solution consists of eigenvalue λi ∈ R and eigenfunc-
tion fi pairs, sorted by eigenvalues, 0 ≤ λ1 ≤ λ2 ≤ . . . ↑ ∞.
In this work we use “spectrum” and “eigenvalues” synony-
mously. This partial differential equation can be solved
analytically only for a few special domains, e.g. for the
sphere, where the eigenfunctions are the spherical har-
monics. Here we numerically estimate both the eigen-
values and the corresponding eigenfunctions for arbitrary
shapes via the finite element method (Reuter, 2006). To
solve the resulting generalized eigenvalue problem, we use
the iterative Lanczos algorithm from the ARPACK pack-
age (Lehoucq et al., 1998). Fig. 2 illustrates the first seven
eigenfunctions of the left white matter surface. Note, that
throughout this work we omit the first eigenfunction for
closed surfaces, which is constant with eigenvalue zero.
The eigenfunctions show natural vibrations of the shape
when oscillating at a frequency specified by the square
root of the eigenvalue. The complex cortical folding pat-
tern complicates the understanding of the characteristics
of the eigenfunctions. We therefore also show the same
eigenfunctions mapped on the inflated surface in Fig. 2.
Note, that the eigenfunctions are computed on the white
matter surface and only visualized on the inflated surface.
The first m non-zero eigenvalues λ = (λ1, . . . , λm) form
the shapeDNA. Uniform scaling of an object’s geometry by
a factor s results in scaling of the eigenvalues by a factor
1/s2, which holds for manifolds of any dimension (Reuter
et al., 2006). For a D-dimensional manifold with Rieman-
nian volume vol (i.e., the area for 2D surfaces), one needs

to scale the geometry by s = vol−1/D to obtain unit vol-
ume. Thus, to be independent of the object’s scale, we
consider normalized eigenvalues

λ′ = vol2/Dλ. (2)
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Figure 2: First two rows: Left white matter surface and first seven non-constant eigenfunctions of the Laplace-Beltrami
operator (sorted left to right, top to bottom) calculated on the surface. Increasing positive values of the eigenfunctions
are shown in the color gradient from red to yellow and decreasing negative values are shown from dark blue to light blue.
Last two rows: Visualization of the eigenfunctions on the inflated white matter surface with level sets. These are the same
eigenfunctions as in top rows computed on the original white matter surface; they are visualized on the inflated surface
to better understand their pattern of variation. The main directions of variation of the first three eigenfunctions are
anterior-posterior, superior-inferior, and lateral-medial, respectively. The following eigenfunctions show higher frequency
variations.

The importance of an objects’ scale varies with the appli-
cation, so that we evaluate normalized and un-normalized
eigenvalues in most of our experiments.

The eigenvalues are isometry invariant with respect to
the Riemannian manifold, meaning that length-preserving
deformations do not change the spectrum. While isomet-
ric non-congruent surfaces exist (e.g., bending a sheet of
paper), two solid bodies embedded in R3 are isometric if
and only if they are congruent (translated, rotated and
mirrored). Some shapes, such as the disc (Kac, 1966), are
spectrally determined; meaning that the shape is known,
when the spectrum is known. It has also been shown
that isospectral but non-isometric shapes exist even on the
plane (Gordon et al., 1992), however, so far, only synthetic
pairs have been constructed, that share a variety of differ-
ent geometric features. For example, area/volume, bound-
ary length, number of holes, Euler characteristic, and
several curvature integrals are spectrally determined (Mi-
nakshisundaram and Pleijel, 1967), and thus must agree
for isospectral shapes. Furthermore, our good brain clas-
sification results below indicate that such isospectral (or
near isospectral) objects are rare in practice. Another

important property of the spectrum is that the eigenval-
ues change continuously with topology-preserving defor-
mations of the object’s geometry. These properties make
the shapeDNA well suited for comparing shapes, as ini-
tial alignment of the shapes can be completely avoided
and minor shape changes cause only small changes in the
shapeDNA.

We compute the spectra for all cortical and subcortical
structures on the 2D boundary surfaces (triangle meshes)
and additionally on the full 3D solid (tetrahedra meshes)
for the cortical structures, forming the BrainPrint

Λ = (λ1, . . . ,λη), (3)

where η is the number of meshes. In this study, we work
with 36 subcortical structures and 8 descriptors for cortical
structures (left/right, white/gray matter, 2D/3D), yield-
ing η = 44. Triangle meshes of the cortical surfaces are ob-
tained automatically for each hemisphere using FreeSurfer.
Surface meshes of subcortical structures are constructed
via marching cubes from the FreeSurfer subcortical seg-
mentation. To construct tetrahedral meshes, we remove
handles from the surface meshes using ReMESH (Attene
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and Falcidieno, 2006), uniformly resample the output to
60K vertices, and create the volumetric mesh with the
gmsh package (Geuzaine and Remacle, 2009). We use
the linear finite element method (Reuter et al., 2006) with
Neumann boundary condition (zero normal derivative) to
compute the spectra of the tetrahedral meshes.

Several brain structures that FreeSurfer identifies are
lateralized, e.g ., left and right hippocampus, so that the
shapeDNA for both hemispheres is present in the Brain-
Print. We compute shape differences between these lat-
eralized structures to express intra-subject relationships.
Since shapeDNA is invariant to mirroring, we can directly
compute

λdiff
l = λleft

l − λright
l , (4)

for any lateralized structure l. The difference quantifies
lateral asymmetries in the brain, which we discuss in de-
tails later in the article.

2.1. Distance

The definition of a distance function to quantify shape
differences is fundamental for the computation of statis-
tics on shapes. For distance calculations on BrainPrint,
it is essential to take the characteristics of the eigenvalue
sequence into account, which exhibits an asymptotically
linear growth for 2D manifolds (Weyl, 1911, 1912). The
average over a set of eigenvalue sequences shown in Fig. 12
in the appendix confirms the linear growth of eigenvalues
in practice. The linear growth itself is not problematic
for the distance calculation, however, as Fig. 12 shows,
the variance grows quadratically. The computation of the
Euclidean distance (or any p-norm) therefore causes the
higher eigenvalues to dominate the distance, although they
only represent a part of an object’s geometry. Reuter et al.
(2006) propose, among other options, linear re-weighting
of eigenvalues

λ̂i =
λi
i

(5)

to reduce the impact of higher eigenvalues on the distance.
Fig. 12 shows that the mean and variance on re-weighted
eigenvalues no longer exhibit the original growth pattern
and therefore yield a more balanced contribution of lower
and higher eigenvalues on the distance computation.

An alternative to the re-weighting is to employ the Ma-
halanobis distance to account for the covariance pattern
in the data and to support an equal contribution of all
eigenvalues in the sequence. Depending on the dimension-
ality of shapeDNA, many samples may be required to esti-
mate a positive definite covariance matrix. In such cases,
we can restrict the computation of the covariance matrix
to the variances on the diagonal. We employ the linear
re-weighting and the Mahalanobis distance in our compu-
tations. Konukoglu et al. (2013) proposed the weighted
spectral distance, which is similar to a division by the
squared eigenvalue number and therefore functions as a
low-pass filter. To summarize, in the following applica-
tions of BrainPrint we can either work with the original

eigenvalues λ or the volume normalized λ′, where both
can be subject to linear re-weighting λ̂. To simplify the
notation, we will refer to them as λ, where the type of
processing applied will be clear from the context.

3. Data

In this work we use data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu), the Open-Access Series of Imaging
Studies (OASIS, oasis-brains.org), and the Vietnam
Era Twin Study of Aging (VETSA) (Kremen et al.,
2006). Results on ADNI are presented in Secs. 4 - 6.
Due to its wider age range, we work with OASIS for
the age prediction in Sec. 5. The twin data from the
VETSA study is used in Sec. 7 to evaluate potential
genetic influences on brain morphometry. The ADNI
was launched in 2003 by the National Institute on Aging
(NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Ad-
ministration (FDA), private pharmaceutical companies
and non-profit organizations, as a $60 million, 5-year
public-private-partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imag-
ing (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific
markers of very early AD progression is intended to aid
researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and
cost of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center
and University of California - San Francisco. ADNI is
the result of efforts of many coinvestigators from a broad
range of academic institutions and private corporations,
and subjects have been recruited from over 50 sites across
the U.S. and Canada. The follow up duration of each
group is specified in the protocol for ADNI. For up-to-date
information, see www.adni-info.org.

The OASIS dataset consists of a series of cross-sectional
MR scans from 436 subjects aged 18 to 96 years. One
hundred of the included subjects older than 60 years
have been clinically diagnosed with very mild to moderate
Alzheimer’s disease. The subjects are all right-handed and
include both men and women.

VETSA is a longitudinal study of cognitive changes and
brain aging with baseline in midlife (Kremen et al., 2006),
where we work with twin data obtained from participants
in the first wave. Participants in the VETSA were drawn
from the larger Vietnam Era Twin (VET) Registry, a na-
tionally distributed sample of male-male twin pairs who
served in the United States military at some point be-
tween 1965 and 1975. VETSA participants are all military
veterans; however, nearly 80% did not experience combat
situations during their military careers. In comparison
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to U.S. census data, participants in the VETSA demon-
strate similar health and lifestyle characteristics compared
to American men in the same age range (Panizzon et al.,
2012). To be eligible for the primary VETSA project both
members of a twin pair had to agree to participate and be
between the ages of 51 and 59 at the time of recruitment.
Our dataset includes 67 pairs of monozygotic (MZ) twins
and 51 pairs of dizygotic (DZ) twins. The average age is
56.0 years (SD=2.8).

MR T1-weighted scans from all datasets are processed
with the cross-sectional pipeline in FreeSurfer. For
ADNI, we additionally run the longitudinal processing
stream (Reuter et al., 2010, 2012), which is used in the
cohort model in Sec. 6.2.3. We construct meshes and com-
pute the BrainPrint from the cortical and subcortical seg-
mentations from FreeSurfer.

4. Subject identification

In the first application, we investigate if it is possible
to identify an individual based on their brain. While the
unique complexity of the brain may suggest that an un-
ambiguous identification should be possible, there is cur-
rently little empirical research that supports this hypoth-
esis. One difficulty for identifying the subject of a given
brain is that longitudinal changes caused by aging or dis-
ease may significantly alter the brain morphometry. Addi-
tionally, scanning artifacts, inhomogeneities, and different
imaging protocols can cause changes in intensity values in
magnetic resonance scans, further complicating the iden-
tification. Therefore, a useful subject-specific brain signa-
ture must be both stable across time and insensitive to
imaging artifacts. Moreover, it needs to provide a holistic
representation of the brain to ensure subject identification
even if certain parts change. Finally, small changes in the
brain should map to small changes in the representation
to enable a robust identification.

The characteristics of BrainPrint make it well-suited for
biometric identification, where we pose the identification
task as classification task. We derive a robust classifier
by letting each brain structure vote independently for the
subject’s identity. Not only does our classifier identify
previously encountered subjects with high accuracy, but
it can also determine whether a query brain belongs to
an unknown subject, not yet represented in the existing
database.

4.1. Classifier

We derive a classifier for subject identification that as-
signs a new scan to one of the subjects in the database.
Since the segmentation or tessellation may fail for certain
brain structures, we seek a robust classifier that handles
missing information. We achieve the robustness by com-
bining the results from several weak classifiers operating on
single brain structures. We assume n subjects C1, . . . , Cn
and N scans in a database (N ≥ n, for repeated scans of

p(�s|Ck)

µk
s

Figure 3: Schematic illustration of the classification of a
new scan (red dot). Scans for the same subject (dots of
the same color) are represented by the mean (cross). The
probability p(λs|Ck) that the new scan belongs to class Ck
monotonically decreases with the distance to the mean µks
(black double arrow).

subjects), where each scan has its associated BrainPrint
Λ1, . . . ,ΛN . Let Sk ⊂ {1, . . . , N} denote scans for subject
Ck. The probability that a new scan with BrainPrint Λ is
an image of subject Ck is

p(Ck|Λ) =
p(Λ|Ck) · p(Ck)∑
ν p(Λ|Cν) · p(Cν)

∝
∏

s=1,...,η

p(λs|Ck), (6)

where we assume a uniform class probability p(Ck) ∝ 1
and the conditional independence of structures given the
subject. The likelihood is multivariate normal distributed
p(λs|Ck) ∼ N (λs;µ

k
s ,Σs) with the subject mean µks =

1
|Sk|

∑
i∈Sk λ

i
s for structure s. Fig. 3 offers a schematic il-

lustration of the computation of p(λs|Ck). Since we only
have a few samples per class, we estimate a global diagonal
covariance matrix Σs across all scans for each structure.
The weighting by variances helps to prevent the domina-
tion by higher eigenvalues that exhibit higher variation,
as discussed in Sec. 2.1, thus we do not apply the linear
re-weighting of Eq. (5). In order to improve numerical
stability, we work with log probabilities

log p(Ck|Λ) =
∑

s=1,...,η

log p(λs|Ck) + const. (7)

=
∑

s=1,...,η

log
(

(2π)−
l
2 |Σs|−

1
2

)
− (8)

1

2
(λs − µks)>Σ−1

s (λs − µks) + const.

Due to positive monotonicity of the log function, all follow-
up computations are performed without change on the log
probabilities. The subject identity with the highest prob-
ability is assigned to the scan

k∗ = arg max
k

p(Ck|Λ). (9)

The posterior probability of this classifier is the product of
the spectrum likelihoods across all structures, cf. Eq. (6),
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which may be problematic for structures with low discrim-
inative power. Many subcortical structures do not carry
much distinctive shape information and may therefore neg-
atively influence the overall probability. Consequently, we
propose a second classifier that is specifically adapted to
working with structures that are not very discriminative.
Increased robustness is achieved by voting for each struc-
ture independently

k∗s = arg max
k

p(λs|Ck), ∀s ∈ {1, . . . , η}, (10)

with the final vote set to the mode of the vote distribution,
k∗ = mode[k∗1 , . . . , k

∗
η].

4.2. Results

For this experiment, we work with over 3000 scans from
almost 700 subjects from the ADNI dataset, where each
subject has between three and six longitudinal scans. We
use the cross-sectional processing pipeline from FreeSurfer
in this experiment because the longitudinal processing
pipeline relies on knowing the subject identity and would
therefore not lead to a realistic setup. In addition to the
44 shape descriptors in BrainPrint, we include the lat-
eral differences, cf. Eq. (4), between left and right corti-
cal structures to quantify asymmetry, resulting in 4 ad-
ditional descriptors (white/gray matter, 2D/3D). We per-
form leave-one-out experiments by removing one scan from
the dataset and by aiming to recover the correct iden-
tity. Fig. 4 reports the classification results for the prod-
uct classifier in Eq.(9) and the structure-specific voting
in Eq.(10) for normalized and un-normalized eigenvalues.
We report classification results as a function of the number
of eigenvalues used to represent the shape. Additionally,
we vary the set of brain structures in BrainPrint: corti-
cal structures with triangular meshes (4), cortical struc-
tures with tetrahedral meshes (4), cortical structures for
both mesh types (8), a selection of structures with the
highest individual performances (15)1, all structures (44),
and all structures with the lateral differences of cortical
structures (48). The number of structures is shown in
parentheses. The results demonstrate a clear difference be-
tween the two classifiers. The product classifier achieves
the best performance when working with a selection of
individually best performing structures. Including more
structures reduces the classification results in most cases.
We observe a different behavior when working with the
structure-specific voting. While both classifiers show the
worst performance for sets with cortical structures alone,
the addition of more structures leads to a clear improve-
ment for the structure-specific voting. The combination of
cortical and subcortical structures with lateral differences
yields the best performance.

1The selected structures are: cortical structures, corpus callosum,
cerebellum, left/right lateral ventricle, 3rd ventricle, temporal horn
of right lateral ventricle, right putamen.

To further study this behavior, we examine the voting
of each structure in more detail, shown in Fig. 5. Each
column corresponds to one scan and each row to one struc-
ture. The color indicates the subject number. Scans were
sorted by subject’s index in the database; a perfect feature
should show a color gradient from blue to red. The first 8
rows correspond to cortical structures, which exhibit the
best performance. The remaining 36 rows show subcorti-
cal structures that perform worse than cortical structures
and vary in their discriminative power. This explains the
poor performance of the product classifier for the whole
feature set, as weak features can overwhelm the response
of the good features. In contrast, weak features do not
degrade the performance of the voting classifier as long as
weak features show no bias for a specific subject. Sub-
cortical structures that show a reasonable performance in
Fig. 5 correspond to the previously described selection of
structures with the highest individual performance in foot-
note 1. The best retrieval performance of 99.9% is achieved
for 50 eigenvalues on all features with the additional differ-
ence features on normalized eigenvalues. The best perfor-
mance for un-normalized eigenvalues of 99.7% is achieved
for 30 eigenvalues2. Fig. 13 in the appendix shows exem-
plar scans for which BrainPrint does not correctly identify
the subject identity. These scans show imaging artifacts,
resulting in skull strip and segmentation errors. Manual
correction in FreeSurfer or reacquisition to avoid motion
artifacts can therefore be expected to improve the above
results.

We compare our approach to two geometric representa-
tions of structures, the volume and the local gyrification
index (LGI). While volume will be affected by brain at-
rophy, quantifying the gyrification may be more robust to
longitudinal changes, assuming that the folding patterns of
the brain remain stable. Schaer et al. (2008) used the LGI
to identify gyral abnormalities. We transform this local
measure into a global shape descriptor by computing the
mean LGI over the surface. Fig. 14 in the appendix shows
the mean and standard deviation of these measures cal-
culated from several longitudinal scans per subject. The
large variance and overlap across subjects indicates that
such representations are not well suited for identifying sub-
jects. For comparison, the classification accuracy for the
mean LGI on both hemispheres is 1.0% for the product and
3.9% for the voting classifier. The classification accuracy
for the volume, calculated from all cortical and subcortical
structures, is 0.03% for the product and 0.6% for the vot-
ing classifier, confirming results from Fig. 14. In a further
comparison, we compute the mean LGI for cortical regions
of interests (ROIs) instead of the entire cortex. We use the
Desikan-Killiany parcellation in FreeSurfer (Desikan et al.,
2006) to obtain 34 ROIs per hemisphere. This extended

2In addition to classification accuracy, we also computed sensitiv-
ity and specificity, but these statistics do not yield additional infor-
mation for differentiation of feature sets because both measures are
very close to one.
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(a) Product Classifier, Normalized eigenvalues
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(b) Voting Classifier, Normalized eigenvalues
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Figure 4: Classification results for different feature sets as a function of the number of eigenvalues m. We compare the
performance of the product classifier (left column) and voting classifier (right column), as well as normalized eigenvalues
(first row) and un-normalized eigenvalues (second row).

LGI-based descriptor leads to a classification rate of 86.4%
for the product and 81.4% for the voting classifier.

As an additional experiment, we evaluate the possibil-
ity of determining whether a subject is not contained in
the database. We study the number of votes the winning
subject receives in Fig. 5, when the subject of the scan is
included in the database and when the subject is excluded.
If the subject in the current scan is in the database, the
scan receives about 15 votes for the winning subject class.
If the subject is not contained in the database, the num-
ber of votes for the winner does not surpass 4. Setting 4
votes as our decision boundary results in only a 0.49% er-
ror (false negative) of concluding incorrectly that a subject
is not in the database. The false positive rate is zero.

4.3. Discussion

The high classification accuracy of BrainPrint suggests
that brain structures are unique to individuals and that
BrainPrint can potentially serve as biometric identifier.
Since our study only includes data on subjects followed
over a period of up to 36 months, we cannot currently
assess how the accuracy of BrainPrint changes across
the entire lifespan of a subject. Unfortunately, such
data sets are not yet available. However, since subjects
with Alzheimer’s disease in our dataset demonstrate pro-
nounced neurodegeneration in a relatively short time, we
are optimistic that BrainPrint will remain robust for com-
parison across longer time periods. Our results demon-
strate that cortical structures perform better for subject
discrimination than subcortical structures, where the best
performance is achieved for a combination of both types
of structures. Further, the results show a better classifica-
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Figure 5: Left: Subject (color) voted for by each structure (row) for each scan (column). Cortical structures in first 8
rows, subcortical features below. Optimal feature response would show a color gradient from blue to red, since scans are
sorted by subject index. Right: Number of votes for the winning subject identity when the correct subject is included
(blue) in the database and when it is excluded (green). Decision boundary at 4 votes (red) yields a 0.49% false negative
rate.

tion accuracy for normalized eigenvalues, which indicates
the importance of shape for improved subject discrimina-
tion while the impact of volume is detrimental. We in-
vestigated the range from 10 to 50 eigenvalues in this ex-
periment, where the range is set heuristically. Germanaud
et al. (2012) studied the relation between eigenvalues (spa-
tial frequencies) and the magnitude of the cortical features,
which could provide an alternative for selecting the num-
ber of eigenvalues for cortical structures.

The high identification accuracy may raise concerns
about privacy issues when publicly distributing de-faced
or skull-stripped brain scans together with diagnosis and
other sensitive information. However, we do not believe
that BrainPrint interferes with annonymization because at
least a second scan with knowledge of the identity needs to
be available to connect to the private information. Iden-
tifying similar images in an efficient way can provide the
launchpad for a more detailed follow-up analysis, e.g ., pre-
diction of localized growth and shrinkage patterns. Since
most of our retrieval errors are related to incorrect seg-
mentations, our approach could also be employed for au-
tomatic quality control. Furthermore, BrainPrint can help
identify annonymization errors (mismatch of subject iden-
tities), which are difficult to detect and can impede longi-
tudinal studies.

5. Prediction of Non-Imaging Data

In the previous section, we have seen that in a dataset
with several scans per subject, the most similar scans are
the ones from the same subject. In this section, we fur-
ther investigate the similarity structure that BrainPrint
imposes on the dataset by keeping only the baseline scan
for each subject. We evaluate the characteristics that are
shared among the most similar subjects. To this end, we
utilize non-imaging data that is collected alongside the
MRI. Such data includes demographics, medical history,
neuropsychological scores, blood analysis, diagnosis, and
genetics. Studying the relationship of these variables with

BrainPrint provides further insights into their correlation
with brain morphology. Here, we focus on the relation-
ship of BrainPrint with age and sex, which are the major
factors for brain variability. For this evaluation, we vote
among the k nearest neighbors to a given scan. These
nearest neighbors correspond to subjects that have sim-
ilar brain morphology, as measured by BrainPrint. The
voting results in a predicted value, e.g ., for age, which we
compare to the actual age of the subject to quantify the
correlation between BrainPrint and age. We study the
relationship separately for each brain structure and the
combined, brain-wide relationship.

5.1. Information propagation with BrainPrint
Given a collection of scans in the database with Brain-

Prints Λ1, . . . ,ΛN and the associated non-imaging data
A1, . . . , AN , we predict the non-imaging data for a new
scan with BrainPrint Λ. We compute the distances from
the test scan to all scans in the database and identify the
k nearest neighbors for each structure. We employ the
linear re-weighting of eigenvalues in combination with the
Euclidean distance. We use Is = [is1, . . . , i

s
k] to denote

the indices of the nearest neighbors for structure s. Each
brain structure can identify different subjects as nearest
neighbors. Depending on the type of non-image data, cat-
egorical or numerical, two different prediction methods are
used. For numerical data, we compute the weighted mean
of non-imaging data

As =
1∑k

ν=1 wisν

k∑
ν=1

Aisν · wisν , (11)

where the weight wisν = exp(−‖λs−λs,isν‖2/τ2) with vari-
ance τ2 emphasizes the contribution of closer subjects. In
our experiments, we have not observed much difference be-
tween the weighted and the unweighted version (w ∝ 1).
We therefore continue with the unweighted version. For
categorical data, we perform majority voting and select
the label that occurs most frequently

As = mode[Ais1 , . . . , Aisk ]. (12)
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A weighted version of the majority voting is also possible
by making the contribution of each scan to the outcome
distribution monotonically decrease with distance between
corresponding BrainPrints.

In addition to the separate voting on each structure, we
perform a combined prediction with all structures. Based
on our experience for subject identification in Sec. 4, we
avoid computing one global similarity but rather combine
the votes for each structure to limit the impact of less
discriminative brain structures. We combine the indices
of nearest neighbors that are retrieved for each structure
I1, . . . , Iη and select only those scans that appear at least
twice. This means that at least two brain structures have
to independently vote for a scan to let it participate in
the final voting, which is then analogous to the structure-
specific voting in Eqs. (11) and (12). This voting proce-
dure is different than the one used for subject identifica-
tion, where we assign each scan a class label and subse-
quently search for the most frequent class. The reason for
using another voting procedure is that the previous one is
difficult to adapt to continuous variables. Further, non-
discriminative structures could have a detrimental effect
on the prediction of categorical data with few labels, e.g .,
gender.

5.2. Results

We evaluate the performance for the prediction of age
and sex with BrainPrint, where we are particularly inter-
ested in identifying the brain structures with the highest
prediction accuracy.

5.2.1. Age prediction

We perform age prediction on the ADNI and on the
OASIS dataset, which has a wider age range. Next to
an improved evaluation, this also makes our results more
comparable to other studies on age prediction that usually
work on datasets with a wide age range. OASIS contains
scans from N = 436 subjects aged 18 to 96 with a mean
age of 51.4 years (SD=25.3). Baseline scans from the en-
tire ADNI sample (N = 819) range from 54.4 to 90.9 years
with a mean age of 75.2 years (SD=6.8); healthy controls
(N = 229) have a mean age of 75.9 years (SD=5.0) and
range from 59.9 to 89.6 years. For the prediction of age,
we work with 50 eigenvalues and k = 20 nearest neigh-
bors3. Table 1 reports the mean absolute prediction error
for several structures with high prediction accuracy. The
table also shows the result for the combined prediction
on all brain structures. All results are reported with and
without normalization. The volume loss in gray matter
and white matter with aging correlates with an increase
in ventricular spaces. We therefore use the volume of the
lateral ventricles as a reference for age prediction, which is
one of the brain structures that shows the largest effects of

3We set k = 20 so that k roughly corresponds to the square-root
of the number of samples.
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Figure 6: Scatter plot of true versus estimated ages for the
combined prediction with normalized eigenvalues on the
OASIS dataset. Least squares regression line with corre-
lation coefficient (Pearson’s r = 0.90).

aging (Jernigan et al., 2001; Walhovd et al., 2005; Raz and
Rodrigue, 2006). We show a scatter plot of the true and
estimated age for the combined prediction on the OASIS
dataset in Fig. 6. The plot also contains the least squares
regression line with Pearson’s r = 0.90.

The prediction error on all of the reported shapes is
lower than using the ventricle volume. This indicates that
the shape information captured with BrainPrint contains
additional information about subject similarity that is im-
portant for predicting age. The lowest prediction errors are
achieved for the combined prediction based on all brain
structures. On ADNI, we observe a consistent decrease
in prediction accuracy when comparing the prediction on
healthy controls with that for the entire dataset. The pre-
diction results for the normalized eigenvalues (nEV) and
the un-normalized eigenvalues (EV) are similar. Results
of the Wilcoxon signed-rank test on the OASIS dataset
indicate that all structures listed in the table yield a sig-
nificant improvement over the volume prediction on the
entire dataset (all p-values reported in this article are 2-
sided). For ADNI the p-values are lower, but still most of
the listed structures yield a significant improvement. The
combined prediction with normalized eigenvalues was most
significant (p < 10−49 on OASIS).

5.2.2. Sex prediction

In the second experiment, we evaluate the prediction
of sex based on BrainPrint. We sample from the ADNI
dataset to obtain a subset that has the same number
of male and female subjects in each of the three disease
groups, yielding N = 684 subjects in this analysis (342
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Data VV Norm Comb CC Striatum Putamen Caudate 3rd Vent Lat Vent Hippoc Amygdala

OASIS 27.12
nEV 8.96 13.34 11.10 14.23 14.59 11.04 13.56 16.57 18.28
EV 9.37 13.21 13.34 13.05 15.62 13.68 14.10 17.22 16.57

ADNI Controls 4.31
nEV 3.73 3.70 3.82 3.94 3.94 3.94 3.84 3.86 3.73
EV 3.77 3.82 3.83 4.01 3.89 3.75 3.87 3.88 3.99

ADNI Entire 5.66
nEV 4.92 5.26 5.15 5.40 5.29 5.27 5.29 5.34 5.39
EV 5.03 5.15 5.31 5.55 5.34 5.25 5.32 5.41 5.51

Table 1: Mean absolute age difference between estimated and true age on the OASIS and ADNI (controls and entire)
dataset. Shown are results for the combined prediction of all brain structures (Comb) and the separate prediction for
a selection of well performing structures. For lateral structures, we show results for the right hemisphere, where results
across hemispheres are very similar. The prediction error for using the ventricle volume (VV) is listed as reference. We
compare the prediction on the entire dataset and on healthy controls, as well as for normalized (nEV) and un-normalized
(EV) eigenvalues.

male and female, CN=220, MCI=282, AD=182, average
age 75.1 years (SD=6.64)). Fig. 7 reports the prediction
results for the nine best performing structures and the
combined prediction. All results are for un-normalized
eigenvalues, which perform better than the normalized
version due to differences in head size between men and
women. The best performance is achieved for the com-
bined prediction, followed by cortical structures. The best
performing subcortical structure is the brainstem. The
improvement of the cortical structures over the brainstem
is significant. This difference between cortical and sub-
cortical structures only holds for the un-normalized eigen-
values, for the normalized eigenvalues they perform sim-
ilarly. We use the head size as a volume-based reference
measure for the prediction of sex. Buckner et al. (2004)
suggested that normalization with the intracranial volume
(ICV), which is about 12% larger for men than women,
corrects for gender-based head size differences. Addition-
ally, Walhovd et al. (2005) reported a significant difference
in mean ICV between men and women. ICV is therefore
a well-suited reference for the prediction and yields a 0.69
prediction accuracy in our experiments. The combined
prediction with BrainPrint performs significantly better
than the prediction with ICV (p < 0.005). To disentangle
the impact of the size and the shape on the sex predic-
tion, we also computed the combined prediction for volume
only (0.74), for normalized eigenvalues (0.68), and for un-
normalized eigenvalues (0.78). The shape alone performs
worse than the volume. The combination of shape and
size in the un-normalized eigenvalues yields the best per-
formance.

5.3. Discussion

These experiments provide an interesting insight into
the versatility of BrainPrint. While subcortical structures
achieve best results for the age prediction, cortical struc-
tures perform significantly better for the sex prediction.
Furthermore, the normalization of the eigenvalues helps
to adapt the notion of similarity to the specific applica-
tion. Experiments indicate increased prediction accuracy
for age and sex prediction in BrainPrint compared to volu-

metric measurements, most likely due to the more detailed
characterization of brain morphology in BrainPrint.

For the prediction of age, the error based on each of
the reported shapes is lower than when using the ventricle
volume. The lowest prediction errors are achieved for the
combined prediction with all brain structures. Moreover,
we observe a consistent decrease in prediction accuracy on
the entire ADNI dataset when compared to prediction on
only healthy controls. This decrease may indicate a change
in the pattern of aging for patients with Alzheimer’s dis-
ease or mild cognitive impairment. The pronounced at-
rophy in dementia patients may cause the brain morphol-
ogy of younger subjects with disease to be similar to older
subjects without disease, thus reducing the accuracy in
age prediction. Our predicted age can be seen as an es-
timate of biological age, where the discrepancy between
predicted and chronological age can serve as a biomarker
for neurodegenerative disease (see also Gaser et al. (2013)
for a similar approach).

For the prediction of sex, un-normalized eigenvalues
yield higher accuracy than normalized eigenvalues. This
highlights the importance of the size of brain structures
when seeking subjects with matching sex. Our results
also show that the volume of structures alone yields bet-
ter results than the shape alone. The highest accuracy
for un-normalized eigenvalues suggests that the shape in-
formation captured with BrainPrint contains additional
information about subject similarity that is important for
predicting sex, with a significant improvement from sub-
cortical to cortical structures.

In comparison to other studies on age and sex prediction,
Ashburner (2007) used diffeomorphic registration and sup-
port vector classification. The reported accuracy for sex
prediction was about 87%. The root-mean-square error
for age prediction was about 7 years and the best correla-
tion was 0.86. Duchesnay et al. (2007) proposed cortical
sulci descriptors for the sex prediction and the best classi-
fication pipeline achieved 85% classification accuracy. Our
accuracy for sex prediction of 78% is lower, but this may
in part be due to different datasets and study designs.
In our experiments, we paid special attention to sample
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Figure 7: Prediction accuracy of sex for the combined prediction on all brain structures and the nine best performing
single structures. Cortical structures perform best, with each one offering a significant improvement in prediction
accuracy over the best subcortical structure (brainstem). Bars correspond to the mean prediction accuracy and error
bars display standard error. The color of the bars is used for visualization purposes only. *, **, and *** indicate
statistical significance levels at 0.05, 0.01, and 0.001, respectively.

sex-matched subsets from ADNI to avoid bias. Concern-
ing age prediction, the dataset used by Ashburner (2007)
contains subjects aged 17 to 79 with a mean age of 31.8
years. The age range is similar to the OASIS dataset but
the mean age differs. The correlation we measured on OA-
SIS is higher than the one reported in Ashburner (2007)
but also the prediction error is higher. Since the results
are dependent on the dataset and the study design, we
can only draw limited conclusion from such a comparison,
but overall our results are in a similar range than alterna-
tive methods. Note, that we do not train a classifier but
average among the nearest neighbors identified by Brain-
Print. For increasingly larger datasets, we obtain a denser
sampling of the brain manifold with the expectation that
neighbors will be more similar which could further improve
prediction accuracy.

6. Lateral Shape Symmetry

In this section, we study the lateral shape symmetry
of the brain. The study of symmetry in neuroscience in-
vestigates similarity of the two hemispheres in the brain,
where the symmetry of the human body along the verti-
cal body axis is pronounced in the brain (Hugdahl, 2005).
Symmetry can be studied from a functional or anatomical
perspective. The functional layout of the brain is orga-
nized asymmetrically, with hemispheric specializations for
key aspects of language and motor function (Geschwind
and Galaburda, 1985; Toga and Thompson, 2003). We fo-
cus on anatomical brain symmetry, where previous stud-
ies reported asymmetries based on voxel-based morphom-
etry (Pepe et al., 2014) as well as the analysis of sulci

and other brain features. Three distinctive patterns of
population-level brain asymmetries are possible (Gómez-
Robles et al., 2013): (i) directional asymmetry occurs
when the two sides of the brain are systematically dif-
ferent; (ii) anti-symmetry is the consistent difference be-
tween sides, but the direction of this difference varies; and
(iii) fluctuating asymmetry is the non-directional depar-
ture from bilateral symmetry.

Gómez-Robles et al. (2013) studied morphological brain
symmetry by manually identifying landmarks on the cor-
tex. They observed anatomical asymmetries in both hu-
man and chimpanzee brains, but human brains were espe-
cially asymmetric. The lack of symmetry in human brains
may be a sign of plasticity, which is critical for human cog-
nitive evolution. Greve et al. (2013) studied the associa-
tion of asymmetry in function with anatomy. The results
of the surface-based analysis of the cortex indicated that
gross morphometric asymmetry is only subtly related to
functional language laterality. Chance and Crow (2007)
found sex differences in anatomical and functional asym-
metry, which are plausibly related to sex differences in
verbal ability in human populations without established
counterparts in chimpanzees. These sex differences in-
dicate a possible role of sexual selection in human later-
alization and are consistent with data suggesting greater
anatomical asymmetry in mature males, but relatively bet-
ter verbal processing in females (Halpern, 2000). Next to
sex, genetics is thought to play an important role in di-
rectional asymmetry and anti-symmetry (Gómez-Robles
et al., 2013). In contrast, fluctuating asymmetry was sug-
gested to be rather related to environmental factors that
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affect the brain development. Other studies found little ev-
idence for a genetic influence on brain asymmetry (Bishop,
2013; Eyler et al., 2014).

These mixed results may be a consequence of the com-
plexity and variability of brain structures, which makes
it difficult to identify asymmetries and distinguish them
from random fluctuations. Also, a cursory examination of
the gross brain features fails to identify profound left-right
differences (Toga and Thompson, 2003). A careful exami-
nation with computational methods to compute statistics
on larger populations is therefore required to expose asym-
metries. As many structures are represented in BrainPrint
for both hemispheres, it is well suited to study structural
changes by computing shape distances. This analysis per-
mits us to address the following questions: Which pat-
terns of asymmetry (directional, fluctuating) are present?
How similar are structures across hemispheres? Does ag-
ing have a significant effect on the brain symmetry? Are
asymmetries equally strong for men and women?

6.1. Lateral shape distances in BrainPrint

To study symmetry, we compute lateral (left/right)
shape differences of brain structures. More precisely, we
compute distances for the following 12 structures on trian-
gular meshes: white matter, gray matter, cerebellum white
and gray matter, striatum4, lateral ventricles, hippocam-
pus, amygdala, thalamus, caudate, putamen, and accum-
bens. Additionally, we compute distances on tetrahedral
meshes for white and gray matter. Due to the isometry in-
variance of shapeDNA, we directly compare the eigenvalue
sequences as mirrored objects yield the same shapeDNA.
We use the linear re-weighted eigenvalues in Eq.(5) for the
lateral distance computation for lateral structures l

dl = ‖λleft
l − λright

l ‖2. (13)

6.2. Results

All experiments for lateral shape asymmetry presented
in the following sections are performed on the ADNI
dataset.

6.2.1. Overall symmetry of hemispheres

First, we investigate the overall symmetry of brain hemi-
spheres. To put the lateral shape distances in Eq. (13) into
perspective, we do not only compute the distance across
hemispheres for the same subject but for all subjects in
the dataset. Next, we compute the rank of the intra-
subject distance compared to the inter-subject distances.
The rank expresses the number of subjects that have a
more similar contralateral hemisphere than the subject it-
self. A low rank indicates a high lateral shape similar-
ity compared to the variations in the population. Since
the rank is easier to interpret in relation to the size of

4Striatum is the combination of caudate, putamen, and accum-
bens.

the dataset, we divide the rank by the number of sub-
jects to obtain a relative measure of brain asymmetry. We
use m = 50 eigenvalues with linear re-weighting in this
experiment. Fig. 8 reports the median of this measure
for lateralized structures, where low values indicate high
shape symmetry. We measure significant differences in
rank between normalized and un-normalized eigenvalues.
Fig. 8 illustrates brain structures sorted by decreasing sig-
nificance, where we use the Wilcoxon signed-rank test to
compute p-values. We also compute the rank for volume
only to disentangle the impact of shape and size on the
brain symmetry. The un-normalized eigenvalues have sig-
nificantly lower rank than the volume for the majority of
structures. This shows that the shape with size informa-
tion is more discriminative in identifying the brain struc-
ture in the other hemisphere than size and shape alone.
The only exception is the putamen, where we note a de-
crease in rank with normalization. We work with healthy
controls in this experiment as we aim to avoid disease re-
lated effects. Thompson et al. (2007) reported that atro-
phy associated with Alzheimer’s disease may be lateralized
with stronger atrophy on the left hemisphere.

We observe that cortical structures exhibit the lowest
ranks. This is not surprising because complex shapes
are likely to show more variability across the population
and lateral asymmetries still lead to a higher intra-subject
symmetry compared to inter-subject similarity. Asymme-
tries in simpler, “potato like” subcortical structures yield
a faster decrease in rank due to smaller inter-subject vari-
ability. Nevertheless, the high median relative rank of
more than 10% for all subcortical structures is surpris-
ing. This implies that given a brain structure, e.g ., the
left caudate, the shape distance to the right caudate of
10% of all subjects in the dataset is lower than the right
caudate of the same subject.

6.2.2. Pattern of brain asymmetry

In a further experiment, we investigate the pattern of
brain asymmetry. To this end, we examine the lateral
differences per eigenvalue instead of the distance. A dis-
tribution of the difference around zero indicates fluctu-
ating asymmetry (iii). The directional asymmetry (i) is
characterized by a distribution significantly biased from
zero. A bimodal distribution of differences identifies anti-
symmetry (ii). We use Hartigan’s dip test to evaluate if
the distribution of differences is bimodal (Hartigan and
Hartigan, 1985). The p-values for all eigenvalues across all
structures are above 0.05, suggesting this data provides
no evidence for significant bimodality. Since there is no
evidence for anti-symmetry (ii), we focus the analysis on
distinguishing directional (i) and fluctuating (iii) asymme-
try.

Fig. 9 shows a box-and-whisker plot of the first 20 nor-
malized eigenvalues of the white matter triangular mesh.
We note that the distribution of differences shows strong
deviations from zero for a number of eigenvalues. Specifi-
cally the difference of the second eigenvalue shows a strong
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Figure 8: Analysis of lateral asymmetry of the brain based on shape (un-normalized and normalized eigenvalues) and
volume. The bars show the median of ranks relative to the sample size for lateral brain structures. A low relative
rank indicates high lateral symmetry. We compute p-values with the Wilcoxon signed-rank test between the results of
un-normalized and normalized eigenvalues (light green), as well as un-normalized eigenvalues and volume (yellow). The
structures are sorted in decreasing order of p-value between un-normalized and normalized eigenvalues. The normalization
of eigenvalues yields a significant increase in rank for all structures except putamen. The un-normalized eigenvalues have
a significantly lower rank than the volume for the majority of structures.

directional asymmetry, where the distribution of the dif-
ferences is significantly different from a distribution with
median zero (p < 10−37, Wilcoxon signed-rank test).
In Sec. 2, the eigenfunction corresponding to the second
eigenvalue on the white matter surface is shown in Fig. 2.
The eigenfunction shows variations from left to right. In an
analysis across structures, we find that the differences for
18.5% of eigenvalues show significant directional asymme-
try, at a significance level that takes Bonferroni correction
into account.

6.2.3. Lateral shape symmetry across age and sex

The advantage of computing shape distances, in con-
trast to working with the high-dimensional shapeDNA, is
the reduction to a single scalar value for each lateralized
structure. This facilitates statistical analysis because we
can use a single linear model per lateralized structure with
the distance serving as a dependent variable and age and
sex treated as independent variables. Table 2 reports the
standardized regression coefficients and p-values for age
and sex. As in the previous asymmetry experiments, we
work with healthy controls. We report results for different
lateralized structures and for eigenvalues with and without
normalization. Across almost all structures we note an in-
crease in asymmetry with age. For a number of structures
highlighted in the table this increase is significant. Aging
shows the largest impact on the striatum, whose impor-
tance in aging has been previously documented (Raz et al.,
2003). The only exception to the overall increase is the de-
crease in asymmetry for the ventricles with un-normalized
eigenvalues. This decrease can be explained by the strong
increase in ventricle volume with aging, which causes the
decrease of the eigenvalues with aging. Since the eigenval-

ues of both hemispheres decrease, this results in a smaller
distance with aging.

For the impact of sex, we note a consistently more
symmetric brain morphology for women based on nor-
malized eigenvalues. These results are consistent with
previous findings in (Halpern, 2000; Chance and Crow,
2007). The difference across sexes is significant for corti-
cal structures, striatum, hippocampus, thalamus and cau-
date. The largest difference with β = −0.25 and lowest
p-value (p < 10−4) is measured for the hippocampus. The
results for the un-normalized eigenvalues are not as con-
sistent. This may mainly be related to the difference in
head size between men and women and the corresponding
scaling effect it has on the distances. We also evaluated
the effect of adding handedness as additional independent
variable to the model. We did not find a significant im-
pact of handedness on brain asymmetry for normalized or
un-normalized eigenvalues. This observation is consistent
with the results of Good et al. (2002), who have also re-
ported no relationship of handedness and asymmetry.

6.2.4. Longitudinal shape symmetry across age and sex

So far, we have looked at cross-sectional data, which can
confound within- and between-subject variations (Schaie
and Caskie, 2005). To better separate these two types of
variation, we integrate longitudinal data from follow-up
scans to the analysis. Single-cohort longitudinal designs
are considered one of the best designs for investigating
within-subject variations. However, drawbacks of such a
design are the length of time and the limitation to a single
cohort. Participants in ADNI are recruited from a large
age range, causing several age cohorts to be present and
therefore constitute an unstructured multicohort longitu-
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Structure Normalized eigenvalues Un-normalized eigenvalues
Age Sex Age Sex

β p β p β p β p

White-Tri 0.15 0.020 -0.16 0.015 0.24 0.000 0.05 0.455
Pial-Tri 0.09 0.144 -0.15 0.020 0.13 0.053 0.10 0.109

White-Tet 0.11 0.097 -0.14 0.028 0.27 0.000 0.04 0.501
Pial-Tet -0.03 0.681 -0.07 0.256 0.05 0.408 0.17 0.011
Striatum 0.20 0.002 -0.15 0.021 0.06 0.330 -0.06 0.365
Ventricle 0.09 0.164 -0.09 0.152 -0.18 0.005 0.01 0.821

Cerebellum WM 0.03 0.696 -0.04 0.498 0.11 0.099 0.03 0.601
Cerebellum Cortex 0.16 0.011 -0.09 0.161 0.04 0.541 0.01 0.935

Hippocampus 0.12 0.068 -0.25 0.000 0.14 0.030 -0.05 0.480
Amygdala 0.10 0.131 -0.08 0.237 0.16 0.014 0.08 0.204
Thalamus 0.07 0.252 -0.15 0.025 0.14 0.037 -0.05 0.451
Caudate 0.17 0.009 -0.19 0.003 0.09 0.152 -0.04 0.495
Putamen 0.17 0.010 -0.02 0.775 0.03 0.611 0.06 0.367

Accumbens -0.02 0.815 -0.05 0.426 0.09 0.161 0.05 0.440

Table 2: Regression model coefficients and p-values for the dependence of lateral shape distances on age and sex. Results
are shown for normalized and un-normalized eigenvalues. We show standardized regression coefficients β and highlight
signifiant dependencies in bold.

dinal design (Thompson et al., 2011). We use the longitu-
dinal processing stream in FreeSurfer (Reuter et al., 2012)
for this experiment to avoid processing bias (Reuter and
Fischl, 2011). To study cross-sectional and longitudinal
effects, we work with a linear mixed-effects model. We use
Bi to denote the age at baseline for subject i, Xij to be
the time from baseline at follow-up scan j, and Si to be
the sex of subject i. For the lateral shape distance Yij as
a dependent variable, we employ a linear model

Yij = β0 + β1Bi + β2Xij + β3Si + b0i + b1iXij , (14)

where β0, β1, β2, β3 are fixed effects regression coefficients
and b0i, b1i are random effects regression coefficients. The
random effects enable modeling subject-specific intercept
and slope with respect to the time from the baseline.
We investigate the striatum asymmetry with this longi-
tudinal model, because it showed the strongest age re-
lated effects. We select healthy controls with at least
three longitudinal scans, where the highest number of
scans is six. The subject age was centered at 69 years.
Fig. 10 displays the estimated within-subject and across-
subject change of the lateral shape distance for five age
cohorts (70, 74, 78, 82, and 86 years of age at baseline).
The lateral shape asymmetry increases with age cohort
(β1 = 0.04, p < 0.001) and men show stronger asym-
metry than women (β3 = −0.28, p < 0.05), consistent
with the previous results in Table 2. However, within-
subject increase in lateral asymmetry has double the rate
than the age of the cohort (β2 = 0.08, p < 0.005). Conse-
quently, striatum asymmetry increases faster as a function
of within-subject change in age than as a function of cohort
age. We also evaluated the interaction between age and
the time from the baseline, but did not find a significant
dependence. The increase in asymmetry with age may be
a sign of brain plasticity; the adaptation of brain struc-
ture throughout life. This may be correlated with changes
in brain function, which are known to be influenced by a

person’s life experience.

6.3. Discussion

The results on the overall symmetry of hemispheres
show that the normalization of eigenvalues decreases the
rank. The volume is therefore an important factor in lat-
eral shape symmetry. Focusing only on shape causes hemi-
spheres of other subjects to appear more similar than the
contralateral hemisphere in the same subject. For most
structures, the volume is more discriminative than the
shape alone, but the combination of shape and volume
leads in most cases to highly significantly lower ranks. Our
analysis of the pattern of asymmetry suggests fluctuating
and directional asymmetry. In a follow-up study, it would
be interesting to further evaluate the eigenfunctions that
correspond to the eigenvalues to investigate further the
type of shape changes that are directional. Our results for
the influence of age and sex on lateral shape asymmetry
showed significant dependency for a number brain struc-
tures. The general trend is that asymmetry increases with
age and is higher in men than in women. To further differ-
entiate within-subject and across-subject changes, we ana-
lyzed the change with age and sex in a longitudinal multi-
cohort study. The results for the striatum show an even
more pronounced increase of asymmetry with age within
subjects.

7. Genetic Influences on Brain Morphology

In this section, we investigate the potential genetic in-
fluence on brain morphology represented by BrainPrint by
comparing differences between twins in monozygotic (MZ)
vs. dizygotic (DZ) cohorts. Analysis of genetic and en-
vironmental influences on brain structure and its changes
over time is important for the basic understanding of brain
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Figure 9: Box-and-whisker plot of differences between nor-
malized eigenvalues on left and right white matter triangu-
lar mesh. Red lines indicate the median, the boxes extend
to the 25th and 75th percentiles, and the whiskers reach
to the most extreme values not considered outliers (red
crosses). Outliers are points that are farther than 1.5 times
the interquartile range away from either end of the box.
Distribution of differences around zero indicate fluctuating
asymmetry, whereas strong deviations from zero indicate
directional asymmetry. Distributions of differences with
non-zero median are marked with a star when significant
in Wilcoxon signed -rank test (Bonferroni corrected).

aging (Kremen et al., 2010). Genetically informative de-
signs, such as twin studies, are well suited for differen-
tiating the underlying genetic and family environmental
sources of resemblance (Eaves et al., 1978; Neale and Car-
don, 1992). Twin studies usually include both MZ twins
who share 100% of their genes, and DZ twins who, on av-
erage, share 50% of their genes. The reported proportion
of phenotypic variance due to genes is generally consistent
across large scale twin studies (Schmitt et al., 2007; Peper
et al., 2007; Blokland et al., 2012). However, the majority
of studies focuses almost entirely on volume, cortical thick-
ness, or surface area rather than shape. Previous shape
studies on twin data focused on lateral ventricles (Gerig
et al., 2001a,b; Styner et al., 2005; Terriberry et al., 2005)
or quantified gyral and sulcal patterns (Schmitt et al.,
2007; Im et al., 2011). In contrast, our shape represen-
tation includes a large variety of cortical and subcortical
brain structures and uses both 2D surface and 3D volume
representations. In this study, we compare brain shapes
across the MZ and DZ twin groups as an initial test for
potential genetic influence. Direct estimation of heritabil-
ity is outside the scope of this paper, as BrainPrint de-
scribes each structure by a vector instead of a single scalar,
which makes standard metrics for quantifying heritability
not straightforward to compute (Neale and Cardon, 1992).
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Figure 10: Longitudinal data for lateral distances of stria-
tum. Lines and line segments show model fitted from
linear mixed-effects model. Line segments show within-
subject slope for five age cohorts (70, 74, 78, 82, and 86
years of age at baseline). The longer lines indicate cross-
sectional slopes at baseline.

A multivariate extension of such metrics will be subject of
further research.

7.1. BrainPrint for twin analysis

To test the hypothesis that brain shapes are more similar
in MZ twins than in DZ twin pairs, we first compute shape
distances across a twin pair for each structure captured
by BrainPrint. Given a twin pair (a, b) with BrainPrint
(Λa, Λb), we compute the twin shape distance for a brain
structure s ∈ {1, . . . , η}

ds(Λ
a,Λb) = ‖λas − λbs‖2. (15)

For instance, we compute a shape distance between the
right caudate of one twin to the right caudate of the other
twin in a pair. According to the hypothesis, we expect
this distance to be lower for MZ twins than for DZ twin
pairs. Based on the results from the subject identification,
we use m = 30 eigenvalues for this study and employ the
linear re-weighting to balance their impact. In addition to
analyzing average shape distances across groups we also
compute a rank by relating the distance between twins to
the distance to all other subjects in the dataset (236 in
total).

7.2. Results

Fig. 11 illustrates the distances and ranks for the 15
most significant brain structures both with and without
size normalization of the eigenvalues. We report the mean
and standard error, together with Bonferroni corrected p-
values of the group differences between MZ and DZ twins
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using non-parametric testing (Wilcoxon rank-sum test).
The cortical structures, and particularly the white matter,
show the most significant shape differences between MZ
and DZ twins. Furthermore, the shape distances on the
volumetric (tetrahedral) meshes are usually more signifi-
cant than on the surface (triangular) meshes, which could
be due to the isometry invariance of our spectral shape
descriptor, which yields an increased deformation flexibil-
ity on surfaces. While the order of cortical structures re-
mains relatively stable across normalization and between
distance or rank computation, the subcortical structures
demonstrate larger variations, but overall similar struc-
tures are selected as the most significant ones.

In a final experiment, we compare within-pair differ-
ences for brain asymmetry in MZ and DZ twins. As a
measure of asymmetry we compute within subject lateral
shape distances based on BrainPrint. We then compute
the absolute difference of this asymmetry measure across
twins and compare these differences across the two groups.
Here, we did not find any significant differences in brain
asymmetry between MZ and DZ twins. This is consis-
tent with recent findings (Bishop, 2013; Eyler et al., 2014),
where little support for strong genetic influences on asym-
metry was found.

7.3. Discussion

The comparison of distances between subjects may de-
pend on additional factors, such as age, sex, and environ-
ment. The advantage of studying twin data is that most of
these confounding factors are controlled because MZ and
DZ twins have the same age, experienced a similar envi-
ronment, and, in this study, have the same sex. The bar
plots in Fig. 11 consistently show significantly lower shape
distances and ranks for MZ twins compared to DZ twins
independent of eigenvalue normalization. While we limit
the listing to the 15 most significant structures, the vast
majority of structures in BrainPrint are significant at a
level of 0.05. These results suggest that BrainPrint may
be capable of capturing genetic influences on brain mor-
phology. Generally, the lack of evidence for asymmetry
differences across groups may indicate that lateral shape
distances are mainly influenced by fluctuating asymmetry,
which was suggested by Gómez-Robles et al. (2013) to be
related to environmental factors during brain development
rather than genetic factors.

Genetic influences play a substantial role in explaining
individual differences in brain structure. Studying such
influences is an important element for understanding
both normal brain development and pathological brain
development in genetically-based disorders. Most imaging
genetic studies to date, including twin studies, have
examined genetic and environmental influences on brain
structures, but not on shape. Shape changes may be
associated with development, aging, cognition, and other
factors. Thus, a complete understanding of the genetic
of brain changes should include examination of changes

in shape. Our preliminary analysis of MZ and DZ twins
suggests that the characterization of brain morphology
with BrainPrint is well worth pursuing for a more
complete genetic analysis. Further work is required to
formally evaluate the extent of genetic and environmental
influences and to quantify heritability for shape or asym-
metry, and to evaluate whether heritabilities for different
structures are significantly different from one another.
Such work will be an important step toward demonstrat-
ing the potential of shape analysis for gene association.

8. Conclusions

We have introduced BrainPrint, an extensive character-
ization of brain morphology. It is computed by solving the
eigenvalue problem of the Laplace-Beltrami operator on
meshes from cortical and subcortical brain structures. The
classification rate of 99.9% for identification of subjects
shows that BrainPrint captures discriminative informa-
tion about a subject’s morphology. We continued study-
ing the similarity structure that BrainPrint imposes on
the dataset by evaluating its correlation with non-imaging
data that is associated with the scan. Our results show
that shape information yields a more accurate prediction
of sex and age than volume measures. Further, the shape
of cortical structures is better suited for sex prediction,
while subcortical structures perform better for age predic-
tion. This highlights the richness of the descriptor and
the possibility to adapt the notion of similarity to the
application by focusing on different brain structures. In
our analysis for brain asymmetry, we found large within-
subject differences across hemispheres, when comparing
to the population-based distances. For a majority of brain
structures, the structure in one hemisphere is more simi-
lar to the structure in the other hemisphere for 10% of the
dataset than for the same subject. Moreover, we found
an increase in asymmetry with age and a further increase
from women to men. The strongest increase in asymmetry
was found in the striatum, which we analyzed in more de-
tail with a multicohort longitudinal model to differentiate
between within-subject and across-subject changes. The
results for the twin study indicate genetic influences on
brain morphology.

BrainPrint contains shape information from triangu-
lar and tetrahedral meshes, where previous applications
of shapeDNA mainly focused on surface meshes. In sev-
eral of our applications, we note a better performance for
the Laplace spectra for volumetric meshes than for surface
meshes. The volumetric spectra yield a higher classifica-
tion rate for subject identification, a higher accuracy for
sex prediction, and more significant differences in shape
distance between MZ and DZ twins. These results show
that the theoretically higher discriminative power of volu-
metric shapeDNA than surface shapeDNA also yields im-
provements in practice. Laplace spectra for volumetric
meshes could be more discriminative because the spectra
on objects’ surfaces can be identical (or very similar) al-
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Figure 11: Distances and ranks between monozygotic (MZ) and dizygotic (DZ) twins for BrainPrint structures, sorted
in decreasing order of significance. Bars show the mean of distances and ranks, error bars correspond to two standard
error. Numbers show the Bonferroni corrected p-value of the Wilcoxon rank-sum test that distances/ranks are samples
from distributions with equal medians. We present results with and without normalization of eigenvalues. The total
number of scans is 236.
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though the objects are different. Since Laplace spectra are
isometry invariant (invariant to length preserving trans-
formations), inward and outward pointing protrusions can
lead to highly similar spectra as distances on the 2D man-
ifold remain stable.

The processing framework of BrainPrint is advanta-
geous when working with large datasets widely available
today. The segmentation of brain structures and the
computation of the compact BrainPrint descriptor is per-
formed independently for each scan. The cost for com-
puting BrainPrint only grows linearly with the number
of subjects. All further processing steps of the statistical
analysis, which may involve the computation of pairwise
distances and therefore higher order computational com-
plexity, are performed on the compact representation. It
is exactly this quadratic growth in costs that makes the
computation of pairwise similarities with image registra-
tion prohibitively expensive for large datasets. BrainPrint
and appropriate variations are therefore highly relevant for
handling large datasets, not necessarily limited to neuro-
science.
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10. Appendix

In the appendix, we provide additional figures to de-
scribe the core functionality of the proposed method and to
extend the experimental evaluation. Fig. 12 illustrates the
linear growth of eigenvalues and the quadratic growth of
the variance. The figure also shows that the mean and vari-
ance on re-weighted eigenvalues no longer exhibit the orig-
inal growth pattern. Fig. 13 shows two exemplar scans for
which BrainPrint does not correctly identify the subject
identity. These scans exhibit imaging artifacts, resulting
in skull strip and segmentation errors. Manual correction
in FreeSurfer or reacquisition to avoid motion artifacts can
be expected to improve the above results. Fig. 14 reports
the mean and standard deviation of the volume and lo-
cal gyrification index calculated from several longitudinal
scans per subject. The large variance and overlap across
subjects indicates that such representations are not well
suited for identifying subjects.
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Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer, H., Ini-
tiative, A. D. N., et al., 2013. Brainage in mild cognitive impaired
patients: predicting the conversion to Alzheimer’s disease. PloS
one 8 (6), e67346.

Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges,
B., Kim, H.-S., Niethammer, M., Dubois, B., Lehéricy, S., Gar-
nero, L., et al., 2009. Multidimensional classification of hippocam-
pal shape features discriminates alzheimer’s disease and mild cog-
nitive impairment from normal aging. Neuroimage 47 (4), 1476–
1486.

Gerber, S., Tasdizen, T., Fletcher, P. T., Joshi, S., Whitaker, R.,
2010. Manifold modeling for brain population analysis. Medical
Image Analysis 14 (5), 643 – 653.

Gerig, G., Styner, M., Jones, D., Weinberger, D., Lieberman, J.,
2001a. Shape analysis of brain ventricles using spharm. In: Math-
ematical Methods in Biomedical Image Analysis, 2001. MMBIA
2001. IEEE Workshop on. IEEE, pp. 171–178.

Gerig, G., Styner, M., Shenton, M. E., Lieberman, J. A., 2001b.
Shape versus size: Improved understanding of the morphology of
brain structures. In: Medical Image Computing and Computer-
Assisted Intervention–MICCAI 2001. Springer, pp. 24–32.
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